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Abstract

In this paper for any fixed set of natural numbers A the alge-
bra NA = ⟨P(!)A;W0,W1, . . . ;Non⟩ is considered, where P(!)A =
{B∣B ⊆ !&B ≤e A}, W0,W1, . . . are the sequence of all c.e. sets con-
sidered as e-operators and Non is the predicate to be nonempty set.
It is shown for any set of natural numbers A the algebra NA has the
least enumeration, admits equivalent representation with 3 operators
and it is finitely generated.

Mathematics Subject Classification: 03C50, 03D28, 03D30, 03D45,
03D60, 03D75

1 Introduction

In attempts to classify the family of all sets of naturals according to effec-
tive computability different kinds of reducibilities were introduced. Post first
introduced so called ”strong” reducibilities (m- ,tt- ,. . . ) in [1] and a little
later in [2] Turing reducibility. Every reducibility defines a pre-order. Thus
in a natural way m-degrees, T-degrees, etc. were introduced. Enumeration
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reducibility was introduced in 1959 by Friedberg and Rogers [3]. In [4] em-
bedding of the semi-lattice of Turing degrees (T-degrees) into the semi-lattice
of enumeration degrees (e-degrees) was found. It showed both semi-lattices
were closely related and any result or question about one of them triggered
a question of validity for the other. In 1966 Sacks [5] and in 1967 Rogers [6]
stated the basic question about T-degrees if there were any nontrivial auto-
morphisms in the upper semi-lattice of T-degrees. In case that there aren’t
nontrivial automorphisms in some upper semi-lattice we say it is rigid. The
same question was stated about e-degrees, m-degrees, etc. This question is
important because it is connected with definability in these semi-lattices. For
m-degrees it was shown by Shore there exist 22

ℵ0 automorphisms.
In 1977 Jockusch and Solovay [7] and in 1979 Richter [8] and Epstein [9]

proved that every automorphism is the identity on the cone above 0(3) for
Turing degrees. In 1986 Slaman and Woodin [10] approved the above result
showing that every automorphism is the identity on the cone above 0′′. Using
the connections between both T- and e-jumps in [11] Soskov and Ganchev
obtained that every automorphism is the identity on the cone above 0(4) for
e-degrees.

Since the uppersemilattice of all e-degrees (e-degrees ≤ a) is defined by
≤e A in this paper for any fixed set of natural numbers A the algebra NA =
⟨P(!)A;W0,W1, . . . ;Non⟩ is considered. Here P(!)A = {B∣B ⊆ !&B ≤e

A}, W0,W1, . . . are the standard sequence of all c.e. sets considered as e-
operators and Non is the predicate to be nonempty set. We would like to
mention that the empty set plays special role and we differ from other c.e.
sets. We modify insignificant the relation ≤e and show that the algebra NA

has the least enumeration, admits equivalent representation with 3 operators
ant it is finitely generated. We use so called unary partial structures without
equality [12, 13].

In Section 2 we give all necessary definitions, notions and propositions
concerning normal and least enumerations of unary partial structures. Here
we modify a little the definitions of e-reducibility and e-operators, concerning
the empty set. In Section 3 we prove the main results: The algebra NA =
⟨P(!)A;W0,W1, . . . ;Non⟩ admits the least enumeration. Then we prove that
this algebra is recursively equivalent to an algebra with only 3 operators, and
that the last algebra is finitely generated. At the end we see that among all
algebras with different enumeration of all e-operators the standard one has
the least enumeration.
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2 Preliminaries

In this paper we use ! to denote the set of all natural numbers, Dom(f),
Ran(f) and Gf to denote respectively the domain, the range and the graph of
the function f , ⟨f⟩ or ⟨Gf⟩ to denote the set {⟨x1, . . . , xn, y⟩∣(x1, . . . , xn, y) ∈
Gf}, where ⟨., . . . , .⟩ is some fixed coding function for all finite sequences of
natural numbers. We shall use f(x) ↓ to denote that x ∈ Dom(f), as well;
also we say that f(x) conditionally equal to g(x), or that the conditional
equality f(x) ∼= g(x) is true iff

(f(x) ↓ &g(x) ↓ &f(x) = g(x)) ∨ (¬(f(x) ↓)&¬(g(x) ↓)).
W0, W1,. . . denote the standard enumeration of all computably enumer-

able (c.e.) sets; Ev denote an effective coding of the family of all finite subsets
of !.

