CUPPING AND DEFINABILITY IN THE LOCAL STRUCTURE
OF THE ENUMERATION DEGREES

HRISTO GANCHEV AND MARIYA SOSKOVA

Abstract. We show that every splitting of $0''_e$ in the local structure of the
equation degrees, G_e, contains at least one low-cuppable member. We
apply this new structural property to show that the classes of all K-pairs in
G_e, all downwards properly Σ^0_2 enumeration degrees and all upwards properly
Σ^0_2 enumeration degrees are first order definable in G_e.

1. Introduction

Enumeration reducibility introduced by Friedberg and Rogers [11] arises as a
way to compare the computational strength of the positive information contained
in sets of natural numbers. A set A is enumeration reducible to a set B if given any
enumeration of the set B, one can effectively compute an enumeration of the set A.
The induced structure of the enumeration degrees D_e is an upper semilattice with
least element and jump operation. This structure can be viewed as an extension of
the structure of the Turing degrees, as there is an embedding $i : D_T \rightarrow D_e$ which
preserves the order, the least upper bound and the jump operation.

The jump operation gives rise to a local substructure, G_e, consisting of all degrees
in the interval enclosed by the least degree and its first jump. The elements of the
local structure of the enumeration degrees can be characterized in terms of their
relationship to the arithmetical hierarchy. Cooper [4] shows that the elements of
G_e are precisely the enumeration degrees which contain Σ^0_2 sets, or equivalently are
made up entirely of Σ^0_2 sets, which we call Σ^0_2 degrees. Naturally the arithmetical
hierarchy gives rise to a substructure of G_e, the substructure of the Δ^0_2 enumeration
degrees, the enumeration degrees which contain Δ^0_2 sets. This is a proper sub-
structure of G_e, as there are properly Σ^0_2 enumeration degrees, degrees which do not
contain any Δ^0_2 set. Another way to partition the elements of G_e is in terms of the
jump hierarchy. We distinguish between low, high and intermediate enumeration
degrees, where a degree is low if its enumeration jump is as low as possible, namely
$0'_e$, a degree is high if its jump is $0''_e$ and intermediate otherwise. In terms of their
relationship with the Turing degrees the elements of G_e can be divided into total
enumeration degrees, ones that are images of Turing degrees under the embedding i, or non-total degrees, ones that are not.

Each of these subclasses of G_e are defined by singling out a property of the sets
that comprise an element in the class. For example McEvoy [18] proves that an
enumeration degree is low if and only if all of its members are Δ^0_2. An enumeration
dergree is total if and only if it contains a set of the form $A \oplus \overline{A}$. In the spirit of

This research was supported by an BNSF Grant No. D002-258/18.12.08 and by a Marie Curie
European Reintegration Grant No. 239193 within the 7th European Community Framework
Programme.
Post’s program for the c.e. Turing degrees, one of the goals in the study of the local structure of the enumeration degrees is to find a relationship between the natural information content of the sets in a \(\Sigma_2^0 \) degree and its definability in \(\mathcal{G}_e \). In this article we give the first example of such a relationship, we prove the local definability of the enumeration degrees of sets that form a \(\mathcal{K} \)-pair.

Definition 1.1. [Kalimullin] A pair of sets of natural numbers \(A \) and \(B \) is a \(\mathcal{K} \)-pair if there is a c.e. set \(W \) such that:

\[
A \times B \subseteq W \land \overline{A} \times \overline{B} \subseteq \overline{W}.
\]

The notion of a \(\mathcal{K} \)-pair is a special case of a \(U \)-e Ideals, introduced and used by Kalimullin to prove the definability of the jump operation in the global structure \(\mathcal{D}_e \). In [16] Kalimullin proves that the property of being a \(\mathcal{K} \)-pair is degree theoretic and first order definable in the global structure \(\mathcal{D}_e \). A pair of sets form a \(\mathcal{K} \)-pair if and only if their degrees \(a = d_e(A) \) and \(b = d_e(B) \) satisfy the property:

\[
\mathcal{K}(a, b) \iff \forall x[(a \lor x) \land (b \lor x) = x].
\]

We will call a pair of enumeration degrees a \(\mathcal{K} \)-pair if they contain representatives which form a \(\mathcal{K} \)-pair in the sense of Definition 1.1.

\(\mathcal{K} \)-pairs have been proven useful for coding structures in \(\mathcal{G}_e \), some of their main advantages lying in their properties: e.g. every \(\mathcal{K} \)-pair of nonzero degrees in \(\mathcal{G}_e \) is a minimal pair of low enumeration degrees. It has been shown [12] for instance, that using countable \(\mathcal{K} \)-systems, systems of nonzero \(e \)-degrees such that every pair of distinct degrees forms a \(\mathcal{K} \)-pair, that every countable distributive semi-lattice can be embedded below every nonzero \(\Delta_0^2 \) \(e \)-degree. The local definability of \(\mathcal{K} \)-pairs is the first step in a larger project [14], aimed at showing that the theory of \(\mathcal{G}_e \) is computably isomorphic to first order arithmetic, where \(\mathcal{K} \)-systems are used to code standard models of arithmetic.

Kalimullin [16] has shown that if a pair of sets \(A \) and \(B \) do not form a \(\mathcal{K} \)-pair then there is a set \(C \), computable from \(A \oplus B \oplus K \), where \(K \) denotes the halting set, such that the degree \(d_e(C) \) witnesses the fact that \(d_e(A) \) and \(d_e(B) \) do not satisfy the formula \(\mathcal{K} \). Hence if \(A \) and \(B \) are \(\Delta_0^2 \) enumeration degrees then \(C \) is also \(\Delta_0^2 \) and the property "\(a \) and \(b \) form a \(\mathcal{K} \)-pair" is first order definable in the substructure of the \(\Delta_0^2 \) enumeration degrees by the same formula, \(\mathcal{K} \). If \(A \) and \(B \) are properly \(\Sigma_2^0 \) then the witness \(C \) is at best estimated as \(\Delta_0^3 \), hence it is quite possible that there are fake pairs \((a, b) \) of \(\Sigma_2^0 \) enumeration degrees, such that:

\[
\mathcal{G}_e \models \mathcal{K}(a, b), \quad \text{but} \quad \mathcal{D}_e \not\models \neg \mathcal{K}(a, b).
\]

The key to the definability of \(\mathcal{K} \)-pairs lies in the cupping properties of \(\mathcal{G}_e \). We say that a \(\Sigma_2^0 \) enumeration degree \(u \) is cuppable if there exists an incomplete \(v \neq 0_e' \) such that \(u \lor v = 0_e' \). Cooper, Sorbi and Yi [9] prove that not every nonzero \(\Sigma_2^0 \) enumeration degree is cuppable, in contrast to the \(\Delta_0^2 \) enumeration degrees, where for every nonzero degree one can find a total \(\Delta_0^2 \) cupping partner. Soskova and Wu [21] prove furthermore that every nonzero \(\Delta_0^2 \) enumeration degree is low-cuppable, i.e. cuppable by a low enumeration degree. In [13] a stronger version Soskova and Wu’s theorem is proved, which also reveals certain cupping properties of \(\mathcal{K} \)-pairs:

Theorem 1.1. [13] For every nonzero \(\Delta_0^2 \) degree \(a \) there is a \(\mathcal{K} \)-pair, \(\{b, c\} \) of nonzero \(\Delta_0^2 \) degrees, such that \(a \lor b = b \lor c = 0_e' \).
The final ingredient for the definability of K-pairs in G_e is provided by the following new cupping property of the elements in G_e, which we believe is of independent interest.

Theorem 1.2. For every pair of Σ^0_2 enumeration degrees u and v with $u \lor v = 0'$, there exists a low Δ^0_2 enumeration degree $a < 0'$, such that at least one of the following is true:

1. $u \lor a = 0'$,
2. $v \lor a = 0'$.

This property reveals that the class of low-cuppable Σ^0_2 enumeration degrees contains at least half of the cuppable enumeration degrees. Whether or not there are cuppable Σ^0_2 degrees, which are not low-cuppable remains open.

Using Theorem 1.2 we give a local definition of a nonempty set of K-pairs. Applying Theorem 1.1 we prove that this set contains all K-pairs in the local structure of the enumeration degrees. Thus as an application of these two new structural properties G_e we obtain the desired definability result:

Theorem 1.3. There is a first order formula $\mathcal{L}K$ in the language of G_e such that a pair of nonzero Σ^0_2 enumeration degrees a and b form a K-pair if and only if:

$$G_e \models \mathcal{L}K(a, b).$$

The definability of K-pairs allows us to give a first order definition of two further classes that have been of interest in the study of the local structure. A nonzero degree $a \in G_e$ is *downwards properly Σ^0_2* if all nonzero degrees $b \leq a$ are properly Σ^0_2. For example every non-cuppable Σ^0_2 degree is necessarily downwards properly Σ^0_2 as every Δ^0_2 enumeration degree is cuppable. Another example is given by Cooper, Li, Sorbi and Yang [8], who show that there is a Σ^0_2 degree which does not bound a minimal pair, whereas every Δ^0_2 degree does.

The symmetric class of the *upwards properly Σ^0_2* enumeration degrees contains the incomplete enumeration degrees $a \in G_e$ such that all incomplete degrees $b \geq a$ are properly Σ^0_2. Soskova [20] proves that there is a enumeration degree $a < 0'$, such that no pair of incomplete degrees above it forms a splitting of $0'$. This, combined with Arslanov and Sorbi’s [2] result, that there is a splitting of $0'$ above every incomplete Δ^0_2 enumeration degree, gives an example of an upwards properly Σ^0_2 degree. Bereznyuk, Coles and Sorbi [3], prove that there is an upwards properly Σ^0_2 degree above any incomplete member of G_e.

Cooper and Copestake[7] show furthermore that there are properly Σ^0_2 enumeration degrees that are incomparable with every nonzero, incomplete Δ^0_2 degree, and hence are both upwards and downwards properly Σ^0_2.

We show that these two classes are also first order definable in the local structure.

Theorem 1.4. The following two classes of Σ^0_2 enumeration degrees are first order definable in G_e:

1. The class of downwards properly Σ^0_2 enumeration degrees,
2. The class of upwards properly Σ^0_2 enumeration degrees.

The revealed relationship between definability and information content in the Σ^0_2 enumeration degrees calls forth the search for other examples of this phenomenon. In view of the nature of the particular classes that are proved definable in this article, an important question that remains open is:
Question 1.4.1. Is the class of the Δ^0_2 or the class of the total enumeration degrees enumeration first order definable in \mathcal{G}_e?

2. Preliminaries

We assume that the reader is familiar with the notion of enumeration reducibility, and refer to Cooper [5] for a survey of basic results on the structure of the enumeration degrees and to Sorbi [19] for a survey of basic results on the local structure \mathcal{G}_e. For completeness we will nevertheless outline here basic definitions and properties of the enumeration degrees used in this article.

Definition 2.1. A set A is enumeration reducible (\leq_e) to a set B if there is a c.e. set Φ such that:

$$A = \Phi(B) = \{n \mid \exists u(\langle n, u \rangle \in \Phi \& D_u \subseteq B)\},$$

where D_u denotes the finite set with code u under the standard coding of finite sets. We will refer to the c.e. set Φ as an enumeration operator and its elements will be called axioms.

A set A is enumeration equivalent (\equiv_e) to a set B if $A \leq_e B$ and $B \leq_e A$. The equivalence class of A under the relation \equiv_e is the enumeration degree $d_e(A)$ of A. The structure of the enumeration degrees (\mathcal{D}_e, \leq) is the class of all enumeration degrees with relation \leq defined by $d_e(A) \leq d_e(B)$ if and only if $A \leq_e B$. It has a least element $0_e = d_e(\emptyset)$, the set of all c.e. sets. We can define a least upper bound operation, by setting $d_e(A) \lor d_e(B) = d_e(A \oplus B)$ and a jump operator $d_e(A)^J = d_e(J_e(A))$. The enumeration jump of a set A, denoted by $J_e(A)$ is defined by Cooper [4] as $L_A \oplus A$, where $L_A = \{n \mid n \in \Phi_n(A)\}$.

Enumeration degrees which contain a set of the form $A \oplus \overline{A}$ are called total enumeration degrees. The interest in the class of the total enumeration degrees, arises from the fact that it is an isomorphic copy of the Turing degrees. The map ι, which sends a Turing degree $d_T(A)$ to the e-degree $d_e(A \oplus \overline{A})$, is an embedding, which preserves the order, the least upper bound and the jump operation.

We shall say that an e-degree is quasi-minimal if and only if it bounds no total degree, except for the least e-degree 0_e.

