CHAPTER |
COMPUTATI ONAL STRUCTURES AND COVPUTABI LI TY ON THEM

1. Conputational structures

As noted in the preface, we shall consider conputability
not only of functions, but also of a large variety of other
ki nds of function-like objects. However, we feel it would be
not wise to start with the general case fromthe very begin-
ning. Therefore we shall first consider a certain notion of
conputability concerning ordinary functions, as well as its
natural generalization for the case of multiple-val ued func-
tions (cf. Sections 2 and 5 of this chapter). Al though this

noti on can be reduced to other ones which are mell-knownl,

it provides a class of exanples which we consider useful for
t he better understanding of the general theory and for the
denonstration of its applicability.

The above nentioned notion of conputability will concern
unary functions in so-called conputational structures. These
will be a certain kind of algebraic structures (possibly
partial).

Definition 1. A conputational structure is a 7-tuple
<M, J,L,R, T,F, H>, where M is an infinite set, J is

an injective mappi ng of M® into M, L and R are partia
mappings of M into M, T and F are total mappings of M
into M, H is a partial predicate on M and the follow ng
equalities are satisfied for all s,t,u in M

LCJ(s, tO>O>=s, RdAIC(s,to>O=t,
HCTCud>> =true, H(FCu>> =fal se.
If <M,J,L,R, T, F, H> is a conputational structure,

YFor a typi cal case of the considered situation, such a
reducti on can be found in Soskov [1985].
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then the mapping J can be used for coding ordered pairs of
el enents of M by elenents of M, and L, R provide us with
t he correspondi ng neans for decoding ( domL and domR rust
i nclude the set rngJ, wthout necessarily being equal to
it). Asto T, F, H, we could regard all values of T and F
as codes of the logical values true and false, respective-
ly, and the partial predicate H can be regarded as a neans
for the correspondi ng decodi ng (of course, this predicate
will transforminto |logical values all elenents fromits
dormai n, al though sone of these el enents coul d bel ong neither
to rngT nor to rngF).

Three exanpl es of conputational structures <M, J, L, R,
T, F, H> follow

Example 1. Let M be the set N={0,1, 2,3, ...} of the
nat ural nunbers, and | et

J=ast.2%.3", L=au.cu> , R=au.cw,
(where cud, and ud, denote the exponent of 2 and of 3,

respectively, in the prine deconposition of u if u>0, and
they denote 0 if u=0). Let T=2au.l, F=2au.0, and

__(true if u>0,

H(U)_‘{false if u=0

o Exanple 2 (cf. Moschovakis [1969]). Let B be sone set,
B” be the set Bu{O}, where O is some object not in B,

and M be the | east set containing B° and closed under
formati on of ordered pairs (in the nentioned paper, this set

i s denoted by B*). The ordered pair operation used in the
construction of M is assuned to be chosen in such a way

that no element of B° is an ordered pair. Let J be the
mapping ast.<s, t>, and the mappings L, R be defined
by the conditions

LCO> =RCO> =0,
LCud>=Ru>=<0O, O> for all u in B,
L¢ss, t>>)=s, R<s,t>>=t for all s,t in M

(in Moschovakis [1969], these nmappings are denoted by =
and s, respectively). Let T=au.<0O, O>, F=2au.0O, and

. 0
Heu > — true if lJ¢BO,
false if ueB".

The conputational structure obtained in this way will be
call ed the Mdschovaki s conputational structure based on B
and will be denoted by my (the element O is not indicat-

ed in the name and in the denotation, since the concrete
choice of O can be usually considered immterial).
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Exanple 3. Let an FP—systemin the sense of Backus
[ 1978] be given. Denote by M the set of all its objects

with the exception of the special atom 1.2 Let J be the
mapping ast.<s,t>, and L, R be the functions having as
their domain the set of all non-enpty finite sequences of
el enents of M and selecting fromeach such sequence its

first and its | ast nenber, respectively3. Let T and F

be the constant functions whose values at all elenments of
M are equal, respectively, to the atonms neaning truth and
falsity. Let domH be the subset of M containing exactly
these two atons, and et H have the value true for the
first of themand the value false for the second one.

Note that in all three above exanples T and F are con-
stant functions, and this could be considered to be a typi-
cal case.

We should |ike to add several further exanples of conpu-

tational structures. In sone of them T and F wll not be
constant functions.

Exanple 4. Let M be the set of all infinite sequences
of real nunmbers, and J, L, R, T, F, H be defined as foll ows:
J(<so,si,52, oD, <t0,t1,t2, D)=

<so,t0,si,t1, LD,
L(<u0,u1,u2, >):<u0,u2,u4, D>,
R(<u0,u1,u2, ...>):<u1,u3,u5, >,
T(<u0,u1,u2, LoD =<1, Ug,>u, > u,, D>,
F(<u0,u1,u2, Lo =<-1, Ug> Ujs Uys e D>

2 The objects of the FP- system can be described as fol -
|l ows. One starts from sone objects called atons, anong them
one neani ng truth and anot her one neaning falsity (Backus
denotes themby T and F, respectively). Al so a special
atom L is provided whose neaning is "not defined". Then the
set of the objects of the FP- system consists of all atons,
of the enpty sequence @ and of all non-enpty finite se-
quences <u , ..., U > whose nenbers u, are al ready con-

structed objects of the systemdistinct from L.

3 L and R could be identified with the functions which
Backus denotes by 1 and 1r.
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true if u, > 0,
H(<u0,u1,u2,...>):
false if u, <0
(H(<u0,u1,u2, ...>> is not defined if uO:O).

Exanmple 5. Let <#,1, T, L,, R,> be an operative
space in the sense of lvanov [1986] (cf. Section Il.2 of the
present book for the definition). Let M be the set of the
el enents of the semgroup ¥, and let H be defined as fol-
| ows:

true if u=L,,
false if u=R,.

Then <M, M, au. L U, AU. RU, aU.L,,au.R,, H> is a com
putational structure.

Exanple 6. Let <M, J, L, R, T, F, H> be an arbitrary
conput ati onal structure. Then the following three 7—tuples
are al so conput ational structures:

<M, Ats.J¢s,tDO,R, L, T, F, H>,
<M, J, L, R, F, T, not H>,
<M, Ats.J¢s,tD>, R, L, F, T, not H>.

If L, R are the restrictions of L and R, respectively,
to the set rngJ, and H is the restriction of H to the
union of rngT and rngF, then <M,J, L', R, T, F, H> and
<M,J,L,R, T, F, H>, too, are conputational structures.

Exanple 7. Let B be an arbitrary non-enpty set whose
el ements are not ordered pairs, and let M be the | east set
containing B and closed under fornmation of ordered pairs.
Let J=ast.<s,t>, and the nmappings L, R be defined by
t he conditions

domH={L,, R,}, Hu>= {

domL =domR=mM \ B,
L¢ss, t>>)=s, R(ks,t>>=t for all s,t in M.

Let T=2au. <u, u>, and F be defined by induction as fol-
lows: Fcu>=u for all u in B, and Fd<s, t>>=F¢(s> for
all s,t in M. Let

Heu > — true if ueB,
false if ueB.

Then <M, J, L, R, T, F, H> is a conputational structure.
This structure (with an exchange between the codes of truth
and falsity) has been introduced and used, in essence, in
the thesis Soskova [1979].

Exanple 8. Let M, J, L, R be defined in the sanme way
as in the previous exanple, but for the particular case of
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B=IN. Let T=2au. <0, 0>, F=au. 0, and

Heu > — true if u=+0,
false if u=0.

Then <M, J, L, R, T, F, H> is again a conputational struc-
ture. It has been used, in essence, in the thesis |Ignatov
[ 1979].

Exerci se. Show that we get an equivalent form of the
definition of conputational structure if we make the foll ow
ing two nodifications (or one of them init: (i) omtting
the requirenent J to be injective; (ii) replacing the re-
quirenment M to be infinite by the requirenment M to be
non- enpty.

2. Conputability of partial functions
wWith respect to a given conputational structure
For each set M, |et ?p(M) denote the set of all par-

tial mappings of M into M. If ¢ and y belong to this
set then their conposition ¢y (denoted also by ¢-y) is
the elenment e of ?p(M) determ ned by the condition that

U = pCYCUDD

for all u in M. The identity mapping au.u of M onto M
wi |l be denoted by ||v|'

Suppose now a conputational structure Au=<M,J, L, R,
T, F, H> is given. Then we shall define two other binary
operations in ¥ _<(M>. The first one will be called uU-—

conbination, and it will be denoted by 1. By definition,
for arbitrary ¢, y in ?p(M), Cp, Yy> is the element 6

of ?p(M) determ ned by the condition that
ecud 22 JCpdud, Yydudd

for all u in M. The second one will be called uU—iter-
ation (iteration, for short). The result of its application
to the elenents o and yx of ?p(M) will be denoted? by
Lo, x1, and it will be nanmed the iteration of o controll ed

by x. By definition, (o, ¥x1 is the function e determ ned
by the following condition: ecu>=w iff thereis a finite

sequence V .,V ., ...,V of elenments of M such that

4Coerare wi th the denotations used in Buchberger [1974].
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Vozu & Vm:W & V] (H(;((Vj Do=true & Vj +1:U(Vj D) &
J<m Hoxcv D> =fal se
(in Pascal -1i ke denotations, the function e can be repre-

sented by neans of the declaration
function ecu: M>: M;

var v: M;
begi n
V:i=u;
while HCx<v>> do v:=cCvD;
6: =V
end; ).

It is useful to note that

[o, x1CaCUDD
u

N HCxCud>> =true,
(1) (o, x](U)—{ HCxCud>> =fal se.

One nore operation | ooks very natural, nanely an oper-
ation of definition by cases, which will be called 2a-—
branching. This is a ternary operation in ?p(M) which wi |l

be denoted by . By definition, for arbitrary x, ¢, ¥ in
F (M, Cx, ¢, YD 1s the elenent 6 of F _<M> determ ned

Y
by the condition that ecu>=w iff
HCxCudd =true & opdud=w Vv Hxud>>=false & ydud=w.

In sonme issues, however, this operation could be not taken
into account since it can be expressed by neans of the pre-
cedi ng ones (see Exercises 1 and 2).

i f
i f

Using the operation X, we can forrmulate the follow ng
characterization of the iteration as a |east fixed point:
for arbitrary o, x in ?p(M), the equality

(2) lo, x1=3Cx, [0, x]U,IM)
holds, and (o, x1 is a subfunction of each Te%_ (M) which
satisfies the condition that =Cx, to, IM) is a subfunction

of T (compare, for exanple, with Mazurkiew cz [1971] or
Scott [1971, Section 7]). O course, (2) is an easy conse-
guence of (1) (the only additional thing needed for deriving
(2) is the fact that H(xCud>> is defined for all u in
domto, x1). As to the second part of the statenent (the
mninmality of the iteration), we prefer not to give its
proof here, since in a further section of this chapter the
nore general (and a little nore conplicated) case of the
iteration of nultiple-valued functions will be considered
(cf. also Exercises 3 and 8 after this section).

Now we shall define a notion of relative conputability
of elenments of ?p(M) with respect to the given conputa-
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tional structure wu.

Definition 1. Let B be some subset of ¥ _<(M>. The el-
enents of ¥ (M> UA-—-conputable in B (conputable in B,
for short) are those el enents of ?p(M) whi ch can be gener-

ated fromelenents of {L, R, T, FfuB by neans of conpo-
sition, U-—conbination and U—iteration.

O course, if each elenment of B is conputable in ®-
(in particular, if ® is contained in 87), then each el -
enent conputable in 8 is conputable in B’. Exercise 1

bel ow shows t hat INI and the function, whose domain is enp-
ty, are u—conputable in @&. From Exercise 2 and the com
putability of IM, it is seen that =Cx, ¢, ¥> 1Is always

A—conputable in {x, ¢, y}; hence including = as an

addi ti onal generating operation in the above definition of
conputability would not enlarge the set of the elenents of
?p(M) which are 2a—conputable in ®. However, one could

ask whet her there are not other reasonable effective con-
structions in ¥ _<(M> which could enlarge this set. In this

book it will be shown that in sone sense such ot her con-
structions do not exist. In particular, functions conputabl e
by means of a large class of recursive progranms will be

found to be conputable in our sense.

By considering an uniformvariant of the introduced com
putability notion, we could also define U—conputability
for operators in ?p(M). Here is the correspondi ng defini -
tion.

Definition 2. Let BE?p(M), and let T be a mapping of
I

(?p(M)) into ¥ _(M>, where | is sonme positive integer.
Then T is called (an operator) u-—conmputable in 8 (com
putable in B, for short) iff, for arbitrary Uy o oos Y in
¥ (M>, there is an explicit expression for TCYy s v P 2
through L, R, T, F, Uy o oos Y and el enments of 8 by neans

of conposition, A—conbination and A—iteration, the form of
t he expression not depending on the concrete choice of v, »

ST

Remark 1. The above definition can be formnul ated nore
preci sely using induction. W could, for exanple, adopt the
foll owing formul ati on:

(i) For each ae{lL, R, T, F}uB, the mapping
Ay Y@ is U-—conmputable in B.
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(ii) The mappi ngs AY Y Y i =1, ..., |, are
A-conputable in B.
(i) If r, and r, are mappi ngs of (?IO(M))I into
?p(M), which are 2a—conputable in 8, then so are
AU W T QY s, Y DT A, 5 s Y DD,
A W TICT QY s Yy 0 T Q0 s s Y 0D,
AWy W T QU s s U0, T, s Yy 0T
Exanple 1. Exercises 1 and 2 below show that = is an
operator conputable in o.

In the next two sections, the problemw || be studied
whi ch are the functions Uu—conputable in certain sets 8
for conputational structures 2 as in Exanples 1.1 and 1.3
(in the case of Exanple 1.1, also the conputable operators
wi |l be considered). For the conputational structures de-
scribed in Exanple 1.2, the sane problemw || be studied a
little later, as a part of the nore general problem concern-
ing multiple-valued functions.

Exer ci ses

(I'n all these exercises, a conputational structure
U=<M,J, L, R, T, F, H> is supposed to be given)
1. Prove that (o, T1=9,°

oe¥ (M.
P

2. Let L,=mcT, 1 po, R, =Tk, 1 >. For arbitrary x, ¢,
Yy in ?p(M), prove the equalities
(L, pR, yROL, =9, =L, ¢R, yROR, =y,
SCx, 9> YO =RIR YR, LIRIRZ ¢RP, L1TCy, LD
(conpare the last one with the equality
ACa, @, b>=a (KKaTTOKC(KbTO>K

i n Bobhm and Jacopi ni [1966, p. 369], taking into account the
difference in denotations, the absence of our operation T
there and the fact that iteration there has the semantics of
while not).

3. Let o, x>, p be arbitrary elenents of ¥ _<(M>, and |et
T,=plo, x1. Prove t hat T, is a solution of the equality

and [0, F]:INI for all

S ve identify functions with their graphs, hence @ is
the function whose donain is enpty.
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T=3Cx, To, p>, and T, is a subfunction of each te?p(M)
whi ch satisfies the condition that =Cx, to, p> is a sub-
function of <.

4. Suppose T and F are constant mappings. Let "
TCcud>=a, Fu>=Db for all u in M. Define elenents 07,
1#, 2#, ... of M as follows®:

i Jcb, b> if k=0,
{J(a, ck — 15>%> otherwi se.
Prove the existence of an elenent ¢ of ?p(M) which is
A—-conputable in @ and satisfies the condition
@(n#):(Zn)# for all neN.

H nt. First construct an elenent o of ?p(M) which is
A—conmputable in o and satisfies the equality

ocdck, 1#55 —acck—15%, a1 +15%>
for all non-zero k in N and all | eN.

5. Prove the conclusion of Exercise 4 without the as-
sunption that T and F are constant mappi ngs, and using

the foll owi ng weaker assunption about a, b: a and b are
fixed elements of M such that Hca>=true, Hcb>=false.

6. Let the dual (or while not) iteration (o, 214 of

occontrolled by x be defined be exchanging true and
false in the definition of (o, x1 (i. e. I[o, x1 4 is the

A —iteration of o controlled by yx, where A =<mM, J, L,
R, F, T, not H>). Prove that the mapping Aocy. (o, 214

is U—conputable in .’

H nt. Show that not HCxCu>> =H(=Cy, F, TOCud>> for all
x 1IN ?p(M) and all u in M.

Thi s generalizes a representation of natural numnbers
from Moschovaki s [1969] (cf. Section 7 of his chapter).

7C‘onsequently, Aox.lo, x1 is U —conputable in &
(since [0, x1 is the dual iteration in 2u7). Note that
iteration in the exanples, considered in the papers Skordev
[ 1975, 1976a, 1976b, 1976c] and in Chapter | of the book
Skordev [1980], is the sane as in the exanples which will be
given in the next sections, since it was defined, roughly
speaking, as the dual iteration in the correspondi ng struc-
tures 9.
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7. Let BE?p(M), and let A be sonme of the three

ot her conputational structures related to 2a, which were
menti oned at the end of Section 1. Prove that the el enents

of ?p(M), A —conputable in B, are the sane as its el-
enents A-—conputable in B.

8. Let o0, x>, p be arbitrary elenents of ¥ _<(M>, and
| et T,=plo, x1. Suppose K is a subset of M such that

oCudeK for all ueKndoms, and T is an el enent of
¥ (M> such that the restriction of =Cyx, to, p> to K is

a subfunction of <T. Prove that the restriction of T, to
K is a also a subfunction of <.

3. On a procedure for generating
the unary partial recursive functions

In this section, a characterization will be given of the
unary partial recursive functions as the el enents of ?p([N)

A—conputable in B, where A is a certain conputational
structure whose carrier is N, and B is a certain finite
subset of ¥ _(ND>. By giving such a characterization we aim

to show the place of the theory of partial recursive func-
tions as a special case of the general theory devel oped fur-
ther in this book. As a suitable conputational structure u,
the one from Exanple 1.1 can be taken.

Let T, F, H be the sanme as in Exanple 1.1, i. e.
T=au.1l, F=2au.0, and

true if u>0,
H(U):{false if u=0.

Let S=au.u+1l, P=au.u=1. It will be said that «u

is a standard conputational structure on the natural nunbers
iff Au=<N,J, L, R, T, F, H>, where J is a recursive func-
tion of two variables, L, R are partial recursive functions
of one variable, and the equalities LdJ(s,tD>=s,

RcJ¢s, t>>=t hold for all s,t in N (as an exanple of
such a structure the conputational structure fromthe above
menti oned exanpl e can be taken).

Theorem 1. Let u be a standard conputational structure
on the natural nunbers. Then the unary partial recursive
functions are exactly those elenents of ¥ _C(N> which are
A—conputable in {S, P}. P

Remark 1. If aA=<N,J, L, R, T, F, H> satisfies the
above assunption, and 8 is a subset of ?p([N) cont ai ni ng
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{S, P}, then T and F can be omtted as initial elenents
in the definition of 2aA—conputability in 8. This foll ows
fromthe equalities Iy =PS, F=(P, 1,3, T=SF. So t he

theorem states that the unary partial recursive functions
are exactly those elenents of % _C(N> which can be generated

from L, R, S, P by neans of finitely many applicati ons of
conposition, 2A—conbination and U—iteration. W think
this result nust be considered well-known, but we are not
able to give a rel evant bibliographical reference.

Proof. Let Uu=<N,J, L, R, T, F, H>. W set =% _(IN)D,
B={S, P} for short. Let g Dbe the set of all elenments of
F which are U—conputable in B. Since all elenments of g,
are partial recursive, we have only to show that, converse-
ly, all unary partial recursive functions belong to g,

For each integer n greater than 1, we set

J (s s 5 0=J0Cs , JCs, ..., JCS 58 D000,
and then we define g, to be the set of all functions
having the form As .os . xp(Jn(si, s 500, wher e Yegy, .

The theoremw || be proved if we succeed to show that the
uni on of the sets Go» Gy Gy oo contains the initial

partial recursive functions S, F and AS, ... S .S for

n=1,2, ..., i =1,2, ..., n, and this union is closed
under substitution, primtive recursion and u—operation.

O course, S, F e g, » and al so AS, .S
to g, If n >1 then

s. =LR "I s, ..., s
| n 1 n

, = N bel ongs

for i =1,2, ..., n=1, and
s =R YJ (s, ..., s>
n n 1 n
hence As ...s .s.eg for i =1,2, ..., n.
1 n | n

[oc@]
For showi ng that |J g, i's closed under substitution,
n=1
it is sufficient to prove the follow ng two statenents:
(i) If fe?n (n=1>, and pesg, t hen
N ASi...Sn.(p(f(si,...,sn))€§n.
(i) If f1’f2’ ...,fmegn cm>1, n=>1> then
ASi...Sn.Jm(fi(si, R, sn), R, fn(si, R, sn))egn.

The truth of (i) is obvious in the case when n=1. I|f
n>1 then (i) follows fromthe fact that
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f(si, cay sn)ﬂl//(Jn(si, R sn))
i mplies
(p(f (51 y - sn))ﬁ(pl//(\]n(si s s sn)),

and PYET, , whenever ¢, Yyesg, .

For the proof of (ii), it is sufficient to show that
AS. ...S . J(f (s, ..., 8D, (s , ..., 5 D)8 , whenever

1 n 1 1 n 2 1 n n
f1’f2‘5§n (n=1>. The last is obvious in the case when
n=1. If n>1 then we use that
fi(si’ cees sn)ﬂl//i (Jn(si, e sn)), =1, 2,

i nmplies
Jc¢f 1(51 s s sn), f2(51 s s sn))ﬂl'[(llji, lﬂz)(Jn(si s s sn)),
and TCy , Y, O€g , whenever y , Yy, €5,

Let fe?fi, geq,, and h be the two-argunent function
defi ned by

hcO, ud>=~fcud, h¢ +1, ud=2gchd , ud,j, ud.

W shal |l prove that r1e§2.8 Froman intuitive point of
view, the proof will be based on a functional-style transla-
tion® of the foll owi ng Pascal -1i ke function declaration

whi ch represents h:

function hd<t, u: ND: IN;
var s, Vv, j: IN;
begi n
s:=t; v:=fcud; j:=0;
while s>0 do
begin s:=s—-1; v:=g9dv,j,ud>; j:=j+1 end;
h: =v
end; .

8 The nore general case of primtive recursion, when
f €9, geg_ ., and h is n+1l-ary, can be easily reduced

to the case considered now. Roughly speaki ng, we have only
to substitute Jn(u1"'” u.> for u.

9C‘onpare wi th Backus [1978]. Qur u—conbination and 2a—
iteration correspond to the binary case of his operation
call ed construction and to his while—operation, respect-
ively (note, however, that no explicit use of |ist objects
is made in our case, and natural nunbers are the only ob-
jects).
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Nanely, we first construct «, Bes, such t hat

oaCICt , u))ﬁJ4(t , fcud, 0, ud,

/3(34(5, V, o U))ﬂJ4(SL1, glv, j, ud, j +1, u
for all t,u,v,j in IN. For that purpose, we take
a=TCL, TICf R, TICF, R>)D,

g =TCPL, ICyR, TICSLRE, R*>D),
wher e yes, and g=avj s. Yl qv, j » S$>>. Having such «, B
at our disposal, we prove that

[B, L1aCJ(Ct, u))ﬁJ4(O, hct, ud, t, ud

for all t,u in N (to do this, we could, for exanple, use
i nduction on j as well as the first case in (1) for proving
t hat

[, L1aCdCt, udd>=J ¢t —j, hej, ud, j, uw

for all j,t,u in N satisfying j<t; then we could take
j =t and use the second case in (1)). Fromthe established
equality, we get

hct, ud~LRIB, L1aCICt, udD,
and we have only to note that LRIB, Llaeg, .

We are now going to the case of u—operation. Suppose
fe§’2, and g is the unary function defined by

gaud 22 puj tf¢, ud>=01.
W shal |l prove that ge?fi.lo Agai n a Pascal -1i ke function

declaration will be witten for the intuitive explanation of
t he proof, nanely the foll owi ng one which represents g:

function gdu: ND: IN;

var j: IN;

begi n

j:=0;

while f¢j,u>>0 do j:=j +1;
g: =]

end; .

The correspondi ng functional -style translation needs func-
tions «a, Bes, such that

aCud 2 JC0, ud, RIC , udd>=J( +1, ud,
and such functions are o=T1CF, | >, B=TC(SL,R>. Taking

%The nore general case, when fe?in and g is n-ary,

can be reduced to this case. 1
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yes, such that f =aj u. ydJ{ , ud>, one proves that
[B, Y1adud=2JCgdud, ud

for all u in N. (To do this, one could express what the
equality (B, ylacud>=w neans by the definition of itera-
tion, and then see that necessarily Vj =J{,ud, j=0,1,

., M, in the corresponding finite sequence Voo Ve oo
Vi So (B, ylaCud=w turns out to be equivalent to the
exi stence of a natural number m such that
Jam, uD=w & V] (yCJCj, ud>>0> & ydJdm, ud>=0,

j<m

Jam, uD=w & V] (f¢,u>>0> & fdm, u>=0.

j <m
Qobviously, this condition is equivalent to the condition
JcgCud, ud>=w). Fromthe proven equality, it follows that

gaud> = LB, yladud,
and the only thing left is to note that LB, Yylaes, . o
| f Uy o oos Y e?p([N) then the functions u- recursive
in Yoo ---> Y are, by definition, those partial functions

whi ch can be generated fromthe initial partial recursive
functions and the functions Uy o oos Y by means of substi -

tution, primtive recursion and u—operation. 1 Usi ng al -

nost the sane proof as above, one can prove

Theorem 2. Let U be a standard conputational structure

on the natural nunbers. If Uy o oos Y e?p([N) t hen the
unary functions u—recursive in Uy -5 Y are exactly

t hose el enments of ?p([N) which are 2a—conputable in the set
{S: Psyys -5 Y )

Al so a uniformversion of the above theoremis valid. A

mapping I of (¥ an> into ?p([N) is called a u—recur-

sive operator iff there is an explicit expression for

Hgince Yoo ---> Y are not necessarily total, the
notion of u-recursiveness in Uy o oos Y has, in general,

a narrower scope than the notion of partial recursiveness in
Uys oo Y (cf. Myhill [1961], Skordev [1963], Rogers

[ 1967, Ch. 13, Theorem Xl X, and al so the footnote on p. 362
of the Russian translation] or Sasso [1975]).
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TCYy s -vvs YD through the initial partial recursive func-
tions and Uy o oos Y by means of substitution, primtive

recursion and u—operation, and the formof this expres-
si on does not depend on the concrete choice of Uyo oo

Y, 12 Then a si npl e anal ysis of the proof of Theorem 2

shows that, whenever U is a standard conputational struc-
ture on the natural nunbers, the u—recursiveness of T
is equivalent to its U—conputability in {S, P}.

Exercise. Prove that Theorem 1l remains valid if we re-
place {S, P} inits fornulation by {P}. (This result is
essentially contained in Soskov [1985, pp. 9-10]).

Hnt. Prove that S is U—conputable in {P}. To do
this, first establish the existence of an el enent & of
?p([N) such that 8cJ¢s,t>>)=s-=t for all s,t in N, and

8§ is A—conputable in {P}. Then construct an el enent
e of ¥ (N> which is also aA-—conmputable in {P} and

satisfies the condition ecu>>u for all u in N (you
could, for exanmple, take oecu> to be the first one greater
than u anong the nunbers Jc0, 0O, JC1, JCO, 0D,

Jcl, Jcl, JC0, 055D, ... D.

4. On the interconnection between programuability
in a FP-systemand u- conputability

In this section, we suppose that an FP—systemin the
sense of Backus [1978] is given. Let Uu=<M,J, L, R, T, F,
H> be the correspondi ng conputational structure described
in Exanple 1.3. W aimto characterize the programmbility
in the given FP—system by neans of Uu—conputability in a
certain subset B8 of ¥ _<(M>. Programmability in the FP—sys-

tem as defined by Backus, concerns strict total functions
in Mu{l}, i.e. total mappings of this set into itself
which transform L into L. These functions are in one-to-
one correspondence with the el enments of ?p(M), each o

from ¥ <(M> corresponding to its natural extension to
Mu{l} obtained by assigning the value 1L to all elenents

12 (as it is the case here) partial functions are
al l owed as argunents of the operators then the class of the
u- recursive operators is narrower than the class of al
recursive operators (in the sense of Rogers [1967, Section
9.8]). Cf., for exanple, Skordev [1963, 1976], Bird [1975]
or Sasso [1975].
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of Mu{l} not belonging to domg. For our purposes, it is
convenient to nodify inessentially Backus’ notion of pro-
granmabi lity by replacing the strict total functions in
Mu{l} by the corresponding elenents of ¥ _(M>. After this

nodi fication, the notion can be briefly described as fol -
| ows.

Sonme elenments of ¥ _<(M> are chosen as primtive func-

tions, anong themthe functions L and R from Exanple 3.1
and the functions null, tl and apndl defined by the
equalities

null(S)——{f ot herwi se,

tl <<s>>=@, apndl (<s, >>=<s>,
tl(<s,t1,...,tk>)::<t1,...,tk>,
apndl(<s,<ti,...,tk>>)::<s,t1,...,tk>,

where t and f are the atons neaning truth and falsity,
respectively, and tl and apndl are defined only for such
types of objects which are considered in the | eft-hand sides
of the corresponding equalities. Starting fromprimtive
functions, new ones are constructed using so-called func-
tional forns and recursion. At this stage of our exposition,
we restrict ourselves to the construction by nmeans of func-

tional forms 3 The correspondi ng notion of programrabl e
function can be described by the foll ow ng inductive defini-
tion:

(i) all primtive functions are progranmabl e;

(ii) for each s in M, the constant function s, assign-
ing the value s to all elenents of M, is programmbl e;

(iii) the conposition of every two programmabl e el enents

of ?p(bt) i s progranmabl e;

(iv) if Py s P (n>=1) are programuabl e el enents of
¥ (M>, then so is the function oo o oen 92 defined by
the condition that

((pi, N (pn)(t)ﬁ«pi(t), N (pn(t)>

31t will be shown later in this book (nanely in Subsec-
tion (Il1) of Section Il1.5) that recursion does not enlarge
the class of the programmabl e functions (cf. al so Skordev
[1982a]).
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for all t in M;14

(v) if x, ¢, vy are programrmabl e el enents of ?p(M),
then so is =Cx, ¢, YO, where = is the branching operation
in u defined in Section 2;15

(vi) if o and x are progranmable elements of ¥ (M),
then so is (o, x1 (the A—iteration of o controlled by
x); 1P

(vii) for each s in M, if ¢ is a programmable el enent
of ?p(M), then so is the function bug¢s defined by

bu ¢ s (t D2 pl<s, t >

(viii) if ¢ is a programmable elenment of ¥ _<(M>, then
so is the function a¢ defined by P

ap@d=0, apd<t , ..., >>=<pct D, .., pct, >>; 1
(ix) if ¢ is a programmable elenent of ¥ _<(M>, then so
is the function / ¢ defined by P
/ N S 1L 1 S SNG4 SN 1G S SV S S R e

(domc/ ¢> consists only of non-enpty sequences of el enents
of M) 18
Let B consist of all primtive functions of the given

FP—-system and of all functions of the form s, where seM
(cf. clause (ii) in the above inductive definition). If

14 Backus denotes this function by N N B W do

not use this denotation due to the conflict with our denota-
tion for iteration in the case of n=2.

15 Backus uses the denotation Cx—> ¢, y> for the el enent
2Cxs ©> Y.

16 Backus’ denotation for the function Lo, x1 IS
whilexyo.

YBackus’ denotation for ap is ap.

18 Another variant is al so considered by Backus, where
o also belongs to dom</ ¢>. Then the function /¢ is
defined by the equalities / ¢p<(@>=u and

/(p(<t1, cees U3 el pl<t L pC<E 5 USDL L 303D,

where u is sone fixed elenent of M. Including this vari-
ant in the inductive definition formul ated now woul d cause
no essential nodification in our exposition.
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B=8, then the foll ow ng hol ds:
Theorem 1. The progranmbl e el enments of ¥ _(M> are ex-

actly those el enents of ?p(M) whi ch are 2a—conputable in
B.

The proof of this theoremis based on 7 | emmas.
Lenmma 1. U—conputability in B, i npl i es program
mability.

Proof. All functions fromthe set {L, R, T, FfuB  are

progranmmabl e according to clauses (i) and (ii) above. On the
ot her hand, clauses (iii), (iv) and (vi) assure that pro-
granmability is preserved by conposition, a—conbination
and uA—iteration. =

Lemma 2. Al primtive functions and all functions s,
where seM, are U—conputable in B, -

Proof. Al'l such functions belong to 3, ‘m

Lemma 3. The operations considered in clauses (iii), (v)
and (vi) preserve A—conputability in B, -

Proof. We use the definition of 2aA—conputability in B,
and Exercises 2.1, 2.2..

Lenma 4. The operation considered in clause (iv)
preserves u—conputability in B .

Proof. The following equalities hold for all ¢, ¢ , ...,
o, in ¥ _(M>, where n>1:

Y _
Cp>=apndl - TCp, @D,
Co, > ...,@n):apndl cTCp, > Copyn s 9 000 g

Lenma 5. For each function ¢, which is u—conputable
in B, » and each elenent s of M, the function bugs is

al so aA—conputable in B, -

Proof. W use the equality bugps=¢-TI(s, IM) and
Exerci se 2. 1..

Lenma 6. \Whenever ¢ is a function a—conputable in
B, » then a¢p is also uA—conputable in B, .

For the proof of this | enm, see Exercise 3 of the pres-
ent section. An easier proof will be given later in the
book, after proving an al gebraic generalization of the First
Recur si on Theorem

Lenma 7. \Whenever ¢ is a function a—conputable in
B, then [/ ¢ is also A—conputable in B, .

0
For the proof, see Exercise 4 of the present section. An
easi er proof could be given after Section II1.4.
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O course, the non-trivial part of the proven theorem
consists in the converse statenment of Lemma 1, i.e. in the
statenent that progranmability inplies U—conputability in
the set B used in the theorem (this part was proven by
nmeans of the remaining 6 | emmas). Therefore a reduction of
the set B8 will increase the value of the theorem When
defining the set B used in this theorem (nanely the set
BO), we have put all primtive functions of the FP—system

init. Nowwe should |like to mention that the theoremre-
mains valid after leaving only a small nunber of the prim -
tive functions in 8. In Skordev [1982a], a variant of the
t heorem was proven, where only 8 anong the primtive func-
tions are taken as elenents of 38, nanely the four arithme-
tical operations +, -, *, + and the functions tl, apndl,

at om, eq.19 The correspondi ng proof uses the generalization
of the First Recursion Theorem nentioned above and can be
given later in the book. However, sone sinple parts of

that proof are included in exercises after the present sec-
tion (for the rest, cf. Exercises Il1.5.1 and I11.5.2).

Exerci ses

(In all these exercises, U is the conputational structure
considered in this section, and B is sone subset of
?b(mf) containing the functions tl, apndl, eg and &)

1. Prove the u—conputability of the function null
in B.
2. Let reverse be the elenment of ¥ _<(M> determ ned by

the condition that domcreverse) consists of all finite se-
guences of elenents of M and by the equalities

reverse(gl =g,

¥The last two of these functions have the fol |l ow ng
definitions:

[t if s is an atom
atom(s)__{f ot herw se,

eq(<S,t>)—‘{f ot herwi se

where domceqg> consists only of two-el ement sequences from
M. W note the following small difference between the com
put ati onal structure A used here and the one inplicitly
used in the quoted paper: the function R used in that pa-
per is defined only for sequences from M having nore than
one nmenber, and the value of R on such a sequence is equa
to its second nemnber
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reversed<t , ..., t >>=<t , ..., t >
Prove the 2a—conputability of this function in 3.
Hint. Prove the equality
reverse =L -[o, null oR]doH(e, IM),

where o =TCapndl - TICLR, LD, tl -« R> (for the neani ng of
Lo, x14>» cf. Exercise 2.6).

3. Let ¢ be a function UA—conputable in B. Prove the
A—conmputability of the function age in B.

Hint. Prove the equality
ap=L-tl0o, null oR]doH(ﬁ, reverse),
where o =TcCapndl - TICpLR, LD, t] -« RD.

4. Let ¢ be a function U—conputable in B. Prove the
A—conmputability of the function /¢ in B.

Hint. Prove the equality
[ p=Lelo, null oR]doH(L, tl >-reverse,
where o=TC(pIC(LR, LD, tl - R>.

5. For each non-zero natural nunber i, let il and ir
be the el ements of ?p(M) determ ned by the condition that

domc¢il > and domcir> consist of all finite sequences of

at least i elenments of M, and, for each such sequence s,
the values il¢s> and ird¢s> are equal, respectively, to
the i —th menber of s fromthe left and to its i —th

menber fromthe right.20 Prove the 2a—conputability of the
functions il and ir in 8.

