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CUPPING AND DEFINABILITY IN THE LOCAL STRUCTURE OF THE

ENUMERATION DEGREES

HRISTO GANCHEV AND MARIYA I. SOSKOVA

Abstract. We show that every splitting of 0′e in the local structure of the enumeration degrees, Ge ,

contains at least one low-cuppable member. We apply this new structural property to show that the

classes of allK -pairs in Ge , all downwards properly Σ
0
2 enumeration degrees and all upwards properly Σ

0
2

enumeration degrees are first order definable in Ge .

§1. Introduction. Enumeration reducibility introduced by Friedberg and
Rogers [11] arises as a way to compare the computational strength of the positive
information contained in sets of natural numbers. A set A is enumeration reducible
to a set B if given any enumeration of the set B, one can effectively compute an
enumeration of the set A. The induced structure of the enumeration degrees De
is an upper semilattice with least element and jump operation. This structure can
be viewed as an extension of the structure of the Turing degrees, as there is an
embedding é : DT ⇒ De which preserves the order, the least upper bound and the
jump operation.
The jump operation gives rise to a local substructure, Ge , consisting of all degrees
in the interval enclosed by the least degree and its first jump. The elements of the
local structure of the enumeration degrees can be characterized in terms of their
relationship to the arithmetical hierarchy. Cooper [4] shows that the elements of Ge
are precisely the enumeration degreeswhich containΣ02 sets, or equivalently aremade
up entirely of Σ02 sets, which we call Σ

0
2 degrees. Naturally the arithmetical hierarchy

gives rise to a substructure of Ge , the substructure of the ∆02 enumeration degrees,
the enumeration degrees which contain ∆02 sets. This is a proper substructure of Ge ,
as there are properly Σ02 enumeration degrees, degrees which do not contain any ∆

0
2

set. Another way to partition the elements of Ge is in terms of the jump hierarchy.
We distinguish between low and non-low enumeration degrees, where a degree is
low if its enumeration jump is as low as possible, namely 0′e . In terms of their
relationship with the Turing degrees the elements of Ge can be divided into total
enumeration degrees, ones that are images of Turing degrees under the embedding é,
or non-total degrees, ones that are not.
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Each of these subclasses of Ge is defined by singling out a property of the sets
that comprise an element in the class. For example McEvoy [18] proves that an
enumeration degree is low if and only if all of its members are ∆02. An enumeration
degree is total if and only if it contains a set of the form A⊕A. One of the goals in
the study of the local structure of the enumeration degrees is to find a relationship
between the natural information content of the sets in a Σ02 degree and its definability
in Ge . In this article we give the first example of such a relationship, we prove the
local definability of the enumeration degrees of sets that form aK -pair.

Definition 1.1 (Kalimullin). A pair of sets of natural numbers A and B is a K -
pair if there is a c.e. setW such that:

A× B ⊆W & A× B ⊆W.

The notion of a K -pair is a special case of a U -e-ideal, introduced and used by
Kalimullin to prove the definability of the jump operation in the global structure
De . In [16]Kalimullin proves that the property of being aK -pair is degree theoretic
and first order definable in the global structure De . A pair of sets form aK -pair if
and only if their degrees a = de(A) and b = de(B) satisfy the property:

K (a, b)⇋ ∀x[(a ∨ x) ∧ (b ∨ x) = x].

We will call a pair of enumeration degrees aK -pair if they contain representatives
which form aK -pair in the sense of Definition 1.1.
K -pairs have been proven useful for coding structures in Ge , some of their main
advantages lying in their properties: e.g., everyK -pair of nonzero degrees in Ge is
a minimal pair of low enumeration degrees. It has been shown in [12] for instance,
that using countableK -systems, systems of nonzero e-degrees such that every pair
of distinct degrees forms aK -pair, that every countable distributive semi-lattice can
be embedded below every nonzero ∆02 e-degree. The local definability of K -pairs
is the first step in a larger project [14], aimed at showing that the theory of Ge is
computably isomorphic to first order arithmetic, whereK -systems are used to code
standard models of arithmetic in Ge .
Kalimullin [16] has shown that if a pair of sets A and B do not form a K -pair
then there is a set C , computable fromA⊕B ⊕K , whereK denotes the halting set,
such that the degree de(C ) witnesses the fact that de(A) and de(B) do not satisfy
the formulaK . Hence ifA andB are ∆02 enumeration degrees thenC is also ∆

0
2 and

the property ”a and b form aK -pair” is first order definable in the substructure of
the ∆02 enumeration degrees by the same formula, K . If A and B are properly Σ

0
2

then the witness C is at best estimated as ∆03, hence it is quite possible that there are
fake pairs (a, b) of Σ02 enumeration degrees, such that:

Ge |= K (a, b), but De |= ¬K (a, b).

The key to the definability of K -pairs lies in the cupping properties of Ge . We
say that a Σ02 enumeration degree u is cuppable if there exists an incomplete v < 0

′
e

such that u ∨ v = 0′e . Cooper, Sorbi and Yi [9] prove that not every nonzero Σ
0
2

enumeration degree is cuppable, in contrast to the∆02 enumeration degrees, where for
every nonzero degree one can find a total ∆02 cupping partner. Soskova andWu [21]
prove furthermore that every nonzero ∆02 enumeration degree is low-cuppable, i.e.,
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cuppable by a low enumeration degree. In [13] a stronger version of Soskova and
Wu’s theorem is proved, which also reveals certain cupping properties ofK -pairs:

Theorem 1.1. [13] For every nonzero∆02 degree a there is aK -pair, {b, c} of nonzero
∆02 degrees, such that a ∨ b = b ∨ c = 0

′
e .

The final ingredient for the definability ofK -pairs in Ge is provided by the follow-
ing new cupping property of the elements in Ge , which we believe is of independent
interest.

Theorem 1.2. For every pair of Σ02 enumeration degrees u and v with u ∨ v = 0
′
e ,

there exists a low ∆02 enumeration degree a < 0
′
e , such that at least one of the following

is true:

(1) u ∨ a = 0′e ,
(2) v ∨ a = 0′e .

This property reveals that the class of low-cuppable Σ02 enumeration degrees
contains at least half of the cuppable enumeration degrees. Whether or not there
are cuppable Σ02 degrees, which are not low-cuppable remains open.
Using Theorem 1.2 we show how one can give a local definition of a nonempty
set of K -pairs. Applying Theorem 1.1 we prove that every member of a K -pair
is bounded by some element from this set. Thus as an application of these two
structural properties of Ge we obtain the desired definability result:

Theorem 1.3. There is a first order formulaLK in the language of Ge such that a
pair of nonzero Σ02 enumeration degrees a and b form aK -pair if and only if:

Ge |= LK (a, b).

The definability ofK -pairs allows us to give a first order definition of two further
classes that have been of interest in the study of the local structure. A nonzero
degree a ∈ Ge is downwards properly Σ02 if all nonzero degrees b ≤ a are properly Σ

0
2.

For example every non-cuppable Σ02 degree is necessarily downwards properly Σ
0
2

as every ∆02 enumeration degree is cuppable. Another example is given by Cooper,
Li, Sorbi and Yang [8], who show that there is a Σ02 degree which does not bound a
minimal pair, whereas every ∆02 degree does.
The symmetric class of the upwards properly Σ02 enumeration degrees contains
the incomplete enumeration degrees a ∈ Ge such that all incomplete degrees b ≥ a
are properly Σ02. Soskova [20] proves that there is an enumeration degree a < 0

′
e ,

such that no pair of incomplete degrees above it forms a splitting of 0′e . This, com-
bined with Arslanov and Sorbi’s [2] result, that there is a splitting of 0′e above every
incomplete ∆02 enumeration degree, gives an example of an upwards properly Σ

0
2

degree. Bereznyuk, Coles and Sorbi [3], prove that there is an upwards properly Σ02
degree above any incomplete member of Ge . Cooper and Copestake [7] show fur-
thermore that there are properly Σ02 enumeration degrees that are incomparable with
every nonzero, incomplete ∆02 degree, and hence are both upwards and downwards
properly Σ02.
We show that these two classes are also first order definable in the local structure.

Theorem 1.4. The following two classes of Σ02 enumeration degrees are first order
definable in Ge :

(1) The class of downwards properly Σ02 enumeration degrees;
(2) The class of upwards properly Σ02 enumeration degrees.
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The revealed relationship between definability and information content in the Σ02
enumeration degrees calls forth the search for other examples of this phenomenon.
In view of the nature of the particular classes that are proved definable in this article,
an important question that remains open is:

Question 1.4.1. Is the class of the ∆02 or the class of the total enumeration degrees
enumeration first order definable in Ge?

§2. Preliminaries. We assume that the reader is familiar with the notion of enu-
meration reducibility, and refer to Cooper [5] for a survey of basic results on the
structure of the enumeration degrees and to Sorbi [19] for a survey of basic results
on the local structure Ge . For completeness we will nevertheless outline here basic
definitions and properties of the enumeration degrees used in this article.