Finally we introduce one further piece of notation. In what follows we will often need to work with a set C reducible to the least upper bound of two other sets, say A and B. To keep notation simple we will consider the set C as being enumerated relative to two sources and write $C = \Phi(A, B)$, instead of $C = \Phi(A \oplus B)$. Naturally we will assume that an axiom of the operator Φ has the structure (n, D_A, D_B) and that it is valid if and only if $D_A \subseteq A$ and $D_B \subseteq B$.

Further notation and terminology used in this article are based on that of [6].

3. A local definition of K-pairs

K-pairs can be viewed as a generalization of the notion of a semi-recursive set, defined by Jockusch [15]. Recall that a set A is semi-recursive if it has a computable selector function $s_A : \mathbb{N} \times \mathbb{N}$ such that for all natural numbers n and m: $s_A(n, m) \in \{n, m\}$ and if $\{n, m\} \cap A \neq \emptyset$ then $s_A(n, m) \in A$. It is not difficult to see that if A is semi-recursive then A and \overline{A} form a K-pair. Indeed let s_A be the selector function
for A and let

$$\overline{s_A}(n, m) = \begin{cases} n, & \text{if } s_A(n, m) = m \\ m, & \text{if } s_A(n, m) = n. \end{cases}$$

Now consider the c.e. set $W = \{(s_A(n, m), \overline{s_A}(n, m)) \mid n, m \in \mathbb{N} \}$ and notice that $A \times \overline{A} \subseteq W$ and $\overline{A} \times A = A \times A \subseteq W$.

Another simple example of a K-pair is $\{W, A\}$, where A is any set of natural numbers and W is a c.e. set. This we shall consider as a trivial example and we will mainly be interested in nontrivial K-pairs, ones consisting of two non-c.e sets. We shall say that a degree a is half of a K-pair if there is a degree b such that $\{a, b\}$ forms a K-pair of degrees. The degree b will be called a K-partner for a. Some basic properties of K-pairs of degrees, collected from Kalimullin [16], are summarized in the following theorem.

Theorem 3.1 (Kalimullin). Let $K(a, b)$ denote the formula with free variables a and b, defined by:

$$\forall x[(a \lor x) \land (b \lor x) = x].$$

(1) A pair of degrees a and b form a K-pair if and only if $D_e \models K(a, b)$.

(2) A pair of Δ^0_2 degrees a and b form a K-pair if and only if $G_e \models K(a, b)$.

(3) Every half of a nontrivial K-pair in G_e is quasi-minimal and low.

(4) The set of degrees which form a K-pair with a fixed degree $d_e(A)$ is an ideal with upper bound $d_e(A)$.

(5) If a and b form a nontrivial K-pair then a and b form a minimal pair, i.e. the only degree that is both below a and b is 0_e.

(6) Every nonzero Δ^0_2 enumeration degree bounds a nontrivial K-pair.

We add one additional property to the list, which motivates our interest in the cupping properties of the elements in G_e.

Lemma 3.1. Let a and b be Σ^0_2 enumeration degrees such that:

$$G_e \models K(a, b).$$

If c be a Σ^0_2 enumeration degree, such that $b \lor c = 0'_e$, then $a \leq c$.

Proof. By the property $K(a, b)$ applied to c we get:

$$(b \lor c) \land (a \lor c) = c.$$

Replacing $(b \lor c)$ with its equal $0'_e$ we get:

$$0'_e \land (a \lor c) = c.$$

Now as $0'_e$ is the largest element of G_e we get:

$$a \lor c = c$$

or equivalently $a \leq c$.

Jockusch [15] shows that for every set B there is a semi-recursive set $A \equiv_T B$ such that A and \overline{A} are non-c.e. This combined with the quasi-minimality of K-pairs proves that every total member of G_e can be represented as the least upper bound of the elements of a nontrivial K-pair. In particular $0'_e$ can be split by a nontrivial K-pair of Δ^0_2 enumeration degrees.
We are now ready to give a first order definition of \mathcal{K}-pairs assuming Theorems 1.1 and 1.2. Consider the formula

$$\mathcal{L}(a) \iff a > 0_e \& \exists b > 0_e (a \lor b = 0'_e \& \mathcal{K}(a, b)).$$

From the argument above it follows that there are elements of \mathcal{G}_e which satisfy this formula. We show that every element which satisfies this formula is in fact a half of a \mathcal{K}-pair.

Proposition 3.1. If $\mathcal{G}_e \models \mathcal{L}(a)$ then a is half of a nontrivial \mathcal{K}-pair.

Proof. Let $b > 0_e$ be a degree such that $a \lor b = 0'_e \& \mathcal{K}(a, b)$. Then $\{a, b\}$ is a splitting of $0'_e$ and hence applying Theorem 1.2 we get a low Δ^0_2 degree c which cups a or b.

Case 1: $b \lor c = 0'_e$. By Lemma 3.1 we get $a \leq c$. Now by the monotonicity of the enumeration jump it follows that a is low, hence Δ^0_2, and by the property that all nonzero Δ^0_2 are low-cuppable, a is as well low-cuppable.

Case 2: $a \lor c = 0'_e$. Then similarly $b \leq c$ and hence Δ^0_2 and low-cuppable.

Therefore if one of the degrees a and b is low-cuppable, then both are low-cuppable and both are Δ^0_2. Now applying part 2 of Theorem 3.1 we get that a and b form a \mathcal{K}-pair.

The set defined by the formula \mathcal{L} is therefore a nonempty set of low enumeration degrees. It does not contain all halves of nontrivial \mathcal{K}-pairs. Let c be any total incomplete Δ^0_2 enumeration degree and let A be a semi-recursive set, such that $d_e(A \oplus \overline{A}) = c$ and both A and \overline{A} are not c.e. It follows from Theorem 3.1 that $a = d_e(A)$ is half of a nontrivial \mathcal{K}-pair and $d_e(\overline{A}) = \overline{a}$ is the largest element of the ideal of \mathcal{K}-partners for a. Hence for every \mathcal{K}-partner b of a, $b \lor a \leq a \lor \overline{a} = c < 0'_e$ and a does not satisfy \mathcal{L}. Nevertheless the set \mathcal{L} contains an upper bound to every half of a nontrivial \mathcal{K}-pair in \mathcal{G}_e.

Proposition 3.2. If $a \in \mathcal{G}_e$ is a half of a nontrivial \mathcal{K}-pair then there is a degree $c \geq a$ such that $\mathcal{G}_e \models \mathcal{L}(c)$.

Proof. Let b be a nonzero \mathcal{K}-partner for a. Then b is a Δ^0_2 enumeration degree and hence by Theorem 1.1 there is a nontrivial \mathcal{K}-pair $\{c, d\}$ such that $b \lor c = d \lor c = 0'_e$. Consider the degree c. First of all c satisfies the formula \mathcal{L} with d as witness for this. Secondly by Lemma 3.1 $a \leq c$.

On the other hand, suppose that there is a pair of Σ^0_2 enumeration degrees a and b which satisfy the formula \mathcal{K} in \mathcal{G}_e but are not a \mathcal{K}-pair. It follows by an argument similar to the one in the Proposition 3.1 that both a and b are not low-cuppable and hence are downwards properly Σ^0_2. As every member of the set defined by \mathcal{L} is low and hence bounds only Δ^0_2 enumeration degrees it follows that both a and b form a minimal pair with every element which satisfies \mathcal{L}.

To finalize the proof of Theorem 1.3 we set $\mathcal{L}\mathcal{K}$ to be the formula:

$$\mathcal{L}\mathcal{K}(a, b) \iff \mathcal{K}(a, b) \& a > 0_e \& b > 0_e \& \exists c \geq a \& \mathcal{L}(c).$$

Now we can easily prove Theorem 1.4 as well. The last property in Preposition 3.1 shows that every Δ^0_2 enumeration degree bounds a nontrivial \mathcal{K}-pair. As every \mathcal{K}-pair consists of Δ^0_2 enumeration degrees, it follows that a degree is downwards properly Σ^0_2 if and only it bounds no nontrivial \mathcal{K}-pair. Thus a degree a is downwards properly Σ^0_2 if and only if:
\[G_c = \forall b, c[(b \leq a & c \leq a) \Rightarrow \neg LK(b, c)]. \]

To prove the second part of this theorem, recall that every total enumeration degree can be represented as the least upper bound of the elements of a \(K \)-pair. The least upper bound of the elements of every \(K \)-pair, on the other hand, is a \(\Delta^0_2 \) degree. The last ingredient comes from a theorem of Arslanov, Cooper and Kalimullin [1] (Theorem 7), which states that for every \(\Delta^0_2 \) enumeration degree \(a < 0' \), there is a total enumeration degree \(b \) such that \(a \leq b < 0' \). From all this it follows that a degree \(a \) is upwards properly \(\Sigma^0_2 \) if and only if no incomplete degree above it can be represented as the least upper bound of the elements of a \(K \)-pair, i.e. if:

\[G_c = \forall c, d(LK(c, d) & a \leq c \vee d \Rightarrow c \vee d = 0'_c). \]

4. Cupping properties of \(0'_e \)-splittings

We start this section with a very general description of the idea behind the construction for the proof of Theorem 1.2. We then proceed to formalizing this idea, giving more intuition as we progress.

4.1. General idea. The construction is inspired by the non-splitting technique introduced in [20]. There it is shown that there is a \(\Sigma^0_2 \) e-degree \(a < 0'_e \), such that no pair of degrees \(u, v \) above \(a \) splits \(0'_e \). A closer inspection of the proof of this theorem yields a stronger result, which we formulate here:

Corollary 4.1. There exists a \(\Sigma^0_2 \) enumeration degree \(a < 0'_e \), such that for every pair of \(\Sigma^0_2 \) enumeration degrees \(u \) and \(v \) with \(u \vee v = 0'_e \) at least one of the following is true:

1. \(u \vee a = 0'_e \)
2. \(v \vee a = 0'_e \)

Hence one incomplete degree is a cupping partner to at least half of the cuppable enumeration degrees. There is no hope that this particular non-splitting degree can be constructed as a low enumeration degree, as by Arslanov and Sorbi [2] there is a splitting of \(0'_e \) above every incomplete \(\Delta^0_2 \) enumeration degree. Our task is however much less demanding. Given a particular pair of degrees which split \(0'_e \) we have to show that at least one of them is low-cuppable.

Let \(u \) and \(v \) be two given \(\Sigma^0_2 \) enumeration degrees with least upper bound \(0'_e \). Fix two representatives \(U \in u \) and \(V \in v \). By Copestake [10] the degree of every 1-generic \(\Delta^0_2 \) set is low, so our general plan is to construct two 1-generic \(\Delta^0_2 \) sets \(A \) and \(B \) such that \(d_e(A) \) cups \(u \) to \(0'_e \) or \(d_e(B) \) cups \(v \) to \(0'_e \).

Following the non-splitting construction we will construct an auxiliary \(\Pi^0_1 \) set \(E \), meant to help us use the fact that \(U \oplus V \) is in the largest possible \(\Sigma^0_2 \) enumeration degree. We know that there is an enumeration operator \(\Theta \) such that \(\Theta^{U \oplus V} = E \) and if we find one, we can use it to predict changes in the approximations to the sets \(U \) and \(V \): an extraction of an element \(e \) from the set \(E \) will ultimately lead to an extraction of elements out of the set \(U \oplus V \). The first level of the tree is meant to search for such an operator \(\Theta \). Assuming that we have found a correct enumeration operator \(\Theta \), such that \(\Theta^{U \oplus V} = E \), we turn to our main strategy: construct a 1-generic \(\Delta^0_2 \) set \(A \) and an operator \(\Gamma \) such that \(\Gamma(U \oplus A) = \overline{K} \). Here \(\overline{K} \) is a fixed
\(\Pi_1^0\) member of \(\Theta_s\). The strategy to construct \(\Gamma\) is in conflict with the strategies to make \(A\) 1-generic. Every time an element \(k\) leaves the approximation to \(K\), we need to rectify the enumeration \(\Gamma(U \oplus A)\) by extracting a member of the oracle set. The genericity strategies however try to restrain \(A\) on certain initial segments. To resolve this conflict we try to provoke an extraction from the set \(U\), using the set \(E\). If almost every time we successfully provoke an extraction from the set \(U\), our main strategy will be successful. Otherwise infinitely often our attempt to provoke an extraction from the set \(U\) is unsuccessful, as it ends in an extraction from the set \(V\). We use this information to our advantage by implementing a backup strategy: we construct a second 1-generic \(\Delta^0_2\) set \(B\) and an operator \(\Lambda\) such that \(\Lambda(V \oplus B) = K\).

