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Abstract. We prove that the class of total enumeration degrees and the class

of low enumeration degrees are first order definable in the local structure of
the enumeration degrees.

1. Introduction

The main focus in degree theory, established as one of the core areas in Com-
putability theory, is to understand a mathematical structure, which arises as a
formal way of classifying the computational strength of an object. The most stud-
ied examples of such structures are that of the Turing degrees, DT , based on the
notion of Turing reducibility, as well as its local substructures, of the Turing degrees
reducible to the first jump of the least degree, DT (≤ 0T

′), and of the computably
enumerable degrees, R. In investigating such a mathematical structure among the
main questions that we ask is: how complex is this structure. The complexity of a
structure can be inspected from many different aspects: how rich is it algebraically;
how complicated is its theory; what sets are definable in it; does it have nontrivial
automorphisms. The question about definability, in particular, is interrelated to
all of the other questions, and can be seen as a key to understanding the natural
concepts that are approximated by the corresponding mathematical formalism. Re-
search of the Turing degrees has been successful in providing a variety of results on
definability. For the global theory of the Turing degrees, among the most notable
results is the definability of the jump operator by Slaman and Shore [16]. The
method used in the proof of this result, as well as many other definability results
in DT , leads Slaman and Woodin to conjecture that every definable set in second
order arithmetic is definable in DT . This is a consequence of their Biinterpretabil-
ity conjecture, which is shown to be equivalent to the rigidity of DT [17]. In the
local theory Nies, Shore and Slaman [12] show a weakening of the biinterpretability
conjecture for the computably enumerable degrees and the ∆0

2 Turing, and obtain
from it the first order definition of the jump classes Hn and Ln+1 in DT (≤ 0T

′) and
in R, for every natural number n. One class of degrees which has managed to elude
every attempt at definability in the local structures is that of the low1 degrees, L1,
the degrees whose jump is the least possible degree, 0T

′.
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Another approach for understanding a structure, often used in mathematics,
is to place this structure in a richer context, a context which would reveal new
hidden relationships. The most promising candidate for such a larger context is
the structure of the enumeration degrees, introduced by Friedberg and Rogers [4].
This structure is induced by a weaker form of relative computability: a set A
is enumeration reducible to a set B if every enumeration of the set B can be
effectively transformed into an enumeration of the set A. The induced structure of
the enumeration degrees, De, is an upper-semilattice with jump operation and least
element. The Turing degrees can be embedded in the enumeration degrees via the
standard embedding ι which maps the Turing degree of a set A to the enumeration
degree of A ⊕ A. This embedding preserves the order, the least upper bound and
the jump operation. The range of ι is therefore a substructure of De, which is
isomorphic to DT . This structure will be denoted by T OT and its elements will be
called the total enumeration degrees. An important question, which immediately
arises in this context, first set by Rogers [13], is whether T OT is first order definable
in De. Rozinas [14] proves that every enumeration degree is the greatest lower
bound of two total enumeration degrees, thus the total enumeration degrees are an
automorphism base for De. This gives further motivation for studying the issue
of the definability of T OT in De, as it would provide a strong link between the
automorphism problem for the structures of the Turing degrees and the enumeration
degrees. If T OT is definable in De then a nontrivial automorphism of De would
yield a nontrivial automorphism of DT .

Definability in the enumeration degrees has had its successes as well. Kalimullin
[10] has shown that the enumeration jump is definable in De. McEvoy [11] has
shown that the range of the jump operator in the enumeration degrees coincides
with the class of total degrees above 0e

′, thus an immediate corollary from these
two results is that the class T OT ∩{a | a ≥ 0e

′} is first order definable in De. The
method used in Kalimullin’s proof is significantly less complex than that used to
prove the definability of the jump operator in the Turing degrees. The definition
of the enumeration jump is closer to the much sought natural definition, see Shore
[15], and is based on the first order definability of the notion of a K-pair.

Definition 1. Let A and B be sets of natural numbers. We say that {A,B} is a
K-pair if there is a c.e. set W , such that

A×B ⊆ W & A×B ⊆ W.

The jump operation gives rise to a local structure in the enumeration degrees,
Ge, consisting of all enumeration degrees that are reducible to the first jump, 0e

′, of
the least degree, 0e. Cooper [2] has shown, that the elements of Ge are exactly the
degrees which contain Σ0

2 sets, thus Ge is often referred to as the structure of the Σ0
2

enumeration degrees. As ι preserves the jump operation, it follows that T OT ∩ Ge

is a structure, which is isomorphic to DT (≤ 0T
′). In [5] we have shown that K-pairs

are first order definable in Ge, providing the first step in the investigation of the
definability theme for the local structure of the enumeration degrees. The local
definition of K-pairs unlocked numerous further results in the study of Ge. For
example in [5] we show that the classes of the upwards properly Σ0

2 enumeration
degrees and the downwards properly Σ0

2 enumeration degrees are first order defin-
able in Ge and in [7] we show that the first order theory of true arithmetic can be
interpreted in Ge, using coding methods based on K-pairs.
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In this article we give two more examples of classes of degrees with natural first
order definitions in Ge. The first one gives a positive answer to the local version of
Rogers’ question.

