Computability with Partial Information |
Supported by the Bulgarian National Science Fund |
Publications → Background Publications |
S. B. Cooper, Enumeration reducibility, nondeterministic computations and relative computability of partial functions, "Recursion Theory Week, Oberwolfach 1989" (eds. K. Ambos-Spies, G. Müller, G. E. Sacks), Springer-Verlag, Berlin, Heidelberg, New York, 1990, pp. 57-110. S. B. Cooper, A. Sorbi and X. Yi, Cupping and noncupping in the enumeration degrees of Sigma-zero-two sets, Annals of Pure and Applied Logic 82 (1996) 317-342. S. B. Cooper, Partial degrees and the density problem, Part 2: The enumeration degrees of the sigma-two sets are dense, J. Symbolic Logic 49 (1984) 503-513. S. B. Cooper and K. McEvoy, On minimal pairs of enumeration degrees, J. Symbolic Logic 50 (1985) 983-1001 . A. Sorbi and S. Lempp, Embedding finite lattices into the Sigma-0-2 enumeration degrees, 2002) J. Symbolic Logic, 69 - 90 A. Sorbi, The enumeration degrees of the Sigma-0-2 sets, Complexity, Logic and Recursion Theory, Marcel Dekker, New York, (1997) 303 - 330. I. Soskov and B. Kovachev, Uniform regular enumerations, Mathematical Structures in Computer Science 16 (2006), pp. 901-924. I. Soskov, Degree Spectra and Co-spectra of structures, Ann. University Sofia, 96(2004), 45-68. I. Soskov and V. Baleva, Regular Enumerations, Journal of Symbolic Logic, 67, #4, 2002, 1323-1343. |