Definition 2.1. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},

whereDu denotes the finite set with code u under the standard coding of finite sets. We
will refer to the c.e. set Φ as an enumeration operator and its elements will be called
axioms.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De ,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has
a least element 0e = de(∅), the set of all c.e. sets. We can define a least upper
bound operation, by setting de(A) ∨ de(B) = de(A ⊕ B) and a jump operator
de(A)′ = de(Je(A)). The enumeration jump of a set A, denoted by Je(A) is defined
by Cooper [4] as LA ⊕ LA, where LA = { n| n ∈ Φn(A)}.
Enumeration degrees which contain a set of the form A ⊕ A are called total
enumeration degrees. The interest in the class of the total enumeration degrees,
arises from the fact that it is an isomorphic copy of the Turing degrees. The map é,
which sends a Turing degree dT (A) to the e-degree de(A ⊕ A), is an embedding,
which preserves the order, the least upper bound and the jump operation.
We shall say that an e-degree is quasi-minimal if and only if it bounds no total
degree, except for the least e-degree 0e .
Finally we introduce one further piece of notation. In what follows we will often
need to work with a set C reducible to the least upper bound of two other sets, say
A and B. To keep notation simple we will consider the set C as being enumerated
relative to two sources and write C = Φ(A,B), instead of C = Φ(A⊕ B). Natu-
rally we will assume that an axiom of the operator Φ has the structure 〈n,DA, DB〉
and that it is valid if an only if DA ⊆ A and DB ⊆ B.
Further notation and terminology used in this article are based on that of [6].

§3. A local definition of K -pairs. K -pairs can be viewed as a generalization of
the notion of a semi-recursive set, defined by Jockusch [15]. Recall that a set A
is semi-recursive if it has a computable selector function sA : N × N such that for
all natural numbers n and m: sA(n,m) ∈ {n,m} and if {n,m} ∩ A 6= ∅ then
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sA(n,m) ∈ A. It is not difficult to see that if A is semi-recursive then A and A form
aK -pair. Indeed let sA be the selector function for A and let

sA(n,m) =

{

n, if sA(n,m) = m,

m, if sA(n,m) = n.

Now consider the c.e. set W = {(sA(n,m), sA(n,m)) | n,m ∈ N} and notice that

A× A ⊆W and A× A = A× A ⊆W .
Another simple example of a K -pair is {W,A}, where A is any set of natural
numbers andW is a c.e. set. This we shall consider as a trivial example and we will
mainly be interested in nontrivialK -pairs, ones consisting of two non-c.e sets. We
shall say that a degree a is half of aK -pair if there is a nonzero degree b such that
{a, b} forms a K -pair of degrees. The degree b will be called a K -partner for a.
Some basic properties of K -pairs of degrees, collected from Kalimullin [16], are
summarized in the following theorem.

Theorem 3.1 (Kallimullin). Let K (a, b) denote the formula with free variables a
and b, defined by:

∀x[(a ∨ x) ∧ (b ∨ x) = x].

(1) A pair of degrees a and b form aK -pair if and only if De |= K (a, b).
(2) A pair of ∆02 degrees a and b form aK -pair if and only if Ge |= K (a, b).
(3) Every half of a nontrivialK -pair in Ge is quasi-minimal and low.
(4) The set of degrees which form a K -pair with a fixed degree de(A) is an ideal
with upper bound de(A).

(5) If a and b form a nontrivialK -pair then a and b form a minimal pair, i.e., the
only degree that is both below a and b is 0e .

(6) Every nonzero ∆02 enumeration degree bounds a nontrivialK -pair.

We add one additional property to the list, which motivates our interest in the
cupping properties of the elements in Ge .

Lemma 3.1. Let a and b be Σ02 enumeration degrees such that:

Ge |= K(a, b).

If c is a Σ02 enumeration degree, such that b ∨ c = 0
′
e , then a ≤ c.

Proof. By the propertyK (a, b) applied to c we get:

(b ∨ c) ∧ (a ∨ c) = c.

Replacing (b ∨ c) with its equal 0′e we get:

0′e ∧ (a ∨ c) = c.

Now as 0′e is the largest element of Ge we get:

a ∨ c = c or equivallently a ≤ c. ⊣

Jockusch [15] shows that for every set B there is a semi-recursive setA ≡T B such
that A and A are non-c.e. This, combined with the quasi-minimality of K -pairs,
proves that every total member of Ge can be represented as the least upper bound
of the elements of a nontrivialK -pair. In particular 0′e can be split by a nontrivial
K -pair of ∆02 enumeration degrees.
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We are now ready to give a first order definition of K -pairs assuming Theo-
rems 1.1 and 1.2. Consider the formula

L (a)⇌ a > 0e & ∃b > 0e(a ∨ b = 0
′
e & K (a, b)).

From the argument above it follows that there are elements of Ge which satisfy this
formula. We show that every element which satisfies this formula is in fact a half of
aK -pair.

Propostion 3.1. If Ge |= L (a) then a is half of a nontrivialK -pair.

Proof. Let b > 0e be a degree such that a ∨ b = 0′e & K (a, b). Then {a, b} is a
splitting of 0′e and hence applying Theorem 1.2 we get a low ∆

0
2 degree c which cups

a or b.

Case 1. b ∨ c = 0′e . By Lemma 3.1 we get a ≤ c. Now by the monotonicity of
the enumeration jump it follows that a is low, hence ∆02, and by the property that all
nonzero ∆02 are low-cuppable, a is as well low-cuppable.

Case 2. a ∨ c = 0′e . Then similarly b ≤ c and hence ∆
0
2 and low-cuppable.

Therefore if oneof the degrees a and b is low-cuppable, then both are low-cuppable
and both are ∆02. Now applying part 2 of Theorem 3.1 we get that a and b form a
K -pair. ⊣

The set defined by the formulaL is therefore a nonempty set of low enumeration
degrees. It does not contain all halves of nontrivial K -pairs. Let c be any total
incomplete ∆02 enumeration degree and let A be a semi-recursive set, such that
de(A ⊕ A) = c and both A and A are not c.e. It follows from Theorem 3.1 that
a = de(A) is half of a nontrivialK -pair and de(A) = a is the largest element of the
ideal ofK -partners for a. Hence for everyK -partner b of a, a∨ b ≤ a∨ a = c < 0′e
and a does not satisfyL . Nevertheless the setL contains an upper bound to every
half of a nontrivialK -pair in Ge .

Propostion 3.2. If a ∈ Ge is a half of a nontrivial K -pair then there is a degree
c ≥ a such that Ge |= L (c).

Proof. Let b be a nonzero K -partner for a. Then b is a ∆02 enumeration degree
and hence by Theorem 1.1 there is a nontrivial K -pair {c, d} such that b ∨ c =
d ∨ c = 0′e . Consider the degree c. First of all c satisfies the formula L with d as
witness for this. Secondly by Lemma 3.1 a ≤ c. ⊣

On the other hand, suppose that there is a pair of Σ02 enumeration degrees a and b
which satisfy the formulaK in Ge but are not aK -pair. It follows by an argument
similar to the one in the Proposition 3.1 that both a and b are not low-cuppable
and hence are downwards properly Σ02. As every member of the set defined byL is
low and hence bounds only ∆02 enumeration degrees it follows that both a and b are
incomparable (and even form a minimal pair) with every element which satisfiesL .
To finalize the proof of Theorem 1.3 we setLK to be the formula:

LK (a, b)⇌ K (a, b) & a > 0e & b > 0e & ∃c(c ≥ a & L (c)).

Now we can easily prove Theorem 1.4 as well. The last property in Preposi-
tion 3.1 shows that every ∆02 enumeration degree bounds a nontrivial K -pair. As
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every K -pair consists of ∆02 enumeration degrees, it follows that a degree is down-
wards properly Σ02 if and only it bounds no nontrivial K -pair. Thus a degree a is
downwards properly Σ02 if and only if:

Ge |= ∀b, c[(b ≤ a & c ≤ a)⇒ ¬LK (b, c)].

To prove the second part of this theorem, recall that every total enumeration
degree can be represented as the least upper bound of the elements of a K -pair.
The least upper bound of the elements of every K -pair, on the other hand, is a
∆02 degree. The last ingredient comes from a theorem of Arslanov, Cooper and
Kalimullin [1] (Theorem 7), which states that for every ∆02 enumeration degree
a < 0′e there is a total enumeration degree b such that a ≤ b < 0

′
e . From all this it

follows that a degree a is upwards properly Σ02 if and only if no incomplete degree
above it can be represented as the least upper bound of the elements of a K -pair,
i.e., if:

Ge |= ∀c, d(LK (c, d) & a ≤ c ∨ d⇒ c ∨ d = 0′e).

§4. Cupping properties of 0′e-splittings. We start this section with a very general
description of the idea behind the construction for the proof of Theorem 1.2. We
then proceed to formalizing this idea, giving more intuition as we progress.

4.1. General idea. The construction is inspired by the non-splitting technique
introduced in [20]. There it is shown that there is a Σ02 e-degree a < 0

′
e , such that no

pair of Σ02 degrees u, v above a splits 0
′
e . An equivalent way to formulate this is as

follows.

Theorem 4.1. [20] There exists a Σ02 enumeration degree a < 0
′
e , such that for

every pair of Σ02 enumeration degrees u and v with u ∨ v = 0
′
e at least one of the

following is true

u ∨ a = 0′e or v ∨ a = 0
′
e .

In the construction of a non-splitting degree, a set A and an auxiliary set E are
constructed to meet the following requirements:

(1) For every enumeration operator Ψ:

NΨ : E 6= Ψ(A).

(2) For all triples of an enumeration operator Θ and Σ02 sets U and V :

PΘ,U,V : E = Θ(U,V )⇒ (∃Γ,Λ)[K = Γ(U,A) ∨K = Λ(V,A)].

Here K is a Π01 member of 0
′
e .

TheN -requirements guarantee that de(A) is nonzero. Now if U ⊕V ≡e K then
there is an operator Θ such that Θ(U,V ) = E and hence the requirement PΘ,U,V
ensures that de(A) cups at least one of the degrees de(U ) or de(V ) to 0′e .
Hence one incomplete degree is a cupping partner to at least half of the cuppable
enumeration degrees. There is no hope that this particular non-splitting degree can
be constructed as a low enumeration degree, as by Arslanov and Sorbi [2] there is a
splitting of 0′e above every incomplete ∆

0
2 enumeration degree. Our task is however

much less demanding. Given a particular pair of degrees which splits 0′e we have to
show that at least one of them is low-cuppable.
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Let u and v be two given Σ02 enumeration degrees with least upper bound 0
′
e . Fix

two representativesU ∈ u and V ∈ v.