With this general plan in mind we start to formalize the intuitive description of the strategy. We start by selecting approximations to the given sets \(U\) and \(V\).

4.2. Approximations. We will use good approximations to the given sets. The notion of a good approximation to a \(\Sigma_2^0\) sets is first used by Jockusch [15] and by Cooper [4] (\(\Sigma_2^0\) approximations with infinitely many thin stages). Later on Lachlan and Shore [17] formalize this notion and prove that every \(n\text{-c.e.a.}\) set has one.

We fix a good \(\Sigma_2^0\) approximation \(\{(U \oplus V)^{(s)}\}_{s<\omega}\) to the set \(U \oplus V\). A good \(\Sigma_2^0\) approximation is one which has the following two properties:

- \(G\). There are infinitely many good stages \(s\) such that \((U \oplus V)^{(s)}\) \(\subseteq U \oplus V\).
- \(\Sigma_2^0\). For all \(n\) there exists a stage \(s\) such that at all stages \(t > s\) we have \((U \oplus V) \upharpoonright n \subseteq (U \oplus V)^{(s)}\).

Denote by \(G_{U \oplus V}\) the set of good stages in the approximation to \(U \oplus V\). We use the following property of good approximations proved in [17]: for every enumeration operator \(\Theta\) with standard \(\Sigma_0^0\) approximation \(\{(\Theta^{(s)})\}_{s<\omega}\),

\[
\lim_{s \in G_{U \oplus V}} \Theta^{(s)}((U \oplus V)^{(s)}) = \Theta(U \oplus V).
\]

Denote \(\Theta^{(s)}((U \oplus V)^{(s)})\) by \(\Theta(U \oplus V)^{(s)}\). As noted above we will be constructing a \(\Pi_1^0\) approximation to a set \(E\) and searching for an operator \(\Theta\) such that \(\Theta(U \oplus V) = E\). Property 4.1 enables us to use the length of agreement function in order to establish this. Denote by \(l(\Theta(U \oplus V), E, s)\) the maximal number \(n\) such that \(\Theta(U \oplus V)^{(s)} \upharpoonright n = E^{(s)} \upharpoonright n\). Then the sets \(\Theta(U \oplus V)\) and \(E\) are equal if and only if:

\[
\lim_{s \in G_{U \oplus V}} l(\Theta(U \oplus V), E, s) = \infty.
\]

Unfortunately we will not be able to check whether or not this is true as this is a \(\Pi_1^0(G_{U \oplus V})\) statement: \(\forall n \exists s \forall t > s (t \in G_{U \oplus V} \Rightarrow l(\Theta(U \oplus V), E, t) > n)\).

We can however establish in a \(\Pi_1^0\) way that

\[
\lim_{s} \sup l(\Theta(U \oplus V), E, s)) = \infty.
\]

Stages at which \(l(\Theta(U \oplus V), E, s) > \max\{l(\Theta(U \oplus V), E, t) \mid t < s\}\) will be called expansionary stages. Thus if \(\Theta(U \oplus V) = E\) then there are infinitely many expansionary stages for the operator \(\Theta\).

Suppose that we have established infinitely many expansionary stages for \(\Theta\), but the sets \(\Theta(U \oplus V)\) and \(E\) are not equal. Then there is an element \(e \in E\) which infinitely often appears to be in the set \(\Theta(U \oplus V)^{(s)}\) but ultimately \(e \notin \Theta(U \oplus V)\).
Let F be a finite set. The *age* of this set with respect to the approximation to $U \oplus V$ measured at stage s is the number:

$$a(F, s) = \begin{cases} s - \mu \{ \forall t \in [s, s)(F \subseteq (U \oplus V)^{\{t\}} \} + 1, & \text{if } F \subseteq (U \oplus V)^{\{s\}}; \\ 0 & \text{otherwise.} \end{cases}$$

In other words the age of a finite set is the number of consecutive stages ending in the current stage s at which the set F is a subset of the approximation to $U \oplus V$.

For instance the age of the empty set $a(\emptyset, s) = s + 1$ for all s and if $F \not\subseteq U \oplus V^{\{s\}}$ then $a(F, s) = 0$.

Let $Ax = (e, D_U \oplus D_V) \in \Theta^{\{s\}}$ be an axiom for e in Θ. The *age* of this axiom at stage s is the number

$$a(Ax, s) = a(D_U \oplus D_V, s).$$

Thus invalid axioms have age 0 at stage s and valid axioms have age equal to the number of consecutive stages at which they have been valid, ending in the current stage. Denote by $ax(e, s)$ the finite set, such that $(e, ax(e, s))$ is the oldest axiom for e in Θ at stage s, i.e. of greatest age. (If there are more than one valid axioms of maximal age, choose the one with least code).

The use of an element e measured at stage s is the set

$$\theta(e, s) = \bigcup_{i \leq e, \ ax(i, s) \in \Theta(U \oplus V)^{\{s\}}} ax(i, s),$$

the collection of the finite sets which form the second half of the oldest valid axioms for all elements that currently appear in the set $\Theta(U, V)$. If $\Theta(U, V) = E$ then for every $e \in E$ there will be a stage s such that at all stages $t \geq s$ the use of e will remain unchanged, i.e. $\theta(e, s) = \theta(e, t)$. This will be used in the Honestification module described below.

4.3. **The tree of strategies.** The construction will be in stages. At every stage s we construct a finite path of length s, $\delta^{\{s\}}$, through a tree of strategies, defined below, approximating the so called true path - a leftmost infinite path of strategies visited at infinitely many stages. If $\gamma \subseteq \delta^{\{s\}}$ then we shall say that γ is visited or activated at stage s and s will be called a γ-true stage. Every strategy will have outcomes representing different possible ways in which the corresponding requirement might be satisfied. The outcomes of each strategy are ordered linearly. Denote by O the collection of all outcomes. The tree T can be viewed as a computable function with domain the set of finite strings of outcomes, $O^{<\omega}$, and range the set of strategies.

Let $\{\Theta_e\}_{e < \omega}$ be some computable listing of all enumeration operators and $\{W_i\}_{i < \omega}$ be a computable listing of all Σ^0_1 sets of finite binary strings. For every natural number e we will have a group of strategies S_e. The strategies in the group S_e work under the presumption that Θ_e is an operator such that $\Theta_e(U \oplus V) = E$. With every group S_e we connect a subtree T_{S_e}. The tree of strategies T will then be constructed from the subtrees of type S_e, $e < \omega$.
Each of group of strategies \(\mathcal{S}_e \) contains strategies of four types: main enumeration strategy, main genericity strategy, backup enumeration strategy and backup genericity strategy.

Let \(\alpha \) be an arbitrary string of outcomes. We define \(T_{\mathcal{S}_e}(\alpha) \), the subtree of type \(\mathcal{S}_e \) with root \(\alpha \). The the root is assigned the strategy \(\alpha(e) \), a strategy of type main enumeration strategy. This strategy initiates the construction of a set \(A_{\alpha(e)} \) and an operator \(\Gamma_{\alpha(e)} \) and is successful if \(\Gamma_{\alpha(e)}(U \oplus A_{\alpha(e)}) = \overline{K} \). The strategy has two outcomes \(e <_L b \). Outcome \(e \) represents the fact that there are infinitely many expansionary stages for \(\Theta_\alpha \). Outcome \(b \) represents the fact that \(\Theta_\alpha(U \oplus V), E, s \) is bounded. The node \(\alpha(e)b \) is a leaf in the tree \(T_{\mathcal{S}_e}(\alpha) \). The node \(\alpha(e)e \) is assigned the first main genericity strategy \(\beta(\alpha(e), 0) \).

The main genericity strategy \(\beta = \beta(\alpha, i) \) tries to ensure that \(A_\alpha \) satisfies the \(i \)-th genericity requirement \(\mathcal{G}_i(A_\alpha) \), where:

\[
\mathcal{G}_i(A) : \exists \tau \subseteq A(\tau \in W_i \lor \forall \mu \supseteq \tau(\mu \notin W_i)).
\]

The strategy has infinitary outcomes \(\infty \) and \(h \), and finitary outcomes \(w \) and \(f_n \) for every \(n \), arranged as follows:

\[
\infty <_L \cdots <_L f_n <_L \cdots f_i <_L f_0 <_L h <_L w
\]

Outcome \(\infty \) represents the fact that \(\beta \) has been unsuccessful infinitely often to secure a witness \(\tau \in W_i \) as an initial segment of \(A_\alpha \), but has provided sufficient conditions for the backup strategies to succeed. The node \(\beta(\infty) \) is assigned the backup genericity strategy \(\hat{\alpha}(\beta(\alpha, i)) \). The outcome \(f_n \) represents the fact that \(\beta \) has been successful in securing a witness \(\tau \in W_i \) as an initial segment of \(A_\alpha \) on its \(n \)-th attempt and outcome \(w \) the fact that \(\beta \) has found a witness \(\tau \subseteq A_\alpha \) which has no extension in the set \(W_i \). In both cases, \(o \in \{f_n \mid n < \omega \} \) and \(o = w \), the strategy has successfully satisfied the \(i \)-th genericity requirement and \(\beta o \) is assigned the next genericity requirement \(\beta(\alpha, i + 1) \). Finally outcome \(h \) signifies that the strategy \(\beta \) has found an element \(e \in E \) whose use does not stabilize at any stage, i.e. for every \(s \) there is a stage \(t > s \) such that \(\theta(e, s) \neq \theta(e, t) \), hence \(\Theta_\alpha(U \oplus V) \neq E \). The node \(\beta h \) is therefore a leaf in the tree \(T_{\mathcal{S}_e} \).

The backup enumeration strategy \(\hat{\alpha} = \hat{\alpha}(\beta) \) initiates the construction of a set \(B_\hat{\alpha} \), and an operator \(\Lambda_\hat{\alpha} \). The strategy is successful if ultimately \(\Lambda_\hat{\alpha}(V \oplus B_\hat{\alpha}) = \overline{K} \). This strategy has only one outcome \(e \). The node \(e \) is assigned the first backup genericity strategy \(\hat{\beta}(\alpha, \beta, 0) \).

Finally the backup genericity strategy \(\hat{\beta} = \hat{\beta}(\alpha, \beta, i) \) ensures that \(B_\hat{\beta} \) satisfies the \(i \)-th genericity requirement \(\mathcal{G}_i(B_\hat{\beta}) \). It has three outcomes arranged as follows:

\[
f <_L h <_L w
\]

Outcome \(f \) represents the fact that \(\hat{\beta} \) has been successful in securing a witness \(\tau \in W_i \) as an initial segment of \(B_\hat{\beta} \). Outcome \(w \) represents the fact that \(\hat{\beta} \) has found an initial segment \(\tau \subseteq B_\hat{\beta} \) such that \(\forall \mu \subseteq \tau(\mu \notin W_i) \). Both nodes \(\hat{\beta}f \) and \(\hat{\beta}w \) are assigned the next genericity strategy \(\hat{\beta}(\alpha, \beta, i + 1) \). Outcome \(h \) just as in the main genericity strategy signifies the fact that \(\hat{\beta} \) has found an element \(\hat{e} \in E \) with unstable use. The node \(\hat{\beta}h \) is a leaf in the tree \(T_{\mathcal{S}_e}(\alpha) \).

The tree \(T \) is the union of the sequence \(\{T_n\}_{n<\omega} \) defined inductively below:

1. Let \(T_0 = T_{\mathcal{S}_e}(\emptyset) \).
(2) T_{e+1} is the union of T_e with $T_{S_{e+1}}(\gamma)$, for all leaves γ in T_e.

The ordering of the outcomes induces a standard linear ordering of the nodes, the finite strings in the domain of T, namely: $\alpha \leq \beta$ if $\alpha \subseteq \beta$ (α is an initial segment of β) or if there exists γ such that $\gamma \alpha_1 \subseteq \alpha$, $\gamma \alpha_2 \subseteq \beta$ and $\alpha_1 <_L \alpha_2$. In the latter case we will also write $\alpha <_L \beta$. If $\alpha < \beta$ we shall say that α has higher priority than β. An infinite path in the tree T will be a function $f \subseteq T$ with domain a maximal linearly ordered subset of the domain of T. We will abuse notation and denote with $f \upharpoonright n$ both the node of length n in the domain of f and the strategy assigned to it.

Proposition 4.1. Suppose f is an infinite path in the tree T_{S_e}. Then $f \upharpoonright 0$ is assigned $\alpha(e)$ and one of the following is true:

1. For every i a strategy of type $\beta(\alpha(e), i)$ is assigned to the node $f \upharpoonright i$.
2. There is a strategy $\beta \subseteq f$ such that $\hat{\alpha}(\beta)$ is assigned to $f \upharpoonright |\beta| + 1$ and for every i a backup strategy $\hat{\beta}(\hat{\alpha}, \beta, i)$ is assigned to the node $f \upharpoonright (|\beta| + i + 1)$.