If W is c.e. set we denote W[n] = {x∣⟨n, x⟩ ∈ W} and if A is arbitrary
subset of !, then by W (A) we denote the set

W (A) = {x∣∃v(⟨x, v⟩ ∈ W&Ev ∕= ∅&Ev ⊆ A)}.
Notice here is a little difference with the accepted sense of the term e-

operator. It concerns ∅.
It is said A is e-reducible to B (A ≤e B) iff there exists a c.e. set W

such that A = W (B); A is e-equivalent to B (A ≡e B) iff A ≤e B&B ≤e A;
de(A) = {B∣A ≡e B}. Thus we shall consider 0e to be the family of all
nonempty c.e. sets and -1e = {∅}.

For arbitrary sets A and B of naturals by A⊕B we denote the set
{2x∣x ∈ A}∪{2x+1∣x ∈ B}; If A0, A1,. . . is a sequence of sets of naturals,

by ⊕i∈!Ai we denote the set {⟨i, x⟩∣x ∈ Ai}.
We shall recall some definitions from [14, 15].
Let A = ⟨B; µ1, . . . , µn;R1, . . . , Rk⟩ be a partial structure, where B is an

arbitrary denumerable set, µ1, . . . , µn are partial unary functions in B and
R1, . . . , Rk are unary partial predicates on B. We allow any of the sequences
µ1, . . . , µn and R1, . . . , Rk to be infinite, as well. We call such structures
unary. We identify the partial predicates with partial mapping taking values
in {0, 1}, writing 0 for true and 1 for false.

Let B = ⟨!;'1, . . . , 'n;¾1, . . . , ¾k⟩ be a partial structure over the set !.
By ⟨B⟩ we denote the set ⟨'1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨'n⟩ ⊕ ⟨¾1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨¾k⟩ (In case the
set of functions or predicates are infinite we use the correspondent infinite
version of

⊕
).
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Definition 1 An enumeration of a structure A is any ordered pair ⟨®,B⟩
where B = ⟨!;'1, . . . , 'n; ¾1, . . . , ¾k⟩ is a partial unary structure on ! and ®
is a partial surjective mapping of ! onto B such that the following conditions
hold:

(i) Dom(®) ≤e ⟨B⟩;
(ii) ®('i(x)) ∼= µi(®(x)) for every x ∈ !, 1 ≤ i ≤ n;
(iii) ¾j(x) ∼= Rj(®(x)) for every x ∈ !, 1 ≤ j ≤ k.

An enumeration ⟨®,B⟩ is said to be total iff Dom(®) = !.
Let A ⊆ B. The set A is called admissible in the enumeration ⟨®,B⟩ iff

there exists a set W of naturals such that W ≤e ⟨B⟩ and for every x ∈ !,
x ∈ W ⇐⇒ ®(x) ∈ A.

A partial multiple-valued (p.m.v) function µ is called admissible in the
enumeration ⟨®,B⟩ if there exists a set W ⊆ !2 such that W ≤e ⟨B⟩ and
for every x ∈ ! and t ∈ B, the following equivalence is true:

t ∈ µ(®(x)) ⇐⇒ ∃y((x, y) ∈ W&®(y) = t).
In other notation the previous definition can be reformulated as follows.
A p.m.v function µ is called admissible in the enumeration ⟨®,B⟩ if there

exists a p.m.v function ' in ! such that ⟨G'⟩ ≤e ⟨B⟩ and for every x ∈ !,
®('(x)) = µ(®(x)).

A set A or p.m.v function µ is called ∀-admissible in A iff it is admissible
in every enumeration ⟨®,B⟩ of A.

Let ⟨®0,B0⟩ be an enumeration of the structure A. We say that ⟨®0,B0⟩ is
a least enumeration of A iff for every enumeration ⟨®,B⟩ of A, ⟨B0⟩ ≤e ⟨B⟩.

Let ℒ be the first order language corresponding to the structure A, i.e. ℒ
consists of n unary functional symbols f1, . . . , fn, k unary predicate symbols
T1, . . . ,Tk.

Let us fix some fixed denumerable set X1, X2, . . . of variables. We shall
use capital lettersX,Y, Z and the same letters by indexes to denote variables.

The definition of a term in the language ℒ is the usual: Every variable is
a term; If ¿ is a term then fi(¿) is a term.

If ¿ is a term in the language ℒ, then we write ¿(Y1, . . . , Yk) to denote
that all variables which occur in the term ¿ are among Y1, . . . , Yk.