6. Let tlr and apndr be the functions determ ned by
the equalities
tlrc<s>>=9g, apndrc<g, s>>=<s>,
tlr(<t1, cees T 83 =<t L, >,
apndr(<<t1, cees U >, 830=<t ., , 8>
and by the condition that tlr and apndr are defined only
for such types of objects which are indicated in the left-
hand si des of the corresponding equalities. Prove the 2a—
conputability of the functions tlr and apndr in 3.

7. Let the functions rotl and rotr be determ ned by
the equalities

rotl ¢cgd>=rotr (@>=9,

20Backus denotes the function il si nmply by i.
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rotl (<t1, ...,tk>):<t2, ...,tk,t1>,
rotr(<t1, ...,tk>):<tk,t1, ..

s t >
> T k—

and by the condition that domcrotl > and domcrotr > consi st

of all finite sequences of elenents of M. Prove the 2aA—

conputability of the functions rotl and rotr in 3.

Hint. Prove the equalities
rotl ==cnull, @, apndr - Ictl , L>)D,
rotr ==Cnull, @, apndl - TICR, t1r D).
8. Let not be the elenment of ¥ _(M> determ ned by the

equalities domcnot>={t, f}, not ct>=f, not ¢(f>=t. Prove
the U—conputability of the function not in &.

H nt. Prove the equality not :Z(IM, F, TO.
9. Let and and or be the el enents of ?p(M) de-
2

term ned by the equalities domcand>—=domcor>=4{t, f}",
andd<t, t>>=t, andd<t, f>>=andd<f, t>>=andd<f, f>>=1F,
or ¢(<f, f>>=Ff, ordc<f,t>>=o0rd<t, f>>=o0r d<t, t>>=t.
Prove the 2a—conputability of the functions and and or

in B.

Hint. Prove the equalities
and ==cnul |l -tl -tl, ¢, 0D,

or =3cnull =tl «tl, ¥, o),
wher e
p=3CL, =(R, T, F>, =(R, F, F>),

Yy =3CL, (R, T, TO, (R, T, F>),
and o is the elenent of ?p(M) whose domain is enpty.

5. Conputability of multiple-valued functions
wWith respect to a given conputational structure
G ven a set M, we shall denote by F M t he set of
all binary relations in M, i. e. the set of all subsets of
M®. The el enents of F M wi |l be regarded as unary nul -
tiple-valued functions in the follow ng sense: if peF (M

and ueM then the values of ¢ at u wll be, by defi-
nition, those v in M which satisfy the condition

<u, v>egp. ldentifying the unary partial functions in M
with their graphs (i. e. adopting the equality

¢ ={<U, pCud>: uedomgp}
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for peg M>), we shall regard themas el enents of the
above defined set F M. Qobvi ously, the above definition of

values is in agreenent with this identification. O course,
t he operation of conposition in F M whi ch naturally ex-

tends the corresponding operation in ¥_.<(M>, will be defined
as follows: if 0> YeF (M t hen P

pyY=4{<u, w>: Jvi<u, v>ey & <V, W>epd}

(i.e. @y is the usual conposition of the binary relations
y and ¢),
Suppose now a conputational structure Au=<M,J, L, R,

T, F, H> is given. Then natural extensions of the uU—
conbi nation and the A—iteration from ¥ _<(M> on F oM

are the operations defined as follows: for all ¢, y, 0, x
in ¥ (M),
m
nCp, Yo ={<u, w>: IsJt<u, s>ep & <U, t>ey &

and <u, w>elo, 1 iff there is a finite sequence Vg V
> Vo of elenments of M such that

(1) Vo=U & Vm:W& Vj (<v. , true>eHy &
j <m

1’

<vj , vj +4°€00 & <V o fal se>eHy,
where Hyxy={<u, p>: Jvi<u, v>ex & HvO>=pd}. Also U
branching will be defined in F M. This will be the ter-
nary operation % defined as follows:

SCx> @, YO =4{<U, W>: <U, true>deHy & <u, w>egp V
<u, false>eHy & <u, w>ey}.

A |l east-fixed-point characterization of iteration in
F M is contained in the follow ng

Proposition 1. Let o, xeF (M. Then the equality
lo, 1 =%Cx, Lo, x10, IM)
hol ds. More generally, for each p in F M the equality
plo, x1=3%Cx, plo, x1o, p>

hol ds, and prlo, x1 is the |east elenent <t of ?m(M)
sati sfying

(2) T23Cx, TOo, pD.
Proof. Let
a={<U, V>: <U, true>deHy & <u, v>ec},
B=4{<u, v>: <u, false>eHy & <u, v>ep}.
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Then =Cx, to, pd>=7taup for all T in ?m(M). It is known
(cf., for exanple, Blikle [1971]) that the el ement

> (o2 @) m (o2 @) m
Ba =Bl a = Ba
m=0 m=0
of ?m(M) is the |l east solution of the equation T=tauUp

and of the inequality T=2taup. Thus Ba™ is the |east
solution of the equation tT=3=Cx, to, p> and of the ine-

quality (2). On the other hand, <u, v>ega™ iff there
are an elenent w of M and a sequence Vos Vys ooon Vo of
el enents of M such that

(3) V,=U &j‘:’]m(<vj ,Vj+1>€oc) &vmzw& <W, V>eR.
After taking into account the definitions of « and g, we
see that (3) is equivalent to the conjunction of (1) and

*
<W, Vv>ep. Hence Ba =plo, X1 g

Remark 1. The given definitions of iteration and branch-
ing use only the conmponents M and H of <u. Thus we could
consi der such operations in every situation when a set M
and a partial predicate H on it are given. Cbviously, the
above proof and hence the proven proposition renmain valid in
such a nore general case.

Now we shall define the notion of relative conputability
of elenments of F oM with respect to the given conputa-

tional structure u. The definition will be quite simlar to
the corresponding definition for el enments of ?p(M).

Definition 1. Let B be some subset of F M. The
el enents of F(M> A—conput able in B (conmputable in B,
for short) are those el enents of F M whi ch can be gener-

ated fromelenents of {L, R, T, FfuB by neans of conpo-
sition, U-—conbination and U—iteration.

As before, if ¢ is conputable in 8, and each el enent
of B is conputable in B8 then ¢ is conputable in 8. In
the case when B is a subset of ?p(M), t he el enents of

F,(M> conput able in B are exactly the same as the el -
enents of ?p(M) conputable in 8. In particular, | and

M
the enpty relation are el enents of F M which are a-—

conputable in @. As before (cf. Exercise 1 below), the el-
enment =Cx, ¢, ¥> is always U—conputable in {x, ¢, y};
hence including = as an additional generating operation in
t he above definition of conputability would not enlarge the
set of the el enents of F M whi ch are 2a—conputable in
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B. Again, one could ask whether sone other reasonable ef-
fective constructions in F oM coul d, however, enl arge

this set. And again, it will be shown in this book that in
sone sense such other constructi ons do not exi st.

W coul d al so define ua—conputability for operators in

?p(M).

Definition 2. Let BSF (M, and et T be a mapping of
(?m(M))I into FM, where | is sonme positive integer.
Then T is called (an operator) u-—computable in 8 (com
putable in B, for short) iff, for arbitrary Uy o oos Y in
FM, there is an explicit expression for TCYy s -vvs YD
through L, R, T, F, Uy o oos Y and el enments of 8 by neans

of conposition, A—conbination and 2A—iteration, the form
of the expression not depending on the concrete choice of

v, ...,wl.
O course, the above definition can be fornul ated nore

precisely using induction. We omt the correspondi ng formnu-
| ati on.

Exer ci ses

(I'n all these exercises, a conputational structure
U=<M,J, L, R, T, F, H> is supposed to be given,
t he correspondi ng set F M is denoted by ¥, and
the functional relation INI is denoted by 1)

1. Prove the statenents of Exercises 2.2, 2.6 and 2.7
for the case when ?p(M) is replaced by F=F, (M.

2. Prove that ¥ is a semigroup with respect to conpo-

sition, and | is a unit of this semgroup (this neans that
¥ is closed under conposition, conposition is associative
in ¥, and the equalities 1 e=6l =6 hold for all e

in ).

3. Prove that conposition, a—conbination, Uu—branching
and UA—iteration are nonotonically increasing operations in
F with respect to the partial ordering of ¥ by inclusion.

4. For all ¢, ¥y, 6, % in ¥, prove the equalities
SCT, @, y>=9¢, =CF, ¢, YyO>=1y,
83C(x> > Y2 =3Cx, 69, BYD
(conpare with McCarthy [1963]).

5. For each s in M, |let s be the constant function,
assigning the value s to all elenments of M. Let © be
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the set of all elenments of ¥ having the form s, where
seM. Suppose ¢ and y are such elenents of ¢ that
px=2yx for all x in € Prove that ¢2>y.

6. Let & be the sane as in Exercise 5. For all x and
y in &, prove that T(x, y> also belongs to ©, and the
equalities LT(Xx, y>=X, RI(x, y>=y hold.

7. Let € be the sanme as in Exercise 5. For all ¢, v,
x> 6 in ¥ and all x in &, prove the equalities

IMCp, YOIX =TCPX, YXd, 2ZCx, P> YIX=ZCxX, X, YXD,
MCpX, | De=TCpX, 6>, T, yx>6=TCH, YyXxD
Cl, pX, YX20=3C0, X, YXD.

8. Let ve¥. Prove that 1dl, | >e=1¢Ce, 6> iff

ey (M.
Y

9. Let o, x, p be arbitrary elements of FM, and | et
T,=plo, x1. Suppose K is a subset of M such that vekK

for all <u,v> in ¢ with ueK, and Tt is an el enent of
?m(M) such that ©T23Cy, to, p>Nn(KxM>. Prove that

tztom(KxM).

6. The recursively enunerable binary relations
considered as nultipl e-val ued functions

In this section, an application of the notion of conput-

ability in F M will be made, which will be simlar to
the application of the notion of conputability in ¥ _(MD,
made in Section 3. Nanely, a characterization will be given

of the recursively enunerable binary relations as the el -
enents of F (N A—conputable in B, where A is a cer-

tain conputational structure whose carrier is N, and B is
a certain finite subset of F (D

Let Au=<N, J, L, R, T, F, H> be a standard conput ati onal
structure on the natural nunbers in the sense of Section 3
(in particular, u could be the conputational structure
fromExanple 1.1). Let the denotations S and P have the
sanme neaning as in Section 3 (nanely, S=au.u+1,
P=au.u=1). Let | =1y - Bef ore formul ati ng and prov-

i ng anal ogues of Theorens 3.1 and 3.2, we shall indicate a
way for reducing sone problens about nultiple-val ued func-
tions to problens concerning partial functions.

Lenmma 1. For arbitrary ee¥, let ACe> be the re-
striction of the function R to the set
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{uedomL NdomR: <L<Cu>, RCud>>eo}.
Then each of the elements e and ACe> of ¥ can be gen-

erated fromthe other one and L, R, S, P, N° by means of
finitely many applications of conposition, J-—conbination
and iteration.

Proof. It is easy to check that the follow ng two equal -
ities hold:

6= ACOOTICI , N°>, ACE> = ACl DTICeL, RD.

Since ACl> is a partial recursive function, Theorem 3.1 and
the remark after that theoreminply that ACl> can be gen-
erated from L, R, S, P by neans of finitely many applica-
tions of conposition, J-—conbination and iteration..

Now we shall fornmul ate the anal og of Theorem 3. 1.

Theorem 1. The recursively enunerable binary relations
in N are exactly those el enents of F (N, which are a-—

conputabl e in the set {S, P, N°}.
Proof. Clearly, all elenents of F (N, A —comput abl e

in {S, P, mz}, are recursively enunerable relations in NN.
For proving the converse statenment, consider an arbitrary
recursively enunerable binary relation ¢ in N. Let ACpD
be the corresponding partial function defined as in Lema 1.
Since ACp> is partial recursive, Theorem 3.1 shows that
ACp> is U—conputable in the set {S, P}. Nowit is suffi-
cient to apply the Ienna..

Remark 1. The exercise after Section 3 shows that we
could formul ate the above theoremw th {P,[Nz} i nst ead of
{S, P, N°}.

Remark 2. An inspection of the proof of the above the-
orem shows that each el enent of F (N A—conmput able in the

set {S, P, mz} can be represented in the form smcl, N,
where & is sone elenent U-—conputable in the set {S, P}

A certain generalization of the above theoremw || be
t he anal og of Theorem 3.2. The generalizati on concerns enu-
nmeration reducibility of binary relations in N (for the
definition of this notion, cf. Rogers [1967, Section 9.7],
where the enuneration reducibility of a subset of IN to
anot her one is considered, and it is obvious how the defini -
tion could be generalized in order to consider reducibility
to several relations).

Theorem 2. Let Uys oo P €F (N, Then the binary

relations in N enuneration reducible to Uy s Yy are



6. REC. ENUVERABLE RELATIONS AS MULTI PLE- VALUED FUNCTI ONS 27

exactly those el enments of F (N whi ch are 2a—conputabl e
in the set {S, P, N°, Uy oos ¥

Proof. Again only that part of the proof needs to be
exposed, where one has to show that each binary relation
enuneration reducible to Uy o os Y is U—conputable in

t he above set. Suppose peF LN, and ¢ is enuneration re-
ducible to Uyo oo Y It is seen fromLemma 1 that e and

ACe> are nutually enuneration reducible for each ee¥.
Since enuneration reducibility is transitive, it follows
that ACp> is enuneration reducible in ACY, D5+ o5 ACY, D,

But ACep> and ACY, D, ..., ACY D> are partial functions.
Therefore ACp> is partial recursive in ACY, D5 -5 ACY, D,

From here, the existence of a two-argunent function h fol-
|l ows which is u—recursive in ACY, D5 .+ o5 ACY, D and satisfies
the condition

VUVV CACPICUD =V &> TJtchcu, t > =VvDD.

In the case when | =1, this follows fromLema 5 in Skordev
[1973, pp. 164-165], and the general case can be consi dered
usi ng the correspondi ng strai ght-forward generalization of
the nentioned | erma. Consider now the unary function

x=2aU. hCLCu>, RCudD.
It is also u—recursive in ACY, D5 s ACY, D Therefore (by
Theorem 3.2) x is U—conputable in the set {S, P, ACY, D,
- A(wl)}. Since hdu, t>=xJCu, t>> for all u,t in N,

the equality ACpd>=yxT(l, N®> holds. This, together with
Lemma 1, conpletes the proof..

A uni formversion of the above theoremis also true. It
concerns enuneration operators (for the definition of this
notion, cf. Uspensky [1955], where such operators are called
conmput abl e operations, or Rogers [1967, Section 9.7]). Let a
mappi ng I of (?h{m))l into F (N be given. Then I is an
enuneration operator iff T is UA—conputable in the set

{S, P, N°}.

Exerci se. Prove that WN° in Theorens 1 and 2 can be
repl aced by INx{0, 1}.

Hint. Prove the equality N°=1rS, Nx{0, 1}1F.
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7. On the notions of prime and search conputability

(I') Arecollection of definitions. Mdschovakis [1969]
i ntroduced the notions of prine and search conputability
whi ch generalize the notion of conputability for the case of
an arbitrary object domain. W shall recall here (up to un-
essential technical details) the fornulations of sonme defi-
nitions fromthat paper.

Let B, O and B° be such as in Exanple 1.2, i.e. B
is some set, O is some object not in B, and B° is the set

Bu{O}. A set B is defined by the followi ng inductive
cl auses:

(i) if ueB® then ueB*;

(ii) if s,te<B* then <s,t><B",
where the definition of ordered pair is chosen in such a way
that no element of B° is an ordered pair (i. e. B* is the
set M fromthe exanple in question ). If A<B* then A*

is, by definition, the | east subset X of B cont ai ni ng
Au{O} and satisfying the condition

VSV (<s, txeX &= seX & t eX0. %t

The natural nunbers 0, 1, 2,3, ... are identified with
the elements O, <O, O>, <<0O, O>, O>, <<<0O, O>, O>, O>, ...

of B”, respectively.

Mappings L and R of B*into itself are defined as in
t he exanpl e nentioned above, i. e.by the conditions

Lc0>=Rc0>=0,
LCud>=Rcu>=1 for all u in B,
L¢ss, t>>)=s, Rss,t>>=t for all s,t in B>

(as we pointed, Mschovaki s denotes these mappings by =
and s, respectively).

If u,...,ueB¥ then «u. , ..., u>» is an abbreviation
1 m 1 m

2L The definition of A* gi ven in Mdschovakis [1969]
sounds somewhat differently, but it is equivalent to the
present one. In the special case when A=B, this |east

subset is obviously B*, hence the above definition does not
cause inconsistency in the denotations.
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for <m, <Ug 5 <Uy s -es <UL, 0>...>>> (in Mschovakis
[1969], this elenent is denoted by <Uys ooes US>, but in the

denotation of ordered pair, round brackets are used in that
paper) .

Suppose now sone partial nultiple-valued functions v, »
s Y in B are gi ven, z/;j bei ng nj—aryfor i =1, ...,
1.%%2 v are going to describe now an index construction used

by Moschovakis for defining the notions of prine and search
conputability. For the definition of prime conputability, a

partial multiple-val ued operation {e}<a,»---> 9> fromel -
*

ements e, q,,---, 0 of B* into B* is defined by means of
the follow ng recursive definition (here and further in this

section, the letters e, g, h, g, r, s, t denote el enents of

B*, and the letters j > k, mn denote natural nunbers):

0) if 1<j<l then

{«0, nj +m, J>>}(51, o, snj , ti’ R, tm)zl/jj(si, o, snj);

1) {«1, n, F»}Ca s - 4 2=r;

2) {«<2, mt1»}cCs, t_, .., t 2=s;

3) {@, mt2»}Cs s 5,5t 5.5 T =<5 ,5,>]
40) {«4, m+1, O»}Cs, t_, ..oy tm)::L(s);

4,) {4, m+l, I>}Cs, t ..., t p=R{sO;

22\ treat an n—ary partial multiple-valued function
Y oin B* as a subset of ¢B*>"™, the val ues of Yy at
<Sy 5 s 5> being all objects r satisfying the condi-
tion that <Sy s s S [ bel ongs to y. This point of

viewis only formally different fromthe one in Mschovakis
[1969], where an n—ary partial nultiple-valued function

Yy in B J s a mapping of ¢B*>" into the set of all sub-
sets of B . (The set of all values of y at <S5 s 8>

wi |l be denoted by Yls, > o5 505 and in the special case

when this set consists of a single elenent, that el enent
wi |l be al so denoted by Yls, 5 s sn)). Let us nention that

denot ati ons N i nst ead of Uy --s ¥y are used in
Moschovaki s [ 1969].
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5) {5, m g, »}pct , ..., t o=

(- RS T RS SRRV R SRR e ¥

12
6, if s<B° then

{«6, m+1, g, h»} (s, tys>--» . 2={0g}¢Cs, t

61) {«6, m+1, g, h>>}(<51, S,> 1,5t D=

{h}{«6, m+1, g, h»}cs ,t , ...t

{«6, m+1, g, h»}cs_ , t , ...t

t

52,t

1)"')tm);

1""’
7) whenever k<n, then

{<<7) n) k) g>>}(q1)"') qk) qk+1) qk+2) R ] qn):
{930,955 A > Ay > o> A2
8) {8, k+mt+1l, k»}cCe, s , .., sty t D=
{e}ds , ---n 5 0.

k
For the definition of search conputability, an operation
{e}V(q1 > s OO i s defined recursively through replacing

of } by }V in the above definition and appendi ng the
foll owi ng additional clause:
9) {«9, n, g>>}V(q1,..., q,>=A{r: {g}V(r, dy > o qn)BO}.
Let ¢ be a n—ary partial nultiple-valued function in
*

B, and let A be sone subset of B”. The function o IS
called prinme conputable from A in Uy o oos Y iff there

is some e in A such that
9C0, 5> 0 >={e}<Cq, >--5 0 O

for all P in B". It is called search conput abl e

from A in Uy o os Y iff there is some e in A* such
t hat

eCq, 55> q >={e} <q -5 O
for all P in B*. The set of all partial multiple-

val ued functions in B* which are prime conputable from A
in Uy o oos Y and the set of all ones which are search

conputable from A in Yoo ---> Y are denoted by PCCA, v,
S YD and SCcA, Uy oo P s respectively. The el enments

of the sets PC(o, Uy ooes ¥y and SCcg, Uy -os YD are

call ed, respectively, absolutely prine conputable in v, »
s Y and absol utely search conputable in Uy ooes U
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(I'1) Prime and search conputability of one-argunent
functions and ﬂHB—conputabiIity. In the sequel, we shall

assune t hat Uy oos Y bel ong to ?nfB*), i. e they are

one-argunent partial nultiple-valued functions in B . This
is not an essential restriction since, according to Lemmas
22 and 32 in Moschovakis [1969], it is always possible to

repl ace a system Uy o oos Y of arbitrary partial nultiple-

val ued functions in B by sone Uy s s Y from ?nfB*)
satisfying the conditions

PCCA, s - s U >=PCCA, Y75 s ¥ 7,
SCCA, Y, » s W, 2=SCCA, Y,"5 « s 7.

Let <B*,J,L,R, T, F, H> be the conput ati onal struc-
ture Mg fromExanple 1.2, i.e. J=ast.<s, t>, the nmap-

pings L, R are the same as in Subsection (I), T=au.l1,
F=2au.0, and

. o]
Heuy — | true if ueB,
false if uek.

Let A<B™, and | et €y consi st of all constant single-

val ued functions whose domain is B* and whose val ues bel ong
to A. We shall prove now the foll ow ng two propositions:

Proposition 1. Al el enents of ?nfB*), whi ch are My —
conputable in CaU{Yy s -5 U s belong to PCCA, vy, , ces Y.

Proposition 2. Al elenents of ?nfB*), whi ch are My —
conmputable in CaL{Y s - s Yy s (B*)z}, bel ong to
SCCA; Y5 - vvs YD

Proof (of both propositions). W shall use sone of the
not ati ons whose neaning is explained in the upper part of
page 430 in Mdschovakis [1969]. For short, let us set

5, =PCCA, U, » s U 05 G, =SCCA, U, » 5 ¥ O
w =g (Bong , i =1, 2.
|

Qovi ousl y,
{L, R, T, Frue, u{y, > ..., Y }SH ,

*x 2
(LR, T, FhUG Uy, > - >y » (B OP)en,.

By nmeans of Lemmas 2, 17 and 26 in Mschovakis [1969] it is
easily shown t hat ®, and ®, are cl osed under conposition
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and me—con‘ni natiion. The proof will be conpleted if we

succeed to show t hat ®, and ®, are cl osed al so under fIIIB—
iteration.

For uniformty in the denotations, we set
¢, <€, 0, 5> g 2={r: {e}dq,, .-» q I=r},
¢, Ce, a5 -5 q >={r: {e} <q,, ..., qO>r}.
Let o and x belong to ®o» where i =1 or i =2. W shall
prove that (o, x1 also belongs to K . Denote by o the
function av.<L<vD, <RCvD, 0>> (having the property that
al<Vv, k>>=<v, k+1>

for all v in B and all natural nunbers k), and consider
the partial multiple-valued function of three variables ¥
which is defined by the equality

<v, 0> if s eB°,
oc(cbi ce, oCvDDD ot herw se.

It is easy to see that v<G, (to do this, we nake use of
the equality

¥(<S, > S,>, €, VO=BCy(s_, e, V), y(<s_, €, Vv, t ,t_,e,v),
where B is the partial nultiple-valued function of six
vari abl es which is defined by neans of the equality

BCS,»S,>1,,1,,8€,Vv>=ald (e, aCv>D)).
Then the partial nultiple-valued function aev. y(x<v), e, v

(s, €, V):{

S

al so belongs to g - This allows an application of the re-

cursion theorem from Moschovaki s [1969] given by Lemma 21 in
the case when i =1 or by Lemma 29 in the case when i =2.

Its application provides us with an el enent e, of A* such
t hat

(I>i (eo > VO =9y(xC(V)D, e0 > VD
for all v in B". W shall now show the equal ity
o, 7(](u):L(<I>i (eo, udd,
and this will conplete the proof.
Suppose welo, x1Cu>. By the definition of me—itera-

tion, there is a finite sequence Vg V Vo, of elenents
of M such that
V,=u & V=W &. ‘Z'Jm(<v. , truexeHy & <vj ) vj +1>60‘)

J & <V fal se>eHy.
According to the definition of H, the above condition is

12
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equi valent to the follow ng one:
Vo=U & V=W & Vi CxCv; 0\ B°+o & V5V, >0 &
j<m
x(vm)mBoq&@.
From here, using the definition of ¥, we conclude that
7(x(vj D, e0 s Vj )20(((I>i (eo » (I(Vj )))20(((I>i (eo » Vj +1))
for j=0,1,2, ..., m=1, and
y(x(vm), e, > V)9<Vm, 0>.
Hence
o Ce, Vj)ro((I)i ce, > vjﬂ)), ] =0,1,2, ..., m-1,
. Ce_,V O=<v _, 0>.
| 0 m m
Now an easy induction shows that
®Ce ,v_ DO=<v _, k>, k=0,1,2, ..., m
i o m k m

Nanely, if k<m and <v_, k> belongs to & c¢e_,v_ D,
t hen m i o m k

<V _, k+1>=al<v_, k>Dea(d. Ce_, V
m m | (8] m
In particular,

20<d.Ce , V .
| o}

k m k-1

d.Ce_, V. DOs<V_, M>.
| 0 0 m
Consequent |y,
W=V < L((I)i ce, > vo)):L(cbi e, » ud.
Conversely, we have to prove that
L((I)i (eo, ud>><tlo, ¥1Cud

for all u in B*. For each element r of B*, | et us define
a natural nunber Iri (the conplexity of r) in the

following way: liri=0 for all r in B°, and

. *
||<r1,r2>||:||r1||+||r2||+1 for all ry>r, in B™.
Qur goal will be reached if we succeed to prove the foll ow

i ng statenent: whenever red Ce , ud, then L{rDoelo, x1CuD.

This statenent will be proven by induction on the val ue of
irii. Suppose r<d ce , ud. Then r eyCxCud, €,» UD. Hence

rey(h,eo, u> for sone h belonging to xcu>. If heB°,
then r =<u, 0> and Hy=<u, false>; consequently,
SCx, [0, 10, IB*)9<U, u>

and therefore, by Proposition 5.1, (o, x1=<U, U>, io. e.
Lcr>=uelo, x1Cu>. Consider now the case when h«B". Then
Hx=<u, true> and reoc(q)i(eo,o(u))), i.e. r=oualrd,
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ifeéi(eo,'ﬁ)) and Ueocu> for sone r and U in B*. From

the definition of «, it follows that 1lurun>iri, and hence
we may assune that Ld{r>elo, x1Cu>. But then we see that
Lr>=Ldrd>elo, x10Cu>, and consequently

>Cx, Lo, x10, IB*)9<U, LCr D>,

By Proposition 5.1, it follows that (o, y1=<u, L{ro>>, i. e.
L¢cr>elo, x1Cud again..

Remark 1. In the above proof we used Proposition 5.1
only partially, since the inclusion

lo, x123Cx, [0, ¥10, IB*)

is sufficient for the application of the proposition in the
proof. On the other hand, that proposition gives a |east-

fi xed-poi nt characterization of iteration, and such a char-
acterization suggests another way of proving Propositions 1
and 2 above, nanely by application of the First Recursion
Theorens for prime and for search conmputable functions. For
the case of search conputability, the First Recursion The-
oremis formulated as Theorem 2 in Mdschovakis [1969], but
its assunptions there include the superfl uous one that

Yoo ---> Y are totally defined and single-valued. As to

the case of prine conputability, the validity of the First
Recursi on Theoremis noted in Remark 11 of the sane paper
(without explicit listing of the assunptions needed for the
proof) .

O course, the converse statenents of Propositions 1 and
2 are not true, since PCCA, Uy ooes ¥y and SCcA, Uyo oo

Y, O contain functions of arbitrary number of argunents.
However, if we replace PCCA, Uy ooes ¥y and SCcA, Uyo oo
Y, > by ?m(B*)mPC(A, Wy o> ¥ > and ?m(B*)mSC(A, v, >

S Y s respectively, then also the converse statenents

of Propositions 1 and 2 are valid. This fact will be proved
in a natural way in Subsection (lIIl1) of Section Ill1.5 on the
basis of results fromthe general theory which we are going
to present. W note that a direct proof of the same fact is
given in the previous version Skordev [1980] of this book,
but that proof is quite a long one (nore than el even pages).

The above nentioned conversion of Propositions 1 and 2

will give a characterization of the classes ?nfB*)rw
PCCA, y, > > ¥, > and ?m(B*)mSC(A, Uy ooos > (for
the case when y,, ...,y are unary), which is nuch nore

sinpler than their characterization in Mschovakis [1969].
Since prinme and search conputability in/of functions of sev-



7. ON THE NOTIONS OF PRI ME AND SEARCH COWMPUTABI LI TY 35

eral variables are easily reducible to prinme and search com
putability in/of corresponding one-argunent functions, the
details about the number of argunents could be consi dered
not very essential, and we could just say that a consider-
able sinplification of the definitions of prine and search
conputability will be reached by means of the nentioned con-
ver si on.

Remark 2. The presented proof of Propositions 1 and 2
essentially uses (via the recursion theorem the eight
clause of the definitions of {e}cq ., ..., q,” and

{e}, <a,> -5 0,2 On the other hand, as noted in Remark 8

of Moschovakis [1969], that clause is superfluous in the
definition of {e}, <, > q,, at | east in the case when

Yoo ---> Y are single-valued and total. Therefore a proof

of Proposition 2 not using that clause is desirable. For
such a proof, cf. the exercise below Note that simlar

t hi ngs can be done also in the case of Proposition 1, but in
this case one nmust conpensate the renoving of the eight

cl ause by a clause concerning u—operation (cf. Remark 10

i n Moschovakis [1969]).

Exercise. Prove Proposition 2 in the case of a defini-
tion of {e}V(qi,..w q,> not i ncludi ng the eight clause.

H nt. To show t hat ®, is closed under me——iteration,
suppose o and x belonging to ®, are gi ven, and show t he
exi stence of functions 6, and o, in SC(A,¢H, ces Y s
with the foll ow ng properties:

6,¢s, u>=u for all s in B
6,(<S,» S,>, U>=0Cg, (s, , UD,

r if s e B°,

6,¢s> r):{z ot her wi se.

Then prove the equality

Lo, x](u):83(80(82(u), uz>,

2
and 6, =2ar.e xcrd, ro.

wher e 92::(8*)

8. Conputability in the case of
unproductive term nation taken into account

The intuitive idea behind our considerations up to now
was connected with characterizing of conputational proce-
dures by their input-output relations. Suppose a set M is
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gi ven. Then, given a conputational procedure transform ng
elenents of M into elenments of M, its input-output rel a-
tion consists of all ordered pairs <u, v> such that wu

can be transfornmed into v by neans of the given procedure.
This relation surely belongs to FM, and it belongs to

?b(mf) in the case, when the given conputational procedure
is a determnistic one.

When conput ati onal procedures are characterized by their
i nput -out put relations, then no distinction is made between
cases when the conputational process never term nates and
ones when this process termnates without yielding a result.
However, the difference between these cases is an inportant
one fromthe point of view of practice. Therefore it is
natural to look for some nore detail ed mat hematical charac-
terization of conmputational procedures, which takes al so
this difference into account. Such a characterization wll
be consi dered now. The characterization will be based on
considering a set E, whose el enents can be regarded as er-
ror nmessages, and on the convention that unproductive term -
nation of the application of the procedure to the el enent
u transforms u into some el enent of E.23

Suppose E is sone fixed set having no common el enents
with the set M. Then we shall consider sets ¥ (M, E>D and

F M E>, defined as follows: ¥ (M, E> is the set of al
partial functions ¢ such that domp<mM and rnge<MUE,

28 There is al so another intuitive interpretation of the
el enents of E, nanmely as sorts of failures which may arise
during computation. Wien using this interpretation, we my
adopt that the rise of a failure during the application of
the procedure to an element u of M transfornms u into
the elenment of E corresponding to the concrete failure. It
is not obligatory to assunme that the rise of a failure nec-
essarily causes unproductive term nation - the conputation
coul d sonetines go on and lead to sone (possibly incorrect)
result (also nore than one failure could arise during the
course of a certain application of the procedure). This in-
tuitive interpretation of the elenents of E is suggested
by an idea of S. Nikolova arisen in joint work with |I. Soskov
and expressed and used by her in 1988. The idea is to char-
acterize a conputational procedure by the ordered pair con-
sisting of the correspondi ng input-output relation and the
set of those elenents of M which, taken as input val ues,
are safe with respect to rise of failures during the appli-
cation of the procedure (for the respective technical de-
tails, cf. Exercise 3 after this section).
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and F M E> is the set of all subsets of the Cartesian
product Mx(MUED. Cearly, ?p(M, E> is a subset of

F M E> (note also that ¥ (M>=9% (M, &)< ?p(M, E> and
FMI=F (M, G><F (M, E>). The conposition ¢y of two
elenents ¢ and y of ¥ (M, ED will be defined as the uni-

on of their usual conposition and the relation yndrMxBE>,
i.e.

eY ={<u, w>: Jvi<U, V>ey & <V, W>epd V
<u, Wwey & WEE}

Qbvi ously, ¢eyeg (M, E>D whenever ¢ and y belong to
F o2, ED. P

Suppose now a conputational structure Au=<M,J, L, R,
T, F, H> is given, where, for the sake of sinplicity, the
predicate H is assuned to be total. Then we shall define
al so aA—conbination, A—-branching and U—iteration in
F M E>. The following definitions can be intuitively no-

tivated in the spirit of the footnote concerning the defini-
tion of conposition in F M E>:

MCp, YO>=4{<U, W>: IseM(<U, S>ep &
(At eM<U, t>ey & J(S, tDO=W V <U, Wey & web) v
<u, Wwxep & webd},

>Cx> @5 Y =4{<U, W>: <U, true>deHy & <U, W>ep V
<u, false>eHy & <u, w>ey VvV <u, w>ey & wekE},

and <u, w>elo, 1 iff there is a finite sequence Vgr Vo
> Vo of elenments of M such that

(D) V,=U & Vi (<vJ true>eH%&<vj ,vj+1>eo)&
j <m
(<vm, false>eHy & V=WV (<vm, wW>ey V

<V s trued>eHy & <V wWw>eod) & web)D,
where Hxy={<u, p>: JveM(<U, V>eyxy & HvO>=p>D}. Again it

is easy to see that ¥ (M, ED> is closed under the introdu-
ced operations. P

24 The intuitive notivation for including yndMxED
into oy is the following: ¢y mnust characterize the
procedure consisting in consecutive execution of the proce-
dures characterized by y and ¢, but unproductive term na-
tion of the execution of the first of these two procedures
i nplies that unproductive term nation of the consecutive
execution of both is present, and the error nmessage is the
sane one.
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Froma purely mathemati cal point of view, the above
definition of iteration |ooks sonewhat nessy. However, the
iteration again has a | east-fixed-point-characterization as
in the previous situations we considered.

Proposition 1. Let o, xeF (M, E>. Then the equality
lo, 1 =%Cx, Lo, x10, IM)
hol ds. More generally, for each p in F M E> the equal -

ity
(2) plo, x1=3Cx, plo, x10, pd

hol ds, and prlo, x1 is the |east elenent <t of ?m(M, B>
sati sfying

(3) T23Cx, TOo, pD.

Proof. For each T in F M E>, let t° be the el enent
’CU|E of ?m(MuE). Then the mapping at.t" s injective,
and T, 21T, al ways inplies T, 21, For all o, x, Tt iIn
F M E>, the equality

(ZC(x, To, P22 =T AU
hol ds, where
a={<U, V>: <U, true>eHy & <u, v>ec},

B=4{<u, v>: <u, false>eHy & <u, v>ep Vv
<u, v>eyx' & VvekE},

and Tt a is the ordinary conposition of - and « as el-
enment s of F{MUED. Consi der now the equation T=t aUR

and the inequality T2t aupg Wth <t° ranging over
?m(MuE). Their |least solution is the el enent Ba*, whi ch

is the union of the elements go«™, m=0,1,2, ... (cf. the
anal ogous proof in Section 5). On the other hand, it is easy

to verify that ch*:(p[o, x1>’ . From here, using the prop-
erties of at. Tt nentioned at the begi nning, we concl ude
that the equality (2) holds, and plfo, x1 is contained in
each <t satisfying (3)..

Remark 1. If <t is defined as in the above proof then,
for all ¢ and y in F M E>, the equality dopyd =" y’
hol ds, where ¢’y is the ordinary conmposition of ¢ and
Yy'ooin ?m(MuE). Thi s suggests anot her way of treatnent of
the subject of this section: to consider
{peF (MUE>: oM E=I}
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with the ordinary conposition in it instead of F M B>

wi th the unusual conposition which we introduced. Roughly
speaking, this is the way used in Exanple 2 of Skordev
[1980a] for the case of E consisting of a single el enent.