Proof. Suppose that (1) is not true and let β be the largest node of type main genericity strategy such that $\beta \subseteq f$. By our choice of β and the fact that f is infinite it follows that $\hat{\alpha}(\beta) = \beta^\infty \subseteq f$ and $\hat{\beta}(\hat{\alpha}, \beta, 0) = \alpha e \subseteq f$. Now inductively if $\hat{\beta}(\hat{\alpha}, \beta, i) \subseteq f$ then as f is infinite either $\hat{\beta}(\hat{\alpha}, \beta, i) f \subseteq f$ or $\hat{\beta}(\hat{\alpha}, \beta, i) w \subseteq f$ and in both cases this is a $\hat{\beta}(\hat{\alpha}, \beta, i + 1)$ strategy. \hfill \square

Similarly the following property of the tree T is straightforward to prove:

Proposition 4.2. For every infinite path in the tree $f \subseteq T$ one of the following is true:

1. For every e there is a node γ such that $f \cap T_{S_e}(\gamma) \neq \emptyset$.
2. There exists an n and an e, such that $f \subseteq T_{S_e}(f \upharpoonright n)$.

4.4. Strategies and parameters. In this section we shall give more intuition about how strategies are designed to work and define their parameters.

4.4.1. The main enumeration strategy. Let $\alpha = \alpha(e)$ be a main enumeration strategy. The strategy α is first meant to determine whether or not Θ_e has infinitely many expansionary stages. As α will not be visited at every stage, in order to do this α and all other strategies in its group S_e will work with a delayed approximation to U, V. Fix s and let s^- be the greatest α-true stage less than s ($s^- = 0$ if α has not yet been visited). If α is not visited at stage s then $(U_\alpha \oplus V_\alpha)^{(s)} = (U_\alpha \oplus V_\alpha)^{(s^-)}$. If s is an α-true stage then:

$$(U_\alpha \oplus V_\alpha)^{(s)} = \bigcap_{k < s \leq s}(U \oplus V)^{(t)}.$$

It is not difficult to see that if α is visited at infinitely many stages then $\{(U_\alpha \oplus V_\alpha)^{(s)}\}_{s < \omega}$ is also a good Σ^2_2 approximation to $U \oplus V$. From the delayed approximation to $U \oplus V$ we obtain good Σ^2_2 delayed approximations to the sets U and V, namely for every s:

$$(U_\alpha)^{(s)} = \{x \mid 2x \in (U_\alpha \oplus V_\alpha)^{(s)}\} \text{ and } V_\alpha^{(s)} = \{x \mid 2x + 1 \in (U_\alpha \oplus V_\alpha)^{(s)}\}.$$

The strategy α monitors the length of agreement $l(\Theta_e(U_\alpha \oplus V_\alpha), E, s)$ at every true stage s. If s is not expansionary then α has outcome b. If there are finitely many expansionary stages then b is the true outcome of α, and $\Theta_e(U \oplus V) \neq E$.

If s is an expansionary stage then α will assume that Θ_e is the right operator and it will initiate the construction of the set A_α and the operator Γ_α, so that ultimately $\Gamma_\alpha(U \oplus A_\alpha) = \overline{K}$. The axioms in Γ_α will have a particular format:
to every natural number \(n \) we will assign an \(A_\alpha \)-marker \(a_\alpha(n) \) and a \(U_\alpha \)-marker \(u_\alpha(n) \); the axiom enumerated in \(\Gamma \) at stage \(s \) for \(n \) will be of the form \(\langle n, (U_\alpha^{(s)} \uparrow u_\alpha(n) + 1) \rangle \) or \(\langle n, (A_\alpha^{(s)} \uparrow a_\alpha(n) + 1) \rangle \).

The markers will be defined by the main genericity strategies. The only job of \(\alpha \) is to ensure that the constructed operator is correct. At every natural number \(n < s \) and correct \(\Gamma_\alpha(U_\alpha, A_\alpha) \) by either enumerating axioms in \(\Gamma_\alpha \) for elements \(n \in K^{(s)} \setminus \Gamma_\alpha(U_\alpha \oplus A_\alpha)^{(s)} \) or extracting form \(A_\alpha \), the already defined \(A_\alpha \)-markers that appear in valid axioms for elements \(n \in \Gamma_\alpha(U_\alpha \oplus A_\alpha)^{(s)} \setminus K^{(s)} \).

The parameters for \(\alpha(e) \) are hence \(A_\alpha \) and \(\Gamma_\alpha \), both with initial value \(\emptyset \); the markers \(a_{\alpha}(n) \) and \(u_{\alpha}(n) \) for every natural number \(n \), also called the \(\alpha \)-markers for \(n \), initially undefined.

4.4.2. The main genericity strategy

At every stage \(s \) there will be at most one copy of the \(i \)-th main genericity strategy which is not in initial state. Let \(\beta = \beta(\alpha(e), i) \) be the \(i \)-th main genericity strategy working with respect to the main enumeration strategy \(\alpha(e) \). Recall that the strategy \(\beta \) has to ensure that there is a finite binary string \(\tau \subseteq A_\alpha \) such that \(\tau \in W_i \) or no extension \(\mu \supseteq \tau \) is in the set \(W_i \). The strategy \(\beta \) has to overcome the difficulty set by the higher priority strategy \(\alpha(e) \) which is extracting markers from \(A_\alpha \) in the rectification process. This is why the simple genericity strategy: select a witness \(\tau \subseteq A_\alpha \), wait until (if ever) an extension \(\mu \supseteq \tau \) enters \(W_i \), restrain \(\mu \) as an initial segment of \(A_\alpha \), will not work. The strategy to satisfy \(G_\alpha(A_\alpha) \) is a more complex version of this strategy.

The strategy \(\beta \) will have a threshold \(d_\beta \). The value of this threshold will always be the \(i \)-th element of \(K \). We cannot guess in advance its value but, as \(K \) is an infinite set, approximated by its standard \(\Pi^0_1 \) approximation, after finitely many wrong guesses we will eventually pick the right value for the threshold.

The strategy \(\beta \) is responsible for defining values for the parameters \(a_{\alpha}(d_\beta) \) and \(u_{\alpha}(d_\beta) \). The first marker \(a_{\alpha}(d_\beta) \) that it defines is denoted as \(a_\beta^0 \) and plays the real role of the threshold, the element, below which \(\beta \) can safely assume that \(A_\alpha \) is correct on all elements and will not be further modified. The values of the \(A_\alpha \)-markers are always selected to be larger than the values of the markers defined by higher priority strategies. Note that the way in which the axioms are defined by the strategy \(\alpha \) ensures that every axiom enumerated in \(\Gamma_\alpha^{(s)} \) for elements \(n > d_\beta \) is an extension of the valid axiom for \(d_\beta \) at stage \(s \). Thus by extracting the marker \(a_{\alpha}(d_\beta)^{(s)} \) from the set \(A_\alpha \) the strategy \(\beta \) can invalidate all axioms for all elements \(n > d_\beta \) valid at stage \(s \).

Assuming that higher priority main genericity strategies in \(S_e \) have finished with their action, and \(\alpha(e) \) has finished correcting \(\Gamma_\alpha \) for elements \(n < d_\beta \) at stage \(s_0 \), the strategy \(\beta \) can safely assume that \(\tau_0 = A_\alpha^{(s_0)} \uparrow a_{\alpha}(d_\beta) + 1 \) is a good candidate for a first witness.

If \(\tau_0 \notin W_i \) then the strategy \(\beta \) is successful and needs no further actions. The outcome is \(w \) and the next genericity strategy is activated. If however there is an extension \(\mu_0 \supseteq \tau_0 \) such that \(\mu_0 \in W_i \), then the strategy \(\beta \) is now in a difficult position, namely \(\beta \) cannot restrain \(A_\alpha \) on elements \(a \) such that \(|\tau| < a \leq |\mu| \), without injuring \(\alpha \). This is where the set \(E \) comes into play. We will select an element \(e_0 \) currently in the constructed set \(E \) called an agitator and arrange things
so that every valid axiom for \(d_\beta \) in \(\Gamma_\alpha \), extends the use of \(e_0 \). The process of making this arrangement will be called \textit{honestification}.

To do this we wait for a large enough stage \(s \) such that the use \(\theta(e_0, s) \) seems stable at stages \(t > s \). Every time we see that the current stage does not meet this description, i.e. the use has changed since the previous \(\beta \)-true stage, we must forcefully invalidate all previously enumerated axioms for \(d_\beta \) and reset the value of the parameter \(u_\alpha(d_\beta) \). If the use of \(e_0 \) never becomes stable then \(\Theta_\alpha \) is not the correct operator. The true outcome in this case will be \(h \) followed by the next group of strategies \(S_{\alpha+1} \).

Suppose that after finitely many iterations of honestification, at stage \(s \) we have achieved our goal: the use of \(e_0 \) has stopped changing and all valid axioms for \(d_\beta \) in \(\Gamma_\alpha \) extend \(\theta(e_0, s) \). We shall say that \(\Gamma_\alpha \) is honest at \(d_\beta \) at stage \(s \). Suppose also that we have found an extension \(\mu_0 \supseteq \tau_0 \) in the c.e. set \(W_i \). The strategy \(\beta \) will now attack by extracting \(e_0 \) from \(E \). It will have outcome \(\infty \) at this stage. At every expansionary stage \(s^+ > s \), \(\theta(e_0, s) \not\subseteq (U_\alpha \oplus V_\alpha)^{(s^+)} \). If this is because of a permanent extraction from the set \(U_\alpha \), i.e. at all further stages \(t > s \) \(\theta(e_0, s) \not\subseteq U^{(t)}_\alpha \oplus \mathbb{N} \) then all axioms enumerated in \(\Gamma \) for elements \(n \geq d_\beta \) are invalid at all further stages and the strategy \(\beta \) can successfully restrain \(\mu_0 \subseteq A_\alpha \) with no injury to \(\alpha \). The strategy has outcome \(p_0 \) at all stages \(t > s \) while \(\theta(e_0, s) \not\subseteq U^{(t)}_\alpha \oplus \mathbb{N} \).

If the extraction disappears at stage \(s_1 \) (in this case \(\theta(e_0, s) \not\subseteq \mathbb{N} \oplus V^{(s_1)}_\beta \)) the strategy will evaluate this first cycle as unsuccessful it will extract the marker \(a_\alpha(d_\beta) \), thereby preserving its work from injury by the strategy \(\alpha \), activate the backup strategy \(\tilde{\alpha}(\beta) \) below outcome \(\infty \) and then start a new cycle with a new larger agitator \(e_1 \) and witness \(\tau_1 \supseteq \mu_0^s \), \(\mu_0^s \) is the string \(\mu_0 \) inverted at only one position \(a_\alpha(d_\beta) \). At the end of every cycle the strategy will record in a parameter \(W_{\alpha \beta} \) information about previous attacks. After every attack the strategy will go back an re-evaluate previous attacks. Outcome \(\infty \) will be visited only if there is further evidence that all previous cycles are unsuccessful.

The \textit{parameters} for \(\beta(\alpha, i) \) are: the threshold \(d_\beta \), always assigned at stage \(s \) the \(i \)-th element of \(\overline{K}^{(s)} \), with first marker defined by \(\beta a_0^s \) initially undefined; the current agitator \(e_\beta \) and witness \(\tau_\beta \) initially undefined; the list of witnesses \(W_{\alpha \beta} \) initially empty.

4.4.3. The backup enumeration strategy. The strategy \(\tilde{\alpha} = \tilde{\alpha}(\beta(\alpha, i)) \) is similar to the main enumeration strategy. It initiates the construction of a set \(B_\tilde{\alpha} \) and an operator \(\Lambda_\tilde{\alpha} \), so that ultimately \(\Lambda_\tilde{\alpha}(V \oplus B_\tilde{\alpha}) = \overline{K} \). The backup genericity strategies will as well assign to every element \(n \) markers \(b_\tilde{\alpha}(n) \) and \(v_\tilde{\alpha}(n) \). If \(\tilde{\alpha} \) enumerates an axiom for \(n \) at stage \(s \) it is of the form: \(\langle n, (V^{(s)}_\alpha \upharpoonright v_\tilde{\alpha}(n) + 1) \oplus (B^{(s)}_\tilde{\alpha} \upharpoonright b_\tilde{\alpha}(n) + 1) \rangle \).