Definition 4.1. A set A is 1-generic if for every c.e. setW of finite binary strings
there is an initial segment of the characteristic function of A, ô ⊆ A, such that:

ô ∈W ∨ ∀ì ⊇ ô(ì /∈W ).

Copestake [10] proves that the degree of every 1-generic ∆02 set is low. As every
1-generic set is non c.e., our main plan is to construct a 1-generic ∆02 setA, such that
de(A) cups u to 0′e . If this plan fails we turn to a backup plan: construct a 1-generic
∆02 sets B, such that de(B) cups v to 0

′
e . So fix a computable listing of all c.e. sets

Wi , viewed as sets of finite binary strings. We need to satisfy one of two groups of
requirements:

(1) The main requirements. There is a ∆02 set A, which satisfies C and Gi for all
i < ù, where:

C : ∃Γ(Γ(U,A) = K);

Gi : ∃ô ⊆ A(ô ∈Wi ∨ ∀ì ⊇ ô(ì /∈Wi)).

(2) The backup requirements. There is a ∆02 set B, which satisfies Č and Ǧi for
all i < ù, where:

Č : ∃Λ(Λ(V,B) = K);

Ǧi : ∃ô ⊆ B(ô ∈Wi ∨ ∀ì ⊇ ô(ì /∈Wi )).

Following the non-splitting construction we will again make use of an auxiliary
Π01 set E, meant to help us use the fact that U ⊕ V is in the largest possible Σ02
enumeration degree. Even thoughwe are constructing this set, we know that there is
an enumeration operator Θ such thatΘ(U ⊕ V ) = E. Using the recursion theorem
we may assume that we are given this operator in advance. We will use this operator
to predict changes in the approximations to the sets U and V : an extraction of an
element e from the set E will ultimately lead to an extraction of elements out of the
set U ⊕ V . Now we turn to our main strategy: construct a 1-generic ∆02 set A and
an operator Γ such that Γ(U ⊕ A) = K . Here K is a fixed Π01 member of 0

′
e . To

construct Γ we have a main enumeration strategy which watches the approximation
to K and enumerates axioms for elements currently in K using finite subsets of the
current approximations to U and A. When an element exits the approximation to
K it invalidates perviously enumerated axioms by extracting numbers from A. To
meet a main genericity requirement, Gi , we have a corresponding main genericity
strategy, which tries to find an initial segment of A, either in the set Wi , or which
cannot be extended to an element ofWi . The strategy to construct Γ is in conflict
with the strategies to make A 1-generic. Extracting elements from A, in order to
rectify the enumeration Γ(U ⊕ A) prevents us from restraining A on certain initial
segments. To resolve this conflict we try to provoke an extraction from the set U ,
using the set E. An extraction from the set U will allow us to rectify Γ without
changing the approximation to A. If every genericity strategy after finitely many
unsuccessful attempt eventuallymanages to successfully provoke an extraction from
the setU , then it is successful, and ultimately all main requirements will be satisfied.
Otherwise there will be a least genericity strategy, which fails infinitely often to
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provoke an extraction from the set U , as every attempt ends in an extraction from
the set V . In this case this particular genericity strategy activates the backup
strategy: to construct a second 1-generic ∆02 set B and an operator Λ such that
Λ(V ⊕ B) = K . The backup strategies, both enumeration and genericity act in
a similar way to their main counterparts. The only difference is that every time a
backup genericity strategy tries to provoke a change in V , it times its actions with
the main genericity strategy, which is responsible for its activation. This ensures
that the attempt is successful for the backup strategy.
With this general plan in mind we start to formalize the intuitive description of
the strategies. We start by selecting approximations to the given sets U and V .

4.2. Approximations. We will use good approximations to the given sets. The
notion of a good approximation to a Σ02 sets is first used by Jockusch [15] and by
Cooper [4]( Σ02 approximations with infinitely many thin stages). Later on Lachlan
and Shore [17] formalize this notion and prove that every n-c.e.a set has one.
We fix a good Σ02 approximation {(U ⊕ V ){s}}s<ù to the set U ⊕ V . A good Σ02
approximation is one, which has the following two properties:

G . There are infinitely many good stages s such that (U ⊕ V ){s} ⊆ U ⊕ V .
Σ02. For all n there exists a stage s such that at all stages t > s we have
(U ⊕ V ) ↾ n ⊆ (U ⊕ V ){s}.

Denote byGU⊕V the set of good stages in the approximation toU⊕V . We use the
following property of good approximations proved in [17]: for every enumeration
operator Θ with standard Σ01 approximation {Θ

{s}}s<ù ,

lim
s∈GU⊕V

Θ{s}((U ⊕ V ){s}) = Θ(U ⊕ V ). (4.1)

DenoteΘ{s}((U⊕V ){s}) byΘ(U⊕V ){s}. As noted abovewewill be constructing
a Π01 approximation to a set E and using the recursion theorem we will assume that
we are given in advance an operator Θ such that Θ(U ⊕ V ) = E. Denote by
l(Θ(U ⊕ V ), E, s) the maximal number n such that Θ(U ⊕ V ){s} ↾ n = E{s} ↾ n.
Then as the sets Θ(U ⊕ V ) and E are equal:

lim
s∈GU⊕V

l(Θ(U ⊕ V ), E, s) =∞.

Stages at which l(Θ(U ⊕ V ), E, s) > max{l(Θ(U ⊕ V ), E, t) | t < s} will be
called expansionary stages. Thus as Θ(U ⊕ V ) = E, there are infinitely many
expansionary stages for the operator Θ.
One additional consequence of the equality between the two sets will be used.
An element of the set E must eventually be permanently enumerated in the set
Θ(U ⊕ V ). Hence it will use some finite amount of positive information from the
two sets U and V . We introduce the e-degree version of a use function.
Let F be a finite set. The age of this set with respect to the approximation to
U ⊕ V measured at stage s is the number:

a(F, s) =

{

s − ì t[∀r ∈ [t, s](F ⊆ (U ⊕ V ){r})] + 1, if F ⊆ (U ⊕ V ){s};

0 otherwise.

In other words the age of a finite set is the number of consecutive stages ending in
the current stage s at which the set F is a subset of the approximation to U ⊕ V .
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For instance the age of the empty set a(∅, s) = s + 1 for all s and if F * U ⊕V {s}

then a(F, s) = 0.
Let Ax = 〈e,DU ⊕DV 〉 ∈ Θ{s} be an axiom for e in Θ. The age of this axiom at
stage s is the number

a(Ax, s) = a(DU ⊕DV , s).

Thus invalid axioms have age 0 at stage s and valid axioms have age equal to the
number of consecutive stages at which they have been valid, ending in the current
stage. Denote by ax(e, s) the finite set, such that 〈e, ax(e, s)〉 is the oldest axiom
for e in Θ at stage s , i.e., of greatest age. (If there are more than one valid axioms
of maximal age, choose the one with least code).
The use of an element e measured at stage s is the set

è(e, s) =
⋃

i≤e, i∈Θ(U⊕V ){s}

ax(i, s),

the collection of the finite sets which form the second half of the oldest valid axioms
for all elements that currently appear in the set Θ(U,V ). As Θ(U,V ) = E it follows
tat for every e ∈ E there will be a stage s such that at all stages t ≥ s the use of e will
remain unchanged, i.e., è(e, s) = è(e, t). This will be used in the Honestification
module described below.

4.3. The tree of strategies. The construction will be in stages. At every stage
s we construct a finite path of length less than or equal to s , ä{s}, through a
tree of strategies, defined below, approximating the so called true path—a leftmost
infinite path of strategies visited at infinitely many stages. If ã ⊆ ä{s} then we
shall say that ã is visited or activated at stage s and s will be called a ã-true stage.
Every strategy will have outcomes representing different possible ways in which the
corresponding requirement might be satisfied. The outcomes of each strategy are
ordered linearly. Denote by O the collection of all outcomes. The tree T can be
viewed as a computable function with domain the set of finite strings of outcomes,
O<ù , and range the set of strategies.
The tree of strategies T contains strategies of four types: the main enumeration
strategy, main genericity strategies , backup enumeration strategies and backup
genericity strategies. The root of the tree is assigned the main enumeration strategy.
We will denote this strategy by α. This strategy initiates the construction of a set A
and an operator Γ and is successful if Γ(U⊕A) = K . The strategy has two outcomes
e <L b. Outcome e represents the fact that there are infinitely many expansionary
stages. The node αˆb is a leaf in the tree T . The node αˆe is assigned the first main
genericity strategy â(0). Outcome b represents the fact that l(Θ(U ⊕ V ), E, s) is
bounded. By our choice of Θ this cannot be the true outcome of α. We nevertheless
leave this outcome on the tree. The effect of this outcome will be that any other
strategy is activated only on expansionary stages.
Themain genericity strategyâ = â(i) tries to ensure thatA satisfies the i-th gener-
icity requirement Gi . It has outcomes∞, h,w and fn for every n arranged as follows:

∞ <L · · · <L fn <L · · · <L f1 <L f0 <L h <L w.