Theorem 1. The set of total Σ0
2 enumeration degrees is first order definable in Ge.

In view of the above discussed results by Kalimullin [10] a corollary of Theorem
1 is that the class of total degrees which are comparable with 0e

′ is first order
definable in the global structure De.

The second example supplies further evidence that studying the structure of the
Turing degrees within the larger context of the enumeration degrees can provide us
with more insight. Combined with Theorem 1 it gives the first instance of a local
first order definition of an isomorphic copy of the low Turing degrees.

Theorem 2. The set of low enumeration degrees is first order definable in Ge.

2. Preliminaries

We refer to Cooper [3] for a survey of basic results on the structure of the
enumeration degrees and to Sorbi [18] for a survey of basic results on the local
structure Ge. We outline here basic definitions and properties of the enumeration
degrees used in this article.

Definition 2. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(⟨n, u⟩ ∈ Φ & Du ⊆ B)},
where Du denotes the finite set with code u under the standard coding of finite sets.
We will refer to the c.e. set Φ as an enumeration operator.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.

The structure of the enumeration degrees ⟨De,≤⟩ is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has a
least element 0e = de(∅), the set of all c.e. sets.

We can define a least upper bound operation, by setting de(A)∨de(B) = de(A⊕
B). Here A⊕B = {2a | a ∈ A} ∪ {2b+ 1|b ∈ B}.

The enumeration jump of a set A, denoted by Je(A) is defined by Cooper [2] as
LA ⊕ LA, where LA = { n| n ∈ Φn(A)}, where {Φn}n<ω is an effective listing of
all enumeration operators. The enumeration jump operator is defined by de(A)

′ =
de(Je(A)).

Definition 3. A set A is called total if A ≡e A ⊕ A. An enumeration degree is
called total if it contains a total set. The collection of all total degrees is denoted
by T OT .

As noted above, the structure T OT is an isomorphic copy of the Turing degrees.
The map ι, defined by

ι(dT (A)) = de(A⊕A)

is an embedding of DT in De, which preserves the order, the least upper bound and
the jump operation.

The local structure of the enumeration degrees, denoted by Ge, is the substruc-
ture with domain, consisting of all enumeration degrees, which are reducible to 0e

′.
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As noted above, the elements of Ge are the enumeration degrees which contain Σ0
2

sets, or equivalently, which consist entirely of Σ0
2 sets.

Definition 4. A set A will be called low if Je(A) ≡e Je(∅). An enumeration degree
a ∈ Ge is low, if a′ = 0e

′.

3. K-pairs in Ge

We start this section with two examples of pairs of sets of natural numbers,
which form a K-pair. Recall that by Definition 1 for sets of natural numbers A and
B, {A,B} is a K-pair if there is a c.e. set W , such that:

A×B ⊆ W & A×B ⊆ W.

As a first example of a K-pair, consider a c.e. set U and an arbitrary nonempty
set of natural numbers A. Then U and A form a K-pair via the c.e. set U × N.
K-pairs of this sort we will consider trivial and we will not be interested in them.
A K-pair {A,B} is nontrivial if A and B are not c.e.

A more interesting example is given by Jockusch’s semi-recursive sets, [9].

Definition 5 (Jockusch). We say that a set of natural numbers, A, is semi-
recursive if there is a computable function sA : N × N → N, such that for any
x, y ∈ N, sA(x, y) ∈ {x, y} and whenever {x, y} ∩ A ̸= ∅, sA(x, y) ∈ A. The
function sA is called a selector function for A.

It is easy to see that if A is semi-recursive, then {A,A} is a K-pair. Indeed let
sA be the selector function for A and let

sA(n,m) =

{
n , if sA(n,m) = m

m , if sA(n,m) = n.

Now consider the c.e. set W = {(sA(n,m), sA(n,m)) | n,m ∈ N} and notice that

A×A ⊆ W and A×A = A×A ⊆ W . The following theorem by Jockusch [9] yields
the existence of nontrivial K-pairs.

Theorem 3 (Jockusch). Every nonzero Turing degree contains a semi-recursive
set A, such that both A and A are not c.e.

Kalimullin [10] has shown that the property of being a K-pair is degree theoretic
and first order definable in the global structure, De.

Theorem 4 (Kalimullin). A pair of sets {A,B} is a K-pair if and only if

∀x ∈ De[x = (x ∨ de(A)) ∧ (x ∨ de(B)) ].