Termal predicate in the language ℒ is defined by the following inductive
clauses:

If T ∈ {T0, . . . ,Tk} and ¿ is a term, then T(¿) and ¬T(¿) are termal
predicates. If Π1 and Π2 are termal predicates, then (Π1&Π2) is a termal
predicate.
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Let B be a structure, a1, . . . , ak are elements of B and ¿(Y1, . . . , Yk) is a
term. By ¿A(Y1/a1, . . . , Yk/ak) we denote the value of the term ¿ in A over
the elements a1, . . . , ak, if it exists.

Let Π(Y1, . . . , Ym) be a termal predicate whose variables are among Y1, . . . ,
Ym and a1, . . . , am be elements of B. The value ΠA(Y1/a1, . . . , Ym/am) of Π
over a1, . . . , ar in A is defined as follows:

If Π = Tj(¿), 0 ≤ j ≤ k, then
ΠA(Y1/a1, . . . , Ym/am) ∼= Rj(¿A(Y1/a1, . . . , Ym/am)).
If Π = ¬Π1, where Π1 is a termal predicate, then

ΠA(Y1/a1, . . . , Ym/am) ∼=

⎧
⎨
⎩

1, if Π1
A(Y1/a1, . . . , Ym/am) ∼= 0,

0, if Π1
A(Y1/a1, . . . , Ym/am) ∼= 1,

undefined, otherwise.

If Π = (Π1&Π2), where Π1 and Π2 are termal predicates, then

ΠA(Y1/a1, . . . , Ym/am) ∼=

⎧
⎨
⎩

Π2
A(Y1/a1, . . . , Ym/am), if Π1

A(Y1/a1, . . . , Ym/am) ∼= 0,

1, if Π1
A(Y1/a1, . . . , Ym/am) ∼= 1,

undefined, otherwise.

Formulae of the kind ∃Y ′
1 . . . ∃Y ′

l (Π), where Π is a termal predicate are
called conditions. Every variable which occurs in Π and is different from
Y ′
1 , . . . , Y

′
l is called free in the condition ∃Y ′

1 . . . ∃Y ′
l (Π).

Let ∃Y ′
1 . . . ∃Y ′

l (Π) be a condition, all free variables in C are among
Y1, . . . , Ym, and a1, . . . , am be elements ofB. The value CA(Y1/a1, . . . , Ym/am)
is defined by the equivalence:

CA(Y1/a1, . . . , Ym/am) ∼= 0 ⇐⇒
∃t1 . . .∃tl(ΠA(Y

′
1/t1, . . . , Y

′
l /tl, Y1/a1, . . . , Ym/am) ∼= 0).

We assume there is fixed some effective codding of all terms, termal pred-
icates and conditions of the language ℒ. We shall use superscripts to denote
the corespondent codes.

Let A ⊆ !r × Bm. The set A is said to be ∃-definable (or just definable)
in the structure A iff there exists a recursive function ° of r + 1 variables
such that for all n, x1, . . . , xr, C

°(n,x1,...,xr) is a conditions with free variables
among Z1, . . . , Zl, Y1, . . . , Ym and for some fixed elements t1, . . . , tl of B the
following equivalence is true:

(x1, . . . , xr, a1, . . . , am) ∈ A ⇐⇒

∃n ∈ !(C
°(n,x1,...,xr)
A (Z1/t1, . . . , Zl/tl, Y1/a1, . . . , Ym/am) ∼= 0).
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If Π is a termal predicate and ¿ is a term, then ∃Y ′
1 . . . ∃Y ′

l (Π ⊃ ¿) is
called a conditional expression.

Let Q = ∃Y ′
1 . . . ∃Y ′

l (Π ⊃ ¿) be a conditional expression with free vari-
ables amongX1, . . . , Xa, and s1, . . . , sa ∈ B. Then the valueQA(X1/s1, . . . , Xa/sa)
of Q is the subset

{¿A(Y ′
1/p1, . . . , Y

′
l /pl, X1/s1, . . . , Xa/sa)∣ΠA(Y

′
1/p1, . . . , Y

′
l /pl, X1/s1, . . . , Xa/sa) ∼= 0}

of B.
Let µ be p.m.v. function in B. Then the function µ is called definable in

A iff for some c.e. set {Qv}v∈V of conditional expressions with free variables
among X,Z1, . . . , Zr and for some fixed elements t1, . . . , tr of B the following
equivalence is true:

t ∈ µ(s) ⇐⇒ ∃v(v ∈ V&t ∈ Qv
A(Z1/t1, . . . , Zr/tr, X/s)).