Note that \(\tilde{\alpha} \) is visited in two different situations: at the beginning of an attack by \(\beta \) and after the end of an unsuccessful attack. Only in the second case can we be sure that the necessary extractions from the approximation of \(V \) have been secured. At such stages, at which \(\beta \) does not start an attack, \(\tilde{\alpha} \) will correct the enumeration \(\Lambda_\tilde{\alpha}(V_\alpha \oplus B_\tilde{\alpha})^{(s)} \) by enumerating and extracting axioms. The \textit{parameters} for \(\tilde{\alpha}(\beta) \) are hence \(B_\tilde{\alpha} \) and \(\Lambda_\tilde{\alpha} \), both with initial values \(\emptyset \); markers \(b_\tilde{\alpha}(n) \) and \(v_\tilde{\alpha}(n) \) for very natural number \(n \), initially undefined.

The backup genericity strategy The \(i \)-th backup strategy \(\tilde{\beta}(\tilde{\alpha}, \beta, i) \) ensures that \(B_\tilde{\alpha} \) satisfies the \(i \)-th genericity requirement in a similar way to the main genericity strategy. It has a threshold \(d_\tilde{\beta} \) - the \(i \)-th elements of \(\overline{K} \), and is responsible for
defining the markers $b_\alpha(d_\beta)$ and $v_\alpha(d_\beta)$. The first B_α-marker that $\hat{\beta}$ defines again plays a role and is denoted by b_β^0. The strategy has an agitator e_β for which it ensures that the operator Λ_α is honest at d_β. If this is not possible, then the true outcome will be h. If it is then the strategy selects a witness $\tau_\beta = B_\alpha \upharpoonright b_\alpha(d_\alpha) + 1$ and starts searching for an extension of τ_β in the set W_i. If there is no such extension then the strategy is successful and has outcome w. Otherwise it has found an extension $\mu \subseteq \tau_\beta$ in the set W_i and now would like to force a change in the approximation to V_α in order to be able to secure $\mu \subseteq B_\alpha$. To do so the strategy $\hat{\beta}$ will time its attack with one of the attacks of the strategy β. Instead of attacking immediately, it will wait for a stage s at which β is also attacking. As every new cycle of β comes with a new larger agitator e_β, at stage s we have $e_\beta^{(s)} < e_\beta^{(s)}$, hence $\theta(e_\beta^{(s)}, s) \subseteq \theta(e_\beta^{(s)}, s)$. If both e_β and e_β are extracted during a joint attack by β and β at stage s then it will be sufficient for β look at the changes resulting in $\theta(e_\beta^{(s)}, s) \not\subseteq (U_\alpha \oplus V_\alpha)^{(t)}$ at further stages $t > s$, when evaluating this attack. In this way whenever the backup strategies are activated at two consecutive stages $t > t^− > s$ of the second type (at stages $t^−$ and t the strategy β has just evaluated an attack as unsuccessful) we have that $\theta(e_\beta^{(s)}, s_1) \not\subseteq (\bigcap (U_\alpha \oplus (V_\alpha)^{(r)})$ and so without injury to α the strategy β can secure μ as an initial segment to B_α and have outcome f at all further stages.

The parameters for $\hat{\beta}(\hat{\alpha}, \beta, i)$ are: the threshold d_β, always assigned at stage s the i-th element of $\overline{K}^{(s)}$, with first B_α-marker b_β^0; the current agitator e_β and witness τ_β initially undefined.

4.5. The construction. The construction is in stages. At every stage s we construct a finite path of length s, $\delta^{(s)}$. The intention is that there will be a true path - a leftmost path of strategies visited at infinitely many stages, along which all strategies are successful.

At the start of the construction all nodes are initialized, $E^{(0)} = N$ and $\delta^{(0)} = \emptyset$. At stage $s > 0$ we construct the $E^{(s)}$ from its previous value by allowing active strategies to extract elements from $E^{(s-1)}$ and the finite string $\delta^{(s)}$ inductively in steps. $\delta^{(s)} \uparrow 0$ is always the root of the tree \emptyset. We obtain $\delta^{(s)} \uparrow (n + 1)$ by activating the strategy $\delta^{(s)} \uparrow n$ and allowing it to select an outcome o, then $\delta^{(s)} \uparrow (n + 1) = \delta^{(s)} \uparrow n \circ o$. This process continues until we have defined a string $\delta^{(s)}$ of length s. At the end of stage s we initialize all strategies $\gamma > \delta^{(s)}$. When we initialize a strategy γ- its parameters are set to their initial values. Otherwise the parameters inherit their values from the previous stage at which γ was visited and we will not indicate a stage when referring to the current values of the parameters.

Suppose we have defined $\delta^{(s)} \uparrow n$ and $n < s$. We have four cases depending on the type of strategy assigned to $\delta^{(s)} \uparrow n$.

Case 1: The strategy $\delta^{(s)} \uparrow n = \alpha(e)$ is the main enumeration strategy in S_e. The strategy proceeds as follows:

(1) For all $n < s$ such that $n \in \overline{K}^{(s)} \setminus \Gamma_\alpha(U_\alpha^{(s)} \oplus A_\alpha)$ and both $a_\alpha(n)$ and $u_\alpha(n)$ are defined then enumerate in Γ_α the axiom

$$\langle n, (U_\alpha^{(s)} \upharpoonright u_\alpha(n) + 1) \oplus (A_\alpha \upharpoonright a_\alpha(n) + 1) \rangle.$$
(2) If s is not expansionary for Θ_α, i.e.
$$l(\Theta(U_\alpha \oplus V_\alpha), E, s) \leq \max_{t<s} l(\Theta(U_\alpha \oplus V_\alpha), E, t)$$
then let the outcome be $o = b$ and end this stage’s activity for α.

(3) If s is expansionary then for all $n < s$ such that $n \in \Gamma_\alpha(U^{(s)}_\alpha \oplus A_\alpha) \setminus \overline{R}^{(s)}$ find all valid axioms, say $(n, D_a \oplus D_a) \in \Gamma_\alpha$, extract the largest element of D_a from A_α. (Note that we are changing the value of the parameter A_α.) Let the outcome be $o = e$.

Case 2: The strategy $\delta^{(s)} \upharpoonright n = \beta(\alpha(e), i)$ is a main genericity strategy in the group \mathcal{S}_e. At stage s the strategy first passes through Check. Let s^{-} be the previous stage at which β was visited.

- **Check:**
 Let d_{β} be the i-th element of $\overline{R}^{(s)}$. If the strategy is in initial state or $\delta^{(s^{-})}_{\beta} \neq d_{\beta}^{(s^{-})}$, i.e. there is an element $m \leq d_{\beta}^{(s^{-})}$ such that $m \in \overline{R}^{(s^{-})} \setminus \overline{R}^{(s)}$ then go to step 1 of Initialization. If at stage s the strategy α extracts an element $\alpha < a_{\beta}^0$ then initialize all of β’s parameters and go to step 2 of Initialization. Otherwise proceed to the submodule indicated at the previous β-true stage s^{-}.

- **Initialization:**
 1. Define a new A_α-marker $a_\alpha(d_{\beta})$ as a fresh number, larger than any number that has so far been used in the construction, and enumerate it in the set A_α. Set $a_{\beta}^0 = a_\alpha(d_{\beta})$ and make all A_α- and U_α-markers for elements $n > d_{\beta}$ undefined.
 2. Initialize all lower priority strategies in the group \mathcal{S}_e.
 3. Define a new agitator $e_{\beta} \in E^{(s)}$, as a fresh number.
 4. If $e_{\beta} \geq l(\Theta_\alpha(U_\alpha \oplus V_\alpha), E, s)$ then end this substage with outcome $o = h$ and return to this step at the next β-true stage. Otherwise proceed to the next step.
 5. Extract $a_\alpha(d_{\beta})$ from the set A_α and define a fresh value $a_\alpha(d_{\beta})$ and enumerate it in A_α. Define $u_\alpha(d_{\beta})$ to be a number larger than the maximal number in $\theta(e_{\beta}, s)$. Make all A_α- and U_α-markers for elements $n > d_{\beta}$ undefined. Let $\tau_{\beta} = A_\alpha \setminus a_\alpha(d_{\beta}) + 1$. Let the outcome be $o = h$. Proceed to Honestification at the next stage.

- **Honestification:** If $\theta(e_{\beta}, s) \neq \theta(e_{\beta}, s^{-})$ or if there is a stage t, such that $s^{-} < t \leq s$ and $\theta(e_{\beta}, s) \nsubseteq (U_\alpha \oplus V_\alpha)^{(t)}$ then extract $a_\alpha(d_{\beta})$ from the set A_α. Define a fresh value for the marker $a_\alpha(d_{\beta})$ and enumerate it in A_α. Define a new value for the marker $u_\alpha(d_{\beta})$ larger than the maximal number in $\theta(e_{\beta}, s)$. Make all A_α- and U_α-markers for elements $n > d_{\beta}$ undefined. Let $\tau_{\beta} = A_\alpha \setminus a_\alpha(d_{\beta}) + 1$. End this substage with outcome $o = h$. Return to Honestification at the next stage. Otherwise go to Waiting.

- **Waiting:** If there is a finite string $\mu \supseteq \tau_{\beta}$ such that $\mu \in W_\beta^{(s)}$ then proceed to Attack. Otherwise let the outcome be $o = w$. Return to Honestification at the next stage.

- **Attack:**
 1. Let $\mu \supseteq \tau_{\beta}$ be a string such that $\mu \in W_\beta^{(s)}$. Set $a_\mu = a_\alpha(d_{\beta})$ and μ^* be the string μ modified in bit a_μ so that $\mu^*(a_\mu) = 0$. Enumerate a new entry in the list $W_{it_{\beta}}$ namely:
\[\langle \mu, \mu*, a_\mu, \theta(e_\beta, s) \rangle. \]

(2) Extract the agitator \(e_\beta \) from the set \(E^{(s)} \) and for all \(a \) such that \(a^{(s)}_\beta \leq a \leq |\mu| \) set \(A_\alpha(a) = \mu^*(a) \). (Note that we are modifying the parameter \(A_\alpha \) so that the current marker of the threshold \(a_\mu = a_\alpha(d_\beta) \) is extracted from the set.) Define a new value for the marker \(a_\alpha(d_\beta) \) as a fresh number, larger than the length of the string \(\mu, |\mu| \), and enumerate it in \(A_\alpha \). Make all \(A_\mu \)- and \(U_\alpha \)-markers for elements \(n > d_\beta \) undefined.

(3) Let the outcome be \((o = \infty). \) At the next true stage go to Result.

Result: Let \(\bar{e} \) be the least element that was extracted by a strategy in the group \(S_\varepsilon \) during \(s^- \), the stage of the attack. Note that \(\theta(\bar{e}, s^-) \subseteq \theta(e_\beta, s^-) \).

If \(e_\beta \neq \bar{e} \) then modify the fourth component of the last entry in the list \(\text{Wit}_\beta \), making it: \(\langle \mu, \mu*, a_\mu, \theta(\bar{e}, s^-) \rangle \).

Scan all entries in the list \(\text{Wit}_\beta \) in the order in which they are enumerated in the list from first to last.

Suppose \(\beta \) is examining the \(n \)-th entry \(\text{Wit}_\beta[n] = \langle \mu_n, \mu^*_n, a_n, U_n \oplus V_n, s_n \rangle \). For all \(a \) such that \(a^{(s)}_\beta \leq a \leq |\mu_n| \) set \(A_\alpha(a) = \mu_n(a) \).

(1) If at all stages \(t \), such that \(s^- < t \leq s \), \(U_n \not\subseteq U_\alpha^{(t)} \) then let the outcome be \(o = f_\alpha \). Return to this sub-step at the next true stage.

(2) Otherwise there is a stage \(t \), such that \(s^- < t \leq s \) and \(V_n \not\subseteq V_\alpha^{(t)} \). For all \(a \) such that \(a^{(s)}_\beta \leq a \leq |\mu_n| \), set \(A_\alpha(a) = \mu^*_n(a) \). (This is necessary because the strategy \(\alpha \) might have acted at this stage to invalidate an axiom for an element \(m > d_\beta \), which extends \(\langle m, U_n \oplus \{a_n\} \rangle \).) We say that \(\text{Wit}_\beta[n] \) is unsuccessful.

(3) If all entries are scanned and all are unsuccessful then end this sub-stage with outcome \(o = \infty \). At the next stage return to step 3 of \(\text{Initialization} \), choosing a new agitator.