A simlar situation is present also in Exanple 2 of Lukanova
[ 1986] (given previously in Lukanova [1978]), where, in es-
sence, the case corresponding to fprM, E> is considered

for such an E. Note however that only conposition turns
into the ordinary one when using this other way, while com
bi nati on, branching and iteration remain unusual (i.e. not
exactly of the type considered in the previous sections).

Havi ng conposition, conbination and iteration in
?pCM, E> and in F M E> at our disposal, we can define

relative conputability in ?pCM, E> and in F M E> in a
simlar way as in the previous sections.
Definition 1. Let ¥ denote ¥ (M, E> or F M B>,

and let B be some subset of ¥. The elenents of ¥ UA—
conputable in B are those elenents of ¥ which can be gen-
erated fromelenents of {L, R, T, Ffus by neans of conpo-
sition, U-—conbination and U—iteration.

At the present nonent, we shall not comment the introdu-
ced conputability notion in the general case, but we shall
denonstrate how things | ook in a natural special case. Name-
ly, we shall consider the case when E consists of a single
elenent, and 2« is a standard conputational structure over
the natural nunbers in the sense of Section 3, i.e. M=N,
J is arecursive function, L, R are partial recursive
functions, T=au.l1l, F=2au.O0,

true if u> 0,
WU):{fMSeif u=2~.

Theorem 1. Let E consist of a single elenent e, and
let u be a standard conputational structure on the natura
nunbers. Let 97::?paN,{o}), and let S and P be the el-

enents of # defined as follows: S=Axu.u+1,

u—21if u >0,
e if u=0.
An element ¢ of ¥ is UA-—conmputable in {S, P} iff <pm[N2
is a partial recursive function and the set {u: <u, e>eg¢p}
i's recursively enunerable.

Proof. Let # be the set of all ¢ in ¥ such that

wmmz is partial recursive and {u: <u, e>eg} iS recur-
sively enunerable. Qobviously, {L, R, T, F, S, P }<#, and it
is easy to verify that # is closed under conposition, A—

P (u):{
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conbi nation and U—iteration. Consequently, all elenents of
F U—conputable in {S, P} belong to #. So it remains to
prove that all elenents of # are U—conputable in {S, P }.

Let ¢ be an arbitrary elenent of #. Denote by y the
el enent of ¥ defined as foll ows:

~ [0 if pCud> =oe,
'[’(U)_{go(u) +1 ot herw se.

Then y is a partial recursive function. By Theorem3.1, y
is U—conputable in {S, P}, where P=axu.u=1. Since com
position, 2aA-—conbination and U—iteration in ¥ _CN> are re-

strictions of the corresponding operations in ¥, it follows
that y is uA—conputable in {S, P} also as an el ement
of #. On the other hand, again in ¥, we have the equality

=P y. Hence ¢ is an elenent of ¥ <U—conputable in
{S, P, PP}. Thus it is sufficient to prove that P is uU-—
computable in {S, P}, and this can be done by neans of the
equality P=LrucPL, F>, Rl ncl I[N)..

Exer ci ses

(in all these exercises, a conputational structure
AN=<M,J,L,R, T, F, H>, where H is total, and
aset E wwth MnE=9o are supposed to be given)

1. Prove the statenents of Exercises 2.1, 2.2, 2.6 and
2.7 for the case when ?p(M) is replaced by F M B>.

2. Show that conposition, 2—conbination, 2A-—branching
and UA—iteration in ?m(M, E> are extensions of the corre-

spondi ng operations in F M. Prove that the statenents of
Exercises 5.2-5.6 remain valid with F=97,(M, E>. Prove the

sanme for the statenment of Exercise 5.7 with the equality
mcx, | D6 =Tdx, 6> instead of TCpx, | >e=TCpx, 6>. Under
the assunption that E is non-enpty, construct a counter-
exanple to the equality TCpx, | D6 =TCpXx, 6>. Show t hat
such a counter-exanple is not possible if the set E has
only one elenent and the requirenent domp—=dome—=M is im
posed (but {te¥ a{Ms B> domt =M} is not closed under
Iteration).

3. Let E={e}, and let ¥ be the set of all ordered
pairs <f, A>, where fe¥ a2 and A< M. Let conposition,

conbi nati on and branchi ng in ¥ be defined in the foll ow ng
way:

<f, A><g, B>=<f g, {ueB: Vv {<u, v>eg = veAd}>,

nc<t , A>, <g, B>> =<Tcf, g, {ueA: Jvi<u, v>efd =
ueB}>,
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=¢<h, C>, <f, A>, <g, B>>=<3Ch, f, g5, {ueC:
(<u, truedxeHh = ueA> & <u, false>eHh = ueB)}>,

where f g, 1df, g>, =ch, f, g> and Hh are understood in
the sense of Section 5. Let iteration in ¥ be defined by
the equality

(<f, A>, <h, C>1=<tf, hi1, D>,

where (f, hl1 is understood again in the sense of Section 5,
and D is the set of all elements u of M satisfying the
foll owi ng condition: whenever Vg V Vo, is afinite

sequence of elenments of M wth theiproperty t hat
V,=u &:V](<v.,true>eHh &'<W ,vj+1>ef),
j <m
t hen vmeC:8<(<vm,true>eHh::$ vmeA).
dering in ¥ be defined by the equival ence

<f, A>=><g, B> & f 2g & A<B.

25 et partial or-

Now define a mapping & of ¥ into F M E> as follows:
<t , A D=FfudccM\ ADxBED

for all elements <f, A> of ¢. Prove that & is an one-
t o- one correspondence between ¥ and F M E>, and this

correspondence is an isonorphismw th respect to conposi -
tion, conbination, branching, iteration and partial ordering
(i.e.

BCo YD =BCPIICYD, CTCp, YOO =TI pD, TCYDD,
BCECxs 9> YOI =SCBCxD, BCPD, dCYDD,

25The above definitions of conposi tion, conbination,
branching and iteration in ¥ are in essential definitions
given by S. Nikolova in 1988. The definitions of conposition
and branching replay, up to unessential details, the corre-
spondi ng definitions adopted in Exanple 4 of Skordev [1976 b]
for the elenments of a certain subset of ¥, and the oper-
ation 1 defined above is an extension of the operation T
fromthe nmentioned exanple (see also Exercise I1.4.13 in the
present book). That exanple, however, corresponds to a quite
different intuitive interpretation of the second nenbers of
the ordered pairs belonging to the subset in question, and
the corresponding iteration (studied in Skordev [1980, Chap-
ter I'll, Section 3.2, Exanple 11]; cf. al so Exercises
[1.4.17 and 11.4.18 in this book) turns out to be quite
different fromN kolova's iteration.
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(L, x12=03Cpd, d(xO1, =y & dC(pd =23y,
for all ¢, ¥y, x in F).

4. Let the set ¥ and the operations conposition, com
bi nati on, branching and iteration in it be defined as in the
previ ous exercise. Let | be the elenent <I Mo M> of .

G ve direct proofs (not using Exercises 2 and 3 above) of
the statenments of Exercises 5.2-5.4. After changing the
definition of € in Exercise 2.5 by setting € to consi st
of all pairs <s, M> with seM, give such direct proofs
al so of the statenents of Exercises 5.5, 5.6 and of the
statenent of Exercise 5.7 with T(x, | > =T(x, 6> instead
of TCpXx, | >D6=TCpx, 6>. Gve also a direct proof of Prop-
osition 1 with ¥ and = instead of F M E> and 2=.

5. Let E={e}, and let u be a standard conputati onal
structure on the natural nunbers. Let F=97, N, {@}), and

l et the function P from ¥ be defined as in Theorem 1.
Prove that an element ¢ of ¥ is A—conputable in the set

{S, P, [N2} iff both the relation ¢nN> and the set
{u: <u, e>e¢p} are recursively enunerable.

6. Let o be the function, determ ned by the condition
that dome =N and eCcu>—e for all u in IN. Prove that
Theorem 1 remains valid after replacing {S, P} by
{S, P, @}, and the statenent of Exercise 5 remains valid

after replacing {S, P, [N2} by {S, P, e, [N2}, wher e
P=au.u=1 (fromthe point of view of the correspondence
® nentioned in Exercise 3, this is equivalent to sone
results obtained by S. N kolova in 1988).

7. Let E={e}, and let u be a standard conputational
structure on the natural nunbers. Let F=7,N, {e}), and

| et P?:Pu{<0,o>}, where P=2au.u-=1. Prove that an

. . ? . 2
element ¢ of ¥ is A—conputable in {S, P} iff ¢nN
is a partial recursive function, the set {u: <u, e>ep} is
recursively enunerable, and there is a partial recursive
function x which satisfies the follow ng conditions:

domx:dom(@mmz), Yuedomy (xCud> =0 & <u, e>e€pD.

Hnt. If pev, (pm[Nz is a function, and x is a par-
tial function in IN satisfying the above conditions, then

?
(pz((pm[Nz)Rl'[(P'xl,l D,
where x =xu{<u, 0>: <u, e>ep}.

N

8. Let o, x, p be arbitrary elements of F M E>, and
| et T,=plo, x1. Suppose K is a subset of M such that
veKuE for all <u,v> in o with ueK, and © is an el-
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ement of ?m(M, E> such that T23Cy, to, poNKx(MUEDD.
Prove t hat tztom(Kx(MuE)).



CHAPTER | |
COMBI NATORY SPACES

1. The notion of conbinatory space

In the previous chapter, a nunber of situations were
descri bed, where a set ¥ of functions or function-I|ike
objects is fixed and a notion of relative conmputability for
the elenments of ¥ can be considered. A common feature of
these situations is that ¥ contains an identity elenment |
and is supplied with a conposition operation, an operation
T of conbination, a branching operation =, an operation
of iteration and a partial ordering such that iteration has
a |l east-fixed-point characterization in terns of branching,
conposition and |I. In addition, elenents L and R of ¢
are fixed having a certain connection with the operation of
conbination, as well as elenments T and F of ¥ having a
certain connection with branching. Now we shall give an ab-
stract axiomatic treatnent of such kind of situations. For
the first time, we shall |eave aside the operation of itera-
tion (having in mnd its characterizability by means of the
ot her operations). O course, a given nunber of concrete
situations can be captured by a general notion in infinitely
many different ways. However, we aimto introduce a notion
capturing not only the considered concrete situations, but
al so other interesting ones, and giving the possibility to
develop a sufficiently rich theory about it. These require-
ments | eave not so nmuch roomfor arbitrariness, and it is
even not cl ear whether such a goal can be reached. As we
hope, a positive answer of the |ast question will be seen
fromthis book (another solution of the above problemis
given by the notion of iterative operative space studied in
| vanov [1986]).

The definition, which we shall give now, nakes use of
the notion of partially ordered sem group. We think this
notion is well-known to the reader, but, for the sake of
conpl eteness, we shall recall its definition. Nanely, a par-
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tially ordered semigroup is a non-enpty set supplied with a
partial ordering and an associ ative nonotonically increasing

bi nary operation. The partial ordering will be considered
refl exive?®. The correspondi ng denotations will be > and
<. The binary operation nentioned above will be denoted as

&hltiplication. Thus, if the semigroup is ¥, then the fol-
| owi ng conditions nust be satisfied for all ¢, y, 6 in ¥:

Coyo6=0CYo>, 020, 02y & Y=26 — ¢=6,
Y &Yz = p=VY, 9=y = pO6=2Y6 & 69p=06Y.
An elenent | of ¥ is called an identity of ¥ iff
l e=6l =0
for all & in ¥.

Now we proceed to the nmain definition of this chapter -
the definition of the notion of conbinatory space.

Definition 1. A conbinatory space is a 9-tuple
C=<#,1,6,1T, L, R, =, T, F>,

where ¥ is a partially ordered semigroup, | is an identity
of ¥, € is a subset of ¥, T and = are a binary and a
ternary operation in ¥, respectively, L, R, T, F are el-
enents of ¥, and the follow ng sixteen conditions are iden-
tically satisfied, when ¢, y, 6, x range over ¥, X, Y

range over ©, and TiCy, ¥>, =Cx, ¢, y> are denoted by

Cp, YO and Cx —> ¢, ¥, respectively27:

(D) VXCpX=yYXdD = o=y,
(2) X, yo<6,

(3) LCX, YD =X,

(4) Rdx, yo=y,

(5) Cp, YIX=CpX, YXD,

(6) (l, yx>6=<6, YXx,

(7) X, | >De=«<x, 67,

251 n ot her words, a partial ordering in a set will be

any reflexive, transitive and anti-symretric binary rel ation
init (the anti-symretry nmeans that inequalities in both

di rections between two given el enents of the set always im
ply equality of these elenents).

2" These denotations will be systematically used not only
in the present definition, but also in the further exposi-
tion (we should like to nention that we used - instead of
—> in the previous publications on conbinatory spaces).
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(8) T+F,

(9) Txet,

(10) Fxesg,

(11) (T— 9, ¥>=09,

(12) (F—= o, ¥>=y,

(13) 6lx—> ¢, Y>2=C(x—>6¢, 6y,

(14) Cx —> > YIX=CXX —> pX, YXJ,

(15) (A —>eX, Yyxd26=C68—> pX, YX,

(16) P2Y & 62y = A —>p, 0020 — Y, x.

The semigroup multiplication in ¥, and the operations TI,
> will be called conposition, conbination and branching in

G, respectively. The conbinatory space & is called sym
metric iff

*
(7)) CopX, | De=Cpx, 6>
for all ¢, e in ¥ and all x in © (obviously, (7) is a
*
particul ar instance of (7 )).

Remark 1. The equalities (11)-(13) correspond to sone
wel | - known equi val ences fromthe paper McCarthy [1963]. In
connections with counterparts of sonme other equival ences
fromthat paper, cf. Exercises 21, 23, 44, 45 after this
secti on.

Remark 2. Qur first publications, where a definition of
the notion of conbinatory space appears, are the papers

Skordev [ 1975, 1976b].28 There are three things in that
first definition, which make it different fromthe present
one, nanely: (i) instead of (9) and (10), it is required
that T and F belong to @, (ii) the additional condition
is included that xy=x for all x,y in ©, and (iii) the

*
condition (7 ) is present there instead of (7). A bit |ater,
in Skordev [1977], the condition from (ii) has been shown to
be redundant (see Proposition 2 in this section). Therefore
t he conbi natory spaces, considered in the above-nentioned
papers, are exactly those conbi natory spaces in the present
sense, which are symetric and satisfy the condition that

28For sone corrections concerni ng two exanpl es of conbi -
natory spaces in that papers, cf. Skordev [1980, Chapter II
Section 1.3, Exanple 12, and Section 5.4, Remark 2] (these
exanpl es can be found, in essence, in Exercise 4.22 of this
chapter and in Subsection (I111) of Section 4 of the Appen-
di x) .
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T and F belong to €.%% The sane cl ass of combi nat ory
spaces has been studied in the book Skordev [1980], with the
unessential differences that quasi-ordered sem groups are

used there instead of partially ordered ones,30 and degener -
ate spaces are admtted, where all elenents of ¥ are equal

each other. Wen the work on the manuscript of that book was
near its end, the author observed that condition (7) is suf-

ficient for some proofs, where (7*) has been used before. In

t he thesis Lukanova [1978],31 many proofs fromthe manu-
script have been exam ned fromthis point of view, and it
turned out that the essential results of the theory renain
valid after such an weakeni ng of the requirenents of the
definition. Roughly speaking, the present notion of conbina-
tory space coincides with the notion of sem conbinatory
space fromthe papers Skordev [1980a, 1984] (the only dif-
ference is that the definition fromthat papers again adnmts
degenerate spaces). The change in the term nology (to re-

pl ace the adjective "sem conbi natory" by "conbi natory") was
proposed by L. Ivanov, who used the new term nology in the
book |vanov [1986] and in subsequent publications.

Remark 3. Fromthe condition (1), it follows inmediately
t hat

VXCpX =YX = o=y

for all ¢,y in . Together with (8)-(10), this inplies
the inmpossibility of a situation where all elenents of ©
are equal each other (in particular - the inpossibility of
the equality 6=9).

Remark 4. Fromconditions (6), (7), (15) and (16), one
easily deduces the foll owi ng nore general properties:

Cp, YX26=Cp B, YXJ,
X, YD =C~CxX, Yo,
X —> X5 YX28=Cx8 —> X, YX,
0zZp & o2y & 6zx = (0> ¢, 82=2Cp—>> Y, xD.
The proof of the first three of these nore general proper-

29The last restriction is not very essential, as it can
be seen from Corollary 1 below in conbination with Proposi-
tion 2.

30The fact that this difference is real ly unessenti al
can be seen from Exercise 3 after this section

31An account of the main results fromthis thesis is
gi ven in Lukanova [1986].
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ties is straight-forward. For exanple, the third one can be
proved as foll ows:
Cx —> X, YX20=Cl —> X, YXOx08=Cx8 —> X, YXD.
For proving the fourth one (the nonotonicity of X), suppose
that o0>p & o>y & 6=x. Then, for all x in &, we have
(0—>¢, IX=CaX—>pX, 8X2=C —> pX, 6Xd0X =
A —=yYX, xXOpX=CpX —>YX, xX>2=Cp—=>Y, xOX,
and we can use the condition (1).
Remark 5. |If the considered conmbinatory space is a sym

metric one then also the equality dCex, y>6=CpX, y6>
hol ds.

The considerations fromthe previous chapter provide us
wi th sonme exanpl es of conbinatory spaces. Suppose A=<M, J,
L, R, T, F, H> is a conputational structure. Then the fol-
| owi ng exanpl es of conbinatory spaces correspond to situa-
tions studied in the previous chapter.

Exanple 1. Let G (U =<¥ (M>, 1,6, T,L, R, = T, F>,

where the denotations from Section |I.5 (including Exercise
|.5.5) are used, and F oM is supplied with the conposi -

tion and the partial ordering by inclusion. Then G LU i's

a symmetric conbinatory space (by Exercises 2-7 after that
section).

Exanpl e 2. Let Gp(‘u):<?p(M), IM, €, I, L, R, =, T, F>,
where the denotations from Section |.2 are used, ¥ (M) is

supplied with the conmposition and the partial ordering by
inclusion, and € is the sanme as in the previous exanple.
Then Gp(‘u) is also a symmetric conbi natory space (by the

previ ous exanple and by the fact that conposition, T, =
and the partial ordering predicate on ¥ _(M> are restric-

tions of composition, T, X and the partial ordering predi-
cate on ¥ (M), respectively).

Exanpl e 3. Let G U, E):<?m(M, B>, IM, €, I, L, R,

>, T, F>, where the denotations from Section |.8 are used,
F M E> is supplied with the conmposition and the parti al

ordering by inclusion, and € is the sane as in the previous
exanpl es. Then G U, E> is a conbinatory space, and this

conbi natory space is not symetric, barring the case when

E=o (cf. Exercise 2 after the nentioned section). Note

that an equival ent version of this exanple can be obtai ned
by using the constructions from Exercise 1.8. 3.
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Exanpl e 4. Let Gp(‘u, E):<?p(M, B>, IM, €, I, L, R,

=, T, F>, where again the denotations from Section |.8 are
used, ¥ .(M, E> is supplied with the conmposition and the

partial ordering by inclusion, and € is the sanme as in the
previ ous exanpl es. Then Gp(‘u, E> is also a conmbinatory

space, and this conbinatory space is not symretric, barring
the case when E=0.

Remark 6. Sonme nodifications of Exanples 1 and 3 and of
the further exanples in this book can be obtai ned using the
following fact: if <¥,1,86, 1T, L, R, =, T, F> is a conbina-
tory space, D is an elenent of ¥ satisfying the condi-
tions DT=T, DF=F, and the ternary operation 2, in ¥
is defined by

2, 05 Y>> =3CDx, ¢, ¥,
then <%,1, 86, 1T, L, R, 2, T, F> is al so a conbi natory space.

The proof of this statenment is imediate, after the state-
ment in Remark 4 is proved.

In the case of Exanple 2, the application of the above
remar k does not give anything new, since we could obtain 2,

by sinply replacing H by au.H(DCu>>, which will be also a
partial predicate on M. In the case of Exanples 1 and 3,

however, if rngTurngF is a proper subset of M (for ex-
anple, if T and F are constant functions), then it is pos-
sible to choose D in such a way that both true and false
bel ong to H(DCu>> for some u in M. In such a case the
correspondi ng %, cannot be obtai ned by a new choice of the

partial predicate H (in the case of Exanple 3, this will be
t he situation about 2, al so every tine when DCUDNE+ O
for sone u in M).

In the case when rngJ is a proper subset of M, sone
ot her nodifications of Exanples 1 and 3 can be given. Nane-
ly, we could replace L and R by sone el enents L, and R,

of the corresponding ¥ such that
L,CICs, tO>={s}, RICs, t>>={t}
for all s, t in 2, but {L ,R}¥F 2.

Y
A nunber of essentially different exanples of conbina-
tory spaces will be given further in the book.

In order to prove sonme el enentary general properties of
conbi nat ory spaces, let us assume fromnow on (until the end
of the present section) that a conbinatory space <%, 1, G,
m, L, R, =, T, F> is given.
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Proposition 1. The operation T is nonotonically in-
creasing, i. e.

p=2y & 6=2x = Cp, 65=2CY, x)
for all ¢, ¥y, 6, x Iin 7.

Proof. Suppose o>y & 6=>x. Let x be an arbitrary
elenent of ©. In order to apply (1), we shall prove that
Cp, BIX=CyY, xOx. Since (5) and (6) inply the equalities

Cp, 8OX=Cl, 8XJ9X, Y, x2X=Cl, xXO¢¥YX,

it is sufficient to prove that <, ex>=<cl, xx>. The proof
of this inequality is carried out by noting that, for all vy
in &, the conditions (6) and (7) inply

(l, exoy =<y, I>ex=Cy, | dDxyx=dl, xxJOV,
and then appl yi ng (1)..
Proposition 2. For all x and y in &, the equality
Xy =x hol ds.

Proof. By (3), the first equality in Remark 4, (5), (7)
and again (3), we have
XYy=LX, yoy=LX, |l yoy=LXy, |l yd>=
L{x, | >Dy=L<x, y>=Xx.

Proposition 3. For all x in © and all ¢,y in &,
the equalities (Tx—=>¢, y>=¢, (FX—¢, y>=y hold.

Proof. The first equality follows fromthe fact that,
for all y in @, condition (14), Proposition 2, again (14),
then (11) and again Proposition 2 inply
(TX =0, YWY =CTXy—>0Y, YyydI=CTX —>9pY X, YyYyXxXd=
(T— Y, YYyIX =pyX=9pYy.
The validity of the second equality is seen in a simlar
way, using (12) instead of (11)..

Corollary 1. For all a,b in ©, the 9-tuple <%, 1, &,
m L, R, =, Ta, Fb> is a conbi natory space.

In order to fornul ate easier sone nore properties of
conbi natory space, the term"nornal elenent” wll be intro-
duced.

Definition 2. An elenent ¢ of ¥ wll be called norna
iff cxeg for all x in ©.32

321 n our previ ous publications, we used the term "per-
fect" for the same notion. W consider this termtoo preten-
tious now, and therefore we turn back to the term used many
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Proposition 2 and conditions (9), (10) show that al
elements of © and the elements T and F are normal. As
an exanpl e of a normal el enment which surely does not bel ong
to €, the element | can be indicated (if we suppose that
| €, then, using Proposition 2, we get x=I1x=1 for ar-
bitrary x in ©, and this contradicts Remark 3). It is seen
i mmedi ately that conposition of any two normal el enents of
¥ is a normal elenment again. In the exanples of conbina-
tory spaces considered in this section, the nornmal el enents
of the corresponding semgroups ¥ are just the total map-
pings of M into itself.

Proposition 4. Let ¢ and y be nornal elenents of .
Then C¢, y> is also a nornal elenent, and the equalities
LCp, y>=¢, RCp, y>=y hold.

Proof. For all x in &, we have the equalities
Co, YOIX =CoX, YyXxI, LCp, YyI2X=9X, Rlp, yOX=yx. g

Corollary 2. Let e be an arbitrary elenent of ¥, and
let ¢ be a normal element. Then L<e, > =R{Z, 6>=06.

Proof. For all x in &, we have
Lce, {Ox=LcC6X, {x>=Ld, ¢x>ex=I16x=6Xx,
RCZ, 80X =RZX, 6x>=RX, | Dex=I1 ex=6X.

Proposition 5. For all ¢, y,x in ¥ and all normal
elenents ¢ of &, the equalities (o, Yy>20=Cp&, YO,
Cx > ¢, YOC=C(x—=>0¢0& YO hold.

Proof. A straight-forward application of the definition
of the notion of normal elenent, conditions (5), (14) and
Remar k 3..

Remark 7. If e is a normal element of ¥ then the
equality Cox, yo>e=dCpx, ye> holds for all ¢,y in
g and all x in € (wthout the assunption made in
Remark 5 about symetry of ). This is easily seen by
application of Definition 2, condition (5), Proposition 2
and Remark 3.

The followi ng two propositions generalize Propositions 2
and 3.

Proposition 6. For all x in © and all normal elenents
¢ of ¥, the equality x¢=x holds.

Proof. By the definition of the notion of normal el enment
and Proposition 2, x¢cy=x=xy for all y in € g

Proposition 7. For all ¢,y in ¥ and all nornal
elenents ¢ of &, the equalities <(TC—¢, ¥>=09,

years ago in our |ectures on conbinatory spaces.
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(FC— ¢, y>=y hold.

Proof. Application of condition (14), the definition of
the notion of nornmal elenent, Proposition 3 and Renark 3..

Proposition 8. For all 6, x, ¢, ¢y In ¥ and each nor-
mal elenent ¢ of &, the equality

(6L —=>¢R, yROCx, O=C6x >0 YT
hol ds.
Proof. For all x in &, we have
(6L — R, yROCx, Ox=C6L—> R, yROCxXx, IxX>=
(6L — R, yRO , IXOxX=C8—> 9l X, YIXdDxX=
BXX —>plX, YCX>O=COx —>¢ L, YLIOX.

[ |
For each subset «4 of ©, a binary relation > in &
]
will be introduced. Also a notion of invariance of 4 wth
respect to a given elenent of ¥ wll be defined.

Definition 3. Let « be sone subset of €. If ¢, y are
elenents of ¥ then the inequality ¢=>y neans that
]

pz=yz for all z in «4. For a given o in ¥, the set 4«
is called invariant with respect to o iff for all ¢,y in
F the inplication o>y = ¢po=yo holds.

] ]

In the conbinatory spaces from Exanples 1, 2, 3 and 4
above, the nmeaning of > is quite clear. For the neani ng of
]
i nvariance in those conbinatory spaces, cf. Exercise 37 af-
ter this section.

Proposition 9. The inequality >y is equivalent to
€
the inequality ¢=>y. The set © is invariant with respect
to each element of .

Proof. The first statenent is an obvi ous consequence of
condition (1) and the nonotonicity of the multiplication in
¥. The second statenent follows fromthe first one and the
ment i oned nonotonicity. =

Proposition 10. Let 4<6, and o be an elenent of ¥
such that oxe« for all x in «. Then « is invariant
with respect to o.

Proof . | medi ate. o

Corollary 3. Each subset of © is invariant with respect
toits elenents and with respect to the elenent 1|.

In the exanpl es of conbi natory spaces nentioned until
now, it was always so that the partially ordered set ¥ had
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a least elenment. However, it is quite easy to give an ex-
anpl e, where such a | east el enment does not exist. To obtain
such an exanple, it is sufficient to take an arbitrary com
bi natory space <%,1, 6, I, L, R, =, T, F> and to replace the
original partial ordering in ¥ by the equality relation.
Since this partial ordering | ooks not natural in the general
case, we give also an exanple, where the equality relation
can be regarded as the natural partial ordering.

Exanple 5. Let a=<M,J, L, R, T, F, H> be a conput a-
tional structure with total L, R, H (i.e. domL=domR=
domH=M). Let G (U =<F, (MO, IM, €, I, L, R, =, T, F>,
wher e Fp (MO is the set of all total mappings of M into
M wth the usual conposition and with the equality rel a-
tion taken as partial ordering. Let € be the sanme as in the
conbi nat ory space Gp(M), and T and = be the restrictions

to F, (M of the correspondi ng operations in ¥_<(M>. Then
G, C(U> is a symmetric conbi natory space, and obviously

t

there is no |l east elenent in ?t(M).

In case there is a least elenent in ¥, the properties
of this elenment are of interest, and we shall prove one such
property now.

Proposition 11. Let o be the |least elenent of %. Then
the equality oZ=o0 holds for all normal elements ¢ of .

Proof. Let ¢be a normal elenment of . To prove the
equality of=o0, it is sufficient to establish the inequal -
ity o=o¢. Its validity follows fromthe fact that, by
Proposition 2, for all x in © we have x=x¢x and hence
oX:oXCXZOCX..

Remark 8. In the general case, it can happen that there
is a least elenent o in ¥ and the equality op=o0 is vi-
olated for some p in ¥ (see Remark 1 in Section 3). W do
not know whether it is possible the equality po=o to be
violated if o is the |east elenent of ¥. A least el enent
o of ¥ surely exists, and the last equality turns out to
be always true in the case which will be of nmain interest in
the further exposition, nanely the case of iterative conbi-
natory spaces (see Proposition 3.2).

A lot of additional information about comnbi natory spaces
can be found in the exercises which followthis section. In
particul ar, many specific properties of synmetric conbi na-
tory spaces are listed there.

Exer ci ses

1. Let <¥%,1,86,1T,L,R, =, T, F> be a conbinatory
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space. Let X, X and 2, be the ternary operations in ¥
defi ned by

Zo(x, O, YI=3Cx> Y, @D
Zi(x, P, YO =3CLx, ¢, ¥, Zz(x, 0, YO =3CRx, ¢, ¥D.
Then <%,1, ¢, 1T, L, R, 2, » F, T>, <%,1,86, 1T, L, R, 2,

(T, 1>, CF, I >> and <%,1, 6, 1T, L, R, 2, (I, 1O, by B>
are al so conbi natory spaces.

2. If <¥,1,86,T,L,R, =, T, F> is a symmetric com
bi nat ory space, and I, is the ternary operation in ¥ de
fined by

I Co, Yo =TCy. ¢,
then <%, 1, &, m,R, L, % T, F> is also a synmetric
conbi nat ory space.

3. Let ¥ be a quasi-ordered semgroup in the foll ow ng
sense: ¥ is a set supplied with a reflexive and transitive
relation (denoted as inequality) and a binary operation (de-
noted as nultiplication) such that <(pyd>exepdye> and
=y = poe=ye & 6¢p=6y for all ¢, ¥y, 6 in F, where =
is the equivalence relation in ¥ defined as follows: ¢p=xy
iff o>y & y=¢. Let 1 be an element of ¥ such that
|l ex~e for all e in ¥. Let €, 1T,L, R, =, T, F satisfy
the sanme conditions as in the definition of the notion of
conbi natory space, but with =~ instead of = (hence with the
negation of =~ instead of =+#). Let F, be the set of all

equi val ence classes in ¥ with respect to =, supplied with
the nultiplication operation corresponding to nmultiplication
in #. Let l,»L-R-T . F be the el enents of ¥, con-

taining 1, L, R, T, F, respectively, and g, be the set of
all elements of F, which nmeet ©. Prove that =~ is a con-
gruence relation with respect to T and =, and if m, =z
are the operations in F, whi ch correspond them then

<F, > I1,€1,H1,L1,R1,21,T1,F1>

is a conbinatory space.

Hnt. Use VXCpXayXxd) = pxy to prove that el x»6
for all e in . Prove the nonotonicity of = and T in
the sane way as in Remark 4 and in the proof of Proposition
1, respectively (with =~ instead of =).

4, (Cf. lvanov [1986, Propositions 27.11 and 27.12]) Let
<¥,1,86, 1T, L, R, =, T, F be an arbitrary conbi natory
space, and let x,y be arbitrary elenents of ©. Prove the
equalities

1
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X, Yy, I):Ki(x, [ >Cy, I >, &, 1>y, I):Kz((x, yo, | D,
where K =ccL, LR, R, K, =cL?, ¢RL, R>.
5. Let <¥%,1,6,T,L,R, =, T, F> be an arbitrary

conmbi natory space, let e be a normal elenent of ¥, and |et
¢, y be arbitrary elenents of ¥. Prove the equalities

(L—>9¢R, yRO(THE, | D=9, (L—>9¢R, yROCFo, | >=y.
6. Let <¥,1,6, T,L,R, =, T, F> be an arbitrary
conbi natory space, let ¢, ¥, x> ¥ be arbitrary elenents

of ¥, and let ¢ be a normal elenment of . Prove the
equalities

Col, yROCy, O=CpR, yLOCL, ¥2=Cpv, YT,
L, yROCZ, ¥>2=CR, yLOCy, L=<, Yy¥>.

7. (lvanov [1986, Chapters 27 and 10]) Let <¥,1, &, 1,
L, R, =, T, F> be an arbitrary conbi natory space, and | et
the unary operation St in ¥ (called storing operation) be
defined by nmeans of the equality

Ste>=<(L, 8 R>.

For arbitrary 6, «, B in ¥ and all x in &, prove the
equalities

6=RStce>C, 1>, Stceo>x,1>=, 186,
St CaBd>=St CadSt (gD,
Co, BO=StCRICR, LOSt Cad<Cl, | D.
8. Let <¥%,1,6,1T,L,R, =, T, F> be an arbitrary

conmbi natory space, and let y, «, B be arbitrary el enents
of . Prove the equality

StCydCa, BO=Ca, YR,

where the operation St is defined as in the previous exer-
ci se.

9. (lvanov [1986, Proposition 27.8]) Let <%,1, 6,1, L,
R, =, T, F> be an arbitrary conbinatory space, and let ¢, v,
p, o be elements of ¥ satisfying the inequality

olX, 1 Dp=2yYy X, | Dy

for all x in €. Prove the inequality
oStCpd>=yStcpd,

where the operation St is defined as in Exercise 7.

10. (Cf. Ivanov [1986, Proposition 10.16]) Let <%,1, &,
m L, R, =, T, F> be an arbitrary conbi natory space. Let
the operation St be defined as in Exercise 7, and | et K, »
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K2 be such as in Exercise 4. Prove that
St(St(e)):KZSt(e)Kist(St(l DD
for all e in .

Hint. Using the previous exercise, reduce the problemto
proving the equality

(X,I)St(e):KZSt(e)Ki(X,I)St(l)
for arbitrary x in ©, and reduce this new problemto
proving the equality
x, | >y, I)e:KZSt(e)Ki(x, [ >Cy, 1>l
for arbitrary x,y in 6.

11. (Conpare with Proposition 10.13 of Ivanov [1986])
Let <¥%,1,86, 1T, L, R, =, T, F> be an arbitrary conbi natory
space, and let x, ¢, y be arbitrary elenents of . Prove
the equality

Sty —> @, YOO =CxR—> St Cp>, StCy>>St <l D,
where the operation St is defined as in Exercise 7.

12. (Conpare with Proposition 27.14 of Ivanov [1986])
Let <¥,1,86, 1T, L, R, =, T, F> be an arbitrary conbi natory
space. Let the operation St be defined as in Exercise 7,
and | et K » K, be such as in Exercise 4. Let B be a fixed

subset of ¥. For an arbitrary element e of &, prove the
equi val ence of the following two conditions, where StdBD
denotes the set of all elenents of the form St¢g> with g
bel onging to B:

(i) e can be generated fromelenents of the set {I, L,
R, T, FfuB by means of multiplication and the operations
I, =

> .

(ii) e can be generated fromelenments of the set
{<1, 10, R, K, K, SECCT, 15, StCCR, L>>, StcStdl >,

StcLY, StCR>, StCTO, StF>}uSt B> by nmeans of multiplica-
tion and the operation x.

Hint. To establish the inplication (i) = (ii), prove
that Stce> can be generated in the way described in condi-
tion (ii), whenever o6 satisfies condition (i).

13. Let <¥%,1,6,10,L,R, =, T, F> be a synmmetric
conmbi natory space, and let x, ¢, ¥, o, B be arbitrary el -
enents of ¥. Prove the equalities

CoL, yROCa, BX=Cpa, YR,
(xL—=>9¢oR, yROCa, BO=Cxa—> 9B, YBD,
CoR, yLOCa, BO=CopB, Yad,
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(xR— oL, yLOCa, BO=CxB—>pa, Yyad.
Hint. Use Exercise 6 and Proposition 8.

14. Let <¥%,1, 6,0, L, R, =, T, F> be an arbitrary
conmbi natory space, and let x, ¢, ¥, 6 be arbitrary elenents
of ¥. Let ¢ be a normal elenment of ¥. Prove the equal -
ities
Cp, YROCO, TO=Cp O, T, YT,
x> 9oR, yROCH, 1OD=Cx(6, TO—=>0T, YT,
(R, y>Co, TO=C, y<o, DD,
Co, YLOCT, 82 =Cp L, 6, YT,
Cx—> oL, yLOCL, 8= (L, 80— 0T, YT,
L, yO>CZ, 8>2=CZ, Yy, 8D.

