LOOP DETECTION IN PROLOG
BY SEARCHING FOR PRIMITIVE CYCLIC GOALS

Dimiter Skordev
Sofia University, Sofia, Bulgaria

Igor Durdanovié¢
Paderborn University, Paderborn, Germany

1 Introduction

A new method will be proposed for the detection of some loops during depth-first search
in Prolog, and an implementation of this method will be described.! The method is a
modification of another one presented in the paper [3]. As in [3], we shall consider only
Prolog programs consisting of Horn clauses and goals consisting of atomic formulas. The
new method has the following advantage: only the leftmost formulas of some goals appearing
in the execution process have to be compared now instead of beginnings with a flexible length
as it was previously. In this respect, the method has a certain common feature with one
proposed by Van Gelder in [4].2

Throughout the paper, a Prolog program P will be supposed to be given. We adopt the
leftmost selection rule, and then any given query uniquely determines (up to renamings of
variables) a depth-first search path. This path is a sequence of goals, which is defined as
follows. Let us call a goal G terminal for the depth-first search (or simply terminal, for
short) if this goal is empty or has a leftmost formula unifiable with the head of none of the
clauses in P (of course, unification possibly preceded by an appropriate renaming of program
variables is considered). To each non-terminal goal G, a goal o(G), the SLD-successor of G,
corresponds. Namely, o(G) is the result obtained from G by means of an SLD-resolution
step on the basis of P (the resolution is done upon the leftmost formula of G, and the first
clause in P with a head unifiable with G is used). In general, the SLD-successor of G' could
contain variables whose choice is not uniquely determined and even may depend on previous
variable bindings, but we overcome these problems by identifying any two goals or atomic
formulas which are identical up to some renaming of variables (such goals or formulas will
be called to be essentially the same). By definition, the initial member of the depth-search
path of P on a given query is the goal from the query, and, whenever a member G of the
depth-first search path is present, then ¢(G) is the next member of the path in case G is
non-terminal, and there is no next member of the path otherwise.

The depth-first search path of P on a given query may be finite or infinite, and in the second
of these cases it is said that the depth-first search of P on the query enters into a loop. We
study the problem of detection of some of these loops during the execution of the program.
The new method which we propose detects the same kind of loops as the former one, i.e. all

!The method has been designed by the first author during a stay at the Paderborn University, and the
implementation is done by the second author. The research of the first author has been supported by a
DAAD grant and by the Bulgarian Ministry of Science and Higher Education - Contract No. MM 43, 1991.

ZUnfortunately, the method from [4] is not correct, as shown in the note [2]. A revised version of that
method is proposed in Van Gelder’s response [5] to [2].

loops having the periodic feature described in [3]. The alternative description of such loops
by means of the notion of a primitive cyclic goal plays a crucial role in the reasoning about
the proposed method.

An atomic formula A will be called cyclic (with respect to the given program P) if the
depth-first search path of P on the query ?7— A, besides its initial member, contains some
further one with a leftmost formula essentially the same as A. More precisely, we shall
say that A is cyclic with period r if the above mentioned further member of the depth-
first search path in question is obtained from the initial one by means of r consecutive
applications of the operation o. A goal will be called primitive cyclic (with period r) if this
goal is non-empty, and its leftmost formula is cyclic (with period r). It will be proved that
the execution of P on a given query enters into a loop of the kind studied in [3] if and only
if the depth-first search path of P on this query has some primitive cyclic member.

2 Description of the loop detection method

For the method which we are going to describe, a computable strictly increasing infinite
sequence 79 < T < Ty < T3 < ... of natural numbers must be chosen such that the set of
the differences 7,41 — 7; is unbounded (in any practical application, only some finite initial
part of this sequence will be used). The set of the members of this sequence will be further
denoted by 7.