Thus we can lift the notion of a K-pair to the enumeration degrees. A pair of
enumeration degrees a and b shall be called a K-pair if every member of a forms a
K-pair with every member of b.

The universal quantifier in the definition above makes it nontrivial to show that
the class of K-pairs is first order definable in the local structure Ge. In [5] we show
that this is nevertheless true.

Theorem 5. There is a first order formula LK, such that for any pair of Σ0
2 sets

A and B, {A,B} is a non-trivial K-pair if and only if Ge |= LK(de(A),de(B)).
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4. Definability via K-pairs

The example of a nontrivial K-pair given in the previous section, by a semi-
recursive set and its complement, hints towards a strong connection between total
enumeration degrees and K-pairs. Let us investigate this connection further. To do
this we will need the following three properties of K-pairs:

Theorem 6 (Kalimullin[10]). The the following assertions hold for Σ0
2 sets A and

B:

(1) If A and B form a nontrivial K-pair then A ≤e B and B ≤e A;
(2) The enumeration degrees de(A) and de(B) are incomparable and quasimin-

imal, i.e. the only total degree bounded by either of them is 0e.
(3) The class of the enumeration degrees of sets that form a K-pair with a fixed

set A is an ideal.

In view of the properties listed above, let us consider again the special case of
a K-pair given by a semi-recursive non c.e. set and its non-c.e. complement, say
{A,A}. This K-pair can be considered as a maximal K-pair, in the sense that for
every K-pair {C,D}, if A ≤e C and A ≤e D then A ≡e C and A ≡e D. Indeed
suppose there were a K-pair {C,D}, such that, say, A ≤e C but A <e D. By the
third property, as A ≤e C and {C,D} is a K-pair, A would also form a K-pair with
D. By the first property D ≤e A, contradicting the strong inequality A <e D. Let
us generalize the notion of a maximal K-pair.

Definition 6. We say that {A,B} is a maximal K-pair if for every K-pair {C,D},
such that A ≤e C and B ≤e D, we have A ≡e C and B ≡e D.

Using the second property in Theorem 6, we can restate Jockusch’s Theorem 3
as follows:

Corollary 1. Every nonzero total set is enumeration equivalent to the join of a
maximal K-pair.

To prove Theorem 1 we only need to show that, the opposite is true as well: the
join of every maximal K-pair of Σ0

2 sets is enumeration equivalent to a total set.
We prove something a little bit stronger. We prove that every nontrivial K-pair
{A,B} can be extended to a maximal K-pair of the form {C,C}.

Theorem 7. For every nontrivial Σ0
2 K-pair {A,B} there is a K-pair {C,C}, such

that A ≤e C and B ≤e C.

The proof of Theorem 7 is presented in the next section. To complete the proof
of Theorem 1 consider the formula:

T OT (x) ⇐⇒ x = 0e ∨ ∃a∃b[LK(a,b) & x = a ∨ b &

∀c∀d(LK(c,d) & c ≥ a & d ≥ b → c = a & d = b)]

A Σ0
2 enumeration degree x is total if and only if Ge |= T OT (x).

Now we turn to the local definability of the low enumeration degrees. For this
we need two more ingredients. The first one is proved by Giorgi, Sorbi and Yang
[8] and involves the notion of a downwards properly Σ0

2 enumeration degree.

Definition 7. A Σ0
2 set A is called downwards properly Σ0

2 if for every non c.e.
set B, such that B ≤e A, B is not ∆0

2. A degree a is downwards properly Σ0
2 if it

contains a downwards properly Σ0
2 set.
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In [5] we show that the class of downwards properly Σ0
2 degrees is first order

definable in Ge. Let DPΣ0
2 denote the first order formula, such that x is downwards

properly Σ0
2 if and only if Ge |= DPΣ0

2(x).

Theorem 8 (Giorgi, Sorbi, Yang). Every non-low total Σ0
2 enumeration degree

bounds a downwards properly Σ0
2 enumeration degree.

This result combined with the first order definability of the class of the total
enumeration degrees and of the class of the downwards properly Σ0

2 enumeration
degrees already gives the first order definition of the low total enumeration degrees.
To complete the prove we use a special case of a much more general jump inversion
theorem, proved by Soskov [19]:

Theorem 9 (Soskov). For every enumeration degree x there is a total enumeration
degree y, such that x < y and x′ = y′.

Thus a Σ0
2 enumeration degree is low if and only if there is a low total Σ0

2

enumeration degree above it. The low Σ0
2 enumeration degrees are defined by the

following formula:

LOW (x) ⇐⇒ ∃a[ x ≤ a & T OT (a) & ∀b ≤ a(¬DPΣ0
2(b))].

5. Proof of Theorem 7

To prove Theorem 7 we will use the following dynamic characterization of K-
pairs, proved in [10].