15. Let <¥%,1, 6, 0, L, R, =, T, F> be an arbitrary
conmbi natory space, and e be an element of ¥ such that the

*
equality (7 ) holds for all ¢ in ¥ and all x in €. Let
 be a normal elenment of ¥. Prove the equalities

CoR, ¥DCO, ID=Cp T, YO, T,
Col, YO2CZ, 82=Cp T, YT, 6D
for all ¢,y Iin F.

16. Let <¥%,1, 6, 0,L,R, =, T, F> be an arbitrary
conmbi natory space, and let x, ¢, ¥, 6 be arbitrary elenents
of . Prove the equality

Cx — > ¥, 82=C(x—>Cp, 6, (Y, 6D
Hint. Use the equality
(Cx—> 9> Y, 8OX=CCl, 8X2CxX —> X, YXD
and condition (13).

17. Let <%,1, 6,10, L, R, =, T, F> be a symmetric
conmbi natory space, and let x, ¢, ¥, 6 be arbitrary elenents
of . Prove the equality
8, Cx—> ¢, YId2=Cx —>C8, ¢, (8, YdD.
Hint. Use the previous exercise and Exercise 2.
18. Let <¥%,1, 6, 0,L,R, =, T, F> be an arbitrary

conbi natory space, let x be an elenent of €, and let ¢, vy,
x> 6 be arbitrary elenments of . Let T be an el enent of

¥ satisfying the conditions <©d(TXx,|>=¢, TFX,1>=y.
Prove the equality

33

33To see the existence of such a <, cf. Exercise 5.
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Ty —>T, FOX, 80=(xX —> 96, Yyo>.
H nt. Use Exercise 16.

19. Let <¥%,1,6,0,L,R, =, T, F> be an arbitrary com
bi natory space, and e be an elenent of ¥ such that the
*

equality (7 ) holds for all ¢ in ¥ and all x in @.
Prove the equalities

CoX, Y206 =CpX, Y62, (XX —>¢, Y286=(xX—>¢p6, Yo’
for arbitrary x, ¢, v in ¥ and all x in &.

Hint. For the proof of the first equality, use Exercise
8. For the proof of the second one, take t as in the pre-
vious exercise and represent (xX—>¢6, y6> in the form
T((x —>T, FO>x, 1 >6. Then note that, again by the previous
exercise, the equality

Ty —>T, FOX, | O=CxX —=> ¢, ¥
hol ds.

20. Let <%,1,86, 1T, L, R, =, T, F> and e be as in
the previous exercise. Let ¢ be a normal elenent of .
Prove the equalities

(xR—>p, Y2C6, IO=x—>pC6, I, YyC(6, T,
CxL— 0, YO, 802=C(x—> oL, 6, Y (L, 68>
for arbitrary x, ¢, ¥y in .

21. Let <%,1,86, 1T, L, R, =, T, F> be an arbitrary
conmbi natory space, and let ¢, ¥y, x>, 0, p be arbitrary el -
enents of ¥. Prove the equality

x—>0, p2—=>0, YO>=x—>C0—=>0¢, Y2, Cp—> ¢, Y>>
(conpare with McCarthy [1963]).

Hint. For an arbitrary x in &, transformthe
expression ((x—>0, p>—>¢, YyOX into the expression
Cx —>Co—> ¢, ¥, Cp—> ¢, YOOX by nmeans of consecutive
application of conditions (14), (14), (15), (13), (15),
(15), (14), (14).

22. Let <¥,1,86, 1T, L, R, =, T, F> be an arbitrary
conbi natory space, and let ¢, y be arbitrary el enments of
. Prove the equalities

(x —>T, IO, O=x—> ¢, ¢,
(x—>T, FDO—=0, = — ¢, ¥,
(Cx—>F, O, y=W—>y, ¢,
(x> F, FDO—=p, yO>=W—>Y, ¥.

23. Let <%,1,86,1T,L,R, =, T, F> be a symetric
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conmbi natory space, and let ¢, ¥y, 6, T, x> p be arbitrary
el enents of ¥. Prove the equality

x> —=>¢, Y2, (p—>6, 2= > —> P, 86, (x—> Y, TID
(conpare with McCarthy [1963]).

Hint. Take an arbitrary x in €. Mking use of the sec-
ond equality fromthe previous exercise and of Exercise 19,
transformthe product <y —>dp—>0¢, ¥, (p—>6, TXIX into
§Cpx —>T, F>, where

S=CxX—>dd —>pX, yx>, (I —>6x, TXxI.

Then use the equalities s§Cpx —>T, F>)=Cpx—>8T, s§FD,
ST=x—>¢, 85X, 8F=(x—>y, TOX.

24. Let <%,1, 86,1, L, R, =, T, F> be an arbitrary
conbi natory space, and let ¢, y be such elenents of ¥
that odx, yo=ydx, y> for all x,y in . Prove that
pCa, BO=yYCa, B for all o, p in 7.

25. (Generalization of Exercise 24). Let <¥%,1, &, 1,
L, R, =, T, F> be an arbitrary conbi natory space. For each

positive integer n, define a set m of mappings of "
into ¥ by nmeans of the follow ng inductive definition: m,

consists of the identity mapping ae.e and of all constant
mappi ngs a6.k, where ke¥%, and if n>1 then m consi sts
of all mappings of the form

(17) Ae .- By - B -pTCT,Cot s ooy 0 T (B 5 - vs B DD,
where k and | are positive integers satisfying the condi-
tion k+l =n, p is some elenent of &, r, IS a mappi ng

bel onging to m ., and T, i's a mappi ng belonging to m -

Let T be a mapping from m_ . Prove that whenever ¢, y are
such el enents of ¥ that

OTCZ, 5 .5 2 D2 YTCZ 5 oy 2D
for all Zys e 2 in &, then
pTCO, > ..., 8 0=2YTC8,, ..., 6
for all o, ..., 86 in %.
1 n

H nt. Suppose T is the mapping (17), where r, and T,
have the above property. Suppose

PTCX 5 s Xy s Yy oo Y 2ZYTOK 5 s X 5 Y s e YD
for all Xyo ooos X s ¥Yyn oes Y in €. Wite the above in-
equality in the form

Erz(yi, ...,yl)zwrz(yi, cees YO
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wher e
azqopH(I"i(xi, C, X
and concl ude t hat
e, (B, > ...,Bl)zﬁrz(ﬁi, e B
for arbitrary By» -5 B in . Miultiply both sides of

this inequality fromthe right by an arbitrary elenent z
of €& and wite the obtained inequality in the form

O T (X s s X OZ Y T (X 5 s XD,

2, 10, Y=ypICT, X, 5 s x 0, |0,

k k

wher e
' =¢ppIdl, T(By> -+ BI)Z), Y =ypIdl, TC(By» s BI)Z).
From here concl ude t hat

o’ I"i(oci, . ock)Zx//’ I"i(oci, c ey ock),
for all Ups oo O in ¥.
26. Let 6=<%,1,6,1T,L,R, =, T, F> be an arbitrary
conbi natory space. An elenent ¢ of ¥ wll be called con-

stant iff ex=¢y for all x,y in &.

(a) Show that all elenent of € are constant, and the
element | is not constant.

(b) Find all constant elenents of ¥ in any of the
cases when & is sone of the spaces from Exanpl es 1-4.

(c) Show that, whenever ¢ is a constant el enent of
¥, then e¢ is also a constant elenent for all e in ¥.
Prove that the set of all constant elenments of ¥ is closed
under the operations T and x.

(d) Prove the nutual equival ence of the follow ng nine

conditions, where ¢ is an arbitrary elenment of ¢:

(i) ¢ is a constant elenment of ¢;

(i1) @oz=¢ for all z in ©;

(ii1) ¢ez=¢ for all z in ©;

(iv) ¢=¢z for all z in &;

(v) oex=¢y for all x,y in &;

(vi) oz=¢ for sone z in &;

(vit) ¢o=wz for some y in ¥ and sone z in §;

(viii) <, po=C8B, > for all e in ¥;

(ix) <, p>z=<Cz, ¢> for all z in &.

27. Let <¥,1,86, 1T, L, R, =, T, F> be an arbitrary
conmbi natory space. Prove that for all z in € and all e
in ¥ the equalities

L<l, 6>2z=RCe, |1 >2z=2720612,
Lcl, e>=Rc¢e, |,
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zLCl,6>=72RC0,1>=2708
hol d.

28. Let <%,1,86, 1T, L, R, =, T, F> be a symmetric
conbi natory space, and let ¢, y be arbitrary el enments of
. Prove that for all z in € the equality

Zozyz=2yYzZ¢2
hol ds. Prove also the equalities
Lcl, oL, y>=Ldl, yoLC, ¢,
LCp, y>=RCy, ¢>.
Hint. Use the previous exercise.

29. Let <%,1,86, 1T, L, R, =, T, F> be a symetric
conbi natory space. Define a set % of mappings of ¥ into
¥ by neans of the follow ng inductive definition:

(i) rae.8<%K;

(ii) if TeX and ke¥ then a6.kIT(BI<kK;
AB.(TC(6d, k> and ae6. (k, T'(e>> also belong to &;

(iii) if Te% and o, pes¥ then are6.TCB6) >0, pd
al so belongs to &;

(iv) if T's Ae® and ke¥ then ae6. (k —>TCBD, ACBDD
al so belongs to &k.

Assuming TI', Ak and I'(z>=A¢cz> for all z in &,
prove that Trdce>=aAce> for all e in ¢.

Hint. Use the corollary fromProposition 4, as well as
Exercises 14, 15, 20, to prove that each mapping from % is
representable in the form ae.tde, 1> with sone fixed <t
from 7.

30. Let 6=<%,1,6,0,L,R, =, T, F> be a symetric
conbi natory space. Apply the previous exercise to give an-
ot her proof of the equality

LCp, yO=RCy, ¢>
from Exercise 28 and to prove the equalities
CxZzp—>BZY, ¥Z2Y>=CaZyYy —>LRZp, ¥Z P,
(18) A, 1DCp, y>=kCCl, 19, Cl, 1Dy,
(19) CCo, Y, €8, x22=k(Cp, 68, (Y, ¥,
where z<6, o, B> ¥, ¢> Y, 6, x=¥F and
Kk =c¢CL?, LR>, (RL, RP)).

By an appropriate direct proof, show that (18) remains valid
W t hout the assunption about symretry of ©.

31. Let <¥,1,86,1T,L,R, =, T, F> be a symetric
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conbi natory space. Define a set % of mappings of ¥ into
¥ by neans of the definition fromExercise 29 with the
clause (ii) nodified in the follow ng way:

(ii) if TeX and ke¥ then ae.kI'(6> and
A6.TC(6>k also belong to R.

Assuming T, Ak and I'(z>=A¢cz> for all z in &,
prove that r<ez>=ACez> for all e in ¥ and all z
in @.

H nt. Prove that for each mapping I from % the equal -
ity T(ez>=t(6z, 1> holds with sone fixed t from ¥. To

do this, use the statenents nmentioned in the hint to Exer-
cise 29, as well as the equality

ez, | Dk=<CL, kR>CoZ, | ).

32. Let <¥,1,86,1T,L,R, =, T, F> be a symetric
conbi natory space. Apply the previous exercise to give an-
ot her proof of the equality
ZozyYyz=2yYzZ¢2
from Exerci se 28.
33. Let <¥,1,86,1T,L,R, =, T, F> be an arbitrary

conbi natory space. Define a set ¥ of mappings of © into
¥ by neans of the follow ng inductive definition:

(i) az.z and all constant mappings az.«k, where
ke¥, are elenents of 1Y;

(ii) whenever T, A, E are elenents of Y, then
AZ.TCZOACZD, AZ.(TCZ2D, ACZ5D5, AZ.(CECZDO—>TC(Z5, ACZD)
al so belong to <.

Prove that each mapping from ¥ is representable in the
form az.tdcz, 1> wth sonme fixed t from ¥.

34. Let <¥,1,86,1T,L,R, =, T, F> be a symmetric
conbi natory space. Define a set % of mappings of ¥ into
¥ by neans of the definition fromExercise 29 with the
clause (i) nodified in the foll ow ng way:

(i) for all o, pe¥, the mapping ae. (6 >0, p> be-
longs to X.

Assuming T, A%k, TI'(TO>>ACT> and TI'<(F>= ACF)>, prove
that Tce>=Ace> for all e in ¥.

Hi nt. Making use of Condition (13) and Exercises 16, 17,
21, 23, prove that each mapping from % is representable in
the form axe.¢(6—>0, p> With sone fixed o, p from 7.

35. Let <¥,1,86,1T,L,R, =, T, F> be a symmetric
conmbi natory space. For all ¢, y, 6 in ¥, define elenents
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oAy, ovy and -6 of ¥ in the follow ng way:
pAYy=Co—>W—>T, F>, Gy —>F, F>,
epvy=Cp—>W—>T, T, <y —>T, F>D,
-e=6—>F, TO.
Prove t hat
PAY=YAP, VY=YV,
CoAYIAB=pAYABd, Copvydve=opviyve,
- CopAYDI=C- OV -y, -CoVyYydr=C- poAC- YD,
--CpAYIdI =AY, --CopVYd=¢VvVy, ---6=-206
for all ¢, ¥y, 6 Iin 7.

36. Let <¥,1,86,1T,L,R, =, T, F> be an arbitrary
conbi natory space, and let « be an arbitrary subset of &.
Prove the reflexivity and the transitivity of the relation
>. For arbitrary ¢, ¥, 6, x>, 0, p in ¥, prove:

]

=Y = o=y, =2y & 6=2x — 6=y,
o

] ]
=Y & 6=2x — C(p, 6=y, D,
] ] ]
C>2p & 2P & 62x = (06—>¢, 82=2Cp—> Y, 1.
] ] ] ]

37. Let 6=<x%,1,6, 10, L, R, =, T, F> be the conbi na-
tory space fromsone of the exanples 1-4. Let « be a
subset of ©, and let o be an elenent of ¥. Let K be the
set of the values of the elements of «. In the case when G
is the conbinatory space from Exanple 1 or Exanple 2, prove
that «4 is invariant with respect to o iff the follow ng
i nplication holds for all u,v in M:

ueK & <U, v>eo0 — vekK.
O herwi se prove the sanme, but with the inplication
ueK & <u, v>eo — veKUE.

38. Let <¥,1,86,1T,L,R, =, T, F> be an arbitrary
conbi natory space. Let « be a subset of © invariant with
respect to each one of the elenents ¢ and p of ¥. Prove
that «4 is invariant also with respect to the elenent op
and with respect to all elenents of the form (x —>o0, pD,
where ye¥.

39. Let <¥,1,86,1T,L,R, =, T, F> be an arbitrary
conbi natory space. Let « be the set of all elenents of @
having the form <¢x, y>, where X, ye6. Prove that « is
i nvariant with respect to each el enment belonging to the
range of TI.

40. Suppose K is an arbitrary non-enpty set, and
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G=<%,1,6, 0T, L, R, =, T, F>

is an arbitrary conbi natory space. Let ¥ be the set of all
mappi ngs of K into ¥, considered with the partial order-
ing and the nultiplication induced by the partial ordering
and the multiplication in & in the natural pointw se way,
i.e. o=y in g iff eck>=yck> in ¥ for all k in K,
and the equality ey=ak. pCk>yck> holds. Let I°, L, R,
T, F* be the constant mappings of K into ¥ having the
values |, L, R, T, F, respectively. Let & be the set of all
constant mappings of K into €. Set

o\=<F,l",6,T,L',R,s, T, F>
where M and % are the operations in ¥’ defined by the
equalities
T Cp, YO =2ak. ICpCkD, yckdD,
S Cxs @s YO =2ak. ZCxCkD, pCkD, yckdD.
Prove that &K is also a conbi nat ory space.

41. lLet <¥,1,86, 10, L, R, =, T, F> be a symetric conbi -
natory space. An element e of ¥ wll be called distribu-
tive iff the equality <l,1>6e=<e, 6> holds. Prove that

Cp, Yyo26=Cpo, Y653, (x >0, Y26=C(x6 —>06, YOI

for all ¢, ¥y, x in ¥ and all distributive elenents 6
of .

H nt. Use Exercise 13.

42. lLet <¥,1,6, 10, L, R, =, T, F> be a symetric conbi -
natory space, and let ¢, y be distributive elenents of ¥
(in the sense of the previous exercise). Prove that ¢y and
Cp, YO are also distributive.

Hint. To prove that <¢, y> is distributive, use the
equalities (18) and (19) from Exercise 30.

43. Let <¥,1,86, 0, L, R, =, T, F> be an arbitrary com
bi natory space. An element e of ¥ wll be called regular
iff the equality xe=x holds for all x in . Prove the
foll ow ng statenents:

(a) if e is an element of ¥ such that xe=x holds
for some x in &, then e is regular;

(b) if ¢ and y are regular elenments of ¥, then so
are oy and (o, ¥Y;

(c) if ¢ and y are regular elenents of ¥, then the
elenment <y —>¢, y> is regular exactly for those el enments
x of ¥ which satisfy the equality <y —>1,1>=1I;

(d) if e is aregular element of ¥, then the equality
LCp, 8>=¢ holds for all ¢ in ¥;
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(e) an element e of ¥ is regular iff there is an el-
ement a of ¥ such that the equalities

ACp, | D=ACp, 8>=¢p
hold for all ¢ in .

44, let <¥,1,86, 1T, L, R, =, T, F> be a symetric conbi -
natory space satisfying the condition that T and F bel ong
to €. An element e of ¥ is called Boolean iff the equal -

ity ¢(6—>T, F>=e6 holds. Prove the follow ng statenents:
(a) T and F are Bool ean el enents;

(b) if e is a Boolean element, then so is e¢ for all
e in F;

(c) if e is an element of ¥ such that ex is a Boo-
| ean el ement for any x in &, then e is also Bool ean;

(d) if o and p are Bool ean elenents then so is the
element <y —>o0, p> for all x in ¥;

(e) the operations introduced in Exercise 35 transform
arbitrary elenents of ¥ into Bool ean ones;

(f) for any Bool ean elenent 6, the equality --e6=6¢6
hol ds;

(g) an elenmrent e of ¥ is Boolean iff the equality
(d —>T, F>e=e6 holds;

(h) for any e in ¥, the condition that e is a Bool ean
el enent is equivalent to each of the conditions

VoVyCpT=2yT & oF2yF = po=y6),
VoVyCpT=yT & pF=yF = poe=yoD.

45. G ve counter-exanpl es using symetric conbi natory
spaces to each of the following equalities (where the vari-

34

34 This equal ity corresponds to an equi val ence fromthe
paper McCarthy [1963]. In any of the conbinatory spaces
I ndicated in Exanples 1-5 there are nmany el enents e viol-
ating the equality in question. This divergence between our
system and Mc Carthy’s one is caused by an obvi ous reason
nanely our elenents e are not necessarily representations
of predicates (even if partial and anbi guous predicates are
adm tted). The Bool ean el enments of a conbinatory space are
t hose anong its el enents which can be regarded in sone sense
as predicate-like. It is proved in Ceorgieva [1983] that
t hose Bool ean el enents 6, which satisfy the additional con-
ditions 6 >1,1>=1, (6—>F, 6>=F, forma Bool ean al -
gebra with respect to the three operations introduced in
Exerci se 35.
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abl es range over the sem group of the space):35
x—> > p2=10¢,
x> —> ¢, Y, 62=Cx—> ¢, 6,
x—> ¢, (x> ¥, 82=C(x —> ¢, 6,
x—=>CP >0, ¥, 02=W—>0Q >0, 02, (x—> Y, YOI, 6,
x—>0, Cp—>2Y, 82=Cx—>0¢0, (o> —>Y, ¥, (x—>6, 650).

Hint. For the construction of counter-exanples to the
|l ast two equalities, you may use an appropriate conbi natory
space of the type considered in Section 6 of the Appendi Xx.

2. The conpani on operative space of a conbi natory space

Combi natory spaces are not the only class of abstract
al gebraic structures offering a prom sing uni formway for
capturing situations |ike that ones considered in Chapter |
Anot her such class of structures, called operative spaces,
is introduced in Ivanov [1980, 1980a]; these structures are
studied in a nunber of subsequent publications by the sane

author, culmnating in the nonograph |vanov [1986].36

SSAIl these equalities are counter-parts of equival ences
fromM Carthy [1963]. It is proved in Ceorgieva [1979] that
these equalities are sinmultaneously identically satisfied
exactly in those of the conbinatory spaces fulfilling the
assunptions of the previous exercise, which satisfy also the
following condition: for all elenents x of &, the equality
(x —>x, x>=x holds, and the element (¥ —>T, F> is dis-
tributive and regular in the sense of Exercises 41 and 43
above (as exanples of such conbi natory spaces, we indicate
t he conbi natory spaces from Exanple 5). By the statenent (c)
in Exercise 43 above, the regularity of ¢(x—>T, F> is
equi valent to the equality (x—>1I1,1>=1, and hence, by con-
dition (13), the equality <y —>x, x>=x 1S a consequence
of this regularity.

3570 be nore preci se, we nust note that not arbitrary
conbi natory spaces and not arbitrary operative spaces, but
so-called iterative ones, are the convenient classes for the
menti oned abstract al gebraic study. Iterative conbi natory
spaces will be the main subject of this book, as iterative
operative spaces are the nmain subject of the nentioned |van-
ov's publications. A larger class of operative spaces than
the iterative ones was independently introduced and studied
in Georgieva [1980], but it turned out that only a snal
part of the theory of iterative operative spaces could be
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Presented in slightly nodified notations, Ivanov’'s defi-
nition of the notion of operative space reads as follows. An
operative space is a 5-tuple <¥%,1, T, L,, R>, where &
is a partially ordered semigroup, | Is an identity of &,
I, is a nonotonically increasing binary operation in #,

L, > are distinct elements of ¢, and, for all ¢, y, 6 in
¥, the equalities

M Cop, YI>2=M (¢, 6y, T Cp, YIL,=¢, M Cp, YOR =y

hol d. According to Proposition 27.5 of |vanov [1986]37, to
each conbi natory space

C=<#,1,6,1T, L, R, =, T, F>,
an operative space G, is correlated, nanely
Cy=<%, 1, 20y.L—>9¢R, yR>, (T, 1D, CF, | >>

(the straight-forward proof that &, is really an operative
space can be based on condition (1§5, Remark 4 and Proposi -
tions 4, 5 of the previous section). The operative space

©, iIs called the conpanion operative space of ¥. As shown
in Proposition 27.19 of Ivanov [1986], not every operative
space can be obtained as the conmpani on operative space of
sonme conbi natory space. A characterization of those operat-
i ve spaces, which are conpani on operative spaces of conbi na-
tory spaces, is given in lIvanov [19??] (cf. also Ivanov
[1990] ). Nanely, such operative spaces are characterized by
t he existence of so-called storing operation in them (for an
exanpl e of storing operation, cf. Exercise 1.7).

It is convenient to nmake the following remark: if <%,
l,6, T, L, R, =, T, F is a conbinatory space, and <%,
I, o,,L,, R> is its conpanion operative space, then the
operation T, is obviously injective, whereas the operation

I, although injective on €, is, in general , not necessar-
ily injective on the whole ¥ (e. g., in all exanples of
conbi nat ory spaces considered in Section 1, we have the
equality (g, e>=9 for all 6 in ¥).

devel oped in that |arger class. Neverthel ess, Ceorgieva' s
notion will be nore convenient for our further exposition
than the notion of iterative operative space, since we shall
not nmake use of the additional properties possessed by that
ki nd of spaces. The structures studied by Georgieva are
closely related to the programm ng spaces introduced by
Skordev in 1978, but have an obvi ous advantage over them
since the definition of the latter notion is nore conpli-
cated (that definition can be found in Skordev [1982]).

37¢r. also p. 71 of Skordev [1980] (at |east for the
case of a synmetric conbinatory space).
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In arbitrary operative spaces, the natural nunbers are
represented in the follow ng way proposed by L. Ivanov. If

C,= <%, 1, m,,L,,R> is an operative space, and n is

a natural nunber, then the element n=RL, of ¥ is re-

garded as representing n in 6*.38 O course, if &, is the
conpani on operative space of the conbinatory space <%, |,

€ M, L, R, =, T, F> then the equality n=cF, I D"¢T, I>

hol ds, and all elenments n are normal in the sense of Sec-
tion 1. We note that in Skordev [1980], where the assunp-
tions Te6, Fe<€ are made, the natural nunbers are repre-
sented in a different way, nanely by certain elenents of @
which are in fact the products nT (the representation of
the natural nunmbers in Exercise |.2.4 can be regarded as a
special case of this, but with exchanged T, F and with the
constant mappi ngs replaced by their val ues).

In the further exposition, when some conbi natory space
is given and denotations fromthe theory of operative spaces
are used, then we shall always have in m nd the conpanion
operative space of the given conbinatory space. In particu-

lar, this wll apply to the denotations n.

In the sequel, we shall use T, with arbitrary nunber
of arguments. By definition, L P 0 = ¢, and, for n>0,

H*((po, Py (pn):H*Opo, H*((pi, Ce s (pn)).
Qovi ousl y,
Oy - s @ 2=TOQ 5 ... O D
for all e, ¢, RPN in ¥.

An useful property of the introduced representation of
nat ural nunbers is given by the follow ng proposition.

Proposition 1 (Proposition 4.11 of Ivanov [1986]). Let
<, 1, m,,L,, R> be an arbitrary operative space, let n
be a natural nunber, and |et Pp> Py = s P be arbitrary

el ements of . Then Loy s - oo (pn)l’_:(pr for all r<n,
and T, - -5 9 OR =0 .

Proof. Induction on n. g

Corollary 1 (Proposition 4.10 of Ivanov [1986]). Let
<¥,1, O, L,, R,> be an operative space, and let k, m
be such natural nunbers that the inequality k>=m holds in

38 There is an obvious di sagreenent between the denot a-
tion n introduced here and the denotation s from Section
.4 and Exercise |1.5.5. W hope that the context will pre-
vent the reader from a m sunder st andi ng.
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. Then k=m. (Hence the mapping an.n is injective.)

Proof. Suppose k=+m, and take arbitrary elenents ¢, y
of . Then there is an element s of ¥ such that sk =y,
sm=y. Fromhere we conclude that ¢>y. Since ¢ and vy
are arbitrary, this inplies the conclusion that all elenents
of ¥ are equal each other, contrary to the definition of
the notion of operative space. g

Remark 1. If <#,1,m,,L,, R,> is an operative space
then there are elenments ¢ and n of ¥ such that

ck=k+1, nk+1I=k

for all natural nunbers k. Nanely, we could take o=R,
and, for exanple, m=1m,l,1>. In the special case, when
<F, |, M, Ly, R> is t he conpani on operative space of
t he conbinatory space <%, 1,6, T, L, R, =, T, F>, then

mcl, 1 >=cL—>R, R,

and a sinpler m with the above property can be found,
nanely m=R. For this case, we note also the equalities

Lk+1I=Fk, LO=T.

In the special case nentioned above we shall define one
nore binary operation in ¥ in addition to the operation
M, . This new operation will be denoted by A, and it wll
be introduced by nmeans of the equality

ACp, YD =CLR—> pcL, R, ycL, RFO.
It is easily verified that
ACQ, YOCX, | D=TCop X, | D, Yy X, | DD

for all ¢,y in ¥ and all x in €.3% Mre general ly, we
set

A((po,(pi, ...,(pn):A((po,A((pi, ...,A((pn_1,<pn)...))

for all P in ¥. Then, as an easy i nduction
shows, we have the equality

(17) ACQy > - s 9 (X, > =T,Cp, (X5 15, ..., o, X5 [ >>
for all <p0,<p1,...,<pnin?andall X in 6.

Proposition 2. Let <%,1,6, 1T,L,R, =, T, F> be a
conbi natory space, let n be a positive integer, and | et

39 Anot her way to prove the above equality is to consider
the mapping ax. M pdX, D, yx, 15> and to apply the
method fromthe solution of Exercise 1.33. Note that this is
a natural way to obtain the defining expression for ACp, y>.
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P be arbitrary elenments of . Then
ACyp, » ...,@n)(x,r):qor(x,l)
for all r<n, and
n —_—
ACpy > v 9 20X, (R 10D =09 X, 1.

Proof. Right nultiplication of both sides of (17) by r

and by ¢F, 15", followed by application of condition (7)
fromthe definition of the notion of conbinatory space and
of Proposition 1..

Proposition 3. Let <%,1,6, 1T,L,R, =, T, F> be a
conbi natory space. Then for all x, ¢, ¥, 6, a, B in F
and each nornmal elenent ¢ of ¢, the followi ng equalities
hol d:

MeCos Y2 x> = —> 08 YOO,
MCp, YO2x —>L,a, RgBOD=x—> oo, ¥B,
Lo, ¥, 82Cx —> 00, IBD=Cx—> pa, YBD.

Proof. The first equality is a special case of the
equality in Proposition 1.8. The other ones follow i mredi -
ately fromthe properties of = and LI

Corollary 2. Under the sane assunption, for all ¢, y in
¥, we have the equality

ACp, YO =T, CopcL, PO, ycL, RROOCLR, |,

Exerci ses

1. (lvanov [1986, Exercise 4.2]) Let M be an infinite
set, and let L,, R, be injective mappings of M into M

satisfying the condition that rngL,nrngR,=@. For any o,
y from g (>, set T,Cop, y>=Cpl, DucyR, '>. Prove that

<F M, 1, T, L,, R> is an operative space.

2. (lvanov [1986, Exanple 4.4]) Let <M, J, L, R, T, F,
H> be a conputational structure in the sense of Chapter I,
Section 1, such that domL=domR=»M. Denote by ¥ the set
of all total mappings of M into itself, and introduce a
mul tiplication and a partial order in ¥ by adopting that
py denotes au. yCpCudd> and =y neans ¢e=y. Let T be
the binary operation in ¥ defined by neans of the equality

MCp, Yo =2au. JCplud, ydudd.
Prove that <%, IM, m, L, R> is an operative space.

*’

3. (lvanov [1986, Proposition 12.1]) Let <#%, 1, m,, L,,
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R,> be an arbitrary operative space. Denote by ¥° the
partially ordered sem group of all nonotonically increasing
mappings of ¥ into itself, where oy =a6.yCpCed> for
all ¢,y in ¥, and ¢ =y’ neans that ¢ (e>=y’Ced> for
all e in #. Let I"=2x06.06, L, ,=26.6L,, R, '=216.6R,,
and let the binary operation T, in & be defined by the
equality T, Cop’, Yy O>=2a6.T, pC(8D, Yy(6>>. Prove that <%,
I, m,» L, R,”> is also an operative space.

4. (lvanov [1986, Exercise 4.4]) Show that the require-
ment about nonotonic increasing of the binary operation T,
in the definition of the notion of operative space can be
replaced by the condition that ae. I, 6> is nonotonical-
ly increasing or by the condition that ae. Ic<e, 1> is non-
otonically increasing.

Hint. Make use of the equalities
MCo, YO =T,Cl, o>l , L y>T L R, , RO
MCy, > =T,Cp, YOI IR, , L,D.
5. Let <%,I1, T R,> be an arbitrary operative

2 L 2
space. Prove that for all natural nunbers n  and arbitrary
P in ¥ the follow ng equalities hold:

H*((po, (pi...,(pn_i,(pn,l):
n—1 n
Lo 5> DM Ry 5 1D TR, 0, | DIAR o 5 1D,
H*((po’(pi"" (pn):H*C(PO’ (Pi---, (pn,I)H*(U, I, ...,n).

6. Let <%,1,86, 1T, L, R, =, T, F> be an arbitrary
conbi natory space, and let <%,1,m,,L,, R> be its
conpani on operative space. For all e, ¢, ¢y In ¥, prove the
equalities

OACP, YO =ACB @, YD, ACp, yd>=TCp, YyOACL,, RD.

7. Under the same assunptions as in the previous exer-
cise, prove that <%, 1, xpy. ACpR, yR>, ¢&, LD, (n, RO>
is an operative space, whenever & and =n are normal el -
enents of the given conbinatory space.

8. Let <#,I1,86,1T,L,R, =, T, F> be an arbitrary
conbi natory space, and let <¥%,1,m0,,L,, R> be its com
pani on operative space. Let St be the operation in ¥ de-
fined in Exercise 7 of the previous section. For all ¢, y
in ¥, prove the equality

St (M, Cp, YOO =ACSt Cpd, StCyd>dStClD.
Hint. Use Exercise 9 of the previous section.

9. (Conpare with Proposition 27.14 of |vanov [1986]).
Assune the prem ses of the previous exercise together with
the prem ses of Exercise 1.12. Prove that conditions (i) and
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(ii) from Exercise 1.12 remai n equival ent after replacenent
the operation = in condition (ii) by the operation T,

3. lteration in conbi natory spaces

W introduced the notion of a conbinatory space for cap-
turing at | east some concrete situations considered in Chap-
ter 1. However, an essential feature of that situations re-
mai ns out of the scope of our general considerations until
now. Nanely, there is a natural operation of iteration in
each one of the structures of functions or function-like
obj ects considered in Chapter |, and this operation plays an
essential role in the description of the correspondi ng no-
tion of conputability. So it is desirable to have an ab-
stract algebraic treatnment also of iteration. W shall give
now such a treatnent using |least fixed points of sone nonot -
onic mappi ngs. In the case of ordinary and nultipl e-val ued
functions, the | east-fixed-point characterization of itera-
tion is well-known, and al so sonme ways for nore general con-
si derations have been noted by several authors (let us note,
for exanple, the papers Blikle [1971], Mazurkiew cz [1971],
Scott [1971]). We shall proceed in the way of generali zing
the | east-fixed-point characterizations given in Chapter |
of this book, Sections 2, 5 and 8.

From now on, we suppose that a conbi natory space
6=<%,1,86, T, L, R, =, T, F>

is given. Let o and x be some elenents of %. Having in
m nd the above nentioned characterizations from Chapter |
it is natural to name iteration of o controlled by x and

to denote by o, x1 the least solution t of the equation

(1) T=Cx —>7t0o, | D

if, of course, such a |east solution exists. If we adopt
this definition, we may, for exanple, state that an itera-
tion controlled by F is always equal to |, and the itera-

tion of I controlled by T is equal to the |east el enment
of ¥ if such a |east elenent exists (since (1) is equival-
ent to =1 in the case of y=F, and it is equivalent to

t=t in the case of =T, o=1). Note also that, whenever
o, x1 is a solution of (1), then, for each p in %, the el-
enment plo, y1 satisfies the equation

(2) T=(x—>1T0O, pD.

It is not difficult to construct & with ¥ having no
| east el enent. For exanple, if <M, J, L, R, T,F,H> is a
conput ati onal structure with total L, R, H (i.e. domL=
domR=domH=mM) then we coul d take G__<?,IM,€,H',L,R,

=, T, F>, where ¥ is the subsem group of the total el-
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enents of ¥ (M>, the set © is the sane as in Exanples 1.1

and 1.2, and T, = are the restrictions to ¥ of the
operations T, ¥ fromthat exanples. In such a conbinatory
space G, the equation (1) would have no | east solution in
the case of =T, o=I1. O course, when we are interested
in the algebraic study of iteration in conbinatory spaces,
it is natural to consider only such ones in which this equa-
tion has a least solution for every choice of x and o

(an obvious corollary of such an assunption would be the
exi stence of a least elenent in the corresponding ¥). How
ever, we cannot develop a fruitful theory of iteration on
the basis only of this assunption, and we shall formulate
stronger assunpti ons.

First of all, it is useful to renenber that the |east-
fi xed-point characterizations of iteration, which were given
in Chapter |, draw attention to a stronger property of

[o, x1 than of sinply being the |east <t satisfying the
equation (1). Nanely, we observed that, in the cases consid-
ered there, the solution 1o, x1 of this equation is also
the least t satisfying the inequality z=dxy—>to, | >. Un-

fortunately, this will be again not enough40 - a further
strengthening of the above mnimality condition will be
needed. Exercise 1.2.3 and the propositions from Sections
.5 and 1.8 show that the following condition is also satis-
fied in the considered cases: for all x, 0, p in ¥, each
solution T of the inequality

(3) T=2(x—>7TO0, PO

satisfies also the inequality T=plo, x1. It turns out
that, for some purposes, a convenient decision is to define
the notion of iteration in such a style. Nanely, we could
define the iteration of o controlled by x as an el enent

v of ¥ satisfying the equality ¢=d(x—>t0o, > and
fulfilling the condition that, for all <, o, p Iin %, the
inequality (3) inplies the inequality T=p¢. O course,

if such an ¢ exists, it nmust be unique, since the condi-
tions inposed on ¢ entail that ¢ nust be the least <
satisfying (1).

The above conditions concerning iteration are not the
strongest ones needed for the exposition in this book. The

proof of sone essential results will nake use of sonmewhat
nore stronger conditions to be satisfied by iteration. Exer-
cises 1.2.8, 1.5.9 and 1.8.8 can be used for illustrating

the spirit of this strengthening before giving the precise
formul ati on. Exercise 1.37 can serve as a bridge fromthe

40 For exanple, it seenms to be not sufficient for proving
that pfo, x1 is the least solution T of the equation (2).
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speci al cases considered in Chapter | to the general one.
And now, let us give finally the precise formnulation.