Case 3. The strategy \(\delta^{(s)} \upharpoonright n = \tilde{\alpha}(\beta(\alpha(\bar{e}), i)) \) is a backup enumeration strategy in the group \(S_\varepsilon \). Let \(s^- \) be the previous visit of \(\tilde{\alpha} \). Let \(V_\tilde{\alpha}^{(s)} = \bigcap_{s^- < t \leq s} V_\alpha^{(t)} \). The strategy proceeds as follows:

(1) For all \(n < s \), such that \(n \in \overline{K}^{(s)} \setminus A_\tilde{\alpha}(V_\tilde{\alpha}^{(s)} \oplus B_\tilde{\alpha}) \) and both \(b_\tilde{\alpha}(n) \) and \(v_\tilde{\alpha}(n) \) are defined, enumerate in \(A_\tilde{\alpha} \) the axiom

\[\langle n, (V_\tilde{\alpha}^{(s)} \upharpoonright v_\tilde{\alpha}(n) + 1) \oplus (B_\tilde{\alpha} \upharpoonright b_\tilde{\alpha}(n) + 1) \rangle. \]

(2) If at stage \(s \) the strategy \(\beta \) **does not attack** then for all \(n < s \) such that \(n \in A_\tilde{\alpha}(V_\tilde{\alpha}^{(s)} \oplus B_\tilde{\alpha}) \setminus \overline{K}^{(s)} \) find all valid axioms, say \(\langle n, D_v \oplus D_b \rangle \in A_\tilde{\alpha} \), extract the largest element of \(D_b \) from \(B_\tilde{\alpha} \). Let the outcome be \(o = e \).

Case 4. The strategy \(\delta^{(s)} \upharpoonright n = \tilde{\beta}(\tilde{\alpha}, \tilde{\beta}, i) \) is a backup genericity strategy.

Check: Let \(d_\tilde{\beta} \) be the \(i \)-th element of \(\overline{K}^{(s)} \). If the strategy is in initial state or if \(d_\tilde{\beta}^{(s^-)} \neq d_\tilde{\beta}^{(s)} \) then go to step 1 of \(\text{Initialization} \). If at stage \(s \) the strategy \(\tilde{\alpha} \) extracts an element \(b < b_\tilde{\beta}^{(s)} \) then then initialize all of \(\tilde{\beta} \)'s parameters and go to step 2 of \(\text{Initialization} \). Otherwise proceed to the submodule indicated at the previous \(\tilde{\beta} \)-true stage \(s^- \).
• Initialization:
 (1) Define a new B_α-marker $b_\alpha(d_\beta)$ as a fresh number, larger than any number that has so far been used in the construction, and enumerate it in the set B_α. Let $b_\alpha^0 = b_\alpha(d_\beta)$ and make all B_α- and V_α-markers for elements $n > d_\beta$ undefined.
 (2) Initialize all lower priority strategies in the group Σ.
 (3) Define a new agitator $e_\beta \in E^{(s)}$, as a fresh number.
 (4) If $e_\beta \geq l(\Theta_e(U_\alpha \oplus V_\alpha), E, s)$ then end this substage with outcome $o = h$ and return to this step at the next β-true stage. Otherwise proceed to the next step.
 (5) Extract $b_\alpha(d_\beta)$ from the set B_α and define a fresh value $b_\alpha(d_\beta)$ and enumerate it in B_α. Set $v_\alpha(d_\beta)$ to be a number larger than $\max(\theta(e_\beta, s))$. Make all B_α- and V_α-markers for elements $n > d_\beta$ undefined. Set $\tau_\beta = B_\alpha \upharpoonright b_\alpha(d_\beta) + 1$. Let the outcome be $o = h$. Proceed to Honestification at the next stage.

• Honestification: If $\theta(e_\beta, s) \neq \theta(e_\beta, s^-)$ or if there is a stage t, such that $s^- < t \leq s$ and $\theta(e_\beta, s) \notin (U_\alpha \oplus V_\alpha)^{(t)}$ then extract $b_\alpha(d_\beta)$ from the set B_α. Define a fresh value for the marker $b_\alpha(d_\beta)$ and enumerate it in B_α. Define a new value for the marker $v_\alpha(d_\beta)$ larger than the maximal number in $\theta(e_\beta, s)$. Make all B_α- and V_α-markers for elements $n > d_\beta$ undefined. Set $\tau_\beta = B_\alpha \upharpoonright b_\alpha(d_\beta) + 1$. End this substage with outcome $o = h$. Return to Honestification at the next stage.

Otherwise go to Waiting.

• Waiting: If there is a finite string $\mu \supseteq \tau_\beta$ such that $\mu \in W_i^{(s)}$ then proceed to Attack. Otherwise let the outcome be $o = w$. Return to Honestification at the next stage.

• Attack:
 (1) If at stage s the strategy β does not perform an attack then let the outcome by $o = w$, return to Honestification at the next stage. Otherwise proceed to the next step. (Note this is how β times its attack with β.)
 (2) Let $\mu \supseteq \tau_\beta$ be a string such that $\mu \in W_i^{(s)}$. For all b such that $|\tau_\beta| < b < |\mu|$, set $B_\alpha(b) = \mu(b)$. Define a new fresh value for the marker $b_\alpha(d_\beta)$, a number larger than the length of the string μ, and enumerate it in B_α. Make all B_α- and V_α-markers for elements $n > d_\beta$ undefined.
 (3) Extract e_β from the set $E^{(s)}$ and go to Result.

• Result: Let the outcome be $o = f$. Return to this step at the next true stage.

4.6. Verification of the construction. To start off we prove that the true path exists even though some nodes in the tree have infinitely many outcomes.

Proposition 4.3. There exists an infinite path f in the tree of strategies T such that:

1. For all n there is a stage s such that at all $t > s$, $(s^{(t)} \geq f \upharpoonright n)$.
2. For all n there exist infinitely many stages s such that $f \upharpoonright n \subseteq s^{(s)}$.

Proof. We prove that nodes of type main genericity strategy that are visited at infinitely many stages have a leftmost infinite outcome, i.e. a leftmost outcome that they have at infinitely many true stages, also called the true outcome. As all other strategies have finitely many outcomes the existence of a leftmost infinite outcome for them is trivial. Then \(f \) is defined inductively by \(f(0) = \emptyset \) and \(f(n+1) \) is the true outcome of \(f \mid n \).

So suppose \(\beta(\alpha, i) \) is visited at infinitely many stages. If \(\beta(\alpha, i) \) has outcome \(\infty \) at infinitely many stages then this is true outcome of \(\beta \). Otherwise there is a stage \(s \) such that \(\beta \) does not have outcome \(\infty \) at all \(t > s \). It follows from the construction that no new entries are enumerated into the list \(\text{Wit}_\beta \) after stage \(s \) and hence the only possible outcomes for \(\beta \) at stages \(t > s \) are finitely many: \(w, h, \) and \(f_n \) where \(n \leq |\text{Wit}_\beta^{(s)}| \), and the leftmost one of them visited at infinitely many stages is \(\beta \)'s true outcome.

\[\square \]

Proposition 4.4. Let \(\beta = \beta(\alpha, i) \) be a main genericity strategy on the true path in the group \(\mathcal{S}_e \). Then:

1. There is a stage \(s_0^\beta \) such that: \(\beta \) is not initialized at stages \(t > s_0^\beta \), \(\beta \) is the only main genericity strategy of type \((\alpha, i)\) accessible at stages \(t > s_0^\beta \) and \(\beta \) is visited at every \(\alpha \)-true stage \(t > s_0^\beta \).
2. There is a stage \(s_0^\beta \) such that at stages \(t > s_0^\beta \) the value of \(d_\beta \) does not change. At stage \(s_0^\beta \) the final value of the marker \(a_0^\beta \) is defined. All \(\alpha \)-markers for the element \(d_\beta \) are defined by \(\beta \) at stages \(t \geq s_0^\beta \).
3. There is a stage \(s_0^\beta \) such that: \(t > s_0^\beta \) Check does not send \(\beta \) to Initialization. At stages \(t > s_0^\beta \) the parameter \(A_\alpha \) is not modified on elements \(a < a_0^\beta \).
4. After stage \(s_0^\beta \) every time \(\beta \) changes the value of the marker \(a_n(d_\beta) \) all main genericity strategies \(\beta(\alpha, j) \), that are accessible at stages \(t > s_0^\beta \), i.e. for which there is a true stage \(t > s_0^\beta \), where \(j > i \) are in initial state.
5. If \(\beta \)'s true outcome is \(w \) or \(f_n \) for some natural number \(n \) then there is a stage \(s_0^\beta \) such that \(\beta \) does not modify any parameters associated with the group \(\mathcal{S}_e \) and has its true outcome at every true stage \(t > s_0^\beta \).

Proof. Assume inductively that the statement is true for main genericity strategies in the group \(\mathcal{S}_e \) along the true path of higher priority than \(\beta = \beta(\alpha, i) \). It follows by the induction hypothesis (claim 5) and the fact that \(\beta \subseteq f \) there is a stage \(s_0^\beta \) such that \(\beta \) is not initialized after stage \(s_0^\beta \) and such that at stages \(t > s_0^\beta \) the parameter \(A_\alpha \) is not modified by main genericity strategies of higher priority than \(\beta \). Furthermore it follows that the markers \(a_n(n) \) and \(u_\alpha(n) \) for the first \(i - 1 \) elements of \(\bar{K} \) do not change as the only accessible strategies of type \(\beta(\alpha, j) \), where \(j \leq i \) are the ones that are initial segments of \(\beta \). In other words if \(s > s_0^\beta \) is an \(\alpha \)-true stage then \(s \) is a \(\beta \)-true stage. Hence the only strategies of lower priority than \(\beta \) in the group \(\mathcal{S}_e \) that are accessible at stages \(t > s_0 \) are strategies which extend \(\beta \).

Let \(s_0^\beta \) be such that \(\bar{K}^{(s_0^\beta)} \) correctly approximates the first \(i \) elements of \(\bar{K} \). Then after stage \(s_0^\beta \) the value of the threshold \(d_\beta \) does not change and \(a_0^\beta \) receives its final value, i.e. \((a_0^\beta)^{(s_0^\beta)} = (a_0^\beta)^{(s_0^\beta)} = a_0^\beta \) for all \(t \geq s_0^\beta \). As \(\beta \) is the only strategy
of type \((\alpha, i)\) accessible after stage \(s^d_\beta\), \(d_\beta\) receives \(\alpha\)-markers only from \(\beta\) after stage \(s^d_\beta\).

After stage \(s^d_\beta\) the strategy \(\alpha\) will extract finitely many numbers \(a < a^0_\beta\). And every time such an element is extracted it will not be reenumerated back in \(A_\alpha\). This follows from the fact that at stages \(t > s^d_\beta\) strategies of higher priority \(\beta\) do not modify \(A_\alpha\) and accessible strategies of lower priority \(\gamma \geq \beta\) are initialized at stage \(s^d_\beta\) and modify \(A_\alpha\) only on elements larger than \(a^0_\gamma \geq a^0_\beta\). Hence there is a least stage \(s^c_\beta\) such that at stages \(t > s^c_\beta\) the strategy \(\alpha\) does not extract numbers less than \(a^0_\beta\) from \(A_\alpha\) and hence \(A_\alpha \setminus a^0_\beta\) is not modified at stages \(t > s^c_\beta\). At stage \(s^c_\beta\) the strategy \(\beta\) performs step 2 of Initialization for the last time and all lower priority strategies in the group \(S_\varepsilon\) are in initial state.

The following is a diagram which shows the way in which \(\beta\) can change its outcome at consecutive true stages:

\[
h \leftarrow \infty \leftarrow \cdots \leftarrow f_1 \leftarrow f_0 \leftarrow \infty \leftarrow (h \leftrightarrow w)
\]

The strategy \(\beta\) changes the value of the marker \(a_{\alpha(d_\beta)}\) at stage \(s > s^c_\beta\) only when it has outcome \(h\) during Initialization or Honestification and when it has outcome \(\infty\) during Attack at stage \(s\). In the second case all main genericity strategies in the group \(S_\varepsilon\) are initialized at stage \(s\). In the first case let \(s^-\) be the largest stage \(s^-_\beta < s^- < s\) such that \(\beta\) has outcome \(\infty\) if there is such state and \(s^- = s^c_\beta\) otherwise. Then strategies extending outcomes \(f_i\) for some natural number \(i\) are in initial state at stage \(s^-\) and are not accessible at stages \(t \in [s^-, s]\). Strategies extending \(w\) are initialized at stage \(s\).