We shall first give a non-formal description of the proposed method. For short, let us
call the number of the atomic formulas in a goal G the length of G (this number will be
further denoted by |G|). The application of the method can be characterized as carrying out
depth-first search steps accompanied by certain loop detection activities. More concretely,
the length and the leftmost formula of the current goal have to be saved at appropriate
moments and to be used further for the loop detection during a certain period of time, and
this must be repeated until possibly the depth-first search terminates or a loop is detected.
The moments for saving are the ones belonging to 7 and those ones, at which, so to say, the
saved information becomes obsolete. The last happens when there are no more descendants
of the saved formula in the current goal, and such a state of affairs can be noticed by seeing
that the length of the current goal becomes less than the previously saved length. The saved
information is used for the loop detection in the following way: the length and the leftmost
formula of the current goal are compared with the saved ones, and if the length of the current
goal is not less than the saved length, and the compared two atomic formulas turn out to be
essentially the same, then a loop is detected.

To give a more precise description of the method, we introduce the notion of an execution-
detection state. By definition, this is an arbitrary quadruple <t,l, A, G>, where t and [are
natural numbers, A is some atomic formula or the empty string, and G is some goal. It will
be said that a loop is detected at <t,l, A,G> if |G| > [, A is an atomic formula, and G
has a leftmost formula which is essentially the same as A. An execution-detection state will
be said to be a closing one if its last component is a terminal goal or a loop is detected at
this state. The detection method consists in constructing consecutively execution-detection
states in a certain appropriate way, until possibly a closing execution-detection state is
obtained. The process of constructing them is defined as follows. To examine the execution

of P on a given query, we start with the execution-detection state <0,0,¢, QQ>, where ¢
is the empty string, and () is the goal from the query. Further, whenever an execution-
detection state <t,l, A,G> 1is constructed, and this state is not a closing one, we form a
new execution-detection state <t',l’; A’, G’> according to the following rules: (a) ¢’ = t+1,
and G’ = o(G); (b)if t € T or |G| < [, then I’ = |G|, and A’ is the leftmost formula of
G, otherwise I' = [, A” = A (it will be said that an execution-detection state <t,l, A, G>
invokes saving if this state is not a closing one, and the first case in rule (b) is present).

The sequence of execution-detection states defined in the above way will be called the
execution-detection path of P on the given query. An example of such a path is shown
on Figure 1, where it is assumed that) = 0, 7, = 1, » > 4.

Program:
p(X,a) b p(xsf(Y));p(ZyY):p(Y’Z)'
pX,f(a)).

Query:
7- p(U,0).

Path:
<0, 0, €, - p(U,0).>, saving invoked
<1, 1, pU,m, - pla,£(V)),p(Z,Y),p(Y,2).>, saving invoked
<2, 3, p(a,f(Y)), :- p(Z,a),p(a,2).>, saving invoked
<3, 2, p(Z,a), - p(Z,£(Y1)),p(Z21,Y1) ,p(Y1,Z1) ,p(a,Z) .>,
<4, 2, p(Z,a), :- p(Z1,a),p(a,Z1) ,p(a,Z2) .>. loop detected!

Figure 1: Execution-detection path

For the general case, we shall prove that a loop is detected at a member of the execution-
detection path of P on a query if and only if there is a primitive cyclic member in the
depth-first search path of P on this query. The implication from left to right will be
established by seeing that if a loop is detected at a member of the execution-detection path
then the last component of this member is a primitive cyclic goal. The proof of the converse
implication will use, roughly speaking, the following fact: if at a moment of the depth-first
search the current goal is not primitive cyclic, but some previous member of the depth-first
search path is, then a primitive cyclic goal will be reached further again after one or more
instances of decreasing of the minimal length of the goals from that moment on.

3 Proofs

A part of the results in this section can be found in [3] (where the denotation p is used
instead of), but we present them again for the convenience of the reader. Those of the
results whose proofs reduce to a straight-forward verification will be only formulated.

Adopting the identification of goals mentioned in the introduction, we shall denote the set of
all goals by G. Of course, ¢ is a partial operation in G. Another partial unary operation in
this set will be used a little further, namely the operation of deleting the rightmost formula
of a non-empty goal; this operation will be denoted by 7. We shall introduce also a partial

ordering in G. Let Gy, Gy € G. We shall say that G is a restriction of G, and we shall
denote this by writing G; < G, if G is essentially the same as some beginning of Gbs.
Obviously, the relation defined in this way is reflexive and transitive, and the conjunction of
G7 < G9 and Gy < (7 implies that G; and G, are essentially the same.

Lemma 1 [f G1 S G, G2 S G, and ’G1’ S ’GQ’, then G1 S GQ.
Lemma 2 If G; < Gy, Gy € dom(o), and Gy is non-empty, then Gy € dom(o).