In [14] Soskov has proved the following Theorem.

Theorem 1 (Soskov [14]) Let µ be a unary p.m.v. function in B. Then µ is
∀-admissible in A iff µ is definable in A.

Define fi(p) = ⟨i− 1, p⟩, i = 1, . . . , n and
N0 = ! ∖ (Ran(f1) ∪ ⋅ ⋅ ⋅ ∪ Ran(fn)). It is obvious that N0 is an infinite
recursive set and let {p0,p1, . . . } = N0, where pi < pj if i < j. In case
the sequence fi is infinite (i ∈ !) we can ensure N0 to be infinite taking for
example fi(p) = ⟨i− 1, p, 0⟩.

We shall recall the definition and some properties of normal enumerations
[14] only in case of total one. For every surjective mapping ®0 of N0 onto B
(called basis) we define a mapping ® of ! onto B by the following inductive
clauses:

(i) If p ∈ N0, then ®(p) = ®0(p);
(ii) If p = fi(q), ®(q) = a and µi(a) = b, then ®(p) = b.
Let ¾1, . . . , ¾k be the partial predicates, defined by the equalities

¾j(x) ∼= Rj(®(x)), j = 1, . . . , k.
B denote the partial structure ⟨!; f1, . . . , fn;¾1, . . . , ¾k⟩.
It is well known that ® is well defined and that the basis ®0 completely

determines the normal enumeration ⟨®,B⟩.
Let ⟨®,B⟩ be a normal enumeration. We shall recall some obvious propo-

sitions for normal enumerations. The proofs are the same as in [14].
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Proposition 1 For every 1 ≤ i ≤ n and y ∈ !, ®(fi(y)) = µi(®(y)).

Corollary 1 Let ¿(Y ) be a term, and y ∈ !. Then

®(¿B(Y/y)) = ¿A(Y/®(y)).

Proposition 2 There exists an effective way for every x of ! to find y ∈ N0

and a term ¿(Y ) such that x = ¿B(Y/y).

If ⟨®,B⟩ is a normal enumeration, then by R® we denote the set
∪k

j=1{⟨j, x, z⟩∣¾j(x) = z}. In the general case we have to add some addi-
tional members, but in our case the functions fi are totally defined and we
don’t need it. It is clear that for every W ⊆ !, W ≤e R® iff W ≤e ⟨B⟩.
Proposition 3 There exists an effective way for every natural u to find el-
ements y1, . . . , ym ∈ N0 and a termal predicate Π(Y1, . . . , Ym) such that for
every normal enumeration ⟨®,B⟩,

u ∈ R® ⇐⇒ ΠA(Y1/®(y1), . . . , Ym/®(ym)) ∼= 0.

Proposition 4 There exists an effective way for every code v of a finite set
Ev to find elements yv1 , . . . , y

v
mv

∈ N0 and a termal predicate Πv(Y1, . . . , Ymv)
such that for every normal enumeration ⟨®,B⟩,

Ev ⊆ R® ⇐⇒ Πv
A(Y1/®(y

v
1), . . . , Ymv/®(y

v
mv

)) ∼= 0.

To be precise we need to mention that in the previous proposition, instead
of using Π°(v) for some recursive function ° for the sake of simplicity we used
just Πv. We shall use it from now on, as well.

Let A = ⟨B; µ1, . . . , µn;R1, . . . , Rk⟩ be an unary partial structure.
Type of the sequence b1, . . . , bm of elements of B we call the set

{v∣Πv
A(X1/b1, . . . , Xm/bm) ∼= 0 &Πv is a termal predicate with variables

among X1, . . . , Xm}. The type of the sequence b1, . . . , bm we shall denote
by [b1, . . . , bm]A. Call type of the element a of B the type of the sequence a.

Call a condition simple if it does not contain free variables and it is in
the form ∃X1Π, where Π is a termal predicate. Let V A

0 = {v∣Cv
A
∼= 0 & Cv

be a simple condition }.
Definition 2 Let A be a family of subsets of !. It is said that a set U ⊆ !2

is universal for the family A iff the following conditions hold:
a) For every fixed e ∈ !, {x1∣(e, x1) ∈ U} ∈ A;
b) If A ∈ A, then there exists e such that A = {x1∣(e, x1) ∈ U}.
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Theorem 2 Let A be an unary partial structure. Then A admits a least
partial enumeration ⟨®0,B0⟩ iff there exist elements b1, . . . , bm of B such
that dege([b1]A ⊕ ⋅ ⋅ ⋅ ⊕ [bm]A ⊕ V A

0 ) is the least upper bound of e-degrees of all
∃-types of sequences of elements of B and there exists a universal set U of
all types, such that dege(U) = dege([b1]A ⊕ ⋅ ⋅ ⋅ ⊕ [bm]A ⊕ V A

0 ).