Outcome ∞ represents the fact that â has been unsuccessful infinitely often to
secure a witness ô ∈ Wi as an initial segment of A, but has provided sufficient
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conditions for the backup strategies to succeed. The node âˆ∞ is assigned the
backup enumeration strategy α̌(â(i)). The outcome fn represents the fact that â
has been successful in securing a witness ô ∈ Wi as an initial segment of A on its
n-th attempt and outcome w the fact that â has found a witness ô ⊆ A which has
no extension in the setWi . In both cases, o ∈ {fn | n < ù} and o = w, the strategy
has successfully satisfied the i-th genericity requirement and âˆo is assigned the next
genericity requirement â(i + 1).
Finally outcome h signifies that the strategy â has found an element e ∈ E whose
use does not stabilize at any stage, i.e., for every s there is a stage t > s such that
è(e, s) 6= è(e, t). Again this is an outcome that would contradict our choice of Θ.
It cannot be the true outcome of the strategy, but it could still seem like the correct
outcome on finitely many occasions. We leave it on the tree as it will play a role in
the initialization process. The node âˆh is therefore a leaf in the tree T .
The backup enumeration strategy α̌ = α̌(â), activated by â , initiates the con-
struction of a set Bα̌ , and an operator Λα̌ . The strategy is successful if ultimately
Λα̌(V ⊕ Bα̌) = K . This strategy has only one outcome e. The node e is assigned
the first backup genericity strategy â̌(α̌, â, 0).
Finally the backup genericity strategy â̌ = â̌(α̌, â, i), working with respect to α̌
and coordinating actions with â , ensures thatBα̌ satisfies the i-th genericity require-
ment Gi(Bα̌). It has three outcomes arranged as follows:

f <L h <L w.

Outcome f represents the fact that â̌ has been successful in securing a witness
ô ∈Wi as an initial segment of Bα̌ . Outcome w represents the fact that â̌ has found
an initial segment ô ⊆ Bα̌ such that ∀ì ⊆ ô(ì /∈ Wi ). Both nodes â̌ˆf and â̌ˆw are
assigned the next genericity strategy â̌(α̌, â, i + 1). Outcome h just as in the main
genericity strategy signifies the fact that â̌ has found an element ě ∈ E with unstable
use. This again cannot be the true outcome of this strategy, or else we could argue
that Θ(U,V ) 6= E, but it could still look like the true outcome any finite number of
stages. The node â̌ˆh is a leaf in the tree T .
The ordering of the outcomes induces a standard linear ordering of the nodes,
the finite strings in the domain of T , namely: ã ≤ ó if ã ⊆ ó (ã is an initial segment
of ó) or if there exists ñ such that ñˆo1 ⊆ ã, ñˆo2 ⊆ ó and o1 <L o2. In the latter case
we will also write ã <L ó. If ã < ó we shall say that ã has higher priority than ó. An
infinite path in the tree T will be a function f ⊆ T with domain a maximal linearly
ordered infinite subset of the domain of T . We will abuse notation and denote with
f ↾ n both the node of length n in the domain of f and the strategy assigned to it.
The next proposition shows that we have two types of infinite paths in T , ones
that have a strategy for every main requirement and ones that have a strategy for
every backup requirement.

Propostion 4.1. Suppose f is an infinite path in the tree T . Then one of the
following is true:

(1) For every i > 0 a main genericity strategy of type â(i) is assigned to the node
f ↾ i .

(2) There is a strategy â ⊆ f such that α̌(â) is assigned to f ↾ |â | + 1 and for

every i a backup strategy â̌(α̌, â, i) is assigned to the node f ↾ (|â |+ i + 1).
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Proof. Suppose that (1) is not true and let â be the largest node of type main
genericity strategy such that â ⊆ f. By our choice of â and the fact thatf is infinite
it follows that α̌(â) = âˆ∞ ⊆ f and â̌(α̌, â, 0) = α̌ˆe ⊆ f. Now inductively if
â̌(α̌, â, i) ⊆ f then as f is infinite either â̌(α̌, â, i)ˆf ⊆ f or â̌(α̌, â, i)ˆw ⊆ f and
in both cases this is a â̌(α̌, â, i + 1) strategy. ⊣

4.4. Strategies and parameters. In this section we shall give more intuition about
how strategies are designed to work and define their parameters.

4.4.1. The main enumeration strategy. As noted above, α denotes the main enu-
meration strategy.
The strategy α monitors the length of agreement l(Θ(U ⊕ V ), E, s) at every
stage s . If s is not expansionary then α has outcome b. If s is an expansionary
stage then α has outcome e.
At every stage s α monitors the construction of the set A and the operator Γ, so
that ultimately Γ(U ⊕ A) = K . The axioms in Γ will have a particular format: to
every natural number n we will assign an A-marker a(n) and a U -marker u(n); the
axiom enumerated in Γ at stage s for n will be of the form 〈n, (U {s} ↾ u(n) + 1)⊕
(A{s} ↾ a(n) + 1)〉
The markers will be defined by the main genericity strategies. The only job
of α is to ensure that the constructed operator is correct. So at stage s it will
consider all elements n < s and correct Γ(U,A) by enumerating axioms in Γ for

elements n ∈ K
{s}

\ Γ(U ⊕ A){s}. In this way we can be sure that if n ∈ K
then α will consider it at infinitely many good stages in the approximation to U
and will eventually enumerate an axiom, which remains permanently valid. To
invalidate an axiom it is enough to consider it at infinitely many stages, regardless
of whether they are good or not. So at expansionary stages the strategy will extract
from A the already defined A-markers that appear in valid axioms for elements

n ∈ Γ(U ⊕ A){s} \K
{s}
.

The parameters for α are hence A and Γ, both with initial value ∅; the markers
a(n) and u(n) for every natural number n, also called the α-markers for n, initially
undefined.

4.4.2. The main genericity strategy. At every stage s there will be at most one
copy of the i-th main genericity strategy which is not in initial state. Let â = â(i)
be the i-th main genericity strategy. Recall that the strategy â has to ensure that
there is a finite binary string ô ⊆ A such that ô ∈ Wi or no extension ì ⊇ ô is in
the setWi . The strategy â has to overcome the difficulty set by the higher priority
strategy α which is extracting markers from A in the rectification process. This is
why the simple genericity strategy: select a witness ô ⊆ A, wait until (if ever) an
extension ì ⊇ ô entersWi , restrain ì as an initial segment of A, will not work. The
strategy to satisfy Gi is a more complex version of this strategy.
The strategy â will have a threshold dâ . The value of this threshold will always

be the i-th element of K . We cannot guess in advance this number but, as K is
an infinite set, approximated by its standard Π01 approximation, after finitely many
wrong guesses we will eventually pick the right value for the threshold.
The strategy â is responsible for defining values for the parameters a(dâ) and
u(dâ ). The first marker a(dâ ) that it defines is denoted as a

0
â and plays the real role
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of the threshold, the element, below which â can safely assume that A is correct
on all elements and will not be further modified. The values of the A-markers are
always selected to be larger than the values of the markers defined by higher priority
strategies. Note that the way, in which the axioms are defined by the strategy α,
ensures that every axiom enumerated in Γ{s} for elements n > dâ is an extension of

the valid axiom for dâ at stage s . Thus by extracting the marker a(dâ)
{s} from the

setA the strategy â can invalidate all axioms for all elements n > dâ valid at stage s .
Assuming that higher priority main genericity strategies have finished with their
actions, and α has finished correcting Γ for elements n < dâ at stage s0, the strategy

â can safely assume that ô0 = A
{s0} ↾ a(dâ ) + 1 is a good candidate for a first

witness.
If ô0 /∈ Wi then the strategy â is successful and needs no further actions. The
outcome is w and the next genericity strategy is activated. If however there is
an extension ì0 ⊇ ô0 such that ì0 ∈ Wi , then the strategy â is now in a difficult
position, namely â cannot restrainA on elements a such that |ô| < a ≤ |ì|, without
injuring α. This is where the set E comes into play. We will select an element e0
currently in the constructed set E called an agitator and arrange things so that
every valid axiom for dâ in Γ, extends the use of e0. The process of making this
arrangement will be called honestification.
To do this we wait for a large enough stage s such that the use è(e0, s) seems
stable at stages t > s . Every time we see that the current stage does not meet this
description, i.e., the use has changed since the previous â-true stage, we we must
forcefully invalidate all previously enumerated axioms for dâ and reset the value
of the parameter u(dâ). The use of e0 will however eventually become stable, as
otherwise we can argue that Θ(U ⊕ V ) 6= E, contradicting our choice of Θ.
After finitely many iterations of honestification, at a stage s , say, we will have
achieved our goal: the use of e0 has stopped changing and all valid axioms for dâ in
Γ extend è(e0, s). We shall say that Γ is honest at dâ at stage s . Suppose also that we
have found an extensionì0 ⊃ ô0 in the c.e. setWi . The strategy â will now attack by
extracting e0 from E. It will have outcome∞ at this stage. At every stage s+ > s ,
è(e0, s) * (U ⊕V ){s

+}. If this is because of a permanent extraction from the setU ,

i.e., at all further stages t > s( è(e0, s) * U {t} ⊕ N) then all axioms enumerated
in Γ for elements n ≥ dâ are invalid at all furthers stages and the strategy â can
successfully restrain ì0 ⊆ A with no injury to α. The strategy has outcome f0 at all
stages t > s while è(e0, s) * U {t} ⊕ N.
If the extraction disappears at stage s1 (in this case è(e0, s) * N ⊕ V {s1}) the
strategy will evaluate this first cycle as unsuccessful. It will extract the marker
a(dâ ), thereby preserving its work from injury by the strategy α. It will activate the
backup strategy α̌(â) below outcome∞. It will then start a new cycle with a new
larger agitator e1 and witness ô1 ⊇ ì∗0 , where ì

∗
0 is the string ì0 inverted at only one

position a(dâ). At the end of every cycle the strategy will record in a parameter
Witâ information about previous attacks. After every attack the strategy will go
back an re-evaluate previous attacks. Outcome ∞ will be visited only if there is
further evidence that all previous cycles are unsuccessful.
The parameters for â(i) are: the threshold dâ , always assigned at stage s the i-th

element of K
{s}
, with first marker defined by â a0â initially undefined; the current
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agitator eâ and witness ôâ initially undefined; the list of witnesses Witâ initially
empty.