Lemma 3 Let i be a natural number. If Gy < Go, and G € dom(o?), then Gy € dom(o?),
0'(G1) < 0'(Ga), and [0'(G2)| — [0'(G1)| = |Go| — |G].

Proof. Direct verification in the case of ¢ = 1 and then proceeding by induction.

Let r be a positive integer. A goal G will be called strongly cyclic with period r if G €
dom(c"), and G < ¢"(G). A goal will be called cyclic with period r if some of its beginnings
is strongly cyclic with period r. Using Lemma 3 with ¢ = 1, one proves consecutively the
next two lemmas.

Lemma 4 If r is a positive integer, and G is a goal, strongly cyclic with period r, then
G € dom(o), and o(G) is again strongly cyclic with period 7.

Lemma 5 If r is a positive integer, and G is a goal, cyclic with period r, then G € dom(o),
and o(G) is again cyclic with period 1.

From Lemma 5 and the definition of the notion of depth-first search path, we get

Corollary 1 If some member of the depth-first search path of P on a query is cyclic with
some positive period then the execution of P on that query enters into a loop.

If the assumption of Corollary 1 is satisfied for a given query, then we shall say that the
depth-first search of P on the query enters into a cyclic loop (these are the loops studied
in [3]). Clearly, each primitive cyclic goal with period r is cyclic with period r. Hence, if
some member of the depth-first search path of P on a query is primitive cyclic, then the
depth-first search of P on this query enters into a cyclic loop. The converse statement is
less obvious, but it will be proved soon. For proving it, some lemmas more will be needed.

Lemma 6 Let r be a positive integer, and G be a goal strongly cyclic with period r. Let
Go < G and Gy € dom(c"). Then the goal Gy is also strongly cyclic with period 1.

Proof. We have G < 0¢"(G), and hence |G| < |0"(G)], Gy < ¢"(G). By Lemma 3,
o"(Gy) < 0"(Q), and the equality |0"(G)| — |0"(Go)| = |G| — |Go| holds. It is clear now
that |Go| < |0"(Gp)|, and thus, by Lemma 1, Gy < o"(Gy).

Lemma 7 Let r be a positive integer, and G € dom(c”). Let v be the minimal one among

the lengths of the goals o'(G), i = 0, 1, ..., r — 1. Then v > 0, G € dom(w"),
7 HQ) € dom(c"), 7(G) & dom(o"), and |o' (7" 1 (G))| = 1 for any natural number i
which is less than r and satisfies the condition |o'(G)| = v.

Proof. All 6'(G), i = 0, 1, ..., r — 1, belong to dom(o), hence they are non-empty, and
therefore v > 0. Of course, G € dom(n"), since |G| > v. By induction on 4, we shall show
that 7°~1(G) € dom(o?) for i = 0, 1, ..., r. For i = 0 the validity of this statement
is trivial. Assume now that i < r and 7"!(G) € dom(c?). By Lemma 3, o'(7""}(G)) <
o'(G), and |6'(G)| — |o"(7*"H@))| = |G| — |=*"HG)| = v — 1. Since |¢*(G)| > v, we
see that o'(7~!(G)) is a non-empty restriction of ¢*(G). Then an application of Lemma 2
shows that ¢'(7*~'(G)) € dom(o), i.e. 7~ 1G) € dom(o™!), and thus the induction step
is completed. Now let i be a natural number less than 7 and such that |0%(G)| = v. The
result of the above application of Lemma 3 shows that |o?(7~!(G))| = 1 for this choice of
i. We shall show now that, for the same i, 7*(G) € dom(c'™!), and hence 7¥(G) & dom(o™").
Actually, if we suppose that 7V(G) € dom(a"™!), then we can conclude that 7*(G) € dom(o?)
and, making use of Lemma 3, see that |¢*(G)| — |0 (7*(G))| = |G| — |7°(G)| = v. From
here, it would follow that o'(7”(G)) is empty, and this contradicts the assumption that
(G) € dom(a").

Lemma 8 Let r be a positive integer, and G be a goal cyclic with period r. Then those of
the goals o*(G), i = 0, 1, ..., r — 1, which have a minimal length, are primitive cyclic
with period .