Lemma 1 (Kalimullin). A pair of non-c.e. Σ0
2 sets forms a K-pair if and only if

there are ∆0
2 approximations {Ai}i<ω to A and {Bi}i<ω to B, such that:

∀i(Ai ⊆ A ∨ Bi ⊆ B).

Approximations toA andB with the property above will be calledK-approximations.
Fix a nontrivial Σ0

2 K-pair {A,B} and let {Ai}i<ω and {Bi}i<ω be their respec-
tive ∆0

2 K-approximations. We shall build two Σ0
2 sets C and D which shall satisfy

the following requirements:

(R1) A = {x | ∃j[2⟨x, j⟩ ∈ C]}, B = {x | ∃j[2⟨x, j⟩+ 1 ∈ D]};
(R2) C and D are ∆0

2;
(R3) C = D;
(R4) {C,D} is a K-pair.

To ensure these conditions, we shall construct respective Σ0
2 approximations

{Ci}i<ω and {Di}i<ω, which will have the following properties:

(P1) Ai = {x | ∃j[2⟨x, j⟩ ∈ Ci] and Bi = {x | ∃j[2⟨x, j⟩+1 ∈ Di]. Assuming that
the approximations are ∆0

2 this will ensure that A ⊇ {x | ∃j[2⟨x, j⟩ ∈ C]}
and B ⊇ {x | ∃j[2⟨x, j⟩+ 1 ∈ D]}.

(P2) ∀i[Ai ̸⊆ A ⇒ Di ⊆ D] and ∀i[Bi ̸⊆ B ⇒ Ci ⊆ C]. This property will ensure
that the constructed approximations are ∆0

2, i.e. (R2) holds. Indeed, if
we assume that for some d ̸∈ D the set I(d) = {i | d ∈ Di} is infinite,
then {Ai}i∈I(d) is a c.e. approximation to A contradicting that A is not
c.e. Furthermore together with (P1) it ensures the inclusions A ⊆ {x |
∃j[2⟨x, j⟩ ∈ C]} and B ⊆ {x | ∃j[2⟨x, j⟩ + 1 ∈ D]}. The argument is
similar: there are infinitely many stages i, such that Bi * B, otherwise Bi
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would turn out c.e. So for every x ∈ A we can find a stage i such that
x ∈ Ai and Bi * B. By (P1) there is a number j, such that 2⟨x, j⟩ ∈ Ci.
By (P2) Ci ⊆ C. The second inclusion is proved in a similar way.

(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated in one
of the sets. This will ensure (R3);

(P4) ∀i[Ci ⊆ C ∨Di ⊆ D]. This will ensure (R4).

Note that the property (P2) is a consequence of properties (P1) and (P4), so
let us consider in more detail what the property (P4) is expressing. Suppose that
x ̸∈ C, but for some i, x ∈ Ci. Then i is a bad stage for C, i.e. Ci * C, and we
must ensure that all the elements in Di are ultimately enumerated in D. Thus from
this point on the element x is connected to all elements in Di, in the sense that we
should not enumerate x in Dk at a further stage k > i unless we also ensure that
Di ⊆ Dk. This suggests the following relations for every stage j:

rj(x, y) ⇐⇒ ∃i ≤ j[x ∈ Ci & y ∈ Di].

The main property (MP) of the construction is as follows: for every stage j and
every x and y, if rj(x, y), then

x ∈ Dj =⇒ y ∈ Dj and y ∈ Cj =⇒ x ∈ Cj .

Note that (MP) automatically ensures that the two constructed approximations
have the K-pair property. The construction must therefore ensure that (P1), (P3)
and (MP) are true. The other properties are implied by these.

5.1. Construction. We introduce the following piece of notation: with cai we shall
denote the natural number 2⟨a, i⟩, and by db

i the natural number 2⟨b, i⟩+1. If a ∈ Ai

we shall say that cai is a follower of a, and similarly if b ∈ Bi we shall say that db
i

is a follower of b. Note that by the properties of the construction we will have that
a ∈ A if and only if at least one of its followers is in C and b ∈ B if and only if at
least one of its followers is in D. During the construction each follower will have
one of the following two states: free or not free. Intuitively a follower is free if it is
not currently enumerated in either of the sets C or D. By Free we denote the set
of all followers that are currently free.

The construction will be carried out in stages. Every stage consists of two parts
- Extracting and Adding. We shall describe the construction formally and supply
a brief description of the intuition for every action. The main intuition of the
construction is that followers caj want to end up in the set D and followers db

j want

to end up in the set C. A follower caj remains in the set C (db
j remains in the set

D ) only if it is forced to do so by other followers to which it is connected.

Start of construction.
We set C0 = {c0a | a ∈ A0} and D0 = {d0

b | b ∈ B0}. At stage i > 0 we construct
Ci and Di by modifying Ci−1 and Di−1 respectively as follows:

Initially we set Ci = Ci−1 and Di = Di−1.