3 The main result

We shall consider the standard structure N = ⟨P(!);W0,W1, . . . ;Non⟩,
where P(!) is the family of all subsets of !, W0,W1, . . . are the sequence of
all c.e. sets considered as functions (e-operators) and Non is the family of
all nonempty sets of naturals. To be more precise Non is a partial unary
predicate defined as follows: Non(A) = 0, if A ∕= ∅ and Non(∅) ↑.

First we shall consider the structure NA = ⟨P(!)A;W0,W1, . . . ;Non⟩,
where P(!)A = {B∣B ⊆ !&B ≤e A} which we call standard as well. Let us
mention the functions W0,W1, . . . are totally defined as e-operators and we
do not use the equality among predicates. Let in addition W be the family
of all c.e. sets considered as e-operators.

Let ℒ∗ be the first order language ⟨f0, f1, . . . ;T⟩, containing a countable
set of unary functional symbols f0, f1, . . . and a unary predicate symbol T.
We call A a generalized structure if A = ⟨B;Θ;R⟩ where B is a denumer-
able set, Θ – denumerable set of unary functions on B and R is an unary
predicate on B. When we consider structures with finite functions and finite
predicates, the considerations don’t depend on enumerations of the functions
and predicates. In case when we consider denumerable set of functions the
things are different.

Enumeration of the family Θ of functions is any sequence µ0, µ1, . . . such
that Θ = {µ0, µ1, . . . }. We don’t require all members of the sequence
µ0, µ1, . . . to be different.

Let us fix some enumeration µ00, µ
0
1, . . . of the family Θ and consider the

structure A0 = ⟨B; µ00, µ
0
1, . . . ;R⟩.

We say that ⟨®0,B0⟩ is a least enumeration of the generalized structure
A iff for every enumeration µ0, µ1, . . . of Θ and every enumeration ⟨®,B⟩ of
A = ⟨B; µ0, µ1, . . . ;R⟩ the inequality ⟨B0⟩ ≤e ⟨B⟩ holds.

Let us consider the structure NA = ⟨P(!)A;W0,W1, . . . ;Non⟩ for the
language ℒ∗ and define the m.v.f. ΦA : P(!)A ∖ {∅} → P(!)A ∖ {∅} as
follows: ΦA(B) = {C∣C ≤e B&C ∕= ∅} for nonempty B.
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Proposition 5 The m.v.f. ΦA is definable in the structure NA.

Proof: Let Qn be the conditional expression T(X)&T(fn(X)) ⊃ fn(X) and
notice that the sequence {Qn}n∈! is c.e. and

C ∈ Qn
NA(X/B) ⇐⇒ Non(B)&Non(Wn(B))&C = Wn(B).

Then C ∈ ΦA(B) ⇐⇒ C ≤e B&C ∕= ∅&B ∕= ∅ ⇐⇒
∃n(Wn(B) = C&C ∕= ∅&B ∕= ∅) ⇐⇒ ∃n(C ∈ Qn

NA(X/B)). ⊣
Let LA = {⟨n, x⟩∣x ∈ Wn(A)}. The following lemma is well-known and is

a simple use of the Sm
n -theorem.

Lemma 1 There exists a recursive function ± of two variables such that
for all naturals m,n and set C of naturals the following equality is true
Wm(Wn(C)) = W±(m,n)(C).

Let us fix a function ± from the lemma above and define the pair ⟨®0,B0⟩
as follows:

®0(n) = Wn(A), B0 = ⟨!;'0
0, '

0
1, . . . ;¾

0⟩, where '0
i (x) = ±(i, x), i, x ∈ !,

¾0(x) ∼= 0 ⇐⇒ Wx(A) ∕= ∅ and ¾0(x) ↑ if Wx(A) = ∅.

Lemma 2 The pair ⟨®0,B0⟩ is an enumeration of the structure NA.

Proof: Wi(®0(x)) = Wi(Wx(A)) = W±(i,x)(A) = ®0(±(i, x)) = ®0('
0
i (x)).

Non(®0(x)) ∼= 0 ⇐⇒ Wx(A) ∕= ∅ ⇐⇒ ¾0(x) ∼= 0. ⊣
Let WA = {n∣∃x(⟨n, x⟩ ∈ LA)} = {n∣Wn(A) ∕= ∅} = {n∣¾0(n) ∼= 0}.