If \(\beta\) has true outcome \(o \in \{w, f_n \mid n < \omega\}\), then from the diagram it follows that there is a stage \(s^c_\beta\) such that \(\beta\) has outcome \(o\) at all stages \(t > s^c_\beta\). From the construction it follows that \(\beta\) does not modify any parameters associated with \(S_e\).

The properties listed above are true for the backup genericity strategies along \(f\).

Proposition 4.5. Let \(\tilde{\beta} = \bar{\beta}(\tilde{\alpha}, \beta, i)\) be a backup genericity strategy on the true path in the group \(S_e\). Then:

1. There is a stage \(s^0_\beta\) such that: \(\tilde{\beta}\) is not initialized at stages \(t > s^0_\beta\), \(\tilde{\beta}\) is the only backup genericity strategy of type \((\tilde{\alpha}, \beta, i)\) accessible at stages \(t > s^0_\beta\) and \(\tilde{\beta}\) is visited at every \(\tilde{\alpha}\)-true stage \(t > s^0_\beta\).
2. There is a stage \(s^d_\beta\) such that at stages \(t > s^d_\beta\) the value of \(d_{\tilde{\beta}}\) does not change. At stage \(s^d_\beta\) the limit value of the marker \(b^0_\beta\) is defined. All \(\tilde{\alpha}\)-markers for the element \(d_{\tilde{\beta}}\) are defined by \(\tilde{\beta}\) at stages \(t \geq s^d_\beta\).
3. There is a stage \(s^c_\beta > s^d_\beta\) such that at stages \(t > s^c_\beta\) Check does not send \(\tilde{\beta}\) to Initialization. At stages \(t > s^c_\beta\) the value of \(B_{\tilde{\alpha}}\) is not modified below \(b^0_\beta\).
4. After stage \(s^c_\beta\) every time \(\tilde{\beta}\) changes the value of the marker \(b_{\alpha(d_{\tilde{\beta}})}\) all backup genericity strategies \(\tilde{\beta}(\tilde{\alpha}, \beta, j), \) where \(j > i\) that are accessible at stages \(t > s^c_\beta\), i.e. for which there true stage \(t > s^c_\beta\) are in initial state.
5. If \(\tilde{\beta}\)'s true outcome is \(w\) or \(f\) then there is a stage \(s^c_\beta\) such that \(\tilde{\beta}\) does not modify any parameters associated with the group \(S_e\) and has its true outcome at true every stage \(t > s^c_\beta\).
Proof. The proof is carried out in the same way as the proof of Proposition 4.4. □

Proposition 4.6. If $\beta = \beta(\alpha(e), i) \subseteq f$ has true outcome h then $\Theta_{e}(U \oplus V) \neq E$. Similarly if $\beta = \beta(\alpha(e), i) \subseteq f$ has true outcome h then as well $\Theta_{e}(U \oplus V) \neq E$.

Proof. Suppose $\beta = \beta(\alpha(e), i) \subseteq f$ has true outcome h and let s be a stage such that at stages $t > s$ the strategy β is not initialized and does not have outcome ∞. Then at stages $t > s$ the strategy β has a fixed agitator $e_\beta \in E$. Suppose that $E = \Theta_{e}(U \oplus V)$ then $\lim \theta(e_\beta) = \theta(e_\beta)$ exists and $\theta(e_\beta) \subseteq U \oplus V$. Let $s_{lim} > s$ be a β-true stage such that at all stages $t > s_{lim}$ we have $\theta(e_\beta, t) = \theta(e_\beta)$ and $\theta(e_\beta) \subseteq (U_{n} \oplus V_{n})^{(t)}$. It follows that β cannot have outcome h at stages $t > s_{lim}$ contradicting the fact that h is β’s true outcome. Hence the assumption is wrong and $\Theta_{e}(U \oplus V) \neq E$.

The second statement is proved in a similar way. □

Proposition 4.7. Let $\beta = \beta(\alpha, i) \subseteq f$ and let d_β be the limit value of β’s threshold attained at stage $s_{d_\beta}^d$. If τ_β is defined as the current witness of β at stage $s \geq s_{d_\beta}^d$ then for all $a \geq a_{d_\beta}^0$ such that a is a previous value of the A_α-marker of the threshold d_β, $\tau_\beta(a) = 0$.

Proof. We prove this with induction on the stage s. Suppose that the statement is true for values of the witness τ_β defined before stage s. Recall that $\tau_\beta^{(s)} = A_{a}^{(s)} \upharpoonright a_{\alpha}(d_\beta)$. If a is an old marker of the threshold d_β, $a < a_{\alpha}(d_\beta)^{(s)}$ and it is sufficient to prove that $a \notin A_{a}^{(s)}$.

Suppose towards a contradiction that a is an old marker defined before and cancelled before or on stage s and $a \in A_{a}^{(s)}$. As every time β cancels an old value of the A_α-marker of the threshold, it extracts this value from A_α, this could only be possible if a strategy later on at stage $s_{a} < s$ re-enumerates a in A_α and a remains in the set A_α at all stages $t \in [s_{a}, s]$. By Proposition 4.4 the only strategy that can re-enumerate a in the set A_α is the strategy β and by construction this is only possible if at stage s_{a} the strategy β starts evaluating $W_{it}\beta[n]^{(s_{a})}$ for some n, and $\mu_{n}(a) = 1$. But μ_{n} is defined as an extension of a previous value τ of the witness τ_β and by induction if $a < |\tau|$ then $\tau(a) = 0$. It follows that $|\tau| \leq a < |\mu_{n}|$ and by construction the only possibility is that $a = a_{\alpha}$, as the next value of the A_α-marker for d_β is defined as a number larger than $|\mu_{n}|$. So at stage s_{a} the strategy β has outcome f_{a} and is evaluating the result of its most recent attack. At stage s a new value for τ_β is defined, so β must have evaluated it most recent attack as unsuccessful. This means that at a stage in the interval (s_{a}, s) the strategy β evaluates $W_{it}\beta[n]$ as unsuccessful and extracts $a_{n} = a$ from the set A_α, contradicting our choice of stage s_{a}. It follows that the assumption is wrong and $a \notin A_{a}^{(s)}$. □

Proposition 4.8. Let $\beta = \beta(\alpha, i) \subseteq f$ and let d_β be the limit value of β’s attained at stage $s_{d_\beta}^d$. If an axiom $\langle x, D_{a} \oplus D_{a} \rangle$ is enumerated in $\Gamma^{(s)}$ for an element $x \notin K$ after stage $s_{d_\beta}^d$ then one of the following holds:

1. $s \leq s_{d_\beta}^d$. Then the axiom is invalid at all stages $t > s_{d_\beta}^d$.
2. D_{a} contains a marker a of the threshold d_β which is cancelled as current at stage s^{+} at which β defines the next value of the A_α-marker of the threshold.

Then $a \notin A_{a}^{(t)}$ at all $t > s^{+}$.
(3) D_a contains a marker a of the threshold $d_β$ which is cancelled as current at stage s^+ and at stage s^+, $a = α_n$ becomes a component of the n-th entry in the list $\text{Wit}_β, (μ_n, μ^n_n, a_n, U_n + V_n)$ and in this case $U_n \subseteq D_a$.

(4) D_a contains the final value of the $A_α$-marker of the threshold $d_β$.

Proof. As $s > ε^δ_β$ and $x \in K = \{s \in [K] / K \}$ it follows that $x > d_β$. By the fact that every time a new value for the markers of $d_β$ are defined, the markers for x are cancelled and the format of the axioms enumerated in $Γ_α$ it follows that D_a contains the current marker $a = α_n(d_β)(s)$ which is defined by $β$ by Proposition 4.4.

If $s \leq ε^δ_β$ then at stage $s^+_β$ the strategy $α$ extracts an element $a_0 < α^ι_β$ such that $a_0 \in A(ε^δ_β)$, hence $a_0 \in D_a$, which is never re-enumerated in the set $A_α$. It follows that the axiom is invalid at all stages $t > s^+_β$. So suppose that $s > ε^δ_β$

If $a = α_n(d_β)(t)$ at all $t > s$ then case 4 is true. Otherwise let s^+ be the stage at which $α_n(d_β)$ is changed. If $a \in A(t)$ at some $t > s^+$. Then as in Proposition 4.7 only $β$ can enumerate a in the set A_n during Result if for some n, $μ_n(a) = 1$. This is only possible if $a_n = a$.

So if $a \neq a_n$ for any member if the list $\text{Wit}_β$ then $a \notin A(ε^ι_α)$ at all stages $t > s^+$.

Finally suppose $a = α_n$ for some n. Then s^+ is the stage of the n-th attack after stage $s^+_β$. Let s^- be the stage at which $α_n(d_β)$ received the value a. Then at this stage $u_n(d_β)$ is set to a number larger than the maximal number of $θ(e^δ_β, s^-)$ and all $α$-marker for elements $n > d_β$ are undefined. At stages $t \in [s^-, s^+]$ the strategy $β$ does not change the value of $α_n(d_β)$ and hence has outcome w if visited. It follows that $s \in [s^-, s^+]$ and $e^δ_β = e^δ_β = e_β$. On the other hand $θ(e_β, s^+) = θ(e_β, s^-) = θ(e_β, s^+) \subseteq U(n) = \{U_n \subseteq D_u \}$. Finally $U_n \subseteq \text{U}_n$ and D_u.

As by Proposition 4.7 at all stages $t \geq s^+$ if $a_n \in A(t)$ then $β$ has outcome f_n at stage t and hence $U_n \notin \text{U}_n(t)$, the axiom $(x, D_u \cup D_a)$ is invalid at all stages $t \geq s_n$. □

Corollary 4.2. If $β = β(α, i) \subseteq f$ has true outcome w or f_n for some natural number n then $β$ successfully satisfies $Γ_i(A_n)$.

Proof. Suppose that $β$ has outcome $o = w$ or $o = f_n$ for some natural number n at all stages $t \geq s^+_β$, where $s^+_β$ is a least such stage. Then by Proposition 4.4 at stage $s^+_β$ all lower priority main genericity strategies $γ \geq β \circ o$ are in initial state at stage s^- and will not modify $A(t)$ on numbers $a < a_n(d_β)(t) < (a_β^ι(t))$ at stages $t \geq s^+_β$. Higher priority main genericity strategies do not modify $A_α$ at all.

Suppose that $β$ has outcome w at all stages $t \geq s^+_β$. Then the final value of the witness $τ_β$ is defined at stage $s^h_β$, the previous $β$-true stage before $s^+_β$. Note that $s^h_β$ is the last stage at which $β$ has outcome h and $τ_β = A(ε^δ_β) \cap a_n(d_β)(s^+_β)$. The final value of the witness $τ_β$ does not belong to the set W_i, otherwise after stage $s^+_β$, $β$ would have outcome $∞$. To see that $τ_β \subseteq A_n$, we show that $α$ does not modify $A_n \uparrow |τ|$ at stages $t > s^+_β$. Indeed, the only case in which $α$ would need to change A_n after stage s_h on a number less than $|μ|$ is when it sees a valid axiom for and element $x \notin K(t)$ which was enumerated before stage s_h. By Proposition
4.8 it follows that Case 1, 2 and 4 cannot apply to this axiom. Case 3 does not apply as well as by Proposition 4.7 for all entries in the list \(\text{Wit}_\beta \), \(\tau_\beta(a_n) = 0 \) and hence \(A_\alpha(n) = 0 \). As by assumption \(\beta \) does not enter Result after stage \(s^\beta_\beta \), no strategy including \(\beta \) can re-enumerate these markers back in \(A_\alpha(n) \) at all \(t > s^\beta_\beta \). As there are no more choices for the assumed axiom, it follows that \(t \) does not exists and \(\alpha \) does not modify \(A_\alpha(n) \) on numbers \(a < |\tau| \) at stages \(t > s^\beta_\beta \).

Now suppose that \(\beta \) has outcome \(f_n \). Then \(\mu_n \subseteq W_i \) and at stage \(s^\beta_\beta \) the strategy \(\beta \) starts evaluating \(\text{Wit}_\beta[n] \) and sets \(\mu_n \subseteq A_\alpha(n) \). In this case as well it is easy to see that \(\mu_n \) will remain an initial segment of \(A_\alpha \) at all further stages as axioms for elements \(x \notin K \) with maximal \(A_\alpha \)-marker less than \(|\mu_n| \) are invalid at all stages \(t > s^\beta_\beta \). They cannot be Case 4 axioms, and Case 1 and 2 axioms are obviously not valid at any stage \(t > s^\beta_\beta \). Case 4 axioms which contain markers \(a_m \) for \(m < n \) are invalid as \(\mu_n(a_m) = 0 \). Indeed \(\mu_n \) is defined as an extension of a previous witness \(\tau_\beta \) which by Proposition 4.7 has this property. Finally if the axiom is of the form \(\langle x, D_a \oplus D_b \rangle \) and \(D_a \) contains \(a_n \) then \(U_n \subseteq D_a \). However at all stages \(t > s^\beta_\beta \), \(U_n \notin U^{(t)}_\alpha \) hence in this case as well \(\alpha \) does not modify \(A_\alpha \) on numbers \(a \in |\mu_n| \), hence \(\mu_n \subseteq A_\alpha \).