Part 1: Extracting

(E1) For all caj ∈ Ci such that a ̸∈ Ai we extract caj from Ci.

For all db
j ∈ Di such that b ̸∈ Bi we extract da

j from Di.

Intuition: This action ensures that {a | ∃j[caj ∈ Ci]} ⊆ Ai and that {b |
∃j[db

j ∈ Di]} ⊆ Bi.
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(E2) For all db
j ∈ Ci such that {cak | ri−1(c

a
k,d

b
j)} ̸⊆ Ci we extract db

j from Ci.

For all caj ∈ Di such that {db
k | ri−1(c

a
j ,d

b
k)} ̸⊆ Di we extract caj from Di.

Intuition: The follower db
j is only allowed to remain in Ci if all of the

elements to which it has been connected at a previous stage, i.e. {cak |
ri−1(c

a
k,d

b
j)} are still in Ci. These elements we can consider as requested in

Ci by db
j . If one of these requests cannot be fulfilled (due to the properties of

Ai for example and rule (E1)), db
j must also be extracted from Ci. Similar

reasoning is applied to followers ca and their membership to Di. These
actions ensure that the main property of the construction is true.

(E3) For all caj ∈ Ci such that {db
k | ri−1(c

a
j ,d

b
k)} ∩ Ci = ∅ we extract caj from

Ci.
For all db

j ∈ Di such that {cak | ri−1(c
a
k,d

b
j)} ∩Di = ∅ we extract db

j from
Di.

Intuition: A follower caj was forced into Ci−1 because of a request by some

db
k, to which it is connected. However at this stage the follower that made

this request is not any longer in Ci, (it was extracted under (E2) as one of
its other requests was not fulfilled). In other words caj is not requested any
longer in Ci, so it is free to leave and attempt entering Di.

All extracted elements become free.

Part 2 (Adding)

(A1) For all free db
j such that {cak | ri−1(c

a
k,d

b
j)} ⊆ Ci∪Free and {a | ri−1(c

a
k,d

b
j)} ⊆

Ai we enumerate db
j and {cak | ri−1(c

a
k,d

b
j)} in Ci.

All enumerated elements become not free.
For all free caj such that {db

k | ri−1(c
a
j ,d

b
k)} ⊆ Di∪Free and {b | ri−1(c

a
j ,d

b
k)} ⊆

Bi we enumerate caj and {db
k | ri−1(c

a
j ,d

b
k)} in Di.

All enumerated elements become not free.

Intuition: This is the action that allows followers db
j to enter Ci and re-

spectively caj to enter Di. This can be done only if all of their requests
can be fulfilled at the same time. These requests must also not injure the
actions of rule (E1).

(A2) For all a ∈ Ai we enumerate cai in Ci.
For all b ∈ Bi we enumerate db

i in Di.
All enumerated elements become not free.

Intuition: This action ensures that {a | ∃j[caj ∈ Ci]} ⊇ Ai and that {b |
∃j[db

j ∈ Di]} ⊇ Bi and together with (E1), property (P1).
(A3) For all a, j ≤ i such that a ̸∈ Aj we enumerate caj ∈ Di.

For all b, j ≤ i such that b ̸∈ Bj we enumerate db
j ∈ Ci.

Intuition: This action handles elements that are not followers. As our aim
is to construct D as C, these elements also need to be enumerated in one of
the two constructed sets. Note that even elements are enumerated inDi and
odd elements are enumerated in Ci. At the following stage an even number
caj , which was enumerated in Di under this action, cannot be extracted
under rules (E1) and (E2). Furthermore as caj has never been enumerated

into an approximating set to C, the set {da
k | ri(caj ,db

k)} is empty, so it
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cannot be extracted under rule (E2). Thus this element remains in Dk

at all further stages k > i. Similar reasoning is applied to odd numbers,
enumerated in Di under this action.

End of construction.

5.2. Verification of the construction. We prove that the described construction
produces sets C and D, which have the properties listed as (P1)-(P4) and (MP).
We start with the easiest property: (P1).

Proposition 1. For every i, Ai = {a | ∃j[caj ∈ Ci]} and Bi = {b | ∃j[db
j ∈ Di]}.

Proof. The claims of the proposition follow directly from rules (E1), (A1) and (A2).
Indeed (A2) guarantees the inclusion ⊆, as Ai = {a | cai ∈ Ci} and Bi = {b | db

i ∈
Di}. On the other hand (E1) and (A1) enforce that Ai ⊇ {a | ∃j[caj ∈ Ci]} and

Bi ⊇ {b | ∃j[db
j ∈ Di]}.

�
The following proposition is a direct consequence of the construction. We state

it nevertheless for completeness.

Proposition 2. For all i, Ci ∩Di = ∅.