Proof. Let v be the minimal one among the lengths of the mentioned goals, and let ¢ be
a natural number less than r such that |0%(G)| = v. By Lemmas 7 and 3, 7*~(G) is the
shortest beginning of G belonging to dom(c”). Let G; be this beginning, and G, be a
beginning of G, which is strongly cyclic with period r. Then G, is a beginning of G5, and
an application of Lemma 6 shows that G, is also strongly cyclic with period r. By Lemma
4, the goal o'(G;) will be also strongly cyclic with period r. By Lemma 7, |0/(G})| = 1.
Hence the unique atomic formula of ¢%(G;) will be cyclic with period r. Since, by Lemma
3, 0'(G1) < 0'(G), we thus see that ¢'(G) has a leftmost formula cyclic with period r,
and hence this goal is primitive cyclic with period 7.

Corollary 2 The depth-first search of P on a query enters into a cyclic loop if and only if
there is some primitive cyclic member of the depth-first search path of P on this query.

The following lemma can be regarded as a partial conversion of Lemma 8.
Lemma 9 If a goal G is primitive cyclic then |o"(G)| > |G| for any natural number i.

Proof. Let G be a primitive cyclic goal, and H be the beginning of G consisting only
of its leftmost formula. Then H is strongly cyclic with some positive period, and therefore
H € dom(c*) for any natural number i. Consequently, o*(H) is non-empty for any natural
number i. By Lemma 3, we have the inequality |0'(G)| — |0'(H)| = |G| — |H| = |G| — 1,
and this inequality together with the inequality |o?(H)| > 1 implies |0'(G)| > |G|.

Now we are going to give some lemmas concerning the execution-detection path of P on
some fixed given query whose goal will be denoted by (). For short, we shall usually omit
the references to the program and to the query when mentioning this path or the depth-first
search path of P on the same query.

Lemma 10 For each natural number t, either there is a member with first component t in
the execution-detection path (the member in question is unique in this case), or there is a
closing member with first component less than t in the path. If a member of the path has
first component t then the last component of this member is o'(Q), and there is a member
with first component t' in the path for each natural number t' less than t. In case a member
of the path has first component t with t < 71y, then the second and the third components of
this member are 0 and €, respectively.

Lemma 11 Let £ =<t,l,A,G> be a member of the execution-detection path, r be a
positive integer, and the following conditions be satisfied: G € dom(o"), E invokes saving,
no member of the execution-detection path with first component strictly between t and t+1r
invokes saving, and at no such member a loop is detected. Let ' and A’ be the length and
the leftmost formula of G, respectively. Then <t + r,I'; A’ 0" (G)> is a member of the
execution-detection path, and the goal whose unique formula is A" belongs to dom(o™).

Proof. The statement that <t + r,I’; A’, 0" (G)> is a member of the execution-detection
path can be proved by means of an induction showing that <t + i,1’, A’, 0*(G)> is a member
of the execution-detection path for « = 1, 2, ..., r. The assumptions of the lemma show
that [’ is the minimal one among the lengths of the goals ¢‘(G), i« = 0, 1, ..., r — 1.
Hence, by Lemma 7, 7“~1(G) € dom(o").

Lemma 12 If a loop is detected at a member of the execution-detection path, then the last
component of this member is a primitive cyclic member of the depth-first search path.

Proof. Let a loop be detected at the member FE; =<ty,l;, A1, G1 > of the execution-
detection path. Hence, by the corresponding definition, |G| > [;, A; is an atomic formula,
and G has a leftmost formula which is essentially the same as A;. The last statement in
Lemma 10 shows that t; > 75. Let ¢, be the greatest one among the natural numbers ¢
less that ¢; such that the member with first component ¢ of the execution-detection path
invokes saving (at least one such ¢ exists, namely 7p). Let Ey = <tg,lo, Ag, Go> be the
member of the execution-detection path with first component t;. Then we can apply Lemma
11 with B = Ey, v = t; — to and (taking into account the fact that o"(Gy) is Gp) get
the conclusion that [; and A; are the length and the leftmost formula of Gy, respectively,
as well as the conclusion that :— A;. € dom(o"). By Lemma 3, ¢"(:— A;.) < Gy, and
|G1| — |o"(:— Ay.)| = |Go| — | :— A1 = I3 — 1. Since |Gy| > 13, we see that the
goal o"(:— A;.) is not empty and has essentially the same leftmost formula as G;. Hence
o"(:— A;.) has a leftmost formula essentially the same as A;, and therefore A; is a cyclic
formula. Of course, the leftmost formula of G; will be then cyclic too, and we see that G
is a primitive cyclic goal. By Lemma 10, this goal is a member of the depth-first search path
on the given query.?

We are now ready to prove the main result about the proposed loop detection method.

Theorem 1 For any given query, the following conditions are equivalent:

3This will be not the first primitive cyclic member of the path, since Gy will be also primitive cyclic.

(A) The execution-detection path of P on the query contains a member at which a loop is
detected.

(B) The ezxecution of P on the query enters into a cyclic loop.
(C) The depth-first search path of P on the query contains a primitive cyclic member.

Proof. The equivalence of conditions (B) and (C) has been already established in Corollary
2, and the implication from condition (A) to condition (C) is contained in Lemma 12. For
completing the proof, we shall establish now the implication from condition (B) to condition
(A). For that purpose, we assume now that condition (B) is satisfied for some given query.
Then the depth-first search path of P on the query will contain some member which is cyclic
with a positive period r. By Lemma 5, all further members of the path will be also cyclic
with period r. The assumed properties of the sequence 74, 7, 72, 73, ... make possible
to find a subscript n such that the member ¢™(Q) of the path is cyclic with period r, and
the inequality 7,41 — 7, > 27 — 1 holds. We shall prove that a loop will be detected at
some member of the execution-detection path of P on the query, and, more precisely, at
some member with first component not greater than 7,, + 2r — 1. By Lemma 10, either
there is a member of the execution-detection path with first component 7,, 4+ 1, or there
is a closing member of this path with first component not greater than 7,,. At a closing
member of the path, surely a loop will be detected, since otherwise the last component of
this member would be a terminal member of the depth-first search path, and such terminal
member cannot exist in the considered situation. Therefore the second case of the above
alternative leads immediately to the needed conclusion, and it remains to study the first case.
Then there will be a non-closing member with first component 7,, in the execution-detection
path, and this member will invoke saving. Let G be the goal ¢™(Q), and v be the minimal

one among the lengths of the goals ¢*(G), i = 0, 1, ..., r — 1. It is easy to see that a
finite sequence of natural numbers g < i1 < ... < 4, can be found with the following
properties: ig = 0, i,, < 7 — 1, |0 (G)| = v, and, for any natural number j less than

m, 141 is the least one among the natural numbers ¢ greater that i; and satisfying the
inequality |0(G)| < |0%(G)| (in case |G| = v, we have m = 0 and the last of these
properties becomes trivial). By Lemma 9, there is no natural number ¢ less than i,, such
that the goal ¢*(G) is primitive cyclic. This, together with Lemma 12, shows that it is
not possible a loop to be detected at some execution-detection state with first component
T, + i, where 0 < ¢ < 1,,. We shall show now that, for 7 = 0, 1, ..., m, a member
with first component 7, + i; and last component ¢%(G) exists in the execution-detection
path, and this member invokes saving. We shall proceed by induction. For j = 0, the
statement is true. Suppose now this statement is true for a certain natural number j less
than m. Let the length and the first formula of ¢%(G) be [; and Aj, respectively. Then
we can prove, again by induction, that <7, + i; + h, l;, A;, 0% ™(G)> is a member of the
execution-detection path for h =1, ..., i;41 — ¢;. Applying this for h = 4,41 — i;, we
conclude that <7, + 441, l;, A;, 0%+ (G)> is a member of the execution-detection path.
The inequality |¢%+1(G)| < [; shows that this member invokes saving. This completes the
inductive step from j to j + 1. Now let us apply the proved statement for ;7 = m. The
conclusion is that a member with first component 7,, + 4, and last component o' (G)
exists in the execution-detection path, and this member invokes saving. Let G’ be the

goal o' (G). By Lemma 8, G’ is primitive cyclic with period r. Then o"(G’) will have
essentially the same leftmost formula as G’. Let ry be the minimal one among the positive
integers i such that o/(G’) has essentially the same leftmost formula as G’. Clearly, ry < 7,
hence 7, + iy + 170 < 7, + 27 — 1 < 7,41. Making use of this inequality, of Lemma 9
and of minimality of 7y, we see that no member of the execution-detection path with first
component strictly between 7,, + ,, and 7, + i, + 7o invokes saving, and at no such
member a loop is detected. Thus we can apply Lemma 11 and conclude that the execution-
detection path contains the member <7, + 4, + ro, I, A’,0"(G")>, where I" and A’ are
the length and the leftmost formula of G’, respectively. Since ¢™(G’) has essentially the
same leftmost formula as G’, it is sufficient to apply Lemma 9 once more for showing that
a loop is detected at the above member of the execution-detection path.

4 Implementation

There are two ways of implementing the described algorithm:
e deep in the Prolog interpreter itself;

e as a interpreter in Prolog, executing Prolog program.

The first method is certainly much efficient, but requires more efforts and knowledge how
Prolog is implemented (which differs from one implementation to another, and is usually
hidden from end user), thus the the second method (used in our implementation) offers
needed generality, but at the cost of execution speed.

The problem of global variables is solved by introducing operator :=, which reads or writes
a value from / to global variable by using asserta and retract?, and operator <=, which
pushes / pops value in a global stack, realized in the similar manner (cf. Figure 2).

7-op(10, xfx, <=).
7-op(10, xfx, :=).

X <=Y :- nonvar(X), !, P =.. [X, Y], asserta(P), !.

X<=Y :- P=..[Y, X], retract(P), !.

X :=Y :- nonvar(X), !, P1 =.. [X, _1, P2 =.. [X, Y], (retract(P1);true), asserta(P2), !.
X:=Y :-P=.. [y, X], P, !.

Figure 2: Global variables

To intercept the Prolog after resolution step, we are modifying the inspected program. All
clauses which are not simple facts are modified, so that after each head unification our
predicate .inter? is called, as shown in Figure 3.

4The Prolog implementations which have worked out problem of global variables can get advantage of it.
5The names of our predicates should not be the same as the names of inspected program predicates, this
can be managed by using strange names for our predicates.

The predicate .modify is modifying each clause as described. For the cause of efficiency,
.inter is given two arguments, the new list of formulas (as a result of SLD resolution), and
the length of this list (found by predicate .goal_len), to avoid determining the length every
time. The result of modification of example program is shown in Figure 4.

’.goal_len’((F, R), L) :—= !, ’>.goal_len’(R, L1), L is L1 + 1, !.
>.goal_len’(B , 1).

> .modify’((H :- B), (H :- ’.inter’(B, L))) :- !, ’.goal_len’(B, L), !.
’.modify’(C , C).

Figure 3: Modifying clauses of inspected Prolog program

Original program:

p(X) :- qX,f(Y)).

q(X,X).

r(£(2)) :- p(2), r(2), q(z, £(2)).
s(£(£(2))) - p(D), (D), s(2).

Modified program:

p(X) :- ’.inter’ ((q(X,£(Y))),1).

q(X,X).

r(£(Z2)) :- ’.inter’ ((p(Z), r(2Z), q(Z, £(2))), 3).
s(£(£(2))) :- ’.inter’ ((p(2), r(2), s(Z)), 3).

Figure 4: Example of modified clauses

Our predicate .inter is really a small interpreter consisting of two clauses (as shown in
Figure 5) which distinguish two situation:

1. the number of new formulas to be executed is greater then one;

2. there is only one formula to be executed.

The difference is obvious, in second case there is no need to update the length of remaining
formulas .RestLen (the number of all formulas remained to be solved so far) and to proceed
with Rest if First succeeds. To prevent backtracking, predicate .back is used to stop
execution when First failed. When all formulas are solved, we are simply going back to
previous invocation of .inter solving the remained formulas (Rest) at this level.

> inter’((First, Rest), Len_c) :- !,

Len_o := ’.Restlen’, Len_n is Len_o + Len_c - 1, ’.Restlen’ := Len_n,
?>.loop_chk’ (First),

(First ; ’.back’),

> .RestLen’ := Len_o, Len_r is Len_c - 1,

> .inter’ (Rest, Len_r).
> inter’ (First, 1) :-

>.loop_chk’(First),
(First ; ’.back’).

Figure 5: Small interpreter of Prolog in Prolog
The .loop_chk predicate is a direct implementation of the described method (Figure 6).

The predicate .new_clock is used for incrementing .Clock variable, the .new_tau is used
to generate new 7 as described in the footnote in Section 2.

> .loop_chk’ (Formula) :-

Time := ? .Clock’,
Tau := ? . Tau’,
Len_s := 7 .Len’,
Formula_s := ’.Formula’,
Len_r := ’ Restlen’,
Len is 1 + Len_r,
> .new_clock’,
write(Time), write(’, ’), write(Len), write(’ :- ’), write(Formula), nl,
(Time == Tau, Saved = ’t == Tau’, ’.new_tau’
; Len < Len_s, Saved = ’|G|] < L ?
; ’.formula_eq’ (Formula, Formula_s), write(’LO0OP’), nl, ’.exit’
; Saved = ’no’),
(Saved \== ’no’,
’.Len’ := Len,
’ .Formula’ := Formula,
write(P+-———- ’), write(Saved),
write(? --——- save --———-— > ?), write((Len, Formula)), nl
; true), !.

Figure 6: Loop check algorithm

The comparing of atomic formulas, which can be sometimes compound expressions, is done
by flattening them to lists (Figure 7). This enables us to overcome Prolog lack of predicate
for comparing variables. Problem of renaming variables is solved by parallel temporary
bounding of compared variables to uniquely generated symbol by predicate .gensym®. The
result of comparison is stored in the variable .Equal and the result of binding the variables is
canceled by executing fail, and the second clause succeeds if the comparison has succeeded.

6Implementations which have built-in this predicate can take advantage of it; the global variable .GenSym
is initialized to 0 at the very beginning of our algorithm.

10

>.gensym’(’.e.n.u.m.’(V)) :- V := ’.GenSym’, Vn is V + 1, ’.GenSym’ := Vn, !.

’.term_eq’(X, Y) :- var(X), wvar(Y), !, ’.gensym’(X), Y =X, !.
’.term_eq’(X, Y) :- nonvar(X), var(y), !, fail.

>.term_eq’(X, Y) :- nonvar(Y), var(X), !, fail.

>.term_eq’(X, Y) :- atomic(X), atomic(Y), !, X =Y, !.

>.term_eq’(’.e.n.u.m.’(X), ’.e.n.u.m.’(X)) :—= !.

>.term_eq’([AIB], [CID]) :- !, ’.term_eq’(A, C), !, ’.term_eq’(B, D), !.
’.term_eq’(X, Y) :-X=.. A, Y=..B, !, ’.term_eq’(4, B), !.

> .formula_eq’(X, Y) :- ’.term_eq’(X, Y), ’.Equal’ <= 1, fail.

> .formula_eq’(_, _) :- _ <= ’.Equal’.

Figure 7: Formula comparison

The implementation is done in C-Prolog on Sun / Unix. The whole program is about 120
lines long. It includes a read / modify / assert part, which does reading, modifying and
asserting clauses of the inspected program. Also a part for initializing, removing, reading
and writing of global variables. The algorithm itself (predicates .inter and .loop_chk)
took about 30 lines.

5 Acknowledgments

We are grateful to Prof. Dr. H. Kleine Biining and to Dr. Th. Lettmann for a useful
discussion concerning the implementation problem. Thanks are due also to all participants
in the seminar of the Institute of Practical Computer Science at the Paderborn University
for their attention to our work.

References

[1] D. Skordev, An extremal problem concerning the detection of cyclic loops, C. R. Acad.
Bulgare Sci., 40, No. 10, 1987, 5-8.

[2] D. Skordev, On Van Gelder’s loop detection algorithm, J. Logic Programming, 14, 1992,
181-183.

[3] D. Skordev, On the detection of some periodic loops during the execution of Prolog
programs, Banach Center Publications, Warsaw (to appear).

[4] A. Van Gelder, Efficient loop detection in Prolog using the tortoise-and-hare technique,
J. Logic Programming, 4, 1987, 23-31.

[5] A. Van Gelder, Van Gelder’s response, J. Logic Programming, 14, 1992, 185.

11