Proposition 6 WA ≡e A.

Proof: Let n0 be a fixed element of ! and define the set B by the following
equivalence: ⟨⟨n, x⟩,m⟩ ∈ B ⇐⇒ ⟨n, x⟩ ∈ LA&m = n0.

Obviously, B ≤e LA ≡e A. Therefore, using Sm
n -theorem we obtain

⟨⟨n, x⟩,m⟩ ∈ B
⇐⇒ ∃v(⟨⟨⟨n, x⟩,m⟩, v⟩ ∈ Wa&∅ ∕= Ev ⊆ A)(for some fixed natural a)
⇐⇒ ∃v(⟨⟨m, v⟩, ⟨n, x⟩⟩ ∈ Wb&∅ ∕= Ev ⊆ A)(for some fixed natural b)
⇐⇒ ∃v(⟨m, v⟩ ∈ W°(⟨n,x⟩)&∅ ∕= Ev ⊆ A)
(for some fixed recursive function °) ⇐⇒ m ∈ W°(⟨n,x⟩)(A).
We shall show that LA ≤m WA by recursive function °.
Let us assume ⟨n, x⟩ ∈ LA. Then ⟨⟨n, x⟩, n0⟩ ∈ B, thus n0 ∈ W°(⟨n,x⟩)(A),

i.e. W°(⟨n,x⟩)(A) ∕= ∅, hence °(⟨n, x⟩) ∈ WA.
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Let us suppose °(⟨n, x⟩) ∈ WA. Then ∃m(m ∈ W°(⟨n,x⟩)(A)), thus n0 ∈
W°(⟨n,x⟩)(A). Therefore ⟨⟨n, x⟩, n0⟩ ∈ B and ⟨n, x⟩ ∈ LA.

We proved the equivalence ⟨n, x⟩ ∈ LA ⇐⇒ °(⟨n, x⟩) ∈ WA, i.e. LA ≤m

WA. Therefore, LA ≤e WA.
Conversely, n ∈ WA ⇐⇒ ∃x(⟨n, x⟩ ∈ LA) ⇐⇒ ∃x(x ∈ Wn(A))
⇐⇒ ∃x∃v(⟨x, v⟩ ∈ Wn&∅ ∕= Ev ⊆ A)
⇐⇒ ∃v(∃x(⟨n, v⟩ ∈ W°1(x))&∅ ∕= Ev ⊆ A)
⇐⇒ ∃v(⟨n, v⟩ ∈ Wa)&∅ ∕= Ev ⊆ A) ⇐⇒ n ∈ Wa(A), for some fixed

recursive function °1 and fixed natural a. Consequently, WA ≤e A. ⊣

Lemma 3 There exists a recursive function °0 such that for any term ¿ v(X)
in the language ℒ∗ with variable X and code v the equality ¿ vNA(X/A) =
W°0(v)(A) holds.

Proof: Decode ¿ v(X) as a sequence of fi1 , fi2 , . . . , fip and variable X. Then
consider the composition of the operators Wi1 ,Wi2 , . . . ,Wip over A and use
recursive function ±. Thus there exists an effective way for any term ¿ v(X)
in the language ℒ∗ with variable X and code v to find a natural number n
such that ¿ vNA(X/A) = Wn(A). ⊣

Lemma 4 [A]NA ≡m WA.

Proof: [A]NA = {v∣¿ vNA(X/A) ∕= ∅} and let °0 be the recursive function
from the previous lemma. Then v ∈ [A]NA ⇐⇒ ¿ vNA(X/A) ∕= ∅ ⇐⇒
W°0(v)(A) ∕= ∅ ⇐⇒ ¾0(°0(v)) ∼= 0 ⇐⇒ °0(v) ∈ WA. Thus, [A]NA ≤m WA.

Conversely, n ∈ WA ⇐⇒ Wn(A) ∕= ∅ ⇐⇒ the term fn(X) with code

v(n) satisfies (fn(X))
v(n)

NA (X/A) ∕= ∅, i.e. WA ≤m [A]NA . ⊣

Theorem 3 The enumeration ⟨®0,B0⟩ is the least one for the structure NA.

Proof: According to Theorem 2, having in mind WA = V NA

0 , we need to
show that all types of elements B such that B is a set of naturals and B ≤e A
satisfies the condition [B]NA ≤e [A]NA and that there exists an universal set
with e-degree dege(A) for all types [B]NA .