Next we turn to the main property of the construction (MP). One particular
case of it will be used frequently in the rest of the proof and we will state and prove
it here separately.

Proposition 3. If caj is a follower and caj ∈ Di then {db
k | ri(caj ,db

k)} ⊆ Di;

If db
j is a follower and db

j ∈ Ci then {cak | ri(cak,db
j)} ⊆ Ci.

Proof. We prove the first statement. The second statement is proved similarly. Let
caj be a follower, (i.e. a ∈ Aj), such that caj ∈ Di. If c

a
j is enumerated in Di at stage

i under rule (A1) then by construction the set {db
k | ri(caj ,db

k)} is also enumerated
in Di. As no more elements are extracted from Di after the execution of step A1,
it follows that {db

k | ri(caj ,db
k)} ⊆ Di.

The other possibility is that caj ∈ Di−1 and during stage i, caj is not extracted
from Di. But then the prerequisites of rule (E2) are not valid for caj at stage i and

hence before starting the execution of (E3) it is true that {db
k | ri(caj ,db

k)} ⊆ Di.

During the execution of (E3) it is the case that for every db
k ∈ {db

k | ri(caj ,db
k)},

caj ∈ {cαl | ri−1(c
α
l ,d

b
k)} ∩Di. By (E3) this intersection must be empty in order to

extract db
k from Di, so none of the elements in {db

k | ri(caj ,db
k)} are extracted from

Di during the execution of (E3). Thus finally {db
k | ri(caj ,db

k)} ⊆ Di.
�

We are now ready to prove the main property (MP).

Lemma 2 (Main Lemma). Let x and y be natural numbers, such that ri(x, y), for
some natural number i. Then the following two conditions are true.

(C1) x ∈ Di =⇒ y ∈ Di.
(C2) y ∈ Ci =⇒ x ∈ Ci.

Proof. The claim of the lemma is trivial when either x or y are not followers, as
every such element is only enumerated once under (A3) in its corresponding set and
is never extracted. For followers x and y we shall consider three different cases.
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Case 1. x = caj and y = db
k. This is a direct consequence of Proposition 3.

Case 2. x = caj and y = cαl (or x = db
k and y = dβ

l ). Let s be the least natural
number for which rs(x, y). We shall prove simultaneously claims (C1), (C2) and
that

(1) {db
k | ri(y,db

k)} ⊆ {db
k | ri(x,db

k)}
by induction on i ≥ s. For i = s claims (C1) and (C2) are trivially true, as by
the definition of the relation rs and the choice of s we have x ∈ Cs and y ∈ Ds.
For claim (1) suppose that db

k is such that rs(y,d
b
k). Since y ∈ Ds, Proposition 3

implies that db
k ∈ Ds and hence from x ∈ Cs we obtain rs(x,d

b
k).

Now let i > s. In order to prove (C1) suppose that x ∈ Di. Then according to
Proposition 3, {db

k | ri(x,db
k)} ⊆ Di. Now using the induction hypothesis for (1)

and that {db
k | ri−1(x,d

b
k)} ⊆ {db

k | ri(x,db
k)} we obtain {db

k | ri−1(y,d
b
k)} ⊆ Di.

As by Proposition 2 we have that Di ∩ Ci = ∅, it follows that at stage i when we
reach step (E3), {db

k | ri(y,db
k) ∩ Ci = ∅, which implies that y /∈ Ci. This means

that if y is not already in Di, it is free during the execution of (A1) and we would
enumerate it in Di.

In order to prove (C2) suppose that y ∈ Ci. Then there is a db
k ∈ Di such

that ri−1(y,d
b
k), since otherwise y would have been extracted under (E3). From

the induction hypothesis for (1) we obtain that ri−1(x,d
b
k) and hence x ∈ Ci in by

Proposition 3.
Finally let us prove (1). We consider two cases. First suppose that y /∈ Ci. Then

{db
k | ri(y,db

k)} = {db
k | ri−1(y,d

b
k)}. On the other hand {db

k | ri−1(x,d
b
k)} ⊆ {db

k |
ri(x,d

b
k)} and now the claim follows from the induction hypothesis. Secondly let

y ∈ Ci. Then

{db
k | ri(y,db

k)} = {db
k | ri−1(y,d

b
k)} ∪ {db

k | db
k ∈ Di}.

On the other hand by (C2) we have x ∈ Ci and hence

{db
k | ri(x,db

k)} = {db
k | ri−1(x,d

b
k)} ∪ {db

k | db
k ∈ Di}

and again the claim follows from the induction hypothesis.
Case 3. x = db

k and y = caj . Let s be again the least stage for which rs(x, y). In
particular x ∈ Cs and y ∈ Ds. We shall prove simultaneously (C1), (C2) and for
all i ≥ s:

(2) {dβ
l | ri(y,dβ

l )} ⊆ {dβ
l | ri(x,dβ

l )}

(3) {cαl | ri(cαl , x)} ⊆ {cαl | ri(cαl , y)}
by induction on i. For i = s claims (C1) and (C2) are trivial. In order to prove (2)

suppose that dβ
l is such that rs(y,d

β
l ). Then according to Proposition 3, dβ

l ∈ Ds

and hence rs(x,d
β
l ). The proof of (3) is analogous.