4.4.3. The backup enumeration strategy. The strategy α̌ = α̌(â(i)) is similar to
the main enumeration strategy. It initiates the construction of a set Bα̌ and an
operator Λα̌ , so that ultimately Λα̌(V ⊕ Bα̌) = K .
Note that α̌ is visited in two different situations: at the beginning of an attack by
â and after the end of an unsuccessful attack. Only in the second case can we be
sure that the necessary extractions from the approximation of V have been secured.
At such stages, at which â does not start an attack, called peaceful stages, α̌ will
correct the enumeration Λα̌(V ⊕ Bα̌)

{s} by extracting elements from B. As α̌ is
not visited at every stage, we cannot assume that it will be visited at infinitely many
good stages for the approximation to V . The strategy α̌ will therefore work with a
delayed approximation to the set V . Fix a stage s and let s− < s be the previous

visit of α̌ (s = 0 if α̌ has not been visited yet). Then V
{s}
α̌ =

⋂

s−<t≤s V
{t}.

It is not difficult to see that {V
{s}
α̌ }s<ù is also a good Σ02 approximation to V .

The backup genericity strategies will as well assign to every element n markers
bα̌(n) and vα̌(n). If α̌ enumerates an axiom for n at stage s , it is of the form:

〈n, (V
{s}
α̌ ↾ vα̌(n) + 1)⊕ (B

{s}
α̌ ↾ bα̌(n) + 1)〉.

The parameters for α̌(â) are hence Bα̌ and Λα̌ , both with initial values ∅; markers
bα̌(n) and vα̌(n) for very natural number n, initially undefined.

4.4.4. The backup genericity strategy. The i-th backup strategy â̌(α̌, â, i) ensures
that Bα̌ satisfies the i-th genericity requirement in a similar way to the main gener-
icity strategy. It has a threshold dâ̌ - the i-th element of K , and is responsible

for defining the markers bα̌(dâ̌ ) and vα̌(dâ̌). The first Bα̌-marker that â̌ defines

again plays a special role and is denoted by b0
â̌
. The strategy has an agitator eâ̌ for

which it ensures that the operator Λα̌ is honest at dâ̌ . The strategy selects a witness

ôâ̌ = Bα̌ ↾ bα̌(dα̌) + 1 and starts searching for an extension of ôâ̌ in the set Wi .

If there is no such extension then the strategy is successful and has outcome w.
Otherwise it has found an extension ì ⊆ ôâ̌ in the set Wi and now would like to

force a change in the approximation to V in order to be able to secure ì ⊆ Bα̌ . To
do so the strategy â̌ will time its attack with one of the attacks of the strategy â .
Instead of attacking immediately, it will wait for a stage s at which â is also attack-
ing. As every new cycle of â comes with a new larger agitator eâ , at stage s we have

e
{s}

â̌
< e

{s}
â , hence è(e

{s}

â̌
, s) ⊆ è(e

{s}
â , s). If both eâ̌ and eâ are extracted during

a joint attack by â̌ and â at stage s then it will be sufficient for â to look at the
changes resulting in è(eâ̌ , s) * (U ⊕V ){t} at further stages t > s , when evaluating

this attack. In this way whenever the backup strategies are activated at two consec-
utive stages t > t− > s of the second type (at stages t− and t the strategy â has just
evaluated an attack as unsuccessful) we have that è(eâ̌ , s1) * N ⊕ (

⋂

t−<r≤t V
{r})

and so without injury to α̌ the strategy â̌ can secure ì as an initial segment to Bα̌
and have outcome f at all further stages.
The parameters for â̌(α̌, â, i) are: the threshold dâ̌ , always assigned at stage s the

i-th element of K
{s}
, with first Bα̌-marker b0â̌ ; the current agitator eâ̌ and witness

ôâ̌ initially undefined.
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4.5. The construction. The construction is in stages. At every expansionary stage
s we construct a finite path of length less than or equal to s , ä{s}. The intention is
that there will be a true path - a leftmost path of strategies visited at infinitely many
stages, along which all strategies are successful.
At the start of the construction all nodes are initialized, E{0} = N and ä{0} = ∅.
At stage s > 0 we construct the E{s} from its previous value by allowing active
strategies to extract elements from E{s−1} and the finite string ä{s} inductively in
steps. ä{s} ↾ 0 is always the root of the tree, the main enumeration strategy α. We
obtain ä{s} ↾ (n + 1) by activating the strategy ä{s} ↾ n and allowing it to select
an outcome o, then ä{s} ↾ (n + 1) = ä{s} ↾ nˆo. This process continues until we
have defined a string ä{s} of length s or until we have reached a leaf in the tree
of strategies. At the end of stage s we initialize all strategies ã > ä{s}. When we
initialize a strategy ã- it’s parameters are set to their initial values. Otherwise the
parameters inherit their values from the previous stage at which ã was visited and
we will not indicate a stage when referring to the current values of the parameters.
Suppose we have defined ä{s} ↾ n and n < s . We have four cases depending on
the type of strategy assigned to ä{s} ↾ n.

Case 3. The strategy ä{s} ↾ n = α is themain enumeration strategy. The strategy
proceeds as follows:

(1) For all n < s such that n ∈ K
{s}

\ Γ(U {s} ⊕ A{s}) and both a(n) and u(n)
are defined then enumerate in Γ the axiom

〈n, (U {s} ↾ u(n) + 1)⊕ (A ↾ a(n) + 1)〉.

(2) If s is not expansionary

l(Θ(U ⊕ V ), E, s) ≤ max
t<s
l(Θ(U ⊕ V ), E, t)

then let the outcome be b.
(3) If s is expansionary then for all n < s such that n ∈ Γ(U {s} ⊕ A) \ K

{s}

find all valid axioms, say 〈n,Du ⊕Da〉 ∈ Γ, extract the largest element ofDa
from A. (Note that we are changing the value of the parameter A.) Let the
outcome be o = e.

Case 4. The strategy ä{s} ↾ n = â(i) is a main genericity strategy. At stage s the
strategy first passes through Check. Let s− be the previous stage at which â was
visited.

• Check:
Let dâ be the i-th element of K

{s}
. If the strategy is in initial state or

d
{s−}
â 6= d

{s}
â , i.e., there is an elementm ≤ d

{s−}
â such thatm ∈ K

{s−}
\K

{s}

then go to step 1 of Initialization. If at stage s the strategy α extracts an
element a < a0â then initialize all of â ’s parameters and go to step 2 of
Initialization. Otherwise proceed to the submodule indicated at the previous
â-true stage s−.

• Initialization:
(1) Define a newA-marker a(dâ ) as a fresh number, larger than any number
that has so far been used in the construction, and enumerate it in the
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set A. Set a0â = a(dâ) and make all A- and U -markers for elements

n > dâ undefined.
(2) Initialize all lower priority strategies.
(3) Define a new agitator eâ ∈ E

{s}, as a fresh number.
(4) If eâ ≥ l(Θ(U ⊕ V ), E, s) then end this substage with outcome h and
return to this step at the next â-true stage. Otherwise proceed to the next
step.

(5) Extract a(dâ ) from the setA and define a fresh value a(dâ ) and enumer-
ate it inA. Define u(dâ ) to be a number larger than themaximal number
in è(eâ , s). Make all A- and U -markers for elements n > dâ undefined.
Let ôâ = A ↾ a(dâ ) + 1. End this substage with outcome h. Proceed to
Honestification at the next stage.

• Honestification: If è(eâ , s) 6= è(eâ , s
−) or if there is a stage t, such that

s− < t ≤ s and è(eâ , s) * (U ⊕ V ){t} then extract a(dâ) from the set A.
Define a fresh value for themarker a(dâ) and enumerate it inA. Define a new
value for themarker u(dâ) larger than themaximal number in è(eâ , s). Make
allA- andU -markers for elements n > dâ undefined. Let ôâ = A ↾ a(dâ)+1.
End this substagewith outcome h. Return toHonestification at the next stage.
Otherwise go toWaiting .

• Waiting: If there is a finite string ì ⊇ ôâ such that ì ∈ W
{s}
i then proceed

to Attack. Otherwise let the outcome be o = w. Return to Honestification
at the next stage.

• Attack:
(1) Let ì ⊇ ôâ be a string such that ì ∈ W

{s}
i . Set aì = a(dâ ) and ì

∗ to
be the string ì modified in bit aì so that ì∗(aì) = 0. Enumerate a new
entry in the listWitâ namely:

〈ì,ì∗, aì, è(eâ , s)〉.

(2) Extract the agitator eâ from the set E
{s} and for all a such that a0â ≤

a ≤ |ì| setA(a) = ì∗(a). (Note that we are modifying the parameterA
so that the current marker of the threshold aì = a(dâ) is extracted from
the set.) Define a new value for the marker a(dâ) as a fresh number,
larger than the length of the string ì, |ì|, and enumerate it in A. Make
all A- andU -markers for elements n > dâ undefined.

(3) Let the outcome be (o =∞). At the next true stage go to Result.
• Result: Let ē be the least element that was extracted during s−, the stage of
the attack. Note that è(ē, s−) ⊆ è(eâ , s

−). If eâ 6= ē then modify the fourth
component of the last entry in the listWitâ , making it: 〈ì,ì

∗, aì, è(ē, s−)〉.
Scan all entries in the listWitâ in the order in which they are enumerated
in the list from first to last.
Suppose â is examining the n-th entryWitâ [n] = 〈ìn, ì∗n , an, Un ⊕Vn, sn〉.
For all a such that a0â ≤ a ≤ |ìn| set A(a) = ìn(a).