Let B ≤e A. Then there exists an e-operator Wn such that Wn(A) = B.
Consequently, v ∈ [B]NA ⇐⇒ the code v1 of the term fn(¿

v) belongs to
[A]NA , thus [B]NA ≤m [A]NA . Further using the type [A]NA , we shall define the
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set UA by the equivalence: (n, v) ∈ UA ⇐⇒ ∃v1(¿ v1 = fn(¿
v)&v1 ∈ [A]NA).

Actually, we could define UA by the equivalence: (n, v) ∈ UA ⇐⇒ ⟨n, v⟩ ∈
LA, as well. It is obvious UA is universal for the family of all types of the
structure NA. ⊣

Let us consider the structure DA = ⟨P(!)A; ΦA⟩. The following definition
is natural but it is not used because we don’t normally consider structures
with p.m.v. functions.

Definition 3 Enumeration of the structure DA we call ⟨®,B⟩ where ® : ! →
P(!)A, B = ⟨!;'⟩ and ' is a partial m.v.f. in ! such that for all natural n
the equality ®('(n)) = ΦA(®(n)) holds (We mean the equality between sets
here).

Proposition 7 There exists an enumeration ⟨®0,B
′⟩ of the structure DA

such that ⟨B′⟩ ≡e A.

Proof: Let us recall ®0(n) = Wn(A) and define the partial m.v.f. '0 as
follows: m ∈ '0(n) ⇐⇒ ∃k(¾0(m) ∼= 0&¾0(n) ∼= 0&±(k, n) = m). It is
clear that ⟨G'⟩ ≤e A.

Then
C ∈ ®0('

0(n)) ⇐⇒ ∃m(m ∈ '(n)&®0(m) = C) ⇐⇒
∃m(∃k(¾0(m) ∼= 0&¾0(n) ∼= 0&±(k, n) = m)&Wm(A) = C) ⇐⇒
∃m∃k(Wm(A) = Wk(Wn(A))&C = Wm(A) ∕= ∅&Wn(A) ∕= ∅) ⇐⇒
∃m(Wm(A) ≤e Wn(A)&C = Wm(A) ∕= ∅&Wn(A) ∕= ∅) ⇐⇒
∃m(C = Wm(A) ∈ ΦA(Wn(A)) ⇐⇒ C ∈ ΦA(®0(n)). Therefore ⟨®0,B

′⟩
is an enumeration of DA.

Further, let us fix some a such that ®0(a) = A. ThenWn(A) = Wn(Wa(A)) =
W±(n,a)(A) and hence WA = {n∣Wn(A) ∕= ∅} ≡e {±(n, a)∣W±(n,a)(A) ∕= ∅} =
{±(n, a)∣¾0(±(n, a)) ∼= 0} ≡e {±(n, a)∣±(n, a) ∈ '0(a)} ≤e ⟨G'⟩ ≡e ⟨B′⟩ ⊣

Lemma 5 There exist c.e. sets V [n], V ′, V [S] such that the effective sequence
of compositions {V [0](V [S])nV ′}n∈! is recursively isomorphic to the sequence
{Wn}n∈!.
Proof: Let us notice first that V [0](V [S])nV ′ means the following:

V [0](V [S])0V ′ = V [0]V ′; V [0](V [S])n+1V ′ = ((V [0](V [S])n)V [S])V ′.
Let us denote V [n] = {⟨x, v⟩∣x ∈ !&Ev = {⟨n, x⟩}} and
V [S] = {⟨⟨n, x⟩, v⟩∣n, x ∈ !&Ev = {⟨n+ 1, x⟩}}. Further, let
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V = {⟨n, x⟩∣x ∈ Wn} and V ′ = {⟨⟨k, x⟩, v⟩∣⟨k, ⟨x, v⟩⟩ ∈ V }.
Then
x ∈ V [n]V ′(X) ⇐⇒ ∃v1(⟨x, v1⟩ ∈ V [n]&Ev1 = {⟨n, x⟩} ⊆ V ′(X))
⇐⇒ ∃v1(⟨x, v1⟩ ∈ V [n]&Ev1 = {⟨n, x⟩}&⟨n, x⟩ ∈ V ′(X))
⇐⇒ ∃v(⟨⟨n, x⟩, v⟩ ∈ V ′&∅ ∕= Ev ⊆ X)
⇐⇒ ∃v(⟨x, v⟩ ∈ V[n]&∅ ∕= Ev ⊆ X) ⇐⇒ x ∈ V[n](X).
x ∈ V [n]V [S](X) ⇐⇒
⇐⇒ ∃v1(⟨x, v1⟩ ∈ V [n]&Ev1 = {⟨n, x⟩} ⊆ V [S](X))
⇐⇒ ∃v1(⟨x, v1⟩ ∈ V [n]&Ev1 = {⟨n, x⟩}&⟨n, x⟩ ∈ V [S](X))
⇐⇒ ∃v(⟨⟨n, x⟩, v⟩ ∈ V [S]&Ev = {⟨n+ 1, x⟩} ⊆ X)
⇐⇒ ∃v(⟨x, v⟩ ∈ V [n+1]&Ev = {⟨n+ 1, x⟩} ⊆ X) ⇐⇒ x ∈ V [n+1](X).
We shall prove by induction the equivalence