Now let i > s. In order to prove (C1) suppose that x ∈ Di. Then according
steps (E3) and (A1) of the construction there is a cαl ∈ Di, such that ri−1(c

α
l , x).

The induction hypothesis for (3) implies ri−1(c
α
l , y). Now from claim (C1) of Case

2 and cαl ∈ Di we obtain y ∈ Di. The proof of (C2) is analogous.

Now let us prove (2). Suppose that for some dβ
l , ri(y,d

β
l ). We shall consider

two cases. First suppose that y /∈ Ci. Then it should be the case ri−1(y,d
β
l ) which

together with the induction hypothesis implies ri−1(x,d
β
l ) and hence ri(x,d

β
l ).

Now let y ∈ Ci. If ri−1(y,d
β
l ) we reason in the same way as above, so suppose that
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ri−1(y,d
β
l ) is not true. Then it should be the case dβ

l ∈ Di. On the other hand

(C2) implies x ∈ Ci and hence ri(x,d
β
l ).

Claim (3) is proved analogously.
�

Next we show that property (P2) is true.

Proposition 4. For every i the following holds:

• Ai ̸⊆ A =⇒ Di ⊆ D;
• Bi ̸⊆ B =⇒ Ci ⊆ C.

Furthermore

• a ∈ Ai \A =⇒ cai ∈ D;
• b ∈ Bi \B =⇒ db

i ∈ C.

Proof. Fix an i such that Ai ̸⊆ A and let a ∈ Ai \ A. Consider the follower cai .
According to (A2) cai ∈ Ci, so that for all y ∈ Di, ri(c

a
i , y) and hence rj(c

a
i , y) for

j ≥ i. Let s1 > i be the least stage, such that for all j ≥ s1, a ̸∈ Aj (such stage
exists since {Ai}i<ω is a ∆0

2 approximation). Then according to rule (E1) for each
j ≥ s1, c

a
j /∈ Cj and hence for j ≥ s1, {db

k | rj(cai ,db
k)} ∩ Cj = ∅. Thus for j ≥ s1,

{db
k | rj(cai ,db

k)} ⊆ Dj ∪Free. Now consider the set {b | ∃k[rj(cai ,db
k)]}. Note that

as for all j ≥ s1, c
a
j /∈ Cj , it follows that this set is finite and does not change. We

claim that

(4) {b | ∃k[rj(cai ,db
k)]} ⊆ B.

Indeed, rj(c
a
i ,d

b
k) implies that for some l, cai ∈ Cl and db

k ∈ Dl, and in the par-
ticular a ∈ Al and b ∈ Bl. Thus Al * A, so that by our choice of K-approximations
to A and B, it must be true that Bl ⊆ B and hence b ∈ B.

Fix the least stage s2 ≥ s1, such that for all j ≥ s2, {b | ∃k[rj(cai ,db
k)]} ⊆ Bj

(such a stage exists in virtue of (4)). Then for j ≥ s2, {db
k | ∃k[rj(cai ,db

k)]} ⊆
Dj ∪ Free and {b | ∃k[rj(cai ,db

k)]} ⊆ Bj , so that (A1) implies cai ∈ Dj . Thus
cai ∈ D.

Finally since for all y ∈ Di and all j ≥ s2, rj(c
a
i , y), Lemma 2 implies Di ⊆ Dj

and hence Di ⊆ D.
�

Corollary 2. {Ci}i<ω and {Di}i<ω are ∆0
2 approximations to C and D respec-

tively.

Proof. Towards a contradiction assume that {Di}i<ω is not a ∆0
2 approximation to

D. Then there is an element y ̸∈ D such that the set I(y) = {i | y ∈ Di} is infinite.
Every i ∈ I(y) is a bad stage for D and hence according to Proposition 4 it is a
good stage for A. On the other hand I(y) is computable and hence

A = {a | ∃i[i ∈ I(y) & a ∈ Ai]}.
This contradicts that A is not c.e.

�
Corollary 3. A = {a | ∃j[caj ∈ C]} and B = {b | ∃j[db

j ∈ D]}.