Definition 1. Let o and x be sone given el enents of
. An element ¢ of ¥ is said to be the iteration of o
controlled by x iff the equality v=d¢(x—>t0o, > holds
and, for all =<, p in ¥ and each subset «4 of &, whenever
4 is invariant with respect to o, the inequality
T=2(xy—>7tT0o, pd inplies the inequality T=p¢. In the case

A A
when such an elenment ¢ exists, it will be denoted by
Lo, x]1.

The above definition really inposes not weaker condi -
tions on ¢ than in the case when = is used instead of
>. This can be easily seen by neans of Proposition 1.9.
]
Therefore the iteration of o controlled by x is unique
if it exists at all, and so the clause concerning its deno-
tation is justified. The term nology and the denotation in-
troduced by the above definition are in concordance with the
term nol ogy and the denotations in Chapter |I. This foll ows
fromthe above nentioned Exercises 1.2.8, 1.5.9 and I|.8.8.

Exanple 1. Let & be an arbitrary conbi natory space,
and let o be an arbitrary element of ¥. Then the itera-
tion of o controlled by F exists, and the equality
o, F1=1 holds. Indeed, we have | =C(F—>1 o0, 1>, and, for
all T, p in ¥ and each subset «4 of &, the inequality
t=2(F—>to, p> is equivalent to the inequality T=pl.

] ]

The conbi natory spaces in Exanples 1.1, 1.2, 1.3 and 1.4
(corresponding to the situations considered in Chapter 1)
are such that (o, 1 exists for all o and x in the
corresponding ¥. In the sequel, we will be interested min-
ly in conmbinatory spaces having this property, and such spa-
ces will be called iterative.

Definition 2. The conbinatory space & is called itera-
tive iff the iteration of o controlled by x exists for
all o and ¥ in ¥.

From now on, until the end of this section, |et us sup-
pose the given conbinatory space G is iterative. Sone
statenents nenti oned above before the ultimate definition of
iteration (i.e. Definition 1) will be fornul ated now (pos-
sibly enlarged) as explicit propositions.

Proposition 1. For all o, x, p in ¥, the elenent
plo, x1 of ¥ is the least solution t of the equation (2)
and the least © in ¥ satisfying the inequality (3).

Proof. Let ¢=I[o, 1. Then t={(x—> Lo, | >, and,
consequently, piLt=px—>t0o, | DdD=Cx—>prLo, pd. SO T=pL
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satisfies (2), and hence (3) is also satisfied if we choose
T in this way. On the other hand, if T is an arbitrary

el ement of ¥ satisfying (3) (in particular, if T is an
arbitrary solution of (2))then, taking 4= in the con-
dition fromDefinition 1, we concl ude that TZpL.g

Definition 3. The elenent (1, T1 of ¥ wll be denoted
by o and will be called the zero of &.

Proposition 2. The zero of & is the |east el enent of
¥, and, for all p in ¥, the equality po=o holds. For
all normal elements ¢ of ¥, also the equality ol =o

hol ds *1.

Proof. Let p be an arbitrary el enent of . By
Proposition 1, the element po is the least t in ¥
satisfying the equation t=<(T-—-><tl, p>. But this equation
is equivalent to T=<t, hence po is the |east elenent of
. Since, in particular, we could take p=1, the first
part of the proposition is thus proven. Let now x be sone
fixed element of €. The second part follows inmediately
from Proposition 1. 11..

Remark 1. In the general case, it is not possible to
prove that op=o for all p in ¥. To have a counter-
exanpl e, let us consider the special case of Exanple 1.3
corresponding to Theorem1.8.1, i.e. the case of M=,
E={e}. Then, using the denotations fromthe nentioned
theorem we see that oP (0> —=e, and hence oP +#o.

Remark 2. If the given iterative conbinatory space is
symmetric, then op=o0o and o=1Ip, T1 for all p in ¥. The
first equality can be proven by noting that, for all x in
€, we have (using Proposition 2 tw ce)

opX=oXpX=LCoX, | Dpx=LCoX, px>=L{l, pXx>oX=o0X.

For proving the second equality, we apply the first one to
get the equality o=<(T—>o0p, >, and then we use the
m ni mal property of iteration to conclude that o=t1p, T1.

Two nore propositions about iteration will be given.
Proposition 3. The operation of iteration is nonotonic-
ally increasing, i.e. Lo,»x,1=l0o,, x,1» whenever
01202, X12X2'
Proof. Let 0, 20,5 X =%, For k=1, 2, set
Lk:[O'k, xk]. Then Liz(X% L0, [ D= Cxy — L, 0,5 | D,

. in particular, ox=o for all x in €, and hence o
is a constant elenent in the sense of Exercise 1.26.
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hence Ly is an elenment <t satisfying the inequality
T2y —>, to,, 1> On t he ot her hand, L, is the | east

T which satisfies the sanme inequality. Therefore L2l
Proposition 4. Let ¢ and n be nornal elenents of ¢,

and o, x be arbitrary elenents of ¥. Then the follow ng

i npl i cations hol d:

xC=Tn = (o, x1{=1[0, x10C,
xC=Fn = (o, x1=C.

Proof. Using the equality (o, x1=C(x —>1[0o, x10, 1> and
application of Propositions 1.5 and 1.7..

Remark 3. In the proofs of the above propositions, the
second condition fromthe definition of iteration, when used
at all, was used only for the case of «4=€. Application of
this condition at other choices of «4 is needed, for ex-
anple, for the solution of Exercises 4, 5, 6, 7, 10 after
this section.

Bef ore going further on, we should |ike to discuss the
interrel ati on between the notion of iteration introduced in
this section and the notion of iteration used in the book
Skordev [1980]. There is an obviously unessential difference
bet ween the two notions (up to this difference, the present
notion is the sane as in Skordev [1980a, 1984]). The dif-
ference can be expressed by saying that we consider now a
"while" —iteration, and a "while not" —iterati on has been
considered in the previous author’s publications. Nanely,
the iteration denoted by (o, x1 in themis an elenent <t
satisfying the equation t=d(x—>1, tod, and the sane deno-
tation is used now for an elenent <t which satisfies the
equation T=C(y —>to, |>. Both kinds of iteration (if there
are no other differences) can be reduced one to the other by
repl aci ng the given conbinatory space & by the space
<¥,1,6 T, L, R, 2 ,F, T> fromExercise 1.1 (in con-

nection with this, cf. also Exercise |.2.6 for the case of

t he conbi natory space from Exanple 1.2 and Exercise 3 after
this section for the general case). However, there is a nore
essential difference between the two conpared notions, and
the situation is such that, roughly speaking, the present
notion of iteration is weaker than the notion from Skordev

[ 1980] (hence conbi natory spaces, which are iterative in the
sense of that book, will be iterative also in the present

sense, but not necessarily conversely).42 For expl ai ni ng

42 The nmeani ng of "weaker" here does not exclude a pos-
si bl e equi val ence of the two notions.
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this, we shall now recall the former definition of iter-
ation, but with exchanged content of the second and the
third argunent of =. To avoid any confusion, we shall nane
that other iteration strong. After this change of the nane
and the above-nenti oned exchange, the definition from Skor-
dev [1980] can be fornul ated as fol |l ows:

Definition 4. Let o and x be sone given el enents of
. An element ¢ of ¥ is said to be a strong iteration of
o controlled by x iff the equality ¢t=Cx—> o, 1> holds
and ¢ belongs to each set which is closed under the map-
ping at.(x—>to, | > and can be represented as the inter-

section of sets of the form {z: wz:@tz}.43

We shall prove now the fornul ated statenent about the
connection between both iterations.

Proposition 5. Let o and x be sone given el enents of
¥, and let . be a strong iteration of o controlled by
x- Then ¢ is the iteration of o controlled by .

Proof. The equality is one and the sanme in Definitions 1
and 4, so we have only to show that the second condition
fromDefinition 1 is fulfilled. Let «4 be a subset of @€
invariant with respect to o, and let <t_  and Pq be el -
enents of ¥ satisfying the inequality

toi(x%too, po).
W nust prove the inequality Ty Z Py Lo i. e prove that
A

L=€, where &={t: t ,=zp, t}. Cbviously, & is the inter-
oA

section of all sets of the form {z: t ,z=p Tz}, where

Zed. Therefore it is sufficient to prove that € is

closed under at.(y —>to, |>. Let T be an arbitrary el -
enent of &. Since «4 is invariant with respect to o, we
may concl ude t hat T,0Zp,TO. Then, for all x in 4, we

shal | have 4
'COXZ(X%’COO', pO)X:(XX%'COO'X, pOX)Z
XX —> Py TOX, pyXd=p,(x—>T0, I >OXx.
Hence tozzpo(x-—e'co,l D, i.e. (x—>tTo,1>eg. Thus € is

]
cl osed i ndeed under the considered mapping, and the proof is

3This is a definition which enabl es reasoni ng about
iteration in the spirit of D. Scott’s wu—induction rule
(cf., for exanple, de Bakker and Scott [1969], de Bakker
[1971] or Hitchcock and Park [1973]).
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conpleted..

It would be natural to conpare the present notion of
iteration also with the notion used in author’s papers be-
fore 1980 (for exanple, in Skordev [1976b]). However, we
shall not give now any details in this direction. W shall
mention only that the notion fromthose papers is stronger

than the notion in Skordev [1980]44, and hence it is strong-
er than the notion used now W note also that in nost ex-
anpl es considered in the present book iteration satisfies
the stronger requirenments fromthe definitions previously
used.

In Chapter |11, Section 4.4 of the book Skordev [1980]
several equalities concerning iteration are proved in a way
which is not usabl e under the definition adopted in the
present book. W shall discuss these equalities now.

The first of themis given in Proposition 4.4.5 there
and | ooks as foll ows:

lo, x1=R[C(x, | DR, L1Cx, | D.
This equality will be proved further (see Corollary 5.2).

The next of the equalities in question is asserted under
sonme assunptions in Proposition 4.4.6 of the nentioned chap-

ter,45 and then six other equalities are obtained as easy
corollaries. Unfortunately, we do not know whether this
proposition is always true for the iteration considered now,

but still we shall prove the sane equality under a certain
addi ti onal assunption (the condition (*) below), and this
will be sufficient for obtaining the above-nentioned corol -
| ari es.

Proposition 6. Let ¢ be a normal elenent of ¢ satis-
fying the followi ng condition: (*) there is an elenent p of
¥ such that p¢=I1 holds. Let o, m be elenents of ¥
satisfying the condition of=¢mn. Then

Lo, x1C=C[m, 1
for all x in #.
Proof. Let L, =Lo, x1, ,=1Im x(1. Then we have to
prove the equality L, C=qe,- This equality will be estab-

er pp. 252-253 of that book. The neani ng of "strong-
er" here does not exclude equival ence of the conpared no-
tions.

S A strengt hened version of the statenent of that prop-
osition is indicated in Exercise 10 after this section.
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| i shed by proving inequalities in both directions. W note
first that

L= —>1,0, D= — L, 08 O=&L—>,Cm, .
Hence (by Proposition 1) the inequality L, L=, hol ds. For
t he proof of the converse inequality, we set 6=C_tL,p: Then
{L,=010 and the problemis reduced to proving the in-
equal ity 6Lz, C. The last inequality is equivalent to the

i nequal ity N where «4 is the set of all elenents of
]

€ having the form ¢z with z<6. The set «4 is invariant

with respect to o, due to the equality ocZ=¢m. On the

ot her hand,

8L=CL,=x{—>LL,m, O=Q{—>eln D=
(x—>60, LO=C(x—>60, 12

and clearly this inplies the inequality e=d(y—>60, | D.
]
Now an application of the definition of iteration |leads to

t he needed conclusion..

Corollary 1. For all ¢, x in ¥ and all x in &, the
foll owing equalities hold:

[CL, ¢, x7 <X, I D=CX, ToCX, | D, x{X, 121D,
[Cp, RO, x1C1, XO=Clepdl, X5, xCl, X>1, XD,
RICL, ¢, x1 X, | D=Tp X, | DO, x{X, 121,
LicCp, RO, x1<l, xO>O=1¢dl , X>, xCl, X21.

Proof. To obtain the first equality, we set ¢=dx, D,
o=CL, ¢>, m=¢pCx, 1>, and then we use the equalities
Re=Il, o= pl>=X, n>=m,
Clm, xC1 =X, [, xC1D.
The second equality can be obtained in a simlar way by set-
ting ¢=d, x>, o=Cp, RO, m=¢d, x>. The third and the

fourth equality follow fromthe first and the second one,
respectively, by Corollary 1.2..

Corollary 2. For all o, x in ¥ and all x in &, the
foll owing equalities hold:

[CL, oRD, 1 X, I D=X, [0, x (X, | 01D,
[ColL, RO, »1<Cl , Xx>=C(lo, (I, X201, XD.

Proof. Substitution of oR for ¢ in the first equality
of Corollary 1, and substitution of oL for ¢ in the sec-

ond one. o
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Remark 4. W do not insist on using always the iteration
i ntroduced by Definition 1 and avoiding the use of strong
iteration. We do not know concrete iterative conbinatory
spaces in which sone iteration is not a strong one. On the
ot her hand, it happens sonetinmes that a statenent is prov-
able for the strong iteration, but no proof of it is known
for the other one (cf., for exanple, Exercise 10). In our
opi nion, one nust have no prejudi ces agai nst using the
strong iteration (and even stronger ones) in the cases when
this is appropriate.

Exer ci ses

1. If the equality ¢t=Cx—>to, 1> in the definition
of iteration is replaced by the inequality ¢v=2(xy—>co, 1),
prove that the new definition is equivalent to the origina
one.

Hnt. If ¢ satisfies the conditions of the new defini -
tion then set L,=C—>to, 1. Using the inequality L=,

concl ude t hat l&ZE(X——>L10,|_X
2. Let 6=<%,1,86, 10, L, R, =, T, F> be an iterative

conmbi natory space. Prove that, for all 6, ¢,y in %, the
equalities

(o, 86>2=Co—> ¢, Y>=0, Cp, Yy>o=Cpo, Yoo, [6, 0l =0
hold. In the case when & is symetric, prove al so that
6, oD=C(x—>o0, 0D=o0

for all e, x in ¥ (the equalities concerning T are from
| vanov [1977]).

3. Let 6=<%,1,86,1T,L,R, =, T, F> be an iterative
conmbi natory space, and | et G,=<¥%, 1,6 0, L, R, 2 ,F, T>

be the correspondi ng space from Exercise 1.1 (i. e.
x5 @5 YO =3, Y, @O
for all x, ¢, v in ¥). Prove that G, is also iterative.
Hint. Use Exercise 1.22.

4., Let 6=<%,1,86,1T,L,R, =, T, F> be an iterative
conbi natory space, and let {a, B} <{L, R}. Prove that

[Ca, B, TIC(X, YO=0

for all x,y in © (of course, the interesting case is that
one when & is not symetric, since otherwi se we coul d nake
an i medi ate application of Remark 2).

Hint. Use Proposition 1.10 and the fact that
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olX, yO=CT —>oCa, B2, | DX, y>
for all x,y in &.

5. Let <¥%,1,6,0,L,R, =, T, F > be an iterative conbi -
natory space, and let 6, x be some elenents of ¥. Let the
operation St in ¥ be defined in the sane way as in Exer-
cise 1.7. Prove that

Stcre, x10=0St (6>, xR1St Cl D.
Hint. Prove the equalities
(x —>ILStCed>, yRicx, I >, (x, 1 >>=1StC6>, x R1{x, |,
Stcre, 12X, y>D=C(xR—>St(re, x1>St e, | DX, yD.
From them (using al so Exercise 1.39) concl ude that
(X, I Dre, x1=13tce>, yR1x, | >
for all x in €. Then apply Exercise 1.9.

6. Let <¥,1,6,1T,L,R, =, T, F> be an iterative conbi -
natory space, o and x be elenents of ¥, « be a subset
of ® invariant with respect to o. Prove that « is invari-
ant also with respect to (o, x1.

Hnt. If o=y then the inequality t=d{xy—>to, ¥> IS
] ]
satisfied by t=9¢lo, x1.

7. Let <%,1,6, 10, L, R, =, T, F be an iterative conbi -
natory space, o, 0%, ¥, x° be elenents of ¥, «4 be a sub-
set of € invariant with respect to o, and |l et the inequal -
ities o°>20, x=x hold. Prove the inequality

d d
[oc’, x'1=[o, x1.
d

8. Let <¥,1,6,10,L,R, =, T, F be an iterative conbi -

natory space, and | et

o=¢RL, R,R>, ¢=Rio, (L >F, TO1cl, I,

Prove that ¢n=2n for all natural nunbers n. (Conpare
with Exercises 1.2.4 and |.2.5)

9. To the assunptions of Exercise 1.40, add the assunp-

tion that @ is iterative. Prove that GK is also itera-

tive, and the equality (o, x1=2ak.[oCkD, x(k>1 holds for
arbitrary o, x in ¥ .

10. Prove the statenment obtained from Proposition 6 by
omtting the condition (*) and replacing "for all x in "
by "for all x in ¥ such that a strong iteration of o
controlled by x exists".

H nt. To prove the inequality (o, x1C=<Clm, xC1,
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apply the second part of the condition in Definition 4 to
the set {6<¥: 6C=<CIlm, xZ1}.

4. On least fixed points in partially ordered sets

If <¥,1,6, T,L,R, =, T, F> is an iterative comnbi na-
tory space, o, x, p are sone elenments of ¥, and I is the
mapping of ¥ into ¥ defined by I'¢t>=<(x—>to, p>, then
(by Proposition 3.1) the element plo, x1 is the least fix-
ed point of T, as well as the |least solution T of the in-
equality T=>=TrdCt>. Note also that the mapping I is nonoton-
ically increasing.

In our further exposition we shall systematically use
| east fixed points which are also |east solutions of the
correspondi ng inequalities of the above form with different
nonot oni cal ly increasing mappings I'. More generally, we

shal | use | east solutions <Tys oo0s T of systens of
equations of the form

(1) T, =0T, s T s i=1, ..., m

wher e Ty»---» T are nonot oni cal | y i ncreasi ng mappi ngs of
" into ¥, and it always will be the situation that the
same T, ..., T formalso the | east solution of the cor-
respondi ng system of inequalities

(2) T 20T, s T D, =1, ..., m

For such situations some statenents will be used whose val -

idity do not really depend on the fact that ¥ is the par-
tially ordered sem group of a conbi natory space.

Fromnow on in this section, if nothing else is said
about ¥, we shall suppose that ¥ is sone partially order-

ed set. OF course, a mapping I of " into ¥ will be
call ed nonotonically increasing iff for all Py s P
Uy oo U in ¥ satisfying the inequalities 0, =Y,

NONER al so the inequality
TCp, s oo 9 OZTCY, ooy YD
hol ds. The | east solution of sone of the systens (1), (2) is

by definition, a solution <Ps o 9> of this system such
that for each solution <Tys vvvs T of the systemthe
i nequalities T, Z P oo T = 0 hold (clearly, such a

| east solution nmay not exist, and the system may have no
solution at all).

W start with a statenent whose special case of m=1
is inplicitly contained in the paper Tarski [1955] (of
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course, the general case considered bel ow can be reduced to
this special one by application of the corresponding result
to the partially ordered set ™).

Proposition 1. If I, , T

KRR ..., are nonotonically in-

creasing mappings of ¥ into ¥, and the system of in-
equalities (2) has a |least solution, then this solution is
al so the | east solution of the system (1).

Proof. Let I, , T > T be nmonotonically increasing

FF VR
mappi ngs of " into ¥, and P> v 9> be the | east
solution of (2). W set

U, =T, Co 5 - 0> T =1, ..., m
Then we have the inequalities P =Wy s 9TV These

i nequalities, together with the nonotonicity of the mappings
T, and with the definition of the elenents Ui i mply the

i nequalities

wiz:ri(wi, C s wm), i =1, ..., m
Hence <y, ..., o> is also a solution of (2). Since
<Pps o 9> is the |l east solution of this system the
i nequalities UyZ@ps s ¥ =0 follow But, as we have
al ready seen, also inequalities in the opposite direction
hol d. Therefore o =V > =1, ....,m i.e <g, ..., 0>

is a solution of the system (1). Cbviously this is its | east
solution, since all solutions of (1) are solutions of (2)..

In view of the above proposition, we shall be nmainly
interested in |east solutions of systens of the form(2). In
the special case of m=1, the system (2) reduces to an
i nequal ity of the form t=TICt>, where T is a nonotonically
i ncreasing mapping of ¥ into ¥. If this inequality has a
| east solution ¢ then the element ¢ wll be denoted by
ut. 'Ct> (denotation taken, up to sone orthographic de-
tails, fromthe paper de Bakker and Scott [1969]). O
course, the introduced denotation will be used also with
ot her variables instead of t (for exanple, the sane el-
enment ¢ of ¥ can be denoted also by ue.rce>). W allow
al so other expressions instead of I'Ct>, having in mnd the
mappi ngs which ari se when these expressions are regarded as
functions of the variable after the synbol u. These ot her
expressi ons nay depend al so on ot her variabl es besides the
menti oned one, and these other variables remain free in the
considered u—expression. For exanple, Proposition 3.1 can
be expressed by the equality
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plo, x)] =ut. (x >tTo, po.
Proposition 2. Let LI I be nmonotonically in-

creasi ng nmappi ngs of g™ into ¥. Suppose that, for all

T > T, in 7, the systemof inequalities

L
> i —
(3) Towi S0 CT s oo Ts Topgs wvvs Ty s |m 1, ..., m
has a | east solution <=t s +..>T_ > in ¥, and denote the
n+1 n+m
conmponents of this solution by
Ai('Ci,--.,'Cn), =1, ..., m

Then the mappi ngs A, of #" into ¥ are also nonotoni-
cally increasing.

Proof. We shall restrict ourselves to the case when
m=1 (the general case can be treated in a simlar way);
we shall wite I', A instead of I, A, , respectively.

Let Py v Pa Wys s U be eleimentis of ¥ satis-
fying the inequalities Py Uys e P YL Then
A((pi,...,(pn)zr‘(qoi,...,(pn,A(<p1,...,(pn))2 46
TCYy > oo W ACR 5 oy 9 DD
Hence ACp, 5 ... ¢ D= ACY » . ..s Y D
Now t he problemwi ||l be considered about elimnation in

systens of the form (2) (in different settings problens of
this kind are studied, for exanple, in Bekic¢ [1969], Lesz-
czydowski [1971], Wand [1973], Blikle [1974]; Section 1C of
Moschovakis [1974] is also relevant to the subject).

Theorem 1. Let B »B , T > T be nonotonically

4> 2B T s
i ncreasi ng nappi ngs of g™ into ¥. Suppose that, for all
T > T, in ¥, the systemof inequalities (3) has a

Lo
| east solution <t .., ..., t.. > in ¥ and denote the com
n+1 n+m
ponents of this solution by ACT, > o5 T s =1, ..., m
Then the system of inequalities
> | =
(4) tJ_BJ(ti, CEECEECIES 1 'Cn, tn+1) LI ] tn+m)) J 1) )n’
> i =
T _l"i('ci, cees Ty Ty ...,'cn+m), I 1, > m,

has a | east solution iff such a solution exists for the sys-
tem

4% n fact, Proposition 1 enables us to replace the first
of the last two inequality signs by an equality sign, but
this is not needed for the proof.
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(5) 'chBj('ci,...,'cn,Ai('ci,...,'cn),...,Am('ci,...,'cn)),
i =1, ...,n.

Mor eover, the follow ng two statenents hol d:

(i) if <Py oo Ps P s 9S> S t he | east
solution of (4) then <P s s 9> is the | east solution
of (5);

(i) if <Ps v 9> is the |l east solution of (5) then
<p,» ...,(pn,Ai((pi, ...,(pn), ...,Am(<p1, ...,(pn)> is the

| east sol ution of (4).

Proof. Again, we shall restrict ourselves to the case
when m=1; we shall wite A instead of A, - | f

STys ovos Tps Ty is a solution of (4) then fromthe
| ast inequality of (4) we concl ude that
(6) Tog 20T s s T 05

and therefore (by the nonotonicity of the mappings Bj) t he
other inequalities of (4) inply the inequalities (5). Thus,
whenever STys +vv5 Ty ’Cn+1>iS a solution of (4), then

<Tys +vvs TS is a solution of (5), and the inequality (6)
hol ds. Conversely, if <Tys +vvs TS is a solution of (5)

t hen <Tys -ov5 Ty ACT 5 oy T 0> is a solution of (4)

(the last inequality of (4) is satisfied according to the
definition of A).

Now suppose <¢ , ..., On > Prig> is the | east solution
of (4). Then, by the above reasoni ng, <Ps e 9> is a
solution of (5). Let <Tys +ves TS be an arbitrary sol ution
of (5). Then, again by the above reasoning, the n+1—-tuple
<Tys -vv5 Ty ACT 5 oy T 0> is a solution of (4), and
hence the inequalities Ty Z P oo T2 @ hol d. Thus
<Ps o 9> is the | east solution of (5), and statenent
(i) is proved.

For proving (ii), suppose that <Ps v ves 9> is the
| east solution of (5). Then <¢ ., ..., 0> Ao s s p 0>
is a solution of (4). Let STys ovos Tps Ty be an arbit-

rary solution of (4). Then <Tys +ves TS is a solution of
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(5), and therefore the inequalities Ty Z P oo T2 @
hol d. By Proposition 2, these inequalities inply that
A(ti, c s tn)ZA((pi, c s (pn).
Since we have also the inequality (6), we conclude that al so
Topg = ACO > s 9 0. Thus Q> s @ A s s D>

is the | east solution of (4)..
Corollary 1. Under the prem ses of the above theorem if

Qs s P Py e P is the least solution of (4)
t hen
Opi =N Co s s 00 i =1, ..., m
Corollary 2. Let B,» ---» B, be nmonotonically increas-
ing mappings of ¢ " into ¥, and let A, ..., A be

nonot oni cal | y i ncreasing mappings of ¥ into . Then the
system of inequalities

n n+1

tn+i2Ai(t1, --.,’Cn), =1, ..., m

T. 2B (Tt , ..., T >, T . >, j =1, ..., n,
J J 1

(7)

has a |l east solution iff such a solution exists for the
system (5). Mreover, the followng two statenents hol d:

(i) if <Py oo Ps P s P S is the | east
solution of (7) then <P s s 9> is the | east solution
of (5);

(i) if <Ps e 9> is the | east solution of (5) then
<e,> ...,(pn,Ai((pi, ...,(pn), ...,Am((pi, ...,(pn)> is the

| east solution of (7).

Corollary 3. Under the prem ses of Theorem 1, an m+n—
tuple of elenments of ¥ is the |east solution of the system
(4) iff this m+n—tuple is the | east solution of the
correspondi ng system (7).

As an application of Theorem 1, we shall obtain a result
giving the interconnection between pe.B(Tdg>> and
ut. TCBCTD>> for nonotonically increasing mappings B, I' of
F into ¥.

Theorem 2. Let B, I be nonotonically increasing
mappings of ¥ into ¥, and |et
(8) uLe. B(rcedd =yp.

Then
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(9) ut. TCBCTOD =T CpD.

Proof. W consider the systemof the two inequalities

6=B(T>,
(10) T=2T(6D.
Theorem 1 will be applied to this systemin two different

ways: the first time elimnating t, and the second tine
elimnating 6.

The first application of Theorem 1l shows that (10) has a
| east solution iff there is such a solution for the inequal -
ity
(11) 6= B(T(ed)D.

Mor eover, we can assert that if ¢ is the |east solution of
(11) then the least solution of (10) is

(12) T=ICpd, 6=0p.

Since we have the assunption (8), we conclude that (10) has
the | east solution (12). Now the second application of The-
orem1 to the system (10) shows that the t-—conponent of
(12) nust be the least solution of the inequality

T=2T{(B(T>D,
and this statenent is exactly the statenent (9)..

Corollary 4. Let <%,1, 6, 1T, L, R, =, T, F> be an itera-
tive conbi natory space, and let x, o, p, a be el enents of
¥. Then the equality

ut. <x —>7to, poa=plaoc, x]a
hol ds.

Proof. We apply Theorem 2 to the mappings B and T of
g into ¥, which are defined as foll ows:
Bto=(x—>TtT0o, p, F(e):eoc..
In an obvious sense (nentioned in the paragraph preced-
ing Proposition 1), a systemof the form(2) in an arbitrary
partially ordered set ¥ can always be reduced to a single
equation of the form T=rd¢t> in the partially ordered set

#". However, a reduction to a single equation of this form

inthe initially given partially ordered set ¥ turns out
to be also possible in the special case when ¥ is the
sem group of an operative space (in particular, when ¥ is
the sem group of a conbi natory space).

Proposition 3. Let <#,1, T, L,, R,> be an operative

space, and | et PR be nmonotonically increasing
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mappi ngs of ¥" into ¥. Let I be the nonotonically in-

creasing mapping of ¥ into ¥ defined by the equality
F(t)zl"o(tU, 1, ..., TtTm=2, 'Cka_i),

wher e

1"0(1:1, tm)zl'[*(l"i(tl, 'Cm), C ey l"m(ti, 'Cm)),
and let ux.TC(to=¢. Then <¢0, o1, ..., wm—Z,qﬂgm_1>
is the | east solution of the system (2).
_ _ _ _ m—1
Proof. Set €,=0, &=1, ..., gm_i__nm—z, Em—-R« >

for short. Then, for i =1, ..., m we have (using ¢=TCpD
and Proposition 2.1)

P& ZT (P& 5 .. 0E D& =T,Cp& 5 ..., & D

Thus <PE s s PEDS is a solution of (2). Consider now an
arbitrary solution <Tys oo0n T of (2), and set

’C:H*(’Ci, ...,’Cm).
Then, TE =T, > i =1, ..., m and, using the inequalities
(2), we get

1:21"0(1:1, tm)zl"(t).

From here, by the mnimality of ¢, the inequality t=>p¢
foll ows. Hence T, 20 =1, ..., m g

In the above proposition, the existence of a | east sol-
ution of the inequality T=r<¢(t> has been assuned, and the
exi stence of a |least solution of the system (2) has been
establ i shed as a consequence. An inplication in the opposite
direction can al so be proven, nanely: if <P s s > i's

the |l east solution of (2) then HT- T =T, o 5 -5 ¢ -

This statenent, as well as the statenment of Proposition 3,
can be regarded as a special case of a nmuch nore general
statenent (see Exercises 7 and 8 bel ow).

In the preceding considerations in this section, we usu-
ally assunmed the exi stence of sone |east fixed points and
carried certain reasonings on the base of this assunption.
Sonetinmes this existence follows easily fromcertain well-
known sufficient conditions of a quite general nature. W
shall recall now two such results. Some rel evant references
concerning these results are Knaster [1928], Birkhoff [1948,

. 44, 54], Bourbaki [1949-50], Kleene [1952, & 66], Tarsk
[ 1955], Abian and Brown [1961], Platek [1966], Markowsky
[1976] (the list is surely not conplete, and we do not at-
tribute the results only to those peopl e whose names occur
bel ow) .
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Theorem 3 (Knaster - Tarski - Kl eene Theorem). Let &
be a partially ordered set having a | east elenent o, let
each nonotonically increasing infinite sequence of el enents
of ¥ has a |east upper bound, and |let T be a nonotonic-
ally increasing mapping of ¥ into itself such that T is

continuous with respect to | east upper bounds of nonotoni c-
ally increasing infinite sequences 47 Then the sequence

{Fk(o)}‘kfo i's monotonically increasing and the equality

Sup{l"k(o)}(ljjo =put. (T
hol ds.

Proof. One proves by induction that r*co> < ™**cod
for each natural nunber k. Thus the sequence {Fk(o)}‘kfo
i s nmonotonically increasing. Let @:sup{rk(o)}‘ljfo . Then

T'Cp>=sup {l"kﬂ(o)}(k}z)o — 0.

On the other hand, if T is an arbitrary solution of the
inequality T=rdt> then, again by induction, one proves

t hat tzrk(o) for each natural nunber k, and from here

the inequality t=p¢ foIIovvs..

Theorem 4 (Knaster - Tarski - Pl atek Theorem. Let ¥
be a partially ordered set such that each chainin ¥

(including the enpty one) has a | east upper bound 48, and | et
I be an arbitrary nonotonically increasing mapping of ¥
into itself. Then an el enent @, of ¥ can be defined for

each ordinal nunber « so that the equality
(13) 0o =SUPTCpgo}a
holds for all «, the transfinite sequence {o,} I S nmonot on-

ically increasing, and there is sonme ordinal nunber % such
t hat

=pt. TCTD.
9, =huT. T(T

Proof. Let ¥ be the set of all elenents 6 of ¢
which satisfy the inequality e=<r<¢e>. Making use of the

47 Thi s nmeans the fol | owi ng: whenever a nonotonically
i ncreasi ng sequence {ek}‘kfo of elements of ¥ has a |east

upper bound, then T(sup{e, } 2, )=sup{rce >} 2, .

48 of course, the | east upper bound of the enpty chain
will be the | east elenent of .
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nonotonic increasing of I', it is easy to see that ¥ is

cl osed under T and under |east upper bounds of chains.
These properties of g enable the definition (by transfinite
recursion) of a nonotonically increasing transfinite se-
guence {@a} of elements of § with the property (13). The

menbers of this sequence remain stationary from sonme place
on, and hence there is an ordinal nunber % such that
0= Coig > . e. @W::F(@W). On the other hand, if <t is

an arbitrary solution of the inequality T=TCt> then, by
transfinite induction, one proves that T, for each

ordi nal nunber «; in particular, tE:@y..

We shall apply now Theorens 3 and 4 for obtaining sone
conditions sufficient for the existence of iteration in a
gi ven conbi natory space.

Proposition 4 (Level Onega Iteration Lemma). Let
6=<%,1,86, 0T, L, R, =, T, F>

be a conbi natory space, and let the foll owi ng conditions be
sati sfied:

(i) there is a least elenent o in ¥, and to=o for
all T in ¥;

(ii) each nmonotonically increasing infinite sequence of
el enents of ¥ has a | east upper bound;

(iii) for every fixed k in ¥, the mappings at.«k7T,
At.tk and at.k—>7tT, | > are continuous with respect
to | east upper bounds of nonotonically increasing infinite
sequences.

Then:

(a) the conbinatory space & is iterative, and, for al
o, x from ¥, the equality

(14) Lo, x] :SUp{Fk(o)}E:O
hol ds, where I'=At. (x > to, | D]

(b) & turns into an iterative conbinatory space with
the sane iteration after any replacenent of the origina
partial ordering = in ¥ by sone partial ordering =" not
violating the requirenents of the definition of the notion
of conbi natory space and such that whenever an infinite se-
guence of elenments of ¥ is nonotonically increasing with
respect to >, then the | east upper bound of this sequence
With respect to > is also its |east upper bound with re-
spect to ='.

Proof. Let x and o be arbitrary elenents of &. Then
t he nmonotonically increasing mapping '=axt.(k—>7tTo, 1D IS
continuous with respect to | east upper bounds of nonotonic-
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ally increasing infinite sequences (as a conposition of two
nonot oni cal |y increasing mappings with this sort of continu-
ity). By the Knaster - Tarski - Kl eene Theorem the sequence

{Fk(o)}‘kfo i's monotonically increasing and for the el ement

L:SUp{Fk(O)}E:O the equality ¢v=C(k—> 0o, 1> holds. Sup-

pose now that G’ is an arbitrary conbinatory space obtained
from & by replacing the original partial ordering = in ¥
by sonme partial ordering = wth the property formulated in
(b) (in particular, & my be & itself). W shall show
that ¢ is the iteration of o controlled by ¥ in the com
bi natory space &’ . By Proposition 3.5 and Definition 3.4, it
is sufficient to show that ¢ belongs to each set closed un-
der T and representable as the intersection of sets of the
form {t: y=" ptz}. Let & be a set with these properties.
From Proposition 1.11, it follows that oz—=o0 for each z
in € Hence poz=o0 for all ¢ in ¥ and all z in & On
the other hand, y>'0o for all y in ¥ (since y is the

| east upper bound of the sequence o, ¥, ¥, ¥, ... Wth re-

spect to =). Therefore o<g&, and hence rkco>ee for each
natural nunmber k. For any ¢ in ¥ and any z in &, the
element ¢cz is the | east upper bound of the sequence

{@Fk(o)z}‘lzfo wWith respect to =, and consequently ¢tz is

t he | east upper bound of this sequence also with respect to
>’ . Therefore, if y>=" ¢tz for all T in &, then
y=" purz. Making use of this, we conclude that LeE. g

Proposition 5 (Unrestricted Iteration Lemma). Let
6=<%,1,86, 0T, L, R, =, T, F>

be a conbi natory space, and let the foll owi ng conditions be
sati sfied:

(i) each chain in ¥ (including the enpty one) has a
| east upper bound,

(ii) the mappings at.¢pt, With fixed ¢ in ¥, and the
mappings at.tz, with fixed z in €, are continuous with
respect to | east upper bounds of arbltrary chai ns (including

the enpty one).49
Then:
(a) the conbinatory space G is iterative;

49 e., whenever D is a chainin ¥, and 8§ =supo,
then o8 =sup{pt: TeDd}, 8z=sup{tz: ted} for all ¢
in ¥ and all z in . Taking D=@, we concl ude that
po—o0z=o0, Where o is the |least elenent of .
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(b) & turns into an iterative conbinatory space with
the sane iteration after any replacenent of the origina
partial ordering = in ¥ by sone partial ordering =" not
violating the requirenents of the definition of the notion
of conbi natory space and such that whenever a subset of &
is a chain with respect to =, then the | east upper bound of
this subset with respect to > is also its |east upper bound
wWith respect to >".