(1) If at all stages t, such that s− < t ≤ s , Un * U {t} then let the outcome
be o = fn. Return to this sub-step at the next true stage.

(2) Otherwise there is a stage t, such that s− < t ≤ s and Vn * V {t}. For
all a such that a0â ≤ a ≤ |ìn |, set A(a) = ì∗n(a). (This is necessary
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because the strategy α might have acted at this stage to invalidate an
axiom for an element m > dâ , which extends 〈m,Un ⊕ {an}〉.) We say
thatWitâ [n] is unsuccessful.

(3) If all entries are scanned and all are unsuccessful then end this substage
with outcome o =∞. At the next stage return to step 3 of Initialization,
choosing a new agitator.

Case 5. The strategy ä{s} ↾ n = α̌(â(i)) is a backup enumeration strategy. Let

s− be the previous visit of α̌. Let V
{s}
α̌ =

⋂

s−<t≤s V
{t}. The strategy proceeds as

follows:

(1) For all n < s , such that n ∈ K
{s}

\Λα̌(V
{s}
α̌ ⊕Bα̌) and both bα̌(n) and vα̌(n)

are defined, enumerate in Λα̌ the axiom

〈n, (V
{s}
α̌ ↾ vα̌(n) + 1)⊕ (Bα̌ ↾ bα̌(n) + 1)〉.

(2) If at stage s the strategy â does not attack, i.e., the visit is peaceful, then

for all n < s such that n ∈ Λα̌(V
{s}
α̌ ⊕ Bα̌) \ K

{s}
find all valid axioms,

say 〈n,Dv ⊕ Db〉 ∈ Λα̌ , extract the largest element of Db from Bα̌ . Let the
outcome be o = e.

Case 6. The strategy ä{s} ↾ n = â̌(α̌, â̌ , i) is a backup genericity strategy.

• Check: Let dâ̌ be the i-th element of K
{s}
. If the strategy is in initial state

or if d
{s−}

â̌
6= d

{s}

â̌
then go to step 1 of Initialization. If at stage s the strategy

α̌ extracts an element b < b0
â̌
then initialize all of â̌ ’s parameters and go to

step 2 of Initialization. Otherwise proceed to the submodule indicated at the
previous â̌-true stage s−.

• Initialization:
(1) Define a new Bα̌-marker bα̌(dâ̌) as a fresh number, larger than any

number that has so far been used in the construction, and enumerate it
in the set Bα̌ . Let b0â̌ = bα̌(dâ̌) and make all Bα̌- and Vα̌-markers for

elements n > dâ̌ undefined.

(2) Initialize all lower priority strategies.
(3) Define a new agitator eâ̌ ∈ E

{s}, as a fresh number.

(4) If eâ̌ ≥ l(Θe(U ⊕ V ), E, s) then end this substage with outcome h and

return to this step at the next â̌-true stage. Otherwise proceed to the next
step.

(5) Extract bα̌(dâ̌ ) from the set Bα̌ and define a fresh value bα̌(dâ̌ ) and

enumerate it inBα̌ . Set vα̌(dâ̌) to be a number larger thanmax(è(eâ̌ , s)).

Make all Bα̌- and Vα̌-markers for elements n > dâ̌ undefined. Set

ôâ̌ = Bα̌ ↾ bα̌(dâ̌) + 1. End this substage with outcome h. Proceed to

Honestification at the next stage.
• Honestification: If è(eâ̌ , s) 6= è(eâ̌ , s

−) or if there is a stage t, such that

s− < t ≤ s and è(eâ̌ , s) * (U ⊕ V ){t} then extract bα̌(dâ̌) from the set

Bα̌ . Define a fresh value for the marker bα̌(dâ̌) and enumerate it in Bα̌ .

Define a new value for the marker vα̌(dâ̌) larger than the maximal number
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in è(eâ̌ , s). Make all Bα̌- and Vα̌-markers for elements n > dâ̌ undefined.

Set ôâ̌ = Bα̌ ↾ bα̌(dâ̌) + 1. End this substage with outcome h. Return to

Honestification at the next stage.
Otherwise go toWaiting.

• Waiting: If there is a finite string ì ⊇ ôâ̌ such that ì ∈ W
{s}
i then proceed

to Attack. Otherwise let the outcome be o = w. Return toHonestification at
the next stage.

• Attack:
(1) If at stage s the strategy â dose not perform an attack then let the
outcome by o = w, return toHonestification at the next stage. Otherwise
proceed to the next step. (Note this is how â̌ times its attack with â .)

(2) Let ì ⊇ ôâ̌ be a string such that ì ∈ W
{s}
i . For all b such that

∣

∣ôâ̌
∣

∣ < b < |ì|, set Bα̌(b) = ì(b). Define a new fresh value for the

marker bα̌(dâ̌), a number larger than the length of the string ì, and

enumerate it in Bα̌ . Make all Bα̌- and Vα̌-markers for elements n > dâ̌
undefined.

(3) Extract eâ̌ from the set E
{s} and go to Result.

• Result: Let the outcome be o = f. Return to this step at the next true stage.

4.6. Verification of the construction. The tree of strategies T has two features
which make it nontrivial to prove that there is an infinite true path in the construc-
tion. Some nodes have infinitely many outcomes and some nodes are leaves. To
start off we prove that the true path exists even though some nodes in the tree have
infinitely many outcomes and contains at least one node different from the root,
i.e., is of length at least 2. Later on we shall see that the true path is infinite.

Propostion 4.2. There exists a path f in the tree of strategies T such that:

(1) For all â ⊆ f there is a stage s such that at all t > s , (ä{t} ≥ â).
(2) For all â ⊆ f there exist infinitely many stages s such that â ⊆ ä{s}.

Proof. We prove that every strategy, visited at infinitely many stages has a left-
most infinite outcome, i.e., a leftmost outcome that it has at infinitely many true
stages, also called the true outcome, which is not a leaf. Thenf is defined inductively
by f(0) = ∅ and f(n + 1) is the true outcome of f ↾ n, if f ↾ n is not a leaf and
f = f ↾ n, otherwise.
The main enumeration strategy has true outcome e, as by our choice of Θ and the
property 4.1 there are infinitelymany expansionary stages. The backup enumeration
strategies and backup genericity strategies have only finitely many outcomes. the
leftmost one visited at infinitely many stages is their true outcome.
So suppose â is a main genericity strategy, visited at infinitely many stages. If
â has outcome ∞ at infinitely many stages then this is the true outcome of â .
Otherwise there is a stage s such that â does not have outcome∞ at all t > s . It
follows from the construction that no new entries are enumerated into the listWitâ
after stage s and hence the only possible outcomes for â at stages t > s are finitely

many: w, h, and fn where n ≤
∣

∣Wit
{s}
â

∣

∣, and the leftmost one of them visited at

infinitely many stages is â ’s true outcome. ⊣
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Weknownow that there is at least onemain genericity strategy along the true path,
namely â(0) = αˆe. We shall next investigate some properties of main genericity
strategies along the true path.

Propostion 4.3. Let â be a main genericity strategy on the true path. Then:

(1) There is a stage s0â such that: â is not initialized at stages t > s
0
â , â is the only

main genericity strategy of type (i) accessible at stages t > s0â and â is visited

at every αˆe-true stage t > s0â .

(2) There is a stage sdâ such that at stages t > s
d
â the value of dâ does not change.

At stage sdâ the final value of the marker a
0
â is defined. All α-markers for the

element dâ are defined by â at stages t ≥ s
d
â .

(3) There is a stage scâ ≥ sdâ such that at stages t > s
c
â Check does not send â to

Initialization. At stages t > scâ the parameter A is not modified on elements

a < a0â .

(4) After stage scâ every time â changes the value of the marker a(dâ) all main

genericity strategies â(j),where j > i , that are accessible at stages t > scâ , i.e.,
for which there is a true stage t > scâ , are in initial state.

(5) If â ’s true outcome is w or fn for some natural number n then there is a stage seâ
such that â does not modify any parameters and has its true outcome at every
true stage t > seâ .

Proof. Assume inductively that the statement is true formain genericity strategies
along the true path of higher priority than â = â(i). It follows by the definition of
the tree that all such strategies have outcome w or fn for some n. By the induction
hypothesis (claim 5) and the fact that â ⊆ f there is a stage s0â such that â is

not initialized after stage s0â and such that at stages t > s
0
â the parameter A is not

modified by main genericity strategies of higher priority than â . Furthermore it
follows that the markers a(n) and u(n) for the first i − 1 elements of K do not
change as the only accessible strategies of type â(j), where j ≤ i are the ones that
are initial segments of â . In other words if s > s0â is an αˆe-true stage then s is a

â-true stage. Hence the only strategies of lower priority than â that are accessible
at stages t > s0 are strategies which extend â .

Let sdâ ≥ s0â be such that K
{sdâ } correctly approximates the first i elements of K .

Then after stage sdâ the value of the threshold dâ does not change and a
0
â receives its

final value, i.e., (a0â)
{t} = (a0â)

{sdâ } = a0â for all t ≥ s
d
â . As â is the only strategy of

type (i) accessible after stage sdâ , dâ receives α-markers only from â after stage s
d
â .

After stage sdâ the strategy α will extract finitely many numbers a < a
0
â . And

every time such an element is extracted it will not be reenumerated back in A. This
follows from the fact that at stages t > sdâ strategies of higher priority â do not

modify A and accessible strategies of lower priority ã ⊇ â are initialized at stage sdâ
and modify A only on elements larger than a0ã ≥ a

0
â . Hence there is a least stage s

c
â

such that at stages t > scâ the strategy α does not extract numbers less than a
0
â

from A and hence A↾a
0
â is not modified at stages t > s

c
â . At stage s

c
â the strategy
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â performs step 2 of Initialization for the last time and all lower priority strategies
are in initial state.
The following is a diagram which shows the way in which â can change its
outcome at consecutive true stages:

h ⇐ ∞ ⇐ · · · ⇐ f1 ⇐ f0 ⇐ ∞ ⇐ (h ⇔ w).

The strategy â changes the value of the marker a(dâ ) at stage s > s
c
â only when

it has outcome h during Initialization or Honestification and when it has outcome
∞ during Attack at stage s . In the second case all main genericity strategies are
initialized at stage s . In the first case let s− be the largest stage scâ < s

− < s such

that â has outcome∞ if there is such state and s− = scâ otherwise. Then strategies

extending outcomes fi for some natural number i are in initial state at stage s−

and are not accessible at stages t ∈ [s−, s]. Strategies extending w are initialized at
stage s .
If â has true outcome o ∈ {w, fn | n < ù}, then from the diagram it follows
that there is a stage seâ such that â has outcome o at all stages t > s

e
â . From the

construction it follows that â does not modify any parameters. ⊣

The properties listed above are true for the backup genericity strategies along f.

Propostion 4.4. Let â̌ be a backup genericity strategy on the true path. Then:

(1) There is a stage s0
â̌
such that: â̌ is not initialized at stages t > s0

â̌
, â̌ is the only

backup genericity strategy of type (α̌, â, i) accessible at stages t > s0
â̌
and â̌ is

visited at every α̌-true stage t > s0
â̌
.

(2) There is a stage sd
â̌
such that at stages t > sd

â̌
the value of dâ̌ does not change.

At stage sd
â̌
the limit value of the marker b0

â̌
is defined. All α̌-markers for the

element dâ̌ are defined by â̌ at stages t ≥ s
d
â̌
.

(3) There is a stage sc
â̌
> sd

â̌
such that at stages t > sc

â̌
Check does not send â̌ to

Initialization. At stages t > sc
â̌
the value of Bα̌ is not modified below b0â̌ .

(4) After stage sc
â̌
every time â̌ changes the value of the marker bα̌(dâ̌ ) all backup

genericity strategies â̌(α̌, â, j), where j > i , that are accessible at stages t > sc
â̌
,

i.e., for which there is a true stage t > sc
â̌
, are in initial state.

(5) If â̌ ’s true outcome is w or f then there is a stage se
â̌
such that â̌ does not modify

any parameters and has its true outcome at true every stage t > se
â̌
.

Proof. The proof is carried out in the same way as the proof of Proposition 4.3.
⊣

Finally we are ready to prove that the true path is infinite.

Propostion 4.5. If â ⊆ f is a main genericity strategy then it’s true outcome is
not h. Similarly if â̌ ⊆ f is a backup genericity strategy then it’s true outcome is
not h. Hence the true path is infinite.

Proof. Suppose towards a contradiction that â ⊆ f has true outcome h and
let s ≥ scâ be a stage such that at stages t > s the strategy â is not initialized and

does not have outcome∞. Then at stages t > s the strategy â has a fixed agitator
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eâ ∈ E. As E = Θe(U ⊕ V ) then limt è(eâ ) = è(eâ) exists and è(eâ ) ⊆ U ⊕ V .
Let slim > s be a â-true stage such that at all stages t > slim we have è(eâ , t) = è(eâ)

and è(eâ) ⊆ (U ⊕V ){t}. It follows that â cannot have outcome h at stages t > slim
contradicting the fact that h is â ’s true outcome.
The second statement is proved in a similar way. ⊣

Propostion 4.6. Let â ⊆ f be a main genericity strategy and let dâ be the limit
value of â ’s threshold attained at stage sdâ . If ôâ is defined as the current witness of â

at stage s ≥ scâ then for all a ≥ a0â such that a is a previous value of the A-marker of

the threshold dâ , ôâ(a) = 0.

Proof. We prove this with induction on the stage s . Suppose that the statement

is true for values of the witness ôâ defined before stage s . Recall that ô
{s}
â = A{s} ↾

a(dâ ). If a is an old marker of the threshold dâ , a < a(dâ)
{s} and it is sufficient to

prove that a /∈ A{s}.
Suppose towards a contradiction that a is an old marker defined before and
cancelled before or on stage s and a ∈ A{s}. As every time â cancels an old value
of the A-marker of the threshold, it extracts this value from A, this could only be
possible if a strategy later on at stage sa < s re-enumerates a in A and a remains
in the set A at all stages t ∈ [sa , s]. By Proposition 4.3 the only strategy that can
re-enumerate a in the setA is the strategy â and by construction this is only possible
if at stage sa the strategy â starts evaluatingWitâ [n]

{sa} for some n, and ìn(a) = 1.
But ìn is defined as an extension of a previous value ô of the witness ôâ and by
induction if a < |ô| then ô(a) = 0. It follows that |ô| ≤ a < |ìn| andby construction
the only possibility is that a = an, as the next value of theA-marker for dâ is defined
as a number larger than |ì|. So at stage sa the strategy â has outcome fn and is
evaluating the result of its most recent attack. At stage s a new value for ôâ is
defined, so â must have evaluated it most recent attack as unsuccessful. This means
that at a stage in the interval (sa , s) the strategy â evaluatesWitâ [n] as unsuccessful
and extracts an = a from the set A, contradicting our choice of stage sa . It follows
that the assumption is wrong and a /∈ A{s}. ⊣

Propostion 4.7. Let â ⊆ f be a main genericity strategy and let dâ be the limit
value of â ’s threshold attained at stage sdâ . If an axiom 〈x,Du ⊕Da〉 is enumerated

in Γ{s} for an element x /∈ K after stage sdâ then one of the following holds:

(1) s ≤ scâ . Then the axiom is invalid at all stages t > s
c
â .

(2) Da contains a marker a of the threshold dâ which is cancelled as current at
stage s+ at which â defines the next value of the A-marker of the threshold.
Then a /∈ A{t} at all t > s+.

(3) Da contains a marker a of the threshold dâ which is cancelled as current at
stage s+ and at stage s+, a = an becomes a component of the n-th entry in the
listWitâ , 〈ìn , ì

∗
n , an, Un ⊕ Vn〉 and in this case Un ⊆ Du .

(4) Da contains the final value of the A-marker of the threshold dâ .

Proof. As s > sdâ and x ∈ K
{s}

\ K it follows that x > dâ . By the fact that

every time a new value for the markers of dâ are defined, the markers for x are
cancelled and the format of the axioms enumerated in Γ it follows thatDa contains
the current marker a = a(dâ )

{s} which is defined by â by Proposition 4.3.
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If s ≤ scâ then at stage s
c
â the strategy α extracts an element a0 < a

0
â such that

a0 ∈ A{s}, hence a0 ∈ Da , which is never re-enumerated in the set A. It follows that
the axiom is invalid at all stages t > scâ . So suppose that s > s

c
â

If a = a(dâ)
{t} at all t > s then case 4 is true. Otherwise let s+ be the stage at

which a(dâ ) is changed. If a ∈ A{t} at some t > s+. Then as in Proposition 4.6
only â can enumerate a in the set A during Result if for some n, ìn(a) = 1. This is
only possible if an = a.
So if a 6= an for any member if the listWitâ then a /∈ A

{t} at all stages t > s+.
Finally suppose a = an for some n. Then s+ is the stage of the n-th attack
after stage scâ . Let s

− be the stage at which a(dâ ) received the value a. Then at

this stage u(dâ) is set to a number larger than the maximal number of è(e
{s−}
â , s−)

and all α-marker for elements n > dâ are undefined. At stages t ∈ (s−, s+]
the strategy â does not change the value of a(dâ ) and hence has outcome w if

visited. It follows that s ∈ (s−, s+] and e
{s}
â = e

{s−}
â = eâ . On the other hand

è(eâ , s
+) = èeâ ,s ⊆ (U ⊕ V ){s}. Hence è(eâ , s

+) ⊆ Du ⊕ N. Finally Un ⊕ Vn
is defined as the value of è(ē, s+), where ē ≤ e. As by the definition of the use
function è(ē, s+) ⊆ è(e, s+), we can conclude that Un ⊆ Du .
As by Proposition 4.6 at all stages t ≥ s+ if an ∈ A{t} then â has outcome fn
at stage t and hence Un * U {t}, the axiom 〈x,Du ⊕ Da〉 is invalid at all stages
t ≥ sn. ⊣

Corollary 4.1. If â = â(i) ⊆ f has true outcomew or fn for some natural number
n then â successfully satisfies Gi .

Proof. Suppose that â has outcome o = w or o = fn for some natural number
n at all stages t ≥ seâ , where s

e
â is a least such stage. Then by Proposition 4.3 at

stage seâ all lower priority main genericity strategies ã ⊇ âˆo are in initial state at

stage se and will not modify A{t} on numbers a < a(dâ )
{t} < (a0ã )

{t} at stages
t ≥ seâ . Higher priority main genericity strategies do not modify A at all.

Suppose that â has outcome w at all stages t ≥ seâ . Then the final value of the

witness ôâ is defined at stage s
h
â , the previous â-true stage before s

e
â . Note that s

h
â

is the last stage at which â has outcome h and ôâ = A
{shâ } ↾ a(dâ )

{shâ }. The final
value of the witness ôâ does not belong to the set Wi , otherwise after stage s

e
â , â

would have outcome∞. To see that ôâ ⊆ A we show that α does not modify A ↾ |ô|
at stages t > shâ . Indeed, the only case in which α would need to change A after

stage sh on a number less than |ì| is when it sees a valid axiom for and element

x /∈ K
{t}
which was enumerated before stage sh . By Proposition 4.7 it follows that

Case 1, 2 and 4 cannot apply to this axiom. Case 3 does not apply as well as by
Proposition 4.6 for all entries in the listWitâ , ôâ (an) = 0 and hence A

{sh}(an) = 0.
As by assumption â does not enter Result after stage shâ , no strategy including â can

re-enumerate these markers back in A{t} at all t > shâ . As there are no more choices

for the assumed axiom, it follows that t does not exists and α does not modify A{t}

on numbers a < |ô| at stages t > shâ .

Now suppose that â has outcome fn. Then ìn ⊆Wi and at stage s
e
â the strategy â

starts evaluatingWitâ [n] and setsìn ⊆ A
{seâ}. In this case aswell it is easy to see that
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ìn will remain an initial segment of A at all further stages as axioms for elements
x /∈ K with maximal A-marker less than |ìn| are invalid at all stages t > seâ . They

cannot be Case 4 axioms, and Case 1 and 2 axioms are obviously not valid at any
stage t > seâ . Case 4 axioms which contain markers am for m < n are invalid as

ìn(am) = 0. Indeed ìn is defined as an extension of a previous witness ôâ which by
Proposition 4.6 has this property. Finally if the axiom is of the form 〈x,Du ⊕Da〉
and Da contains an then Un ⊆ Du . However at all stages t > seâ , Un * U

{t} hence

in this case as well α does not modifyA{t} on numbers a ≤ |ìn |, hence ìn ⊆ A. ⊣

Propostion 4.8. Let â̌ = â̌(α̌, â̌ , i) ⊆ f and let dâ̌ be the limit value of â̌ ’s

threshold attained at stage sd
â̌
. If an axiom 〈x,Dv ⊕Db〉 is enumerated in Λ

{s} for an

element n /∈ K after stage sd
â̌
then one of the following holds:

(1) s ≤ sc
â̌
. Then the axiom is invalid at all stages t > sc

â̌
.

(2) Db contains a marker b of the threshold which is extracted at stage s
+ at which

â̌ defines the next value of the Bα̌-marker, and is never reenumerated in Bα̌ .
(3) Dv contains a subset Vn which eventually becomes a component of the n-th
entry in the listWitâ , 〈ìn , ì

∗
n , an, Un ⊕ Vn〉.

(4) Da contains the final value of the A-marker of the threshold dâ .

Proof. Part one is proved just as Part 1 of Proposition 4.7, so assume that s > sc
â̌
.

We note that sc
â̌
> scâ as every time â is restarted during Check, â̌ is initialized.

As s > sc
â̌
and x ∈ K

{s}
\ K it follows that x > dâ̌ . By the fact that every time

new values for the markers of dâ̌ are defined, the α̌-markers for n are cancelled and

the format of the axioms enumerated in Λα̌ it follows that Db contains the current
marker b = bα̌(dâ̌ )

{s} which is defined by â̌ by Proposition 4.4. If b = bα̌(dâ̌ )
{t} at

all t > s then case 4 is true. Otherwise let s+ be the stage at which bα̌(dâ̌) is changed.

If this is during Initialization or Honestification then b /∈ B
{t}
α̌ at all t > s+.

Suppose that s+ is the stage at which â̌ performs an Attack and times it with the
n-th Attack of â . Then at stage s+ the strategy â̌ extracts its agitator eâ̌ . On the

next â-true stage the strategy â evaluates the result of its n-th attack and enumerates
as the fourth component Un ⊕ Vn = è(eâ̌ , s

+).

Let s− be the stage at which b(α̌)(dâ̌) received the value b. Then at this stage

vα̌(dâ̌) is set to a number larger than the maximal number of è(e
{s−}

â̌
, s−) and all

α̌-marker for elements n > dâ̌ are undefined. At stages t ∈ (s
−, s+] the strategy â̌

does not change the value of bα̌(dâ̌) and hence has outcome w if visited. It follows

that s ∈ (s−, s+] and e
{s}

â̌
= e

{s−}

â̌
= e

{s+}

â̌
= eâ̌ and è(eâ̌ , s

−) = èeâ̌ ,s = èeâ̌ ,s+ =

Un ⊕ Vn ⊆
⋂

t∈[s−,s](U ⊕ V ){t}. Hence Vn ⊆ Dv . ⊣

Corollary 4.2. If â̌ = â̌(α̌, â, i) ⊆ f has true outcome w or f then â successfully
satisfies Gi(A).

Proof. Suppose that â̌ has outcome o = w or o = f at all stages t ≥ se
â̌
, where se

â̌

is a least such stage. Then by Proposition 4.4 at stage seâ all lower priority backup
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genericity strategies ã ⊇ â̌ˆo are in initial state at stage se
â̌
and will not modify B

{t}
α̌

on numbers b ≤ bα̌(dâ̌)
{t} < (b0ã )

{t} at stages t ≥ seâ . Higher priority strategies do

not modify Bâ̌ at all at stages t ≥ s
e
â̌
.

We prove that α̌ does not modifyB
{t}
α̌ on numbers b ≤ bα̌(dâ)

{t} at stages t > seâ .

Suppose towards a contradiction that it does. Then at a stage t > se
â̌
, α̌ invalidates

a valid at stage t axiom, 〈x,Dv ⊕Da〉, for an element x /∈ K
{t}
. By Proposition 4.8

this must be a case 3 axiom and Dv contains a subset Vn which at a stage s < s
e
â

becomes a component of the n-th entry in the listWitâ , 〈ìn, ì
∗
n , an, Un ⊕ Vn〉. By

construction at stage t > se
â̌
the strategy â has outcome∞ after evaluatingWitâ [n]

as unsuccessful, hence Vn * V
{t}
α̌ , contradicting the assumption that 〈x,Dv ⊕Da〉

is valid at stage t.
If â̌ has outcome w at all stages t ≥ seâ . Then ôâ̌ ⊆ Bα̌ and ôâ̌ /∈ Wi . Indeed if

ôâ̌ ∈W
{t}
i and t1 < t2 are two consecutive â̌-true stages after t then at least one of

them is a stage of an attack by the main genericity strategy â , hence â̌ would attack
and have outcome h <L w, contradicting the choice of se

â̌
.

If â̌ has outcome f then at stage se
â̌
it has found an ì ∈ Wi , ensured ì ⊆ B

{se
â̌
}

α̌

and defined the final value of bα̌(dâ̌) > |ì|. It follows that ì ⊆ Bα̌ . ⊣

Lemma 4.1. There is a ∆02 1-generic set C such thatU ⊕C ≡e K or V ⊕C ≡e K .

Proof. By proposition 4.1 we have two cases for the true path f:

Case 1. For every i a strategy of type â(i) is assigned to the node f ↾ i . We will
prove that in this case C = A is the required set.
It follows from the construction and Part (2) of Proposition 4.3 that the limit
values of the markers a0i = a

0
â(i)
exist for every â(i) ⊆ f and form an unbounded

increasing sequence. Furthermore by Part (3) of Proposition 4.3 for every i there is
a stages si = s

c
â(α,i)
, such that at all stages t > si , A

{si} ↾ Ai = A
{t} ↾ Ai and hence

the set A is ∆02.
For every number n if n /∈ K then the actions of the main enumeration strategy α
ensure that at infinitely many stages s (the αˆe-true stages after the extraction of n
from K) n /∈ (Γ(U ⊕ A)){s}, hence n /∈ Γ(U ⊕ A).
Let n be the i-th element of K . Then n = dâ at all stages t > s

d
â , where

â = â(α, i) ⊆ f. Hence at all stages t > sdâ the α-markers for n are defined. By

our assumption Proposition 4.5 and our assumption on f, either o = fk for some
k or o = w is the true outcome for â and there is a stage seâ such that the α-markers

for n, u(n) and a(n) do not change after stage seâ . Let s > s
c
â ˆo be a U -true stage

such that at all t > s U ↾ u(n) + 1 ⊆ U {t}. Then at stage s , α ensures that there is
a valid axiom for n in Γ, say 〈n,Un ⊕An〉. By our choice of stage s Un ⊆ U {t} and
An ⊆ A{t} at all stages t > s , hence n ∈ Γ(U ⊕ A).
Finally by Corollary 4.1 it follows that A is 1-generic.

Case 2. There is a strategy â ⊆ f such that α̌(â) is assigned to f ↾ |â |+ 1 and

for every i a backup strategy â̌(α̌, â, i) is assigned to the node f ↾ |â |+ i + 1. We
will prove that in this case C = Bα̌ is the required set.
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That Bα̌ is ∆02 is proved as in the first case using the limit values of the markers

b0i = b
0
â̌(α̌,â,i)

for every â̌ ⊆ α̌ ⊆ f and by Part (3) of Proposition 4.4.

To prove that Λα̌(V ⊕Bα̌) we observe that there are infinitely many stages s (the
α̌-true stages after the extraction of n from K at which â does not attack) at which

α ensures that there are no valid axioms for elements n < s , n /∈ K
{s}
. If n is the

i-th element of K then n = dâ̌ at all stages t > s
d
â̌
, where â̌ = â̌(α̌, â, i) and the

values of its α̌-markers will eventually reach a limit. Hence at a α̌ stage s at which

V ↾ vα̌(n) + 1 ⊆ V
{t}
α̌ ⊆ V the strategy α̌ ensures that there is a valid axiom for n

in Λα̌ at all stages t > s , hence n ∈ Λα̌(V ⊕ Bα̌).
Finally by Corollary 4.2 it follows that Bα̌ is 1-generic. ⊣
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