Proposition 4.9. Let \(\tilde{\beta} = \tilde{\beta}(\tilde{\alpha}, \tilde{\beta}, i) \subseteq f \) and let \(d^\beta_\beta \) be the limit value of \(\tilde{\beta} \)'s threshold attained at stage \(s^\beta_\beta \). If an axiom \(\langle x, D_a \oplus D_b \rangle \) is enumerated in \(\Lambda^{(s)}_\ast \) for an element \(n \notin K \) after stage \(s^\beta_\beta \) then one of the following holds:

1. \(s \leq s^\beta_\beta \). Then the axiom is invalid at all stages \(t > s^\beta_\beta \).
2. \(D_b \) contains a marker \(b \) of the threshold which is extracted at stage \(s^+ \) at which \(\tilde{\beta} \) defines the next value of the \(B_\alpha \)-marker, and is never reenumerated in \(B_\alpha \).
3. \(D_a \) contains a subset \(V_n \) which eventually becomes a component of the \(n \)-th entry in the list \(\text{Wit}_\beta \), \(\langle \mu_n, \mu^*_n, a_n, U_n \oplus V_n \rangle \).
4. \(D_a \) contains the final value of the \(A_\alpha \)-marker of the threshold \(d_\beta \).

Proof. Part one is proved just as Part 1 of Proposition 4.8, so assume that \(s > s^\beta_\beta \).

We note that \(s^\beta_\beta > s^\beta_\beta \) as every time \(\beta \) is restarted during Check, \(\tilde{\beta} \) is initialized.

As \(s > s^\beta_\beta \) and \(x \in K \setminus K^{(s)}_\beta \) it follows that \(x > d_\beta \). By the fact that every time new values for the markers of \(d_\beta \) are defined, the \(\tilde{\alpha} \)-marking for \(n \) are cancelled and the format of the axioms enumerated in \(\Lambda_\tilde{\alpha} \) it follows that \(D_b \) contains the current marker \(b = b_\alpha(d_\beta)^{(s)}_\beta \) which is defined by \(\tilde{\beta} \) by Proposition 4.5. If \(b = b_\alpha(d_\beta)^{(t)}_\beta \) then \(t > s \) then case 4 is true. Otherwise let \(s^+ \) be the stage at which \(b_\alpha(d_\beta)^{(t)}_\beta \) is changed. If this is during Initialization or Honestification then \(b \notin B^t_\alpha \) at all \(t > s^+ \).

Suppose that \(s^+ \) is the stage at which \(\tilde{\beta} \) performs an Attack and times it with the \(n \)-th Attack of \(\beta \). Then at stage \(s^+ \) the strategy \(\beta \) extracts its agitator \(c_\beta \). On the next \(\beta \)-true stage the strategy \(\beta \) evaluates the result of its \(n \)-th attack and enumerates as the fourth component \(U_n \oplus V_n = \theta(c_\beta, s^+) \).

Let \(s^- \) be the stage at which \(b(\tilde{\alpha})(d_\beta) \) received the value \(b \). Then at this stage \(v_\alpha(d_\beta) \) is set to a number larger than the maximal number of \(\theta(c_\beta(s^-), s^-) \) and all \(\tilde{\alpha} \)-marker for elements \(n > d_\beta \) are undefined. At stages \(t \in (s^-, s^+) \) the strategy \(\tilde{\beta} \)
Corollary 4.3. If $\hat{\beta} = \hat{\beta}(\hat{\alpha}, \hat{\beta}, i) \subseteq f$ has true outcome w or f then β successfully satisfies $\mathcal{G}_i(A_\alpha)$.

Proof. Suppose that $\hat{\beta}$ has outcome $o = w$ or $o = f$ at all stages $t \geq s^{\hat{\beta}}_\beta$, where $s^{\hat{\beta}}_\beta$ is a least such stage. Then by Proposition 4.5 at stage $s^{\hat{\beta}}_\beta$ all lower priority backup genericity strategies $\gamma \supseteq \hat{\beta}$ of are in initial state at stage $s^{\hat{\beta}}_\beta$ and will not modify $B^{(t)}_\alpha$ on numbers $b \leq b_\alpha(d_\beta)$. Then by Proposition 4.5 at stage $s^{\hat{\beta}}_\beta$ all lower priority backup genericity strategies $\gamma \supseteq \hat{\beta}$ of are in initial state at stage $s^{\hat{\beta}}_\beta$ and will not modify $B^{(t)}_\alpha$. Hence $V_n \subseteq D_v$.

We prove that $\hat{\alpha}$ does not modify $B^{(t)}_\alpha$ on numbers $b \leq b_\alpha(d_\beta)$ at stages $t > s^{\hat{\beta}}_\beta$. Suppose towards a contradiction that it does. Then at a stage $t > s^{\hat{\beta}}_\beta\alpha$ invalidates a valid at stage t axiom, $\langle x, D_v \cup D_a \rangle$, for an element $x \in K^{(t)}$. By Proposition 4.9 this must be a case 3 axiom and D_v contains a subset V_n which at stage $s < s^{\hat{\beta}}_\beta$ becomes a component of the n-th entry in the list $\text{Wit}_\beta, \langle \mu_n, \mu_n, a_n, U_n \cup V_n \rangle$. By construction at stage $t > s^{\hat{\beta}}_\beta$ the strategy β has outcome ∞ after evaluating $\text{Wit}_\beta[n]$ as unsuccessful, hence $V_n \not\subseteq V^{(t)}_\alpha$, contradicting the assumption that $\langle x, D_v \cup D_a \rangle$ is valid at stage t.

If $\hat{\beta}$ has outcome w at all stages $t \geq s^{\hat{\beta}}_\beta$. Then $\tau_{\hat{\beta}} \subseteq B_\alpha$ and $\tau_{\hat{\beta}} \not\in W_i$. Indeed if $\tau_{\hat{\beta}} \in W^{(t)}_i$ and $t_1 < t_2$ are two consecutive $\hat{\beta}$-true stages after t then at least one of them is a stage of an attack by the main genericity strategy β, hence $\hat{\beta}$ would attack and have outcome $h \ll_L w$, contradicting the choice of $s^{\hat{\beta}}_\beta$.

If $\hat{\beta}$ has outcome f then at stage $s^{\hat{\beta}}_\beta$ it has found an $\mu \in W_i$, ensured $\mu \subseteq B^{(s^{\hat{\beta}}_\beta)}_\alpha$ and defined the final value of $b_\alpha(d_\beta) > |\mu|$. It follows that $\mu \subseteq B_\alpha$.

Lemma 4.1. There is a Δ^0_2 1-generic set C such that $U \oplus C \equiv_e K$ or $V \oplus C \equiv_e K$.

Proof. By Proposition 4.2 we have two options for the true path f: it either contains a node from every possible group S_ε or all but finitely many of its nodes are in one particular S_ε. We prove that the first option is not possible. Suppose towards a contradiction that for every e there exists γ such that $f \cap T_{S_\varepsilon}(\gamma) \neq \emptyset$. As $E = \bigcap_{s < \omega} E^{(s)}$ is a Π^0_1 set and $U \oplus V \equiv_e K$ it follows that there is an enumeration operator say Θ_e such that $\Theta_e(U \oplus V) = E$.

Let α be the least node such that $f \cap T_{S_\varepsilon}(\alpha) \neq \emptyset$. By the construction of T and f it follows that $\alpha \subseteq f$ is a main enumeration strategy in the group S_ε. If $\alpha \not\subseteq f$ then $l(\Theta_e(U_\alpha \oplus V_\alpha), E, s)$ is bounded in s and as $\{(U_\alpha \oplus V_\alpha)^{(s)}\}_{s < \omega}$ is a good Σ_2 approximation to $U \oplus V$ this would contradict $\Theta_e(U \oplus V) = E$. Let γ be the least strategy such that $f \cap T_{S_{\varepsilon+1}}(\gamma) \neq \emptyset$. Then again by the construction of T and f it follows that $\gamma = \beta \in h \subseteq f$, where β is a genericity strategy (main or backup) in the group S_ε. By Proposition 4.6 in this case as well $\Theta_e(U \oplus V) \neq E$, contradicting our choice of e.

We have therefore established that there is an n and e such that $f \subseteq T_{S_\varepsilon}(f \setminus n)$. Now by proposition 4.1 $f \upharpoonright n = \alpha(e)$ and again we have two cases:
Case 1: For every i a strategy of type $\beta(\alpha(i),i)$ is assigned to the node $f \upharpoonright n+i$. We will prove that in this case $C = A_\alpha$ is the required set.

It follows from the construction and Part (2) of Proposition 4.4 that the limit values of the markers $a_i^0 = a^0_{\beta(\alpha,i)}$ exist for every $\beta \subseteq f$ and from an unbounded increasing sequence. Furthermore by Part (3) of Proposition 4.4 for every i there is a stages $s_i = s^0_{\beta(\alpha,i)}$, such that at all stages $t > s_i$, $A_\alpha^{(t)} \cup A_i = A_\alpha^{(t)} \cup A_i$ and hence the set A_α is Δ^0_2.

For every number n if $n \notin K$ then the actions of the main enumeration strategy α ensure that at infinitely many stages s (the α-true stages after the extraction of n from \overline{K}) $n \notin (\Gamma_\alpha(U_\alpha \cup A_\alpha))^{[s]}$, hence $n \notin \Gamma_\alpha(U \cup A_\alpha)$.

Let n be the i-th element of \overline{K}. Then $n = d_\beta$ at all stages $t > s^d_\beta$, where $\beta = \beta(\alpha,i) \subseteq f$. Hence at all stages $t > s^d_\beta$ the α-markers for n are defined. By our assumption on f, either $o = f_k$ for some k or $o = w$ is the true outcome for f and there is a stage s^w_α such that the α-markers for n, $u_\alpha(n)$ and $a_\alpha(n)$ do not change after stage s^w_α. Let $s > s^w_\alpha$ be a U-true stage such that at all $t > s$ $U \upharpoonright u_\alpha(n) + 1 \subseteq U_\alpha^{(t)}$. Then at stage s α ensures that there is a valid axiom for n in Γ_α, say $(n, U_\alpha \cup A_\alpha)$. By our choice of stage s $U_n \subseteq U_\alpha^{(t)}$ and $A_n \subseteq A_\alpha^{(t)}$ at all stages $t > s$, hence $n \in \Gamma_\alpha(U \cup A_\alpha)$.

Finally we by Corollary 4.2 it follows that A_α is 1-generic.

Case 2: There is a strategy $\beta \subseteq f$ such that $\hat{\alpha}(\beta)$ is assigned to $f \upharpoonright |\beta| + 1$ and for every i a backup strategy $\hat{\beta}(\hat{\alpha}, \beta, i)$ is assigned to the node $f \upharpoonright |\beta| + i + 1$. We will prove that in this case $C = B_\alpha$ is the required set.

That B_α is Δ^0_2 is proved as in the first case using the limit values of the markers $b_i^0 = b^0_{\beta(\hat{\alpha},\beta,i)}$ for every $\hat{\beta} \subseteq \hat{\alpha} \subseteq f$ and by Part (3) of Proposition 4.5.

To prove that $\Lambda_\alpha(V \oplus B_\alpha)$ we observe that there are infinitely many stages s (the $\hat{\alpha}$-true stages after the extraction of n from \overline{K} at which β does not attack) at which α ensures that there are no valid axioms for elements $n < s$, $n \notin \overline{K}$. If n is the i-th element of \overline{K} then $n = d_\beta$ at all stages $t > s^d_\beta$, where $\beta = \beta(\alpha, \beta, i)$ and the values of its α-markers will eventually reach a limit. Hence at a $\hat{\alpha}$ stage s at which $V \upharpoonright u_\alpha(n) + 1 \subseteq V_\alpha^{(t)} \subseteq V$ the strategy $\hat{\alpha}$ ensures that there is a valid axiom for n in Λ_α at all stages $t > s$, hence $n \in \Lambda_\alpha(V \oplus B_\alpha)$.

Finally by Corollary 4.3 it follows that B_α is 1-generic.

\section*{References}

Faculty of Mathematics, Sofia University, 5 James Bourchier bvld., 1164 Sofia