Proof. By Proposition 1 for every i, Ai = {a | ∃j[caj ∈ Ci]} and Bi = {b | ∃j[db
j ∈

Di]}. Hence if a /∈ A there is a stage ia such that a /∈ Ai for all i > ia and hence
for all j and all i > ia, c

a
j /∈ Ci. This yields A ⊇ {a | ∃j[caj ∈ C]}.
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Now let a ∈ A. Let ia be a stage such that a ∈ Ai for all i > ia. Let j > ia be
a stage such that Bj * B. Such a stage exists, as if we assume otherwise, i.e. that
for all j > ia, Bj ⊆ B, it would follow that B is c.e. contrary to what is given. At
stage j, as a ∈ Aj , c

a
j ∈ Cj by (A2). By Proposition 4, as Bj * B, Cj ⊆ C. So

caj ∈ C and A ⊆ {a | ∃j[caj ∈ C]}. That B = {b | ∃j[db
j ∈ D]} is proved similarly.

�
To complete the verification of the construction in the last two propositions we

prove that properties (P3) and (P4) are true.

Proposition 5. D = C.

Proof. First we claim that C ∩ D = ∅. Indeed, at each stage the rules of the
construction guarantee the Ci ∩Di = ∅. This together with the fact that {Ci}i<ω

and {Di}i<ω are ∆0
2 approximations implies C ∩D = ∅.

Next we prove that C ∪D = N. Fix a natural x ∈ N. Suppose that x is not a
follower. Without loss of generality we may assume that x = cai for some natural
numbers i and a. Then at stage s = max{i, a}, x is enumerated in Ds under rule
(A3). It is never extracted from D. Indeed it could be extracted at a stage j only
under rule (E2), because this is the only rule which extracts an even number from
D. However the set {db

k | rj−1(x,d
b
k)} = ∅ so rule (E2) does not apply. Thus

x ∈ D.
Now suppose that x is a follower. If x = cai for some a ̸∈ A, or x = db

i for some
b ̸∈ B then according to Proposition 4, x ∈ D or x ∈ C respectively. So let x = cai
for some a ∈ A and suppose that x /∈ C. Then according to Proposition 4 for every
j if x ∈ Cj , then Bj ⊆ B. Thus if rj(x,d

b
k), then b ∈ B. Let s1 be the least stage,

such that for j ≥ s1, x /∈ Cj . Then for j ≥ s1 we have rj(x,d
b
k) ⇐⇒ rs1(x,d

b
k).

Furthermore Proposition 3 implies that for j ≥ s1, {db
k | rj(x,db

k)} ∩ Cj = ∅ and
hence {db

k | rj(x,db
k)} ⊆ Dj ∪ Free. Let s2 ≥ s1 be the least stage such that for

j ≥ s2, {b | ∃k[rj(x,db
k)]} ⊆ Bj . Then at stage s2, x is enumerated in Ds2 under

rule (A1) and is never extracted from D.
Analogously we may prove that if x = db

k for some b ∈ B and x /∈ D then x ∈ C.
�

Proposition 6. For every i, either Ci ⊆ C or Di ⊆ D

Proof. Suppose that for some i, Ci ̸⊆ C and let x ∈ Ci \C. Fix a stage s such that
for each j ≥ s, x ∈ Dj (such a stage exists since D = C and the approximation
to D is ∆0

2). Take an arbitrary y ∈ Di. Then for each j ≥ i, rj(x, y) and hence
according to claim (C1) of Lemma 2 we obtain that for j ≥ s, y ∈ Dj . Thus y ∈ D
and hence Di ⊆ D.

�

6. Final remark

The proof of Theorem 1 can be relativized above any total degree. Consider the
following generalization of a K-pair, originally known as a U -e-ideal and introduced
by Kalimullin [10].

Definition 8. Let A, B and U be sets of natural numbers. We say that {A,B} is
a K-pair over U if there is a set W ≤e U , such that

A×B ⊆ W & A×B ⊆ W.
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Kalimullin shows that a pair of sets A and B for a K-pair over U if and only if
their degrees a = de(A), b = de(B) and u = de(U) satisfy the formula:

∀x[x ∨ u = (x ∨ a ∨ u) ∧ (x ∨ b ∨ u)].

In [6] we relativize the dynamic characterization of K-pairs as follows:

Lemma 3. Let G be a total set and let A and B be sets, such that G <e A ≤e Je(G)
and G <e B ≤e Je(G). A and B form a K-pair over G if and only if A and B have
∆0

2(G) approximations {Ai}i<ω and {Bi}i<ω such that for every i either Ai ⊆ A
or Bi ⊆ B.

This relativized dynamic characterization allows us to carry out the construction
in Section 5 relative to any total set G, thus proving that every K-pair over G can
be lifted to a maximal K-pair over G. Since every K-pair over ∅ is also a K-pair
over G, Jouckusch’s theorem is still applicable in relativized form - every total set
T , such that G <e T ≤e G

′ is the join of a maximal K-pair over G. Thus we obtain
the following corollary:

Corollary 4. For every total degree a the class T OT ∩[a,a′] is first order definable
in De with parameter a.
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