x ∈ V [0](V [S])nV ′(X) ⇐⇒ x ∈ V[n](X). (∗)
Indeed, x ∈ V [0](V [S])0V ′(X) ⇐⇒ x ∈ V [0]V ′(X) ⇐⇒ x ∈ V[0](X).
Let us assume the equivalence (∗) is true. Then
x ∈ V [0](V [S])n+1V ′(X) ⇐⇒ x ∈ V [n+1]V ′(X) ⇐⇒ x ∈ V[n+1](X). ⊣

The next two corollaries are obvious.

Corollary 2 The structure NA = ⟨P(!)A;W0,W1, . . . ;Non⟩ is equivalent
to the structure N′A = ⟨P(!)A;V [0], V [S], V ′⟩, where V [0], V [S], V ′ is the c.e.
sets from the previous Lemma.

Corollary 3 For any set A of naturals the set P(!)A is finitely generated
in the structure N′A = ⟨P(!)A;V [0], V [S], V ′⟩ from the single element A.

Proposition 8 For any enumeration {V0, V1, . . . } of the family W the struc-
ture MA = ⟨P(!)A;V0, V1, . . . ;Non⟩ admits a least enumeration ⟨®,B⟩ such
that A ≤e ⟨B⟩.

Proof: Let ®0 : N0 → P(!)A be defined as follows: ®0(pn) = Vn(A). Take
®0 as a basis of a normal enumeration ⟨®,B⟩, where B = ⟨!;'0, '1, . . . ;¾⟩
and 'i(x) is a computable function of both variables i, x. According to
Proposition 2 there exists an effective way for any x to find y = pn ∈ N0 and
a term ¿ such that x = ¿B(Y/y); thus ®(x) = ¿A(Y/®(y)) = ¿A(Y/®

0(pn)) =
¿A(Y/Vn(A)) = ¿ ′A(Y/A), where ¿ ′ = ¿(fn(Y )).

Let us denote VA = {n∣¾(n) ∼= 0}. Then, using the term ¿ ′ obtained
above, x ∈ VA ⇐⇒ ¾(x) ∼= 0 ⇐⇒ ®(x) ∕= ∅ ⇐⇒ ¿ ′A(Y/A) ∕= ∅ ⇐⇒ v′ ∈
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[A]MA for the code v′ of the term ¿ ′. Thus, having in mind we can find v′

effectively from x, we have proved VA ≤m [A]MA .
Analogously, let v′ ∈ [A]MA , ¿ v

′
= ¿ v

′
(Y ) and n be a fixed natural

such that ®0(pn) = Vn(A) = A, where y = pn ∈ N0. Then ¿ v
′

A (Y/A) =
®(¿ v

′
B (Y/y) ∕= ∅ and let x = ¿ v

′
B (Y/y). Then ¾(x) ∼= 0 and x ∈ VA. Therefore,

[A]MA ≤m VA.
Hence, [A]MA ≡m VA and ⟨B⟩ ≡e [A]MA ≡e VA.

Corollary 4 WA ≤e VA

Proof: Let Vi0 = V [0], Vi1 = V [S] and Vi2 = V ′ and consider the sequence of
terms ¿ v(n), where ¿ v(n) = fi0((fi1)

n(fi2(X))). Here, (fi1)
n means n times the

term fi1 . Then it is easy to check that n ∈ [A]NA ⇐⇒ v(n) ∈ [A]MA . Thus
we have proved [A]NA ≤m [A]MA , hence WA ≤e VA. ⊣ ⊣

Corollary 5 The enumeration ⟨®0,B0⟩ is the least one for the generalized
structure NA = ⟨P(!)A;W;Non⟩.
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