Proof. Let ¥ and o be arbitrary elenments of ¥. The
mapping '=at. <k —>7to, | > is again nonotonically increas-
ing (although it is possibly not continuous). Mking use of
t he Knaster - Tarski - Pl atek Theorem we take a transfinite
sequence {@a} and an ordinal nunber ¥ wth the properties

listed there (hence the equality @W::F(@W) hol ds). Let &’

be a conbi natory space obtained from & by changing the
partial ordering in ¥ in such a way, as described in (b)
(in particular, & my be G itself). W shall show that .
is the iteration of o controlled by x in the conbinatory
space G’. For that purpose, it is sufficient to show that
0. bel ongs to each set closed under T and representable

as the intersection of sets of the form {t: y=>" ¢tz}. Let

€ be a set with these properties. Mking use of the assunp-
tion (ii) and of the assunption about =, we see that, when-
ever a subset of & is a chain with respect to >, then the

| east upper bound of this subset with respect to > bel ongs
to &. This enables a transfinite recursion showi ng that all
?, bel ong to € u

Remark 1. In alnost all applications of the above two
propositions, only part (a) of their conclusions will be
used. Part (b) is needed for Renmark 8.9 in the Appendi x.

Remark 2. As seen fromthe proofs of these propositions,
an iteration, whose existence is established on the basis of
sonme of them is surely a strong one.

Until now, we gave only such exanples of iterative com
bi nat ory spaces (nanely, Exanples 1.1- 1.4) which satisfy
t he assunptions of both the Level Orega and the Unrestricted
I[teration Lemma. Exercise 10 after this section gives an
exanple of iterative conbinatory space which satisfies the
assunptions of none of these propositions. Exercise 12 gives
an exanpl e of conbi natory space satisfying the assunptions
of the Level Onega Iteration Lemma, but not satisfying the
assunptions of the Unrestricted Iteration Lemma, and Exer-
cise 14 shows that the latter assunptions inply neither the
assunptions of the Level Orega Iteration Lenma nor the
equality (14) in its concl usion.

The Level Orega lteration Lenma enabl es not only proving
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that certain conbinatory spaces are iterative, but also,
thanks to the equality (14) in it, making sone concl usions
about the explicit formof the iteration (the proof of the
Unrestricted Iteration Lemma al so enabl es naki ng concl usi ons
of this sort). Sone additional considerations can be added
to this, which facilitate in many cases the maki ng of the
menti oned concl usions. W note that nost exanples of conbi-
nat ory spaces exposed until now in this book have the fol-
| owi ng features. The elenents of the semgroup ¥ in them
are sets, the enpty set belongs to ¥, and, for any choice
of o,x In ¥, the mpping '=axt.{xy—>to, | > occurring
in (14) is representable in the form

r<eod=r(ao>uAlt,
where A is a mapping of ¥ into itself such that A(@>=0

and A(tiLJtz):ZAfti)LJA(tz), whenever T, T, and T,UT,

belong to #. In the sinpler cases, we have
ACTO=3Cx, TOo, DO=T3Cx, 0, 0D,
OK =0, (’61U’62)K:('C1KU’62K),
and in the nore conplicated Exanples 1.3 and 1.4 we have
ACT) = {<U, W>: <U, true>deHy & 3Ivi<u, Vv>eo & <V, W>eTD},

where Hyxy does not depend on t. Now we shall show that a
representation of T in the above formleads to a useful

representation of the elenents *co>. Generalizing the role
of the set-theoretical operation of union in the above situ-
ation, we shall consider the situation when a certain par-
tial binary operation playing this role is given.

Proposition 6. Suppose o is an elenent of ¥, and a
partial (possibly total) binary operation of addition is
defined in ¥ such that e+o=6 for all e in . Let
A be a mapping of ¥ into itself such that ACo>=o0 and
ACT +T,0=ACT D+ACT,D, whenever T, 5 T, belong to ¥ and

T, tT, is defined. Let T be a mapping of ¥ into itself
having the form
r<itd=a+ ACtO,

where « is a fixed elenent of %. Then for each natural
nunber k the follow ng equality holds

(15) ThCod> —a + ACad> + A%Cad + ... + AN T,
where associativity to the right is adopted, i. e.
6,76, t ... te = 6,tC6,*...+t6),

as well the natural conventions that a sum having only one
termis equal to it, and a sumw thout terns is equal to o.



94 1. COvBI NATORY SPACES

Proof. An easy induction shows that
ACe, + ... +8 >D=AC(8 D0+ ... ACB D,
1 m 1 m
whenever 6, ... t6_ is defined. Now the validity of (15)

can be shown by induction on k. The case k=0 is triv-
ial. Suppose now k is a natural nunber such that (15) is
true. Then
o> =rr¥cod> = a + ATXCod> =
o+ CACHD + AZCad + A3Cad + ... + Afcadd =
o+ ACod + ACad + ACad + ...+ ANCad.
Remark 3. The partial ordering in ¥ is obviously not
used in the above proof.

As an illustration, we shall apply Proposition 6 to the
case of the conbinatory space from Exanple 1.2, and thus we
shal |l indicate another way to see that the iteration intro-
duced in Section |.2 coincides with the iteration in this
conmbi natory space. In this case o is the enpty function
+ is the partial operation of union of functions, «a isS

the restriction of Iy to the set {ueM: H(yCu>>=false},

and ACtD is the restriction of the function To to the set
{ueM: HCxCu>>=true}. Then an induction shows that, for
each natural nunber m and each u and w in M, the

equality A"tadcud>=w is equivalent to the existence of el-

enents Vo» Vys -5V of M such that
Vozu & Vm:W &j ‘Z’Jm(H(x(Vj DD =true & Vj +1:0'(Vj DD &

H(x(vm))::false.
The equality (15) shows that r®co> is the union of all
functions A"Ca> with m<k, and therefore sup{rk(o)}ffo

is the union of all these functions. Hence (o, xI1Cud>=Ww
(where [0, x1 denotes the iteration in the conbinatory
space) is equivalent to the existence of a natural nunmber m
for which elenents Vg V v. of M wth the above

0V
property can be found.

Exanple 1.1 can be treated in essentially the same way,
and the application of Proposition 6 to the conbinatory
spaces from Exanples 1.3 and 1.4 is |left as an exercise for
the reader (Exercise 15 after this section). O course,
Proposition 6 can be useful in this respect only in connec-
tion with the Level Onega Iteration Lemma, and therefore one
has to use other ways of reasoning for the explicit charac-
terization of iteration in the cases when this lema is not
applicable (see, for exanple, Exercise 17 after this sec-
tion).
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Exer ci ses

1. For each natural number t, let =nc(t> denote the
nunber of the primes which are |l ess than or equal to t. Let
a and b be arbitrary natural nunbers. Prove that there is
a natural nunber t satisfying the equation

t =anctO>+Db.

H nt. Use the known fact that |im
I —co

2. Let a, b,c,d,e,f be arbitrary natural nunbers.
Prove the existence of natural nunbers t, u satisfying the
system of equations

nCt >
i =0.

t —au®+b[vi]+c,
u=d[¥t]+e[vu]l+f,

where [Al denotes the greatest integer which is |less than
or equal to A.

3. Gve a direct proof of Corollary 4.

H nt. To show that plaoc, x1a satisfies the equation
T=C(x—>7t0o, pda, Sinply substitute in the equation. To
prove that the inequality t=d{x—>to, pda inplies
tzplaoc, xla, Set 6=Cxy —>7to, p> and prove that
6=plac, x1 is inplied by the first inequality.

4. Let <%,1, 86,1, L, R, =, T, F> be the conbinatory
space from Exanple 1.1. Find elenents x, o and o of ¥
such t hat

LT. Cx—>TO, pPoa#+uUT. (Xa—>TOoA, Pad.

5. Let <¥%,1,6,T,L,R, =, T, F> be an iterative
conmbi natory space, and let o, x be arbitrary el enents of
. Prove that

ut. (<x —>Lt, | D, 1| Do=(lo, 1, | Do.

6. Let <¥,1,6,1T,L,R, =, T, F be an iterative conbi -
natory space, |et o> Xg» ++ 2 X 505 0y cvvs O 5 0o

s be elements of ¥, and |l et the mappings T, »
Lo e O of ¥ into ¥ and the el ements 850 8
8 of ¥ be defined by the equalities
1"0(1:, 6>=oe, aozl,

l"k+1(1:, e>=I,(t, (xk%tok, 6oua

12

D

k k

Op+1 =Ly 8 0> X 1oy 8
(k=0,1, ..., 1 —=1). Prove that
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put.r C(t, 8>=863§ k=0,1, ..., 1.

k k?
7. Let ¥ and ¥° be sone partially ordered sets, T be

a nonotonically increasing mapping of ¥ into %, and 1

be a nonotonically increasing mapping of ¥ into ¥° such

t hat

I Cice’ D> =<1’
for all T into ¥’ . Let I be a nonotonically increasing

mapping of ¥’ into itself, and T be the nonotonically in-
creasing mapping of ¥ into itself defined by the equality

IO =1TCT" (' CT2>D.

Prove that uz.T'¢to=¢ inplies uz .T"(t' D=1 Cp>. Show t hat
this is a generalization of Proposition 3.

Hint. To obtain Proposition 3 as a special case, take
' to be ", and T to be .

8. Under the sanme prenises as in the previous exercise,
prove that uz' .T"C(t'D>=¢’ inmplies upz.T'CTtd=TCp’D.

Hnt. To show that T=Tdt)> inplies T=>=TCp’ D>, make use
of the equality ¢ =TCp’D.

9. Let ¥ be a partially ordered set, and T be a non-
otonically increasing mapping of ¥ into ¥. Suppose

<p:ut.1"n(1:),
where n is sonme positive integer. Prove that
p=uT. TC(TD.
Hint. Use the equality T'Cp>=T"C(I'Cp>> to conclude that
T'Cp>>¢ and hence ¢=T"Cp>>=TCp>. Use also the fact that
T=TCt> inplies t=T1"co.

10. Let aA=<N, J, L, R, T, F, H> be a standard conput a-
tional structure on the national nunbers (in the sense of
Section 1.3). Let ¥ be the sub-sem group of ?p([N) con-

sisting of all one-argunent partial recursive functions, and
€ be the set of all constant functions from N into N.
Let T and = be the binary operations in ¥ _C(N> corre-

sponding to U in the way described in Section |.2). Let
6=<%, -6 O,,L, R 2, T, F>, wher e m, and %, are

the restrictions of T and = to ¥ and to ?3, respect -

ively. Prove that & is an iterative conbinatory space, but
assunption (ii) of the Level Onega Iteration Lenmma is not
satisfied for & (hence assunption (i) of the Unrestricted
[teration Lemma is al so not satisfied).
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11. (Cf. Skordev [1980, Section II.5.7 and Exanple 17 in
Section I111.3.2) Let <M, J, L, R, T, F, H> be an arbitrary
conput ati onal structure (cf. Section 1.1), let L be a lat-
tice having a greatest elenent 1 and a | east elenment o,
where M1 +0, and |l et the range of each mapping u of M into
L have a |l east upper bound in I with the property that

| Asuprngu=sup{l Aucud>: uemM}

for all | in L. Denote by ¥ the set of all 0L —fuzzy
binary relations in M (cf. CGoguen [1967]), i.e. all map-

pi ngs of M® into L.°° The set ¥ is considered with the
conposition operation defined by nmeans of the equality

Y =2AaAUW. SUP{YCU, VDA pCV, W : VeM}

and with the partial ordering defined by neans of the equiv-
al ence

P> Y& VYUV CpCu, VD= ydlu, VID.

For each subset f of M2, let f~ be the elenent of &

defi ned by

1 <u, v>ef,
0 <u, v>ef.

Let © be the set of all elenents of ¥ having the form
(Mx{s}>~, where seM. Let T and = be the binary and
the ternary operation in ¥ defined in the follow ng way:

pCu, LCvOO Aydu, RCvID if verngld,
0 if verngld,

~ o i f
f (U,V)—{ i f

MCp, YO CU, V):{

>Cx> ¢> YO2CU, VO =CCHy>Cu, trued> A pCu, VOOV
CCHyxD>Cu, fal sed> A ydu, vDD,
wher e

C(Hy> Cu, p>=sup{xCu, sO: SGHl(p)}.

Otere is an idea about a possi bl e use of L —fuzzy
relations with suitable lattices L. Suppose a set S of
formal systens is given for proving statenents in a | anguage
expressing properties of elements of M. Let L be the set
of all subsets of & wth the partial ordering by inclu-
sion. Suppose a binary relation between elenents of M is
given, and for any fixed pair <u, v> of elenments of M
some formul a e, of the mentioned | anguage expresses that

<U, v> is in this relation. Then it is natural to consider
an L —fuzzy relation ¢ such that, for all u,v in M,
pCu, v> is the set of those systens from s which have

¢, , anong t heir theorens.
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Prove that <%, IM"’, €, T, L™, R, =, T, F”> is a synmetric
and iterative conbi natory space satisfying the assunptions
of the Level Onega Iteration Lemma.

12. Show that the set M and the lattice L in the
previ ous exerci se can be chosen so that the correspondi ng
conbi nat ory space does not satisfy the assunption (i) of the
Unrestricted Iteration Lemm.

H nt. Take M =N, and choose L to be a suitable |in-
early ordered set.

13. (For sone relevant references, cf. Exercise 19 bel ow
and the first footnote to Exercise 1.8.3). Let a=<mMm, J, L,
R, T, F, H> be a conputational structure, the predicate H
bei ng assuned total. Let ¥ be the set of all pairs <f, A>,

wher e fe?m(M), A=M (i.e. the set ¥ from Exercise

I.8.3).51 The set ¥ is considered with the sane conposition
operation as in Exercise 1.8.3 and with a different parti al

ordering which is defined by nmeans of the follow ng conven-

tion:

<f, A>><g, B> & f 29 & A2B &
YueBVVv (<u, v>ef = <u, v>egD.

For each f in ?m(M), let f~=<f, domf>, and |l et € be

the set of all elements of ¥ having the form (M x{s}>™,
where seM. Let T and = be the binary and the ternary
operation in ¥ defined in the sane way as in Exercise
|.8.3. Prove that <9, IM"’, €, I, L™, R, =, T™, F”> is an
iterative conbinatory space satisfying the assunptions of
the Unrestricted Iteration Lenma.

14. For the conbinatory space fromthe previous exer-
cise, show that the requirenent fromthe Level Orega Iter-
ation Lemma is violated about the continuity of the mappings
AT. Tk Wth respect to | east upper bounds of nonotonical -
ly increasing infinite sequences. Show al so that the equal -
ity (14) is violated for sone elenents o, x of this conbi-
nat ory space.

51 The intuitive idea about the pairs <f, A> bel ongi ng
to ¥ is nowthe follow ng one. W consider f to be the
i nput -out put relation of sone non-determnistic conputation-
al procedure, and A to be the set of those input data for
whi ch all possible variants of execution of the procedure
termnate. Using the term nology from Manna [1971], we could
say that A consists of those input data for which the giv-
en conputational procedure is V-—defined. For an equi pol -
| ent mat hemati cal nodel, cf. Egli [1975], Chen [1984].
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Hint. Take el enents Sq»S,;>S,5 -+ and Su of M
such t hat S| #5S; > whenever i #j. Let o=<f, A\{s_ }>,
x=<h, A>, where A is the set of all elenents S; > f
consists of all pairs <s; , 5 > with i >j (the inequality

w>] 1is adopted to be true for all j in N), h is a
function such that domh=A, Hchcu>>=true for all u in
A\{s,} and Hch¢s >>=false. Let . be the |east upper

bound on the right-hand side of (14) for these o, x. Show
t hat S, bel ongs to the second conmponent of TI'C.> w thout

bel onging to the second conponent of .

15. Apply Propositions 4 and 6 to obtain the explicit
characterization of iteration for the conbi natory spaces
from Exanples 1.3 and 1. 4.

16. Apply Propositions 4 and 6 to obtain the foll ow ng
characterization of iteration in the conbinatory space from
Exercise 11:

Lo, x1CU, W):SUp{pm(u, W : meN},
wher e

P CUs W):SUp{jm/:\:((Hx)(Vj > true)/\a(vj > vj +1))/\
(Hx)(Vm, fal se>: Vos Vys oo VEM, vV =U, vm:w}.
17. Let &=<¥9, IM"’, €, I, LV, R”, =, T™, F¥> be the
conmbi natory space from Exercise 13, and let o=<f, A>,
x=<h, C> be elenents of ¥. An elenent u of M wll be

called o, x—regular iff the following condition is satis-
fied:

ueC & (<u, truedxeHh = ueA>

conpare with the definition of ). An element w of M
I

wll be called a o, x—successor of the element u iff

<u, trued>eHh & <u, w>ef.

Let D be the intersection of all subsets Q of » having
the followi ng property: whenever an elenent u of M is
o, x—regular and all o, x—successors of u belong to Q,
then u<=Q. Prove the equality

o, x1] =<I(f, h1, D>,

where [o, x1] and (f, hl1 is understood in the sense of the
conbi natory spaces © and G LU, respectively.

H nt. Prove that <tf, hli, D>=ut. (x > 10, IM"').

18. In the conditions of the previous exercise, a se-
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guence {vvj} (finite or infinite) of elenents of M wll be
called a o, x—path iff, whenever V\G and V\ﬁ+1 are two con-

secutive nmenbers of this sequence, then Wj+ is a o, x—

1
successor of V\G (if the sequence has only one termthen

this sequence is also considered a o, x—path). A o, x—path
is called to begin at a given elenent u of M iff u is
the initial nmenber of this o, x—path. Prove the follow ng
characterization of the set D defined in that exercise: an
elenent u of M belongs to D iff all o, x—paths begin-

ning at u consist only of o, x—regular elements, and anong
these o, x—paths there is no infinite one. 22

19. (Skordev [1980, Section Il1.5.1, Exanple 11 in Sec-
tion 111.3.2 and Exanple 9 in Section I1V.1.2]). Show that
the statenments of Exercises 13, 14, 17 and 18 remain valid
if the smaller set ¥ is considered which is obtained by
replacing the requirenent A<M in Exercise 13 by the
stronger requirement A<domf. Show that the conbinatory
space <%, INr, €, M, L~, R, =, T™, F”> is synmetric in this
case.

20. Do the same as in the previous exercise, except for
proving symmetry, in the case when, in addition to the re-
quirement A<M, the requirenment is inposed that the set
{v: <u, v>ef} is finite for all u in A. Prove that
t he conbi natory space <%, INr, €, I, LV, R, =, T, F>
satisfies the assunptions of the Level Orega Iteration Lemm
in this case. Show also that the condition from Exerci se 18
about non-existence of infinite o, x—paths begi nning at
u can be replaced in this case by the condition that there
is a finite upper bound for the lengths of the o, y—paths
begi nni ng at u.

21. Let Au=<M,J, L, R, T, F, H> be a conputational
structure, where M is a topological space, the sets domL,

domR, H 'ctrue>, H'¢fal se> are open, and the nappings J,
L, R, T, F are continuous. > Let ¥ be the set of those el -

52 A conparison of this characterization with the defini-
tion of S. N kolova's iteration considered in Exercise 1.8.3
is appropriate at this nonment. The difference is that actu-
ally only the first of the two conditions about the o, x—
pat hs beginning at u is present in the definition of N ko-
lova’s iteration.

53 Cf., e.g., Kelley [1975] for the necessary infornma-
ti on about the topological notions. As to exanples satis-
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enents of ¥ _<(M> which are continuous and have open do-

mai ns. Show that ¢ is closed under conposition, 2a—conbi-
nation and UA—branching. If & is obtained from Gp(‘u) by

repl aci ng ?p(M) by ¢ (taking the induced partial ordering
and nultiplication) and replacing T and = by their re-

strictions to ¥ and ?3, respectively, showthat & is an
iterative conbinatory space, and the &—iteration is the

restriction of the G_cu>—iteration to .

22. Let M be a topol ogical space, and ¥ be the set of
the elenents o of F M such that the correspondi ng set-

val ued mapping au. {v: <u, v>e6} is |ower sem continu-
ous. > Let the foll ow ng assunptions be satisfied: the set

M is infinite, J is a continuous injection of M® into
M, L and R are such elenents of ¥ that

<J(s,tDO,v>el & v=s, <J(s,t)D,v>eR & v=t
for all s,t,v in M, T and F are continuous nappings of
M into M, and two open subsets M and
en such that T(U)eMt\Mf, F(U)er\Mt
M.%0 L

of M are giv-
for all u in
et

G=<¥, l,,6 I L, R, = T, F>,

where ¥ is considered with the conposition and the parti al
ordering inherited from FoM>, € Is the set of all con-

stant total nmappings of M into itself, and the operations

T and = with domains % and ?3, respectively, are de-
fined by nmeans of the equalities

nCp, Yo ={<u, w>: 3Is3Jt<u, s>ep & <U, t>ey &

fying the assunptions of this exercise, cf. the second foot-
note to Theorem5.2 in the Appendi x of the present book.

S41f M is a t opol ogi cal space, and f is a mapping of
M into the set of the subsets of M, then f is called
| ower sem continuous iff the set {ueM: fCudNnV=+9} is
open for any open subset V of M (cf., e. g., Berge [1966,
Chapter VI, §1]).

55 These assunptions will be satisfied, for instance, if
<M, J,L,R, T,F, H> is a conputational structure satis-
fying the assunptions of the previous exercise, and we set

M :I—fi(true), M —H 'cfal se>.
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(x> > Y =4{<U, W>: IS (KU, S>eyx &
(seM' & <u, w>ep V semM & <U, Ww>eydD}.
Prove that & is an iterative conbinatory space, and, for
all elenents o, x of ¥ and all u,w in M, the condition
<u, w>elo, 1 is equivalent to the existence of a finite
sequence V .,V , ...,V of elenments of M such that

Vo=U & V =W & Vi (3s = (<vj » S>exd &
j <m
f
<Vj > Vj +1>€0') & ds M (<Vm, S>eyD.

5. The conpani on operative space
of an iterative conbi natory space

In Section 2, we defined the notion of iteration in a
conbi natory space. Now we are going to define a simlar no-
tion for the case of an operative space.

Definition 1. Let <#,I1, T, L,, R,> be an operative
space, and let o be an elenent of ¥. An elenent ¢ of &
will be called the iteration of o iff for each p in ¥
the equality

ut. M(to, po>=pt
holds. If ¢+ is the iteration of o then ¢ wll be denoted
by ro1. 56

Remark 1. It is reasonable to conpare the introduced
notion of iteration with that one used in Ivanov [1986] (cf.
condition ($3$) in Chapter 5 of that book). Gven an arbit-
rary operative space <%, 1, T,,L,, R,> and an elenent o
of ¥, then, according to lIvanov’'s definition, (ol as an
element ¢ of ¥ satisfying the condition that

ut. (o, ToD=pt

for all p in ¥. So we see an exchange of the contents of
the argunents of the operation m,, and, of course, the dif-
ference between the two notions caused by this exchange nust
be consi dered unessential (cf. also Exercise 4 after this
section in connection with this).

One nore notion concerning iteration in operative spaces
will be used in our further exposition. By introducing it,
we shall in fact describe the class of the operative spaces
studied in CGeorgieva [1980] (up to the above-nentioned ex-

5%The last clause in the given definition is justified
by the fact that if ¢ is the iteration of o then the
equality v=put. I to, | > holds.
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change between the argunents of H*).S7

Definition 2. W shall call a G-space any operative
space <¥, 1, m,,L,, R> satisfying the condition that (o]
exists for each o in" .

Remark 2. It would be natural to call the operative spa-
ces satisfying the above condition iterative. However, this
woul d be not convenient due to the fact that I|vanov's defi -
nition of the notion of an iterative operative space re-
gquires not only existence of iteration, but al so existence
of so-called translation. Leaving aside nore subtle condi -
tions which are inposed on translation, we shall nention
only that the translation of o, where o is sone given el-
ement of ¥, nust be equal to ut. I (L, o, R .

The using of G—spaces in our study of iterative conbi-
natory spaces is based on the follow ng fact.

Proposition 1. (Cf. Proposition 27.15 of lvanov [1986]).
Let 6=<%,1,6,1T,L,R, =, T, F> be an iterative comnbi na-
tory space. Then its conpani on operative space G6,=—<%, |,
m,, L,» R,> is a G—space, and for all o in & the equal -
ity [ol=RioR, L1 holds.

Proof. For all <, 0, p in ¥, we have the equality
nmC(to, p>=CL—>1t0R, pR),
hence
ut. I{to, p>=pRIoR, L]..

When an iterative conbinatory space & is considered,
and o is an element of its semgroup ¥, then the el enent
tocl of ¥ wll be called the G, ,—iteration of o, to nmake
nore easy the distinction between the two iteration opera-
tions present in ¥ in this case (for the same reason, the
iteration operationin & wll be called G—iteration).

Remark 3. The existence of u<t. I (L, ,o, R,t> also can be
proved in the case considered in the above proposition, but
this is not easy. The nentioned existence wll be estab-
| i shed by application of the First Recursion Theorem for
iterative conbinatory spaces (to be proven later in this
book) .

Now we shall note sone general properties of iteration
i n G—spaces.

57| nstead of such operative spaces, another kind of
structures, called spaces of Bohm Jacopini type, have been
used in the book Skordev [1980]. The so-called programm ng
spaces, nentioned in the first footnote to Section 2, also
coul d be used for the sanme purposes.
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Proposition 2. Let <¥,1, I, L,, R,> be a G—space.
Then, for all o in ¥, the equalities

[cl =M lolo, | >, [cll,=l0l0, [cIR, =1,
[R,01 =T1T,C(o, | >

hol d. °®
Proof. The first equality follows inmediately fromthe
definition of (o1 (taking p=1I1 in this definition). The

second and the third equality are consequences of the first
one and of the definition of the notion of operative space.
To prove the last equality, we make an use of the first and
the third one in the follow ng way:

[R,01 =T ([R,0c1R, 0, | D=1 (Il o, | >=T1T,(0, I)..

Proposition 3. (Cf. Proposition 6.10 of Ivanov [1986]).
Let <¥,1, T, L,, R,> be a G—space. Then, for all o, p, «
in ¥, the equality

ut. I(to, poa =placla
hol ds. >°

Proof. Application of Theorem4.2 to the mappings B
and T of ¥ into ¥ defined as follows:

B(to =1, (to, p), F(e):ea..

Now we shall show how the operation = and the iteration
in an iterative conbinatory space & can be expressed by
means of the G, —iteration, conposition, T and sone fixed
el ements of .

Proposition 4. Let <¥%,1,6, T,L, R, =, T, F> be an
iterative conbinatory space. Then for all x, ¢, ¥ in &,
the equality

Cx —> 0, W):[ka//][sz(pR] Cx> L,
hol ds. ®°

Proof. By application of Proposition 2 and Proposition
2.3, we get

58Cbnpare the second and the third equalities with the
equalities in Lemma 1 of Georgieva [1980] and in Proposition
5.12 of Ivanov [1986].

59Coerare with Corollary 4. 4.

60Coerare with the expression for =Cx, ¢, ¥> in Exer-
cise |.2.2. Another representation of =, not using m and
not making an explicit use of L, R, but using =Cy, 0, 1),
will be given in Exercise 1 after this section.
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(R WITRZpRI Cx, LO=TR YIMR, R, | DCx, L, >=
IR WIx >R, ¢oRL,, LO=IR ¥1{x >R, ¢, L,O=
x> IR YIR, ¢, IR YILDO=Cx—1 ¢, Iy, | DL,D=
x — o, z//)..
Corollary 1. If <¥,1,6, 0,L,R, =, T, F> is an itera-
ititye conbi natory space, then for all ¢,y in ¥ the equal-
MCp, y>=IR YRITRZpRCICL, LD
hol ds.

Remark 4. Since <L, L,> is a fixed elenent of ¥, the
above equality gives a represent ation of 1, by neans of
c,—iteration, conposition and sone fixed elenments of &

(i T the considered case when ©, 1S the conpanion operative
space of an iterative conbi natory space). Anot her represen-
tation of M, (due to N. Georgieva) which is valid in all
G—spaces (and consequently nekes no use of T, L, R)

will be given in Exercise 2 after this section.

Proposition 5. Let <¥%,1,6, T,L, R, =, T, F> be an
iterative conbinatory space. Then for all o, x in ¥, the
equality

Lo, x1=[Cx, | D201 Cx, | D
hol ds.

Proof. By Proposition 1.8, Corollary 4.4 and Proposition
1, we have

lo, x] =ut. (x >7tT0o, | O=
put.- (L—-=>1t0oR, ROCx, | DO=RI(Cx, | DR, L1Cx, | > =
[Cx, | Dol Cx, I)..

Corollary 2. If <¥,1,86,1T,L,R, =, T, F> is an iter-
ative conbinatory space then, for all o, x in %, the
equality

lo, x1=R[Cyx, | DR, L1Cx, | >
hol ds..

Besi des the representation of (o, x1 from Proposition
5, sone other ones will be given which again nake use of
conposition, G,—iteration and sone fixed el enents of &,
but the operatlon > is used in theminstead of T. These
representations will be obtained in the next section by ap-
plication of a theorem about |east solutions of a certain
kind of inequalities in G-spaces.
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Exer ci ses

1. Let 6=<%,1,6,0,L,R, =, T, F> be an iterative
conbi natory space. Prove that, for all x, ¢, ¢ in %, the
equality

Cx — ¢, W):[ka//][sz(p] (x >0, 1D
hol ds.

2. Let <¥#,1,1,,L,, R> be an arbitrary G—space.
Prove that for all natural nunbers n and arbitrary 0g > ©y

> P in ¢ the followi ng equality hol ds: ©%

H*(@O,@i...t’a(pn_i,(pn):n
[quon][R|< O 4] IR, qoil[R|<
H nt. Use Exercise 2.5.

3. Let <¥,1,1,,L,, R> be an arbitrary G—space.
Prove that a least element o in ¥ exists, and the equal -
ity eo=o holds for all e in ¥. Wite an explicit ex-
pression for the elenent o.

4. Let <¥%,1, 0O, L,, R> be an arbitrary G—space, and
let 1,” be the binary operation in ¥ defined by

I, Co, YO =T, Y, ¢D.
Prove that <¥,I1, T, R, L,> is also a G—space.

M 1 MO0, T, .., T,

6. Left-honpbgeneous nappi ngs
and | east fixed points connected with them

For the time being, we shall suppose that a semigroup ¥

is given. Two definitions will be fornul ated under this as-
sunpti on.
Definition 1. Let m be a positive integer, and T be a

mapping of " into ¥. The mapping T is called left—

honbgeneous i ff
I'<et,, ...kt 2=kICT,, ..., T D
1 m 1 m
for all k,T,, ..., T_In .
1 m
For exanple, if ¥ is the sem group of an operative
space <¥, 1, I, L,, R,> then the operation 1, (inits
initial form- with only two argunents) is aTeft-hom)gene-

%1 The case of n=1 corresponds to Lemma 3 in the pa-
per Georgieva [1980].
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ous mappi ng of 7 into ¥ (and T, with m argunents is
a | eft-honmogeneous mapping of " into ¥).

Definition 2. Let m be a positive integer. An m—ary
join nmechanismin ¥ is a m+l-—tuple

(1) <E, &5 - 0n €2
—_ s . =M s
where Z is a mapping of ¥ into ¥, €5 -5 £ are
el enrents of ¥, and
ECT, 5 - 'z:m)gi =T i=1, ..., m
for all Tys w5 T iN 7.
For exanple, if again ¥ is the sem group of an oper-

ative space <¥, 1, I, L,, R,>, and = is 1,, considered

. 1
as an m-—ary operation, then <z, 0,1, ..., m-2, ka >

is an m—ary join mechani sm

Here is a statenent which connects the notions intro-
duced by the above definitions.

Proposition 1. Let m be a positive integer, T be a
| ef t - honbgeneous mapping of ¢™ into ¥ and <&, €0 oo
€> be an m—ary join nechanismin &, . Then for all T, >

S T in ¥ the equality

1"(1:1, cees ’Cm)::(’ci, cees tm)l"(gi, Ce s gm)
hol ds.
Proof. Let Ty ooos Ty be arbitrary elenents of &,
and | et k=ECT, 5 -5 T D Then
1"(1:1, Ce s 'cm)zl"(;cgi, Ce s Kgm):;cr(gi, c s gm)..

Corollary 1. In an operative space, each |eft-honpogene-
ous mappi ng i s nonotonically increasing.

Proof. W can use the operation T, as =, and T, is
nonot oni cal | y i ncreasing. o

From now on in this section, a G—space
G,=<%, |, O, L,, R,>,
(in the sense of Definition 5.2) is supposed to be given.

Theorem 1. Let n be a positive integer, let T be a
n+1

| ef t - honbgeneous mappi ng of ¥ into ¥, and | et

(1) y=ICI, ..., n, 0O.

Then, for all e, ..., 6 ,0 Iin ¥, ut.IC6,, ..., 0 , TOD
1 n 1 n

exists, and the follow ng equality holds
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u‘c.l"(ei, R, en, TOD :H*(ei, R, Qn)[’()(O']’a(.
In particular,
(2) u’c.l"(ei, ...,en,t):H*(ei, ...,en)[a(]a(.

Proof. One easily checks the equality
1"(81, R, en, too =TI, (to, H*(ei, C e, en))y.

Using this equality and Proposition 5.3, we get the needed

conclu5|on..

Corollary 2. If n is a positive integer and T is a
SN+

| ef t - honbgeneous mappi ng of ¥
A of " into ¥, defined by

A(ei, C ey en):u'c.l"(ei, C e, en, ),
is also | eft-honbgeneous.

Corollary 3. Let <%,1,6, 1T, L,R, =, T, F> be an iter-
ative conbinatory space. Then, for all o, x in ¥, the
equalities

into ¥, then the mapping

Lo, x] :[3(10] 3(1:[3(2] 3(2
hol d, where 7;1:(7(%6, 1>, 3(2:(;1{%60, ID>.
Proof. We apply Theorem 1 to the nappi ngs r, and T,
defi ned by r,(e, D= —>1, 6> 6, D=Q—>10, 6,

and we set e=1 in the obtained equalities..

In the proof of the above corollary, we applied Theorem
1 to a | eft-honbgeneous mapping I such that it was clear
how to find the correspondi ng | east sol ution w thout appli-
cation of this theorem (the theoremwas used only for ob-
taining a new expression for the solution). Now we shall
gi ve an exanple, where the situation is different.

Example 1. Let again <%,1, 6, 1T, L, R, =, T, F> be an
iterative conbinatory space, and let T be the mapping of
7> into ¥ defined by the equality

1"(81, 82, 1:):(7(0%(7(1%1:01, 81), (7(2%1:02, 82)),
wher e Xg> Xy» Xp» 0, » 0, are some given elenments of .
Then the application of Theorem 1l gives the equality
LT. 1"(81, 82, t):H*(ei, 82)[7] >
wher e
y=IC1, 2, U):(xoﬁ(xiﬁUoi, 1>, (XZHUJZ, 2.

However, it is not seen, say, hOM/[lt.F(Gi, 6,5 T coul d be
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expressed by nmeans of conposition, branching and iteration
usi ng only Xg> Xy» Xp> 0y 0,5 6,56, and possibly L,

R, T, F (the definition of 0, I, 2 nakes use of conbi-
nation).

Theorem 1 and Corollary 2, together with Theorem 4.1,
allowto find by successive elimnation the |east solution

<Tys oo0n T of an arbitrary systemof the form

> i —
(3) 'ci_l"i(ei,...,en,'ci,...,'cm), I 1’”.,m,m+n
wher e Ty»---» T are | ef t - honbgeneous nappi ngs of &

into . The application of Theorem 4.1 shows that such a
| east solution exists, and the obtained expressions for <t

1’
> Toare | ef t - honpgeneous with respect to e, ,, ..., 6,
However, there is a shorter way to reach a simlar result,
and with sinpler (in some respect) expressions for T o oo

T .
m

Theorem 2 (Ceneralization of equality (2)). Let m and
n be positive integers, and |et PR be left-

honbgeneous mappi ngs of ™ into ¥. Let

v =r ¢I, ..., n,00,...,0m=2, 0R™",
! i:l,...,n’],

vy = H*(‘yi, e ey Wm).

Then, for every choice of 8,5 -5 6 in ¥, the system of
inequalities (3) has a |l east solution with respect to T, >

.» T, and this least solution is given by the expres-
si ons

T, =MC6,, ..., 6 0ylyi -1, i =1, ..., m1,
m1
tm:H*(ei, ...,en)[a(]yRk .
Proof. In order to apply Proposition 4.3 (wth 6,5 >

6, as par aneters), we define a mapping I of g

by means of the equality
TC6,5 -5 68, >, TI=CC6,, ..., 6,

0, tl, ..., tTm=-2, 'chmi),

into ¥

wher e
1"0(81, Cees en, Tyo oo tm):H*(l"i(ei, R en, Tyo oo ’Cm),
.., (8. , ..., 08 5, T. 5 -+..T.DD.
m 1 n 1 m
It is easy to check that equality (1) holds. Since T is
| ef t - honbgeneous, Theorem 1 can be applied, and we get the
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equality (2). Now an application of Proposition 4.3 (having
in mnd Corollary 1) inmediately yields the needed result..

Corollary 4. Let m and n be positive integers, and
mtn

| et PR be | eft-honogeneous mappi ngs of & into
. Then there are | eft-honpbgeneous nappi ngs Ays oo A
of #" into ¥ such that, for every choice of 8,5 -5 6
in ¥, <A CE s 5 805 s ACO L, 8 0> is the | east

solution of the systemof inequalities (3).

Exanmpl e 2. Suppose again that <¥%,1,6, 1T, L, R, =, T, F>
is an iterative conbinatory space. Consider the system of
the two inequalities

>
1:1_(7(1%1: o, , 6,

1 1
>
1:2_(7(2%1:202, tioc),
wher e Xy» Xp» 0,5 0,, a are sone given elenments of . It

is not difficult to find the |east solution of this system
by the elimnation method based on Theorem 4.1. Nanely, we
can elimnate T, maki ng use of the fact that
‘”‘-1'(7(1%1‘-101’ 8):8[01, X1]'
Thus we reduce the systemto the inequality
1:22(7(2%1:202, 6[01, x1] o,
and then we can use the fact that
‘”‘-2'(752%1-202’ 6[01, x1] oc)ze[oi, X1]06[02, x2].
Hence the | east solution of the given systemis
1:1:6[01, 7(1], 1:2:8[01, X1]06[02, x2].
Not e however that the expression for T, contains two appli-

cations of iteration, and, on the other hand, if we find the
| east sol ution by application of Theorem 2, the correspond-

i ng expression wll contain only one application of iter-
ation. Indeed, the | east solution according to Theorem2 is

1:1:8[7]76, 1:2:8[7]3(&,
2 2

where ¥ =T, (C(x, —>070, , 1>, (x, >0R,0,, 075>. O course,
a conparison of the two expressions for T, in the case
=1 gives the equality

[01,X1]06[02,X2]:[7]7Rk,
i.e. the equality

[Ui,xi]oc[oz,lezR[yR, L1¥R, .
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There is a connection of some of the considered systens
W th goto—progranms. Suppose ¥ is the partially ordered
sem group ?p(M) of all partial mappings of a given set M

into itself, and, of course, | :IM hol ds. Suppose a vari -

able V for elements of M and a finite set L of |abels are
chosen, L having nore than one elenent, and a | abel e from
L is chosen to be the termi nal one (we do not suppose a
choice of initial |abel to be nade, since this is unessen-
tial for our purpose). W shall consider any program whose

i nstructions are of the forns

(i) | © Vi=¢pCVD>; goto |~

(i) | : if PCV> then goto |* else goto |~

(iii) e: end

with |,17,1”<L, assumng that, for each |abel, there is
exactly one instruction beginning with this |abel, and all

¢ and P occurring in the instructions are elenments of ¥
and partial predicates on M, respectively. For transformng
t he above description of the considered programinto de-
scription of a mathemati cal object, we shall denote by
the set of all partial predicates om M, and we shall repre-

sent the programby a function A whose domain is the set
L\ {e} and whose val ues belong to the union of the sets

FxL and #xL®, assum ng that A >D=<¢p, | > iff instruc-
tion (i) occurs in the program AdD>=<P, 1", > iff in-
struction (ii) occurs in the program For defining the se-
manti cs of such a program we consider the partial mapping
S of the set LxM into itself defined as follows:

<l ,t> if AdD>=<p, ">, ¢dsd> =1,
Sc<l,s>»>=1{<l",s> if Ald>=<P, 1", 7>, PCs> =true,
<l”,s> if AdO>=<P, 1, I 7>, P¢(s> =fal se

(Sc<l, s>> is considered to be not defined if | =e, or
ACl D=<p, | "> se¢domyp, or A D>=<P, 1", > and
s¢domP). Suppose u, v are elenents of M, and | L\ {e}.
Then v is called the result of execution of the program
starting with initial state <l,u> iff thereis a finite
sequence of elenents of LxM beginning with <Il, u> and
ending wwth <e, v> such that each termin this sequence
after the initial one is equal to the value of S at the

previ ous one.
Now suppose that L={l ,I_, Im} where | .1,
.,Im are distinct, and IO:e. For each i in the set
{1, ..., m, let L be the partial function in M de-
fined in the foll ow ng way: L Cud=v iff v is the re-

sult of execution of the programstarting with initial state
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<|i’ u>. The functions Lys ~+e» L are called the tai

functions of the given program (cf. the papers Mazurkiew cz
[1971], Blikle [1972, 1972a, 1973]). They formthe | east
solution of a systemof inequalities in ¥, namely

(4) 'ciZI"i(I,'ci,...,'cm), =1, ..., m
wher e the mappi ngs PR of #™' into ¥ are de-
fined in the foll ow ng way:

a) if A(Ii)::<@,lj4> t hen

Fi('CO, 'Ci, ey 'Cm):'cj (p,
b) if Adi)::<P,Ij,Ik> t hen
l"i(to, Tys oo 'Cm):(P%’Cj , ’Ck),

assunmed the arrow here has the usual neani ng as denotation
of branching controlled by a predicate. W shall call (4)
the characteristic systemof the given program

It is clear that the mappings T, defined in the above

way are |eft-honbgeneous. Hence the results proven in this
section are applicable to them In particular, Theorem 2 can
be applied to the system (4). It is seen thus that the tai
functions can be expressed by neans of conposition, 1, and
iteration using only sone relatively sinple elenents of ¢,
whi ch are constructed correspondingly to the instructions of
the program Therefore it is justified to regard Theorem 2
as a generalization of a result fromthe paper Bohm and
Jacopi ni [1966] (cf. also Cooper [1967]) about the equival -
ence of goto—prograns to structured ones.

Exanpl e 3. Suppose G, is the conpanion operative space
of a conbi natory space (Spou) of the kind considered in

Exanple 1.2.Let us set e=1 in the systemof two inequal -
ities fromExanple 2, and let us introduce additional un-

knowns Ty Tys Tg for the expressions T,0,5 T,0,, T, a>

respectively, together with corresponding inequalities
(witten below). Then we obtain the followi ng systemof five
i nequalities (equivalent to the initial systemin the sense
of the elimnation from Section 4):

T = T
1 (X1% 3)|))
>
T Cx.—>T ,'C5),
>
’63_’610‘1,

>
'C4_'C20'2,

= .
'C5_'C10(
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This new systemis the characteristic systemof the follow
i ng program

I if HCx, (VD5 t hen goto L3 el se goto |
i f H(xz(V)) then goto |
Vi=0, V>, goto I
Vi=0,CV>; goto I
V:=aCV>; goto |
e: end

The fl ow diagram of this programis shown on Figure 1. 92
Thi s di agram makes intuitively visible the fact that

6
4 el se goto I5
1
2

1

L1:[0'1, 7(1], L2:[0'1, X1]06[02, x2]

for the considered program

Remark 1. In our treatnent of goto-—prograns, we re-
stricted ourselves only to instructions of the fornms (i),
(ii), (iii). If nore conplicated instructions were all owed,
it would be possible to wite a program whose characteristic
systemis the systemof inequalities fromExanple 2 itself
(wi thout additional unknowns introduced). Here is such a
program (we onit the general exposition of the syntax and
semantics of the larger class of programs to which this pro-
gram bel ongs):

I1: i f H(xi(V)) t hen \k::oi(V); got o I1 el se end
I2: i f FKXZCV)) t hen V::oé(V); got o I2 el se
V:=aCV>; goto |

The di scussed connection of the considered systens of
inequalities with the al gebraic study of goto—prograns sup-
ports a point of view that such systens can be in sonme sense
regarded as goto—prograns in the G—spaces in question. W
note also that the case of Theorem2 with n>1 can be re-
garded as corresponding to goto—prograns with nore than one
exit point.

W shall prove one nore result which, in the case of
iterative conbinatory spaces, enables obtaining for the
| east sol utions of systens of the form (3) certain expres-
sions different fromthe expressions given by Theorem 2. For
the sake of sinplicity, we shall restrict ourselves to the

1

52 No starting point for the execution of the programis
i ndi cated on the diagram since none of the | abels of the
programis chosen to be the initial one; of course, it would
be convenient to start execution fromthe uppernost if —
statenent, and thus to choose I2 to be the initial |abel
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REN GNP vi= o (VD
el se
V.= oVD
LfonCx, av>) vi= o, (VD

Figure 1. Flow diagramof the programin Exanple 3
case of n=1.

Theorem 3. Let 6=<%,1,6,0,L,R, =, T, F> be an iter-
ative conbinatory space, m be a positive integer, Ty> s

L be | eft-honobgeneous mappi ngs of g™ into ¥, <=, €y >
€ v £ be an m+l—ary join nechanismin ¥, the el-
enents & , &, ..., £ being normal . Let e, x and p be
el enents of ¥ which satisfy the follow ng conditions:

(1) e€,=¢§, and

eg =I,CE, &5 -5 £, =1, ..., m

(ii) there are nornal elenents Mg s + oo My such that

x€y=Fmn, and x¢g& =Tmn, , i =1,...,m
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(iii) pg,=1.%
Then the el enents
¢ =ple, x1g, i =1, ..., m
formthe | east solution <Tys oon T of the system of in-
equalities
(5) 'ciZI"i(I,'ci,...,'cm), =1, ..., m

Proof. Let ¢=t1e, 1. Then, by Proposition 3.4, we have
the equalities

z,gi :Legi , I =1, ..., m
From here, we get
o, :pz,egi :pLI"i(go, gi, Ce s gm):

I"i(pz,go,pz,gi, ...,pz,gm):
Fi(l’(pi’ ...,(pm)

for i =1, ..., m Thus <P s s > is a solution of
the system (5). Suppose now Yy s Y is an arbitrary
solution of this system i. e.

wizri(l’wi""’wm)’ i =1, ..., m
W have to prove that Ui =9 s i =1, ..., m |In order to

do this, we set

l[/:E(I > l[jij L l[jm)
and denote by « the set of all elenents of € having the
form & X, where i {0, 1, ..., m, xe6&. We shall prove the

i nequal ity

y=Cx—>ye, pl,
]
and the fact will be established that «4 is invariant with
respect to e. The validity of the above inequality is seen
fromthe following equalities and inequalities:

YEX=X=Cx—>Ye, pI& X,
ngix:x/jixzri(l, Uyo oo Y OX =
YT CEy > €5 s EDOX=YEE X=

53 The existence of such el enents e, x> p follows from
t he assunption that <=, €gs €5 o0 > is a join nmechan-
ismin .
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(X%WC,P)glx, IZl))m

To prove the other statenent concerning «, |et us suppose
t hat A and A, are el ements of ¥ satisfying the inequal-

ity A Z A Then the inequality A EZ A E hol ds, as seen

A A
fromthe inequalities
A E ZAE S =0,1, ..., m
usi ng the nonotonic increasing of the mappings PR

and the followi ng equalities which are valid for t =1, 2:
AtSEOX:At gox,
A EEX=AT CE > & 5 s EOX= |
Fi(Atgo,Atgi,...,Atgm)x, =1, ..., m

Now we are in a position to apply the definition of iter-
ation, and its application shows that

y=zptL.
A
From here, we get

U =VE ZpLE =9 =1, ..., m g
Corollary 5. Let 6=<%,1,86, 1T, L, R, =, T, F> be an iter-
ative conbi natory space, and <=z, €y &5 £5> be a ternary

join nmechanismin ¥, the elenents €y €0 &, bei ng nornal .
Let a,» €5, X35 Pg» €5 X5 P be el enments of ¥ satisfying
the foll owi ng conditions:
(1) eg,=¢,-
g, =8,%>
€6, =Wy 8,855 §5Pg7
(ii) there are nornal elenents Ny » My » M, such that

xE=Fn, and xg =Tmn, , i =1,2;
(iii) pg,=1.

Then the equalities

(6) Poleys X1, =ple, X1, »

(7) PolEgs X1 =ple, x1E,

hol d.

Proof. Using the elimnation nethod, it is easy to see
t hat <P leys Xgloy > poley s x,1> is the | east solution

<T,» T,> of the system
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>
'Ci_'C20(0,

1:22 (7(0%1:280 » po).
This systemcan be witten in the form

>T .l
Y Fi > Ty

> Cl
T, 1"2 > T

> t2),

L t2),

wher e

Fizhetit . T

5 5 r :Aetitz.(xoﬁ’czeo,epo).

(8} 2

o,
But conditions (i)-(iii) in the corollary are exactly the
conditions (i)-(iii) of Theorem 3 for the case of m=2 and
for the above r,-Tr,. An application of the theorem for

this case yields the equalities (6), (7)..

Example 4. Let 6=<%,1,86, 1T, L, R, =, T, F> be an
iterative conbinatory space, and | et
€, =CF, 1D, & =T, (T, 15, &, =, F, 1.
It is easy to construct a mapping = of 2 into ¥ such
t hat <E, £, £, £,> is a join nmechanism nanely the map-
ping E= defined by
(8) EC(t,,T,,1,0=C(L—>CR>7 R, R, g R.

Conditions (ii) and (iii) in the above corollary are obvi-
ously satisfied if we set =L, p=R. Suppose now sone
el ement s Uy > €q1 X Py of ¥ are given. Then, by the co-

rollary, the equalities
Po L€y X,) ocozR[e, L1CT, CT, 15D,
Po L€y Xp) =Rle, L1CT, (F, | D>
hold with
ezE(go, gzoco, (7(0%5280, gopo)).
We shall not wite explicitly the result of the actual
substitution in the right-hand expression in (8), but we

note that the followng slightly different ¢ also
satisfies the conditions (1):

e=CL-—>CR>¢,a R, (xR —>¢&,7,R, &, p, R, £R

(this ¢ is equal to the other one in the cases when R is
a nornmal el enent).

O course, infinitely many other exanples of a simlar
nature are possible. For sone of them see Exercise 5.
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Exer ci ses

1. Construct a G—space with a binary join nmechani sm
whose first conponent is not nonotonically increasing (hence
not | eft-honbgeneous).

Hnt. In an appropriate operative space of the kind con-
sidered in Exercise 2.1, set

ECp, YO =T, Co, YyIOUZlp, YO,
where zZ is a suitable mapping of F M into itself.

2. Let 6,=<%,1, 1, L,, R> be the conpani on oper-
ative space of an iterative conbi natory space 6= <%, 1, G,
m L, R, =, T, F>. For any ¢, y in ¥, set

ZCp, YO =IRYITRZpRI
(conpare with Proposition 5.4). Prove that <=, L R, , R /L,>

is a binary join mechanismin 6,, the mapping = is non-
otonically increasing, but it is not |eft-honobgeneous.
H nt. For proving that = is not |eft-honbgeneous, con-

sider =Cp, yORZ.

3. Let 6=<%,1,86,1T,L,R, =, T, F> be an iterative
conmbi natory space, m be a positive integer, and <&ZE, g, >

> E> be an m—ary join nmechanismin ¥, the elenents

€y vvvn € bei ng normal. Show that el enents Xy> oo Xy

and p of ¥ can be generated from I, T, F by neans of =

so that <z, » .. & > is also an m—ary join nmechan-

ismin ¥ if = is the mapping of ¢" into ¥ defined by
ErdT, ---,tm):(xiﬁtip, iy, —>T,P5 - s

(szﬁtmzp’ (Xm1%tm1p’ tmp))...)).

4. Wite a goto—program corresponding to the inequality
T > (7(0%(7(1%1:01, oci), (7(2%1:02, oc2))

in the case when G, is such as in Exanple 3. Draw al so the
correspondi ng fl ow di agram

5. To obtain other exanples of the sort of Exanple 4,
apply Corollary 4 to the foll owi ng cases:

(a) g,=CF, 1>, & =CT,15%, ¢ =T, 1>, |>;
(b) &,=CCF, 1>, 15, & =0T, T, 1>, g =T, I
(C) gOZU, EizT, 62:_2_



7. FORVMAL SYSTEMS FOR THE | TERATI VE COVBI NATORY SPACES 119

7. Sone formal systens for the theory
of iterative conbinatory spaces

The definition of the notion of a conbinatory space giv-
en in Section 1 can be fornmalized in a certain first-order
| anguage with variables for the elenents of the set ¥ and
variables for the elenents of the set & fromthe conbi na-
tory space <%,1, 6, I, L, R, =, T, F>. Unfortunately, the
definition of iteration (Definition 3.1) uses a quantifier
on arbitrary subsets of ©. In order to obtain a first-order
formalization conprising also iteration we shall add to the
above-nenti oned | anguage al so variables for such subsets.

The formalization which will be exposed below is essentially
one which is used in the papers Skordev [1984a, 1989].

Let fo, f1’ f2, .+ o5 Cgs Co5 C s and S,
S S be the variables for the elenents of ¥, for

1°? 22
the elenents of & and for the subsets of €, respectively.
The al phabet of the fornmal systemcontains also the letters
L, R, T, F, the sign -, round and square brackets, the
comma sign, the equality sign, the inequality sign >, the
sign e, the propositional connectives =, &, V, —,

& and the quantifiers VvV and 3. The notion of a func-
tional expression is defined by neans of the follow ng in-
ductive definition:

(i) the enpty string A is a functional expression;

(ii) whenever z, u, VvV, W are functional expressions,
then the strings zfi, Zc, (for i =0, 1, 2, ...), ZL,

ZR, zT, zF, zZ(u,Vv), zZ(u-v,w) and Z[u, V] are
al so functional expressions.

The equalities and the inequalities between functional ex-

pressions, as well as the strings c. eSJ, i,j =0,1, 2,

., are the atomc formul as of the system and arbitrary
formul as are constructed fromthe atomc ones by using the
proposi tional connectives and the quantifiers (quantifica-
tion is permtted with respect to each of the three sorts of
vari abl es).

Let 6=<%,1,6,1T,L,R, =, T, F> be an iterative com
bi nat ory space. A valuation (of the variables) in & is an
arbitrary mapping v having the set of all variables as its
domain and transformng, for all i in N, the variables fi’

c; and S, into elenents of ¥, elenents of € and subsets

of €, respectively. The value |z| of an arbitrary function-
al expression z at a given valuation v in & is an el-
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enent of ¥ defined recursively by nmeans of the equalities

Al =1, |zf |=|z|vcf >, |zc |=]|Z]|v<c, >,
|ZLI = [2z|L, [ZRI=1Z|R. |zT|=|Z| T, |ZF|=|Z|F,
|z(u, v) | =|z|uc|ul, [V]>-
[Z(usv, w) | = |z| =C|ul, |V]. |¥]>>
[zl v] | =|z|t|u]> |V]1-

An easy induction shows that, for any two functional
expressions X and Y, the result axv¥ of their concatena-
tion is also a functional expression, and the equality

|xy] = ]x] |¥|] holds.

The truth definition for atomc formulas is obvious: the
formulas u=v, u=v and ciez% are regarded to be true at

the valuation v iff Ju|l=]|v] in &, |u]=]|v] in & and
v(c, dev(s, D, respectively. Starting fromthe truth notion

for atomic formulas, we expand it on arbitrary fornulas in
t he usual way.

The axions of the considered fornmal system are divided
to | ogical and special ones. The |ogical axions have the
traditional forns for a Hilbert-style fornmalization of the
predi cate cal culus. Nanely, we take as | ogical axions al
formul as of the follow ng kinds, where &, ¥, © are ar-
bitrary fornulas of the considered system ¢ is a variable,
and Z is a expression of the sanme type as ¢ (i.e. Z is
a functional expression in the case when ¢ is a variable of
t he formfi , and Z is a variable of the form c, or of the

form S, in the case when ¢ is a variable of the sane
form:
=T =3), (P9 = (=T =000 => (= 0D,
PKXI=—>3%, IKI=—>VY, I3=—>8VY, V=3V,
=T =0&W), (=00 =T =0)=(dVI=>0D),
(PSS WPV =—"1d), 11d— 9,
(P =00=D0), (& W)=V = d),
(=¥ = ((¥ = §) = (& VDD,
V= 2/, ¥&Z/O=—3AC 3.

The special axions are a finite nunber of fornulas, expres-
sing in sone sense the definition of the notion of an itera-
tive conbinatory space, and an infinite variety of fornulas
obtained froma suitabl e conprehensi on schene. The speci al
axioms of the first sort are the foll owi ng ones, where, for
the last of them the convention is adopted that
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u=v

So

is an abbreviation for the fornul a
Ve, c es, - uc,zvce, d,

whenever u and v are functional expressions not contain-
i ng Cq (note that (1) - (16) correspond to 1.(1)-1.(16)):

(0,) fozfo,
(0,) fozf, &f =zf, = f =
(0,) f,=f, & f = f , & f = f1
(03) fozfi&f22f3:>f0f22f1f3,
(1) ve, f c =fc o= f =f_,
(2) 300((01,02):0 D,
(3) L(C1’C2):C1’
(4) R(ci,cz):cz,
(5) (f. f)c,=(fc . foc)»
(6) (. foc)f=(f,. f c.)>
(7) (Coi ) fo=(cq. o)
(8) AT =P,
(9) 3c, (Tc, =c D,
(10) dc (FC1_C0)
(12) (T:f o) =t
(12) (Fof_  f) =f_,
(13) 1‘3(1‘03f1 f )_( f3f1,f3f2),
(14) (f,=f, )¢, (foC03f1Co’f2Co)’
(15) (=of, ¢y f c)f _(f33f1co’fzco)’
(16) fozf, &f =f :>(3fo’f2)2(3f1’f3)’
(17) [y fol = (Fgalfa f 11,0,
(18) Vf4vf5(f4§f5:)f4f1§f5f1)&

0 0

io(fosfzfi,fs) :>f2§0f3[f1’f0]'

The speci al axionms of the second sort are all formul as of
the form

(19) Jds,Vc, (c s, & @),
where & is any fornula wi thout free occurrences of the
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vari abl e S,

The rul es of inference of the considered formal system
are the usual rules for a Hilbert-style formalization of the
predi cate cal cul us, nanely nodus ponens and the rules

e = 9 * —= 6
@ = VI3 e = 0

where & can be an arbitrary fornmula, ¢ can be an arbit-
rary variable, and ® can be an arbitrary formula w thout
free occurrences of (.

The formal system described above will be denoted by A.
Since all axions of this systemare identically true in any
iterative conbinatory space, the sane holds for every for-
mul a deducible in A, i.e. the systemis correct. W claim
this systemis sufficient for the formalization of nost
proofs in this book which concern iterative conbinatory

spaces.64 First of all we shall note sone properties of the

equal ity which are deducible in A.

Proposition 1. The follow ng forrulas (expressing re-
flexivity, symretry and transitivity of equality and certain
speci al instances of the the replacenent property) are de-
ducible in A:

fozu,f0:“:@f1:%,1}:f & f, 2:$f f»
fo="F, 8{f2::f3 = = ::> f1 > 3 D,
fo="F, 8{f2::f3::$ f0f2 f f
Proof. The first three of the above fornulas can be eas-
ily derived by using the special axions (00)- (02). The
forth one can be derived by using (02) and (03)..

Proposition 2 (formalization of the statenents of Re-
marks 1.3 and 1.4). The followi ng five fornulas are deduc-
ible in A:

54 A problem arises in connection with the fact that sone
results about iterative conbi natory spaces are obtained by
usi ng results about G-—spaces (operative spaces with an
iteration), since the | anguage of the G spaces is not a part
of the Ianguage of the iterative conbinatory spaces. The
probl em can be solved by restriction only to the conpani on
operative spaces of the considered conbinatory spaces. Al so
when results concerning nore or less arbitrary mappings in
g are used, one can restrict hinself to nmappings definable
by means of functional expressions.
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Vco(ficozfzco):>f1:f2,
(f . foc)f=(f f . f c))>
(cg. f)f=C(c,. fF,f.)>
(fODfico’f2C0)f3:(f0f33f1C0’f2C0)’
fozfi&fzzfs&usz:)(foafz,f4)z(f13f3,f5).
Proof. The deducibility of the first of the above fornu-
las follows fromthe presence of axions (02) and (1). The

deducibility of the next three ones follows from Proposition
1 and the presence of the axionms (6), (7) and (15). The de-
ducibility of the last formula can be seen by nmeans of for-
mal i zati on of the proof of the corresponding inplication in
Remark 1.4 (Proposition 1 and the presence of axions (00),
(03) and (14) - (16) are used)..

Corollary 1. The fornul a
fozfi&fzzfs&f4:f5:>(f03f2,f4):(f13f3,f5)
i's deducible in A.
Proposition 3 (nonotonicity of conbination). The formula
fozfi&f22f3:>(fo,fz)z(fi,fs),
i's deducible in A.
Proof. Formalization of the proof of Proposition 1. 1..
Corollary 2. The fornul a
fo=t  &T,=T; = (1, 1,) =(1,. T,
i's deducible in A.

A formalization of the proofs of Propositions 1.2 and
1.3 beconmes now al so possible, and we concl ude that the for-
mul as

c,C,=C,» (Tc of ,f)=f_, (Fc >f_ ,f)) =f
are al so deducible in A.
Proposition 4 (mnimality of iteration). The fornula
fzz(fozfzfi,fs) - f22f3[f1,f0]
is deducible in A.

Proof. Using a suitable axiomof the form(19), we see
the deducibility of the formula

(20) 3s,Vc, Cc =5,

The followi ng fornula (expressing the statenent of Proposi-
tion 1.9) is also deducible in A:

2
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(21) Vco(coeso):>(f02f1(:)f02f1)

So

(this can be seen using the presence of the axions (00),
(03) and (1) ). Fromthe deducibility of (21), using again
t he presence of the axions (00) and (03), we infer the de-
ducibility of the fornula
Ve, (c 5.0 = Vf4vf5(f42 f5 = f4f12 f5f1).

s

0 0
From here, taking into account the axiom (18), we see the
deducibility of the fornula

Ve, c =50 = (fzi (f=>f f,. f3) = fzi f3[f1, fol2
0 0

Now t he proof can be conpleted by using the deducibility of
(20) and (21)..

Proposition 5 (nonotonicity of iteration). The formula
fozfi&f22f3:>[fo,fz]z[fi,f3],
i's deducible in A.
Proof. Formalization of the proof of Proposition 3.3..
Corollary 3. The fornul a
fo=ty & T, =ty = [T, T ] =[f,. 14
i's deducible in A.

It is desirable to have also the fornula
(22) c,=¢C, = (c,es, = Cc =5
at our disposal. Unfortunately this forrmula is not deducibl e
in the system A (cf. Exercise 2). This fact is no serious
obstacle for the formalization of the proofs we are inter-
ested in, but anyway it makes a certain additional degree of
careful ness necessary when treating problens of formaliz-
ability of proofs in A. Therefore the non-deducibility of

the forrmula (22) can be regarded as a defect of the system
A.

From the point of view of convenience for the formaliza-
tion, the system A has al so anot her defect. Suppose, for
exanpl e, we have to express a statenent of the form ¢pxe<d,
where ¢ is sone elenent of ¥, x is sonme elenent of &,
and 4 is sonme subset of © (an iterative conbinatory space
<¥,1,86, 1T, L, R, =, T, F being given). Suppose al so that
¢, X and « are the values assigned to the variables

o’ Co and S, » respectively. Then it would be natural
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to wite focoes0 for expressing the above statenent.

However, such an way of witing is not adm ssible in the
system A, since focoes0 is not a formula of that system

Therefore we woul d be forced to use a nore conplicated way
of witing in the considered situation (for exanple, the
formul a 3c, (foco:C1&C1€So) coul d be used).

Now an extension A of A wll be indicated, such that
both nenti oned defects will be renpved, and the extension
will be shown to be conservative with respect to formul as

not containing the sign <. For obtaining A, the syntax of
A is extended by adopting atom c fornulas of the form
ZeSj », Where Z is an arbitrary functional expression,

i nstead of the atom c formul as c; eSj . The | ogi cal axi ons

and the rule of inference of the system A’ have the sane
formas the | ogical axions and the rules of inference of A,
with the difference that arbitrary fornmulas of A’ can be
used in theminstead of fornmulas of A. As to the special
axioms of A’, they conprise the formulas (00—18), al |

fornmulas of the form(19), where & is any formula of A’
wi t hout free occurrences of S, » and, in addition, the fol-
| owi ng two fornmul as:

f1:f2 - (f1680 - fzeSO),
f,es, = 3c, <f =cO.
Since the formula (22) is deducible in the system A",
this systemis not a conservative extension of A. However,

the foll owi ng weaker conservativeness property (nentioned
above) is present:

Theorem 1. Whenever a formula of A’ not containing the
sign < is deducible in A, this formula is deducible in A.

Proof. Using induction on the construction of the fornu-
|l as of the system A, to each such formula the notion of a
translation in A is defined. The definition consists of
the foll ow ng cl auses:

1) Each atomic fornula having the formof an equality or
an inequality is its own translation.

2) If c; does not enter in the functional expression
Z then Elci (z:ci&ciesj) is a translation of the
atomic formul a zesj :

3) If & and ¥ are translations of the fornulas &’
and ¥, respectively, then the formulas —-%, &%, dVY,

=V, &SP, VO and 3¢ ¢ are translations of the
formulas =%, & &¥, & VYV, ¥ —>S¥V, & SS9, VIO
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and 3L &', respectively.

Qobvi ously, each forrmula of the system A’ has at | east
one translation in A, all translations of one and the sane
formul a are congruent each other and each formula of A’
not containing the sign « is its only translation. Note
also that the translation of a fornula has the same free
vari ables as the fornmula itself. The proof of the theorem

wi |l be done by proving that each fornula deducible in A
has a translation deducible in A (consequently, all its
transl ations are deducible in A). The reasoning will be by
i nduct i on.

First of all, we prove that all |ogical axions of A’

have transl ati ons which are | ogical axions of A. Cbviously,
each propositional |ogical axiomof A’ has a translation
which is a propositional |ogical axiomof A. Consider now a
| ogical axiomof A’ having the form V& = &' 2/,
where ¢ is a variable, and Z is a expression of the sane
type as ¢. It is easy to observe the existence of a trans-
lation & of & such that z is free for ¢ in & and
®Cz/¢> is atranslation of & ¢z/¢>. Taking such a @&

and considering the fornmula V&= &CZ/¢>, we find again
a translation which is a |ogical axiomof A. The case of a
| ogi cal axiomof the form & ¢z/¢>=—3C % is simlar.

The speci al axi onms (00—17) do not contain the synbol

=, and hence they are translations of thenselves. Hence

t hese axions of A’ again have translations which are ax-
ions of A. As to the special axiom (18) of A’, we shall
show the deducibility in A of the equival ence between this
axiom and one of its translations; since (18) is an axi om of
A too, the nentioned translation will turn out to be also
deducible in A. To show the deducibility in A of such an
equi val ence, it is sufficient to apply the follow ng remark
to each subformula of (18) having the form u=v: if u

So

and v are functional expressions not containing Cq t hen

the formula u=v of A’ has a translation ® in A

So

such that u> v<&> © is deducible in A. And to see the

So

correctness of this remark, we take ® to be the fornul a
‘v’CO(EICi (C0:Ci &Ci eSO) - UCOZVCO D,
wher e c; is different from Cq and c, occurs neither in

U nor in V. Then the deducibility of u=v&e in A is

So

seen on the ground of the deducibility in A of the equival-
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ences

(23) C,€S, = 3¢, (¢ =C;, &C; 5.,

Ve, (c es, = Uc =Vc > = (¢, s, => UC, =V¢C D,

— > >
C,=C, &UC, =VC, => UC =VC,.

The | ast kind of axions of A’ which have to be consid-
ered are the fornulas of the form

(24) JIs,Vc, (c s, & @D,

where @ is a fornmula of A w thout free occurrences of

S, - G ven such an axiom we construct a translation of it

deducible in A in the following way. W take a translation
® of & and a variable C; different from Cq and not

occurring in & Fromthe fact that & is the translation
of a formula and C; is free for C, in &, the concl usion

can be made that the inplication
(25) Co=C; — (& &S aCc, /co))

is deducible in A (this property of translations can be

proved by induction on the construction of &, after prov-

Ing the deducibility in A of each inplication of the form
Co=C; — Z:Z(ci/co),

where Z is a functional expression). Consider now the fol-

| owi ng translation of (24):

EISOVCO (Elci (COZCi &ci eso) & .

Using the deducibility of (23) and (25) in A and the fact
that (19) is an axiomof A, it is easy to show the deduc-
ibility in A of the above translation (one uses also the
fact that

Ve, c es, S P (ci €S, S <I>(ci /co))
is deducible in A).

To conplete the proof of the theorem it remains to
check that the inference rules of A", whenever applied to
formul as having translations deducible in A, always yield
formulas with the sanme property. And no difficulties arise
i n checki ng this..

A denotation for the set € is also a thing which one
could feel to be mssing in the described systens, and es-
pecially in the system A’”. The axionms (2), (9) and (10) of
these systens illustrate a way for overconm ng the | ack of
such a denotation. Nanely, we can wite Jc, (z=c, O, W th

¢, not occurring in z, for expressing the statenent that
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the value of Zz belongs to €. In particular, the notion of
a nornmal elenent (cf. Definition I1.1.2) can be formalized
by using this way. O course, there is no difficulty to en-
rich the system A’ by introducing a denotation for @
together with a correspondi ng axi om (cf. Exercise 4).

For the sequel, a suitable notion of normal functional
expression will be nore usable then a straight-forward for-
mal i zati on of the notion of normal element. The definition
i's by induction:

- (i) the enpty string A is a normal functional expres-
si on;

(ii) whenever zZ, U, VvV are normal functional expres-
sions, then the strings zZc, (for i =0, 1, 2, ...),

ZT, zF and z(u, V), are also normal functional expres-
si ons.

It is easy to see that the normal functional expressions
are exactly those functional expressions which contain nei-
t her vari abl es fi nor L, R, > or [. Cearly, the re-

sult of the concatenation of two nornmal functional expres-
sions is again a normal functional expression. The next sev-
eral propositions list the nost useful properties of the

nor mal expressi ons.

Proposition 6. If Zz is a normal functional expression,
and the variabl e c; does not occur in Z then each formula
of the kind dc, (zcj::ci) is deducible in the system A.

Proof. Induction on the construction of .

Corollary 4. If z is a normal functional expression,
and & is an iterative conbinatory space, then the val ue of
Z in & is a nornal elenent for each valuation of the
vari abl es.

O course, a direct proof of the above corollary is
strai ght-forward.

Proposition 7. If u and v are normal functional ex-
pressions then (u, ¥) is also a normal functional expres-
sion, and the formulas L(u, V) =4, R(u, V) =V are
deducible in the system A.

Proof. Formalization of the proof of Proposition 1.4,
using Proposition 6 in the places where the definition of
the notion of a normal el ement was used..

Corollary 5. If z is a normal functional expression
then the fornul as L(fo, z)::fo, R(z,fo)::f0 are

deducible in the system A
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Proof. Formalization of the proof of Corollary 1.2..

Proposition 8. If Z is a normal functional expression
t hen the fornul as

(f1’ f2)z:(fiz, fzz),
(foafi,f2)z:(fozafiz,f22),
all formulas of the kind c; Z:ci and the formul as
(Tz:fi,fz):fi, (Fz3f1,1‘2):f2
are deducible in the system A

Proof. Formalization of the proofs of Propositions 1.5,
1.6 and 1.7. =

Proposition 9. If z and ¥ are nornal functional
expressions then the formul as

foz=Ty = [f_f lz=[f_,ff 2
f,z2=Fy = [f_,f lz=2
are deducible in the system A
Proof. Formalization of the proof of Proposition 3.4..

W recommend to the reader to consider fromthe point of
view of formalization of the proofs some nore statenents
fromthe preceding sections (as an exanple for this, see
Exercise 1 where the statenment of Proposition 5.4 is witten
in the | anguage of the system A).

Exerci ses

1. Show the deducibility in A of the formula

(fo=f, F) =RIRf_R LI RIR R f RR L] (f ., L),
where L, and R, denote (T,) and (F, ), respectively.

2. Let 6=<%,1,6,1T,L,R, =, T, F> be an iterative
conbi natory space, M be a set and o be a surjection of
M onto €. Let an M, a«—valuation in & be an arbitrary
mappi ng v having the set of all variables as its domain
and transformng, for all i in IN, the variables fi’

c; and S into elenents of ¥, elenents of M and sub-

sets of M, respectively. Let the value |z| of an arbit-
rary functional expression Z at a given M, a—valuation

v in & be an elenent of ¥ defined recursively by neans
of the same equalities as in the definition of the ordinary
val uations, except that the equality |zc, |=]Z|v(c,D is

replaced by |zc, |=]Z]acv<c, >>. Let the truth definition
for formul as be obtained fromthis definition in the sane
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way as in the case of ordinary valuations (of course, taking
i nto account which are the adm ssible values of the vari-
abl es c; and S, now). Show t he correctness of the system

A with respect to this semantic. Use this correctness to
show t he non-deducibility of the fornmula (22) in A.

3. Let the notion of translation of fornulas of the sys-
tem A’ into formulas of the system A be defined in the
same way as in the proof of Theorem 1. Show that, for each
formula @& of A’ and each translation & of this fornu-
la in A, the formula & & & is deducible in A, and
® is deducible in A iff & is deducible in A.

4. Let Aé be the system obtained from A’ by neans of

the followi ng nodifications. W add to the al phabet of the
systemthe letter C, and, for each functional expression
Z, using an atomc formula zZ<C is allowed (with the
truth condition |Z|<€). The additional axiomis c <C,

and in the axions V{&®— ®CZ/>, ¥Z/>=—3ICd we
allow Z to be C incase ¢ is a variable of the form S; -

Show t hat Aé is a conservative extension of A, i.e. de-
ducibility in Aé is equivalent to deducibility in A" for
formul as not containing C.



CHAPTER | 1|
COMPUTABI LI TY I N | TERATI VE COMBI NATCORY SPACES

1. Explicit and fixed-point definability
in partially ordered al gebras

The notion of iterative conbinatory space introduced in
Chapter |1 enconpasses as special cases sone partially or-
dered sem groups of functions or function-like objects stu-
died in Chapter 1. In each of these sem groups, there was a
correspondi ng notion of relative conputability of an el enent
of the semgroup in some set of its elenents. Al of these
notions had simlar definitions using the operations conpo-
sition, conbination and iteration in the considered sem -
groups. Since we have these operations in each iterative
conbi natory space, it is possible to give in the same spirit
a general definition of relative conputability in such a
space, and this will be done in the next section. However,

t he correspondi ng general notion can be regarded as a spe-
cial case of a certain other one, which is still nore gener-
al and will be considered now. This will be done with the
pur pose of naking the further exposition better notivated.

Some drill exanples to the definitions in this section
can be found in Exercises 1, 2, 3 after it.

We shall make use of the notion of partially ordered
al gebra. The termw || nean any ordered pair <%, 0>, where
¥ is sone partially ordered non-enpty set, and © is sone
set of nonotonically increasing operations in ¥. The notion
of operation in ¥ wll be understood in the usual way,
nanel y: each operation has a given arity which is a natural

nunber, the n—ary operations are mappings of #" into ¥

when n>0, and the O—ary operations will be identified
with elenments of ¥. For n—ary operations with n>0,

the nonotonic increasing will be understood as in Section
I1.4, and all O—ary operations will be considered nonot -
onically increasing. If <%, 0> is a partially ordered al -
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gebra then the set of the n—ary operations belonging to
o will be denoted by ol™.

Remark 1. Ordinary (non-ordered) al gebras can be regard-
ed as partially ordered al gebras whose partial ordering re-
duces to the equality relation

Definition 1. Let <%, ©> be a partially ordered al -
gebra. The set of the explicitly definable elenments of ¢
is introduced by nmeans of the follow ng two inductive
cl auses:

(i) all elenments of 0% are considered explicitly
defi nabl e;

(ii) whenever q<o™, n>0, and 0> -2 @, A€

explicitly definable elenments of ¥, then QCp s oo @D
is also considered explicitly definable.

O course, the partial ordering in ¥ plays no role in
t he above definition, but, however, Remark 1 shows the harm
| essness of our choice to study partially ordered al gebras
i nstead of ordinary ones.

The explicitly definable elenents of ¥ wll be called
al so explicitly definable operations of arity 0. The notion
of a explicitly definable operation of non-zero arity wll
be introduced in a simlar way.

Definition 2. Let <%, ©> be a partially ordered al -
gebra, and | be a positive integer. The set of the | —ary
explicitly definable operations in ¥ is introduced by
means of the followi ng two inductive cl auses:

(i) the operations AT T - Ty » i =1, ..., |, and the
oper ati ons
(1) AT, T - 0,
wher e (oecfo), are considered explicitly definable;

(ii) whenever a<o™, n>0, and 3, ..., 0 are
| —ary explicitly definable operations in &, the operation
(2) AT T - QT 5 5 Ty e, B (T, s T DD

is also considered explicitly definable.

Remark 2. An imredi ate corollary of the given defini-
tions is that all operations belonging to 0 are explicitly
definable. An easy induction shows that, for each explicitl
definable elenent o of ¢, the correspondi ng operation (1)
is also explicitly definable, and, for each n—ary expli-
citly definable operation Q with n>0 and each n-—tuple

B s O of | —ary explicitly definable operations, the

correspondi ng operation (2) is explicitly definable too.

y
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Anot her statenent easily provable by induction is that all
explicitly definable operations in ¥ are nonotonically in-
creasi ng.

A partially ordered algebra <%, 0> can be extended by
addi ng sonme explicitly definable operations to 0. Remark 2
shows that such an extension preserves the set of the expli-
citly definable operations.

Remark 3. The notion introduced by neans of Definition 2
can be reduced to the one introduced by neans of Definition
1. To show this, suppose a partially ordered algebra <%, 0>
and a positive integer | are given. Let ¥’ consist of al
nonotonically increasing | —ary operations in ¥, and |et
¥’ be supplied with the natural partial ordering in it. For

each w belonging to <¢O), let w be the corresponding el-
enent (1) of ¢'. For each positive integer n and each Q

bel onging to 0“», let Q@ be the n—ary operation in ¥
such that, for any n—tuple B s O of elenents of ¥,

Qe , .5 D is the corresponding elenment (2) of .

Consi der now the partially ordered al gebra <%, 0’ >, where
0’ consists of the elenents AT T T of ¥, i=1, ...,1,

and of all elements w’ and operations Q' corresponding to
el enents of ©. Then the | —ary explicitly definable oper-
ations in the algebra <%, 0> are exactly the explicitly
definable el enments of the algebra <%, 0’ >.

Anmong the explicitly definable operations certain very
special ones will be singled out by neans of the follow ng
definition.

Definition 3. Let <%, ©> be a partially ordered al -
gebra, and let | be a positive integer. An | —ary operation
in ¢ will be called sinple iff this operation has sonme of
the two fornms described in clause (i) of Definition 2 or the
form

(3) AT T QAT s s T D,

'1 'n
where n is sone positive integer, Q belongs to oM
and i, ...,in belong to {1, ..., 1}.

The above definition will be used a bit later in the
formul ati on of the next definition. The follow ng property
can be easily verified.

Proposition 1. Let <%, 0> be a partially ordered al -
gebra, | and m be a positive integers, & be an | —ary

sinple operation in ¥ and |et j1’ ...,jI be nat ur al
nunbers fromthe set {1, ..., m. Then the operation
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AB, ...6 .86, , ..., 6 O is also sinple.
1 m Jl jl

In many cases, nuch nore operations than the explicitly
defi nabl e ones can be defined by using | east fixed points.
Some operations defined in such a way will be called fixed-
poi nt definable (the nore precise termshould be "Il east-
fi xed-point definable", but it is somewhat long). Here is
the rigorous definition of the notion of fixed-point defin-
abl e operation of arity 0O (fixed-point definable el enent)
in a partially ordered al gebra.

Definition 4. Let <%, ©> be a partially ordered al -
gebra, and ¢ be an elenent of ¢. The elenment ¢ is called
fi xed-point definable iff, for sonme positive integer |,

there is a | —tuple Ty» -+ T of sinple | —ary operations
in ¥ such that the systemof inequalities

(3) T 20T, s T =1, ..., 1|,

has a | east solution <Tys o00n T2 in ?J, and t he conponent

t, of this solution is equal to @.65

A paraneterization of the above definition | eads to the
definition of a fixed-point definable operation in a par-
tially ordered al gebra.

Definition 5. Let <%, ©> be a partially ordered al -
gebra, n be a positive integer, and & be an n-—ary oper-
ation in . The operation & is called fixed-point defin-

able iff, for sone positive integer |, thereis a | —tuple
Ty» -+ T of sinple | +n—ary operations in ¥ such that,
for each choice of 8,5 -5 6 in ¥, the system of inequal -
ities

> i —
(4) 'ci_l"i(ei,...,en,'ci,...,'cl), II 1, ..., 1,
has a | east solution <Tys o00n T2 in ¥ , and the conponent
T, of this solution is equal to &Ce, , ..., 6,

Proposition 2. If <%, 6> is a partially ordered al -
gebra then all operations from ¢ and all operations of the

%S For the definition of the notion of |east solution of
such a system cf. Section Il.4. Note that, by Proposition
I1.4.1, if the systemof inequalities (1) has a | east sol u-
tion, then it is the |east solution also of the correspond-
i ng system of equati ons

T =TT, s T D =1, ..., 1.
I nstead of "the conponent T," one could equivalently wite

"sone conponent” (due to the property from Proposition 1).
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form AB, ---6 -6 » j =1, ..., n, are fixed-point definable.
Proof. I1f e o™ and n >0, then, for each choice of

8,5 -5 6 in ¥, Qo5 -+ 60 is the least solution <t

of the inequality T=QC6,, ..., 6 ). The fi xed-point defin-

ability of the el enments of 0% and of the oper ati ons of
the form A, ---6_ .6, is seen in a simlar vay. o

Proposition 3. Let <%, 0> be a partially ordered al -
gebra. If ¢ is a fixed-point definable elenent of ¥ then,
for each positive integer m, the operation AB -6 ¢ i's

al so fixed-point definable. If & is a fixed-point defin-
ablen—ary operation in ¥ with n>0 then, for each

choice of the positive integer m and of the natural numbers
[ in belonging to {1, ..., m}, the operation

A6, ---6 . 8O , ..., 6
is also fixed-point definable.
Proof. Application of Definitions 4, 5 and Proposition

12

1 g

Corollary 1. In any partially ordered al gebra, al
sinpl e operations are fixed-point definable.

Remark 4. Sonmewhat |ater, the much stronger statenent
will be proved that all explicitly definable operations are
fi xed-point definable (there is no difficulty to prove it
i medi ately, but we shall obtain it as a corollary from
anot her result).

Proposition 4. In any partially ordered al gebra, all
fixed-point definable operations are nonotonically increas-
i ng.

Proof. Application of Proposition II.4.2..

By Propositions 2 and 4, if we replace the set 0 of a
partially ordered algebra <%, 0> by the set of all fixed-
poi nt definable operations in this algebra then we shall get
anot her partially ordered al gebra which is an enrichnent of
t he gi ven one.

Definition 6. Let <%, ©> be a partially ordered al -
gebra, and let © be the set of all fixed-point definable
operations in ¥. Then the partially ordered al gebra <%,0>
will be called the fixed-point enrichnent of <%, 0>.

A natural question arising in connection with the above
definition is what will happen when one applies formation of
fi xed-point enrichnment twice. W shall show that the second
application will produce nothing new. First we shall prove a
slightly nore precise result.
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Theorem 1. Let <%, 0> be a partially ordered al gebra,
and let <%, 0> be its fixed-point enrichnment. Let | be a
positive integer, n be a non-negative integer, and T,

> T bel ong to a'*" . Then there are a natural nunber m
and a | +m-tuple AP of I +m+n—ary sinple oper-
ations in <%, 0> such that, for all 8,5 -5 6 in ¥, the

system of inequalities (4) has a | east solution

> T, > N # iff the system

<’L'1,.. |
=T I = +
(5) =T, =Tride,, > 6,5 T, > Ty | =15 > | +m,

1 m
. . + .
has a | east sol ution <Tys voon Ty 0N ?' m and, if
+m

<QPys v S is the least solution of (5) in 7 > then
<P s s P> is the | east solution of (4) in 7 .

Proof. By Definitions 5 and 6, for each i fromthe set
{1, ..., |} a systemof inequalities
(6) & ;=B ;€65 585 Ts s T & s oon &y s

i
=1, ...,k ,

can be chosen, with B, ;> --» B | sinple in <%, 0>, such
1 !i
that, for every fixed ©,, ..., 6 ,T,, --.> 7T, in ¥, the
1 n 1 I K
system (6) has a | east solution <E 15 0 & > in ',

i
t he conponent & 1 of this solution being equal to

€O, s -5 85 Tys -ov5 T D We assune that the systens (6)
corresponding to different nunbers i have disjoint |ists of
unknowns g P Let T Tam be all these unknowns,

taken in the fol | ow ng order:

51’1, ""Ei,ki’ ""El,i’ ...,gl’kl

(hence m:k1+...+k|). W take (5) to be the system con-
sisting of the inequalities
T, & =1, ..., 1,

and of all inequalities of all systens (6), witten consecu-
tively. Now we have to show that (4) is consentient with (5)
wWith respect to least solutions in the sense described in

the theorem This can be done by applicating Theoremll.4.1
| times. Nanmely, we start by elimnating the unknowns g E

j =1, ...,kI , making use of the inequalities (6) with i =I.
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The new system obtai ned through this elimnation does not
contain nore the inequalities just nmentioned, and the only
change in the other inequalities is that

tlzgl,i
becones
tlzrl(ei, ...,en, T, > ...,'cl).
By TheoremIl.4.1, this new systemhas a | east solution iff
the system (5) has a |east solution, and if <P s s P

is the | east solution of (5) then the | east solution of the

new system can be obtai ned by deleting the |ast h menber s

of <Pys s P> The next step is the elimnation of the
unknowns € 4 j =1, ""k|-1’ maki ng use of the inequal -
ities (6) with i =1 —1. Then these inequalities drop out of
the systemand the inequality
tl-12€|-1,1
becones
T _121" (Tt

[ l-14° "1 ’tl’ei’ ’en

The new system of inequalities obtained thus is again con-
sentient with (5) with respect to | east solutions. Going on
in the sane manner, we consecutively elimnate the unknowns

EI-Zj , the unknowns El-sj and so on, and finally obtain the
needed concl usi on about the systen1(4)..

Corollary 2. Let <%, 0> be a partially ordered al -
gebra, and let <%, 0> be its fixed-point enrichnent. Then
the partially ordered al gebras <%, 0> and <%, 0> have
one and the sane set of fixed-point definable operations.

Proof. Since all fixed-point definable operations of
<¥, 0> belong to O, by Proposition 2 (applied to <%, 0>),

all these operations are fixed-point definable in <?;'6>.66
Suppose now an arbitrary fixed-point definable operation in
<¥, 0> is given. Then this operation can be defined by
nmeans of a systemof the form (3) or (4), with operations

T, sinple in <%, 0>. By Proposition 3, all these T, be-

long to O, and therefore Theorem 1 can be applied. The new
system of inequalities obtained according the theorem de-
fines the sanme operation, and this shows the fixed-point
definability of the operation in the partially ordered al -

®®The sane concl usion can be obt ai ned al so directly from
Definitions 3, 5 and the inclusion 0<0 asserted in Prop-
osition 2.
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gebra <9, 0>. g

Corollary 3. Let <%, 0> be a partially ordered al -
gebra, and let <%, 0> be its fixed-point enrichnent. Then

the set @ is closed under substitution.
Proof. Let 2, bel ongs to E(”), and PR bel ong

to Zﬁ”). W shall prove the fixed-point definability of the
n—ary operation & in ¥ defined by the equality
@(81, Ces en):d)O((I)i(ei, C s en), C s <I>m(81, Ces en)),

(we neglect the small changes needed for the case of m=0
or n=0). For that purpose, consider the system of inequal-
ities

1:02<I>0(1:1, C e, ’Cm),
T.>2%.¢(6., ..., 00, i =1, ...,n.
| | 1 n
Since its | east solution <Tys Tys ooos T has first conpo-
hent &ce,, ..., 6.2, the operation & turns out to be

fi xed-point definable in <%, 0>, and hence @eZi.

Corollary 4. In any partially ordered al gebra, all ex-
plicitly definable operations are fixed-point definable.

Proof. Application of Definitions 1,2, Proposition 2 and
t he above corollary..

The introduced notions and the proved results can be
used in arbitrary partially ordered al gebras, including such
ones where not every system of inequalities of the form con-
sidered in the definition of fixed-point definability has a
| east sol ution. However, a special attention is deserved by
the partially ordered al gebras where all such systens have
| east sol utions.

Definition 7. Let <%, ©> be a partially ordered al -
gebra. This algebra will be called fixed-point preconplete
iff for each positive integer |, each natural nunber n,
each | —tuple Ty» -+ T of sinple | +n—ary operations in

¥ and each choice of 8,5 -5 6 in ¥, the corresponding
system of inequalities (4) has a | east solution

A T in 9.

Definition 8. A partially ordered algebra will be called
fi xed-point conplete iff it is fixed-point preconplete and
all fixed-point definable operations in this algebra are
explicitly definable.

The condition fromthe definition of preconpleteness is
equi val ent to certain stronger conditions.

<T
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Proposition 5. If the word "sinple” in the condition
fromDefinition 7 is replaced by "explicitly definable" or
by "fixed-point definable" then equivalent conditions arise.

Proof. Application of Theorem 1l and Coroll ary 4..

An obvi ous necessary condition for the fixed-point pre-
conpl eteness of a partially ordered algebra is the existence
of a least element in this algebra (the inequality =<
nmust have a |least solution in a fixed-point preconplete par-
tially ordered algebra). O course, this condition is far
frombeing sufficient. Certain sufficient conditions will be
given in the next two propositions.

Proposition 6. Let <%, 0> be a partially ordered al -
gebra having the follow ng three properties:

(i) there is a least elenment in ¥;

(ii) each nmonotonically increasing infinite sequence of
el enents of ¥ has a | east upper bound;

(iii) the operations of © are continuous with respect
to | east upper bounds of nonotonically increasing infinite
sequence567.

Then <%, 0> is fixed-point preconplete.

Proof. If a systemof the form(4) is given with all T,

sinple in the partially ordered al gebra <%, 0> then, for
any fixed 8,5 -5 6 in ¥, the Knaster —Tarski —KI eene

Theorem (Theorem I1.4.3) can be applied to the mapping T of

57I'n the case of operations with nore than one argunent,
this can be understood in the sense of continuity with
respect to each one of the argunents. It is easy to prove
that such a continuity inplies continuity with respect to
all argunents taken together. For example, if & is a bi-
nary operation which is continuous with respect to each one

of its both arguments, {¢ } 2, {¥}.o, & e nonotonically
i ncreasi ng sequences of elenents of ¥, and @::sup{@k}ffo,
W==SUD{WK}E:O: then ¢y=sup{eCy, , Wk)}E:o’ since ¢y

i s obviously an upper bound of the |ast sequence, and when-
ever o is an arbitrary upper bound of it, then

(D((pi > x//j)Soc
for all i,]jeN, and hence
@(@,w)::sup{é(@,wj)ﬁf;::sup{sup{é(% ,wj)ﬁi;}fZJSa.
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# into itself defined by

1"(<'c1, ...,'c|>):<'c1’, e T D,
wher e

ti’:r‘i(ei""’en’ti"" I

Proposition 7. Let <%, 0> be a partially ordered al -
gebra, and let each chain in ¥ (including the enpty one)
has a | east upper bound. Then <%, 0> is fixed-point pre-
conpl et e.

Proof. The sane as the proof of Proposition 6, but using
t he Knaster —Tarski —Pl atek Theorem (Theorem |1.4.4) in-
stead of the Knaster —Tarski —KI eene one. o

An way for obtaining fixed-point conplete partially
ordered al gebras is the foll ow ng one.

Proposition 8. The fixed-point enrichnment of any fixed-
poi nt preconplete partially ordered al gebra is fixed-point
conpl et e.

Proof. Application of Definition 6, Corollary 2 and
Remar k 2..

O course, the fixed-point conplete partially ordered
al gebras obtained according to Proposition 7 have infinitely
many primtive operations. Fixed-point conplete partially
ordered al gebras with finitely many primtive operations
nmust be considered nore interesting. One of the main results
in this book will be to show the fixed-point conpl eteness of
certain partially ordered al gebras corresponding naturally
to iterative conbinatory spaces and having finitely nmany
primtive operations. This result will be fornulated and
proved further in this chapter.

It is appropriate to nmention here also two very inter-
esting other classes of fixed-point conplete partially or-
dered al gebras, which, too, are closely connected with the
theory of conputability. The first of these classes consists
of the already nmentioned L. Ivanov's iterative operative
spaces (cf. Ivanov [1980, 1980a, 1980b, 1983, 1984, 1984a,
1990], and especially Ivanov [1986]). lvanov’'s theory can be
successfully applied to the study of the iterative conbi na-
tory spaces and to other subjects in the theory of conput-
ability, in particular to the recursive functions with fi-
nite type argunents (Kl eene [1959]). The other class has
been introduced and studied by J. Zashev (cf. Zashev [ 1983,
1984, 1984 a, 1985, 1986, 1987, 1990]). In the structures
fromthis class, the nmain role is played by an operation,
whi ch corresponds not to conposition, but to application.
The | ack of an assunption about associativity of this oper-
ation creates considerable technical conplications and re-
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quires a rather different approach, but the scope of the

t heory becones | arge enough to enconpass in a natural way

al so such structures as, for exanple, the Plotkin-Scott nod-
el of the a—calculus (cf. Scott [1975]).

If there are no operations of arity O in © then the
partially ordered al gebra <%, 0> cannot be fixed- point
conplete, since no explicitly definable elenents of ¥ wll
exist in this case, and it would be not possible a | east
elenent of ¥ to exist and to be explicitly definable. Here
is a necessary and sufficient condition for a given partial -
|y ordered al gebra to be fixed-point conplete.

Proposition 9. Let <%, 0> be a partially ordered al -
gebra. Then the followi ng two conditions are equival ent:

(i) <%, 0> is fixed-point conplete;

(ii) for each natural number n (including n=0) and
each explicitly definable n+l1—ary operation I in <%, 0>,
there is an explicitly definable n—ary operation A such
t hat

A(ei,...,e):ut.r(ei,...,en,t)
for all o, ..., 86 in %.
1 n

Proof. The inplication from (i) to (ii) follows from
Definition 7 and Proposition 5. To prove the converse inpli-

cation, one assunes (ii) and proves by induction on | that,
for each n and each | —tuple Ty» -+ T of explicitly de-
finable | +n—ary operations in ¥, there are explicitly
definable n—ary operations Ays -os A in ¥ such that, for
any choi ce of 8,5 -5 6 in ¥, the | —tuple

<A1(81, ...,en), ""Al(ei’ ...,en)>

is the | east solution of the system (4) corresponding to the
gi ven AP The induction step is by elimnation

based on Theoren1||.4.1..

Exerci ses

1. Let ¥ be a distributive lattice with a greatest
elenent 1 and a least elenment 0. Let © consist of the
constants 1, @ and of the binary operations A, v of the
lattice ¥. Gve a description of the explicitly definable
operations in <%, 0> and show that <%, 0> is fixed-point
conpl ete. Show also that <%, o> will be no nore fixed-
poi nt conplete if we renove the constant 0 fromthe set 0.

2. Let ¥ be the set of the real nunbers, partially
ordered by the equality relation. Let © consist of the
constant 1 and the binary operation of subtraction. Show
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that the partially ordered algebra <%, ©> has the integers
as its explicitly definable elenments and all rational
nunbers as its fixed-point definable elenents. G ve descrip-
tions of all explicitly definable operations and of all

fi xed-poi nt definable ones in <%, 0>.

3. Let ¥ be the set of the real nunbers, linearly or-
dered in the usual way. Let © consist of the constant 1,
the binary operation of addition and all operations A’C.%,
n=2,3,4, ... Gve a description of the explicitly defin-
abl e operations in <%, ©> and show that all fixed-point
definabl e operations are explicitly definable in this case.
Show t hat the set of the fixed-point definable operations
remains the sane if we take A’C.% only with n=2.

4. Let <%, 0> be such a partially ordered al gebra that
either ¥ has no | east elenent or the range of sone oper-
ation belonging to © contains the |east elenent of .
Prove that in this case the operations T, in Definitions 4

and 5 can be supposed to be only of the forns (1) and (3)
fromDefinitions 2 and 3.

2. Conputabl e el ements and nappi ngs
in iterative conbinatory spaces

From now on, until the end of this section it will be
supposed that an iterative conbinatory space ¢=<%, 1, &,
m, L, R, =, T, F> is given.

Definition 1. Let B be a subset of ¥. An element of ¥
is called G—conputable in 8 iff this el enent can be gen-
erated fromelenents of the set {L, R, T, FfuB by neans of
t he operations conposition, conbination and iterationin 6
(sonetines we shall sinply say "conputable" instead of " &—

conput abl e", since the space & wll be fixed or the con-
text will nmake clear which it is).68 The set of all elenents
of ¥, which are G—conputable in B8, will be denoted by
COMP_(BD.

By its definition, the introduced relative conputability
is transitive: if BECC]VPG(B') (in particular, if B<=B")

t hen COVPG(B)ECOVPG(B'). By Exanple I1.3.1 and by Defini -

%81 n our previous publications on iterative conbinatory
spaces, we used the term "recursive" instead of "conmput-
abl e".
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tion 11.3.3, the elenent | and the zero of & are conput-
able in each subset of ¥. Propositions I1.5.1 and I1.5.4
show that the operation = preserves the conputability in
B (hence including = as an additional generating opera-
tion in the above definition would not enlarge the set
CCNPG(B)). Proposition I1.5.5 shows that the iteration in

the above definition can be replaced by G, —iteration af-
ter enlarging {L, R, T, F} to {l, L, R, T, F}.

We define also the notion of conputability in 8 for a
mappi ng of ¥" into ¥.

Definition 2. Let B<%, and let T be a mapping of "
into ¥, where n is sone positive integer. Then T is cal-
led &—conputable in B8 (conputable in B, for short) iff,
for arbitrary 8,5 -5 6 in ¥, there is an explicit ex-

pression for ree,» - .-, 6.2 through L, R, T, F, 8,5 -5 6

and elenments of 8 by nmeans of conposition, conbination and
iteration in &, the formof the expression not dependi ng on
t he concrete choice of 8,5 -5 6.

O course, a precise formulation of this definition can
be given by using induction. Again including = as an addi-
ti onal operation does not enlarge the scope of the intro-
duced noti on.

The above notions of conputability generalize the no-
tions of A—conmputability introduced in Chapter | and thus
enabl e refornulating sone results from Chapter | as state-
ments about conputability in the correspondi ng conbi natory
spaces. In particular, such basic notions fromthe theory of
conputability as partial recursiveness and recursive enuner-
ability turn out to be special cases of the general notion
i ntroduced in this section. Programmbility in a FP—system
(in the sense of Backus [1978]) is also a special case of
this notion. The sanme will be shown further also for the no-
tions of prinme and search conputability (the easier part of
the proof is already carried out in Section |I.7). Wthout
gi ving such reformul ations explicitly in the present nonent,
we shall have themin m nd when devel opi ng the general the-
ory. Some other computability notions fromthe literature
al so can be shown to be special cases of the introduced no-
tion. This has been proved, for exanple, for the Friednman-
Shepherdson conputability by neans of recursively enunerabl e
definitional schemes (Friednman [1971], Shepherdson [1975]).
Nanely, as shown in Soskov [1987], this kind of conputabil-
ity can be characterized in the same way as search conput -
ability is characterized in Proposition 1.7.2 and its con-
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version in Section 5, but with N° instead of (B*)z.69

Al so the Kl eene-recursiveness of functions with finite type
argunments (Kl eene [1959]) can be studied by nmeans of suit-
abl e conbi natory spaces. Nanely, the al gebraic approach to
this notion in Ivanov [1984, 1986] by neans of operative
spaces can be nodified in a way allow ng certain non-
symmetric conbi natory spaces to be used instead of operative
spaces (cf. Ivanov [1984, p. 50], as well as sone of the
exercises to Chapters 27 and 28 in lIvanov [1986]). To finish
with this review of notions captured by our general defini-
tion, let us point also at sonme nore exotic conputability
notions, such as the notions considered in Section |.8 (cf.
al so Exercises 8, 13, 16, 17, 18 after the present section,
as well as the study of conputable random functions present-
ed in Section 4 of the Appendi x).

Now we shall give an exanple generalizing Exanple 1.2.1.

Exanpl e 1. The mapping = of F> into ¥ is G —conput -
able in o (by Propositions I1.5.1 and I1.5.4).

In order to becone able to apply the considerations from
Section 1, we note that the el enents of CIWPGCB) are ex-

actly the explicitly definable elenents of the partially
ordered al gebra which ari ses when we consider the partially
ordered sem group ¥ enriched by the operations conbi nation
and iteration of & and the constants fromthe set

{L, R, T, Ffus (the fact that both nmentioned operations

are nonotonically increasing is known from Chapter 11). O

course, the nappings of #" in ¥ G-conputable in B
are the n—ary operations explicitly definable in the sane
al gebra. We shall denote this algebra by ¢, BD.

Remark 1.2 immediately inplies the follow ng inportant
property of the conputabl e mappi ngs:

Proposition 1. For each subset B8 of ¢, all mappings
G—conputable in B are nonotonically increasing.

In the ordinary theory of conputability (i.e. in the
theory of recursive functions on N), a certainrole is
pl ayed by such subcl asses of the class of all conputable
functions as, for exanple, the class of the primtive recur-
sive functions or the class of functions elenentary in Kal -
mar’s or Skolenis sense. A subset of CCNPGCB) with a sim-

lar role will be introduced also in the theory of the itera-

%9¢f. subsection (I'V) of Section 5. The set N is con-
sidered a subset of B* in virtue of the identification of
the natural nunmbers with certain elements of B*\B (cf.
Subsection (I) of Section |.7).
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tive conbi natory spaces.

Definition 3. Let B<¥. An elenent of ¥ is called
G—elenentary in B8 (elenentary in 8, for short) iff this
el ement can be generated fromelenents of the set {l, L, R,
T, FfuB by nmeans of the operations conposition, comnbina-
tion and branching in &. The set of all elenents of &,
which are G—elenentary in 8, will be denoted by ELEI\/b(B).

Exanple 2. The elements L, and R, of ¥ are G-—ele-
mentary in @. Consequently, so is the elenent m of ¥ for
each natural nunber m

O course, the inclusion ELEI\/b(B)QCC]VPG(B) is seen
on the basis of Exanple 1.

Remark 1. Exercise Il1.1.12 shows (in the notation used
t here) that ELEI\/b(B) consi sts of those elenents of &
I

whi ch can be generated fromelenents of the set {<, 1>, R,

K1’ K2, Stcdl, 155, StCR, L>>, StcStdl >>, StcL, StCR>, StCTO,

St(F>}uSt (B> by neans of nultiplication and branching. As
seen from Exercise I1.2.9, branching can be replaced by the
operation T, in the above statenent.

For the case of mappings of ¥ into ¥, the definition

corresponding to Definition 3 | ooks as follows.

Definition 4. Let B<9%, and let T" be a mapping of ¥
into ¥, where n is sone positive integer. Then T is cal-
led &—elenmentary in B8 (elenentary in B, for short) iff,
for arbitrary 8,5 -5 6 in ¥, there is an explicit ex-

pression for ree,> ..., 6.2 through 1, L, R, T, F, 6,5 >
6, and elements of 3B by neans of conposition, conbination

and branching in &, the formof the expression not depend-
ing on the concrete choice of 8,5 -5 6.

Exanpl e 3. For each positive integer n, the mapping T,
of ¥ into ¥ is G—elenentary in 4.

The mappings G—elenentary in B are G-—conputable,
again on the basis of Exanple 1.

Application of results from Section 1 is again possible
after introducing another partially ordered al gebra. This
time we have to consider ¥ enriched by the operations com
bi nati on and branching of & and the constants fromthe set
{I, L, R, T, FfuB. This partially ordered algebra will be
denoted by €¢¢(G, B>. The el enents of ELEI\/b(B) can be char-

acterized as the explicitly definable elenents of 6(G, B,

and the mappings of " into ¥ elementary in 8 as the
n—ary operations explicitly definable in this al gebra.

n
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Now an inportant point is that the operation of iter-
ation is fixed-point definable in the partially ordered al -
gebra 6(G, B> (this is clear fromthe equality

lo, x)]=ut. <x >to, | D,

since the operation poxt.(x—>to, 1> is explicitly
definable in 6(G, B>). Thus all primtive operations of
€CG, B> are fixed-point definable in €&, 8>, and hence,

by Corollaries 1.4 and 1.2, all operations explicitly defin-
able in the first of these two al gebras are fixed-point de-
finable in the second one. Hence the foll ow ng hol ds:

Proposition 2. For each subset B8 of ¢, all elenents
of CCNPGCB) and all mappings G-conputable in B are

fi xed-point definable in the partially ordered al gebra
G, BD.

An i nportant problem which naturally arises at this no-
ment is whether the converse is true, i.e. whether al
fi xed-poi nt definable operations in G, B> are G-—
conputable in B. An affirmative answer to this question
will be given further in this chapter.

According to the definitions given in Section 1, the
fi xed-point definability in the partially ordered al gebra
(G, B> means, roughly speaking, definability via the
| east solution of a systemof the form1.(3) or 1.(4) wth
mappi ngs Ty» -+ T which are sinple with respect to

(G, B>. Taking into account the list of the primtive
operations of this partially ordered al gebra, we see that
the sinple operations in it are the ones having sone of the
foll owi ng forns:

AY Y

m |
Al//i...x//m. o>
Aw1~-wm-iji,
A Y U v, D,
A$1~-$m-($i——>$j, ¥, 2>
where i, ], k are fixed nunbers fromthe set {1, ..., m},
and « is sone fixed element of {l,L,R, T, FfuB. So we
see how the systens 1.(3) and 1.(4) |ook. For exanple,
in a systemof the form 1. (3) each inequality has sone of
the forns
'choc,

T 2ZT. T.
r i

T =2(t., T.D,
r i i

2>
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>
'Cr_('Ci %'Cj , 'Ck),

T =2T. .
r i

In a systemof the form1.(4), the inequalities are of the
sanme forns, except that paraneters 6, can occur in sonme

places in the right-hand sides instead of sone unknowns. A
certain kind of canonization of such systens can be useful
in sonme cases (for exanple, the systens can be assuned to
contain no inequalities of the form T 2T ). For the tine

bei ng, we shall not touch this subject in nore detail.

Exanple 4. Let ' be the mapping of ¥ into ¥ de-
fined by

1"(81, 82):[61, (L —>F, T)92].
Then, for each 6,> 6, in ¥, rde,, 6,2 i s the conponent
T, of the | east solution <Tys Ty Tgs Ty Tgs Tgs Toys Tgd
of the system of inequalities
1:12('52%1:3, 1:4),
1:221:582,
1:321:181,
'C4ZI,
’CSZ(TG%’C7, 'c8),
’CGZL,
2= Fs
1:82T.
The G—conputability can be characterized by using func-

tional expressions of the formal system A introduced in
Section |1.6.

Definition 5. Let B<=9%, ¢<%, Z be a functional
expression of the system A, and let a valuation of the
variables of A in & be given. It will be said that 2z
expresses ¢ through B at the given valuation iff all
vari abl es occurring in zZ have values belonging to B at
this valuation, and the value of z at the same val uation
is equal to o.

The truth of the following two propositions is obvious.

Proposition 3. If sone functional expression of A ex-
presses an elenment ¢ of ¥ through a subset B8 of ¢ at
sonme val uation then @eCOVPG(B).

Proposition 4. Let B8 be a subset of ¥, ¢ be an el-
enent of CC]VPGCB), and |l et a valuation of the variabl es of
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A in & be given such that each elenment of 8 is the
val ue of sone vari able fi at the given valuation. Then

there is a functional expression zZ of A such that Z
expresses ¢ through B at the given valuation, and no
vari abl es c, occur in Z.

A simlar definition can be given for expressibility of
mappi ngs of " into ¥ can be given, and simlar proposi-
tions will be valid.

Anot her obvi ous proposition will be fornul ated, nanely
the foll owi ng one.

Proposition 5. Let B8 be a subset of ¥, and |et 0, »

> P be sone el enents of ¥. Then the foll ow ng state-
ments hol d:

(i) an element of ¥ is G-—conputable in BU{p, >

> @} iff this elenment can be represented in the form
TCpy s vvs 95 where T is sone nmapping of #" into &

G—conