Text Box:

Computability with Partial Information

Supported by the Bulgarian National Science Fund

Publications Background Publications

1. S. B. Cooper, Enumeration reducibility, nondeterministic computations and relative computability of partial functions, "Recursion Theory Week, Oberwolfach 1989" (eds. K. Ambos-Spies, G. Müller, G. E. Sacks), Springer-Verlag, Berlin, Heidelberg, New York, 1990, pp. 57-110.

2. S. B. Cooper, A. Sorbi and X. Yi, Cupping and noncupping in the enumeration degrees of Sigma-zero-two sets, Annals of Pure and Applied Logic 82 (1996) 317-342.

3. S. B. Cooper,  Partial degrees and the density problem, Part 2: The enumeration degrees of the sigma-two sets are dense, J. Symbolic Logic 49 (1984) 503-513.

4. S. B. Cooper and K. McEvoy,  On minimal pairs of enumeration degrees, J. Symbolic Logic 50 (1985) 983-1001 .

5. A. Sorbi and S. Lempp, Embedding finite lattices into the Sigma-0-2 enumeration degrees, 2002) J. Symbolic Logic, 69 - 90

6. A. Sorbi, The enumeration degrees of the Sigma-0-2 sets, Complexity, Logic and Recursion Theory, Marcel Dekker, New York, (1997) 303 - 330.

7. I. Soskov and B. Kovachev, Uniform regular enumerations, Mathematical Structures in Computer Science 16 (2006), pp. 901-924.

8. I. Soskov, Degree Spectra and Co-spectra of structures, Ann. University Sofia, 96(2004), 45-68.

9. I. Soskov and V. Baleva, Regular Enumerations, Journal of Symbolic Logic, 67, #4, 2002, 1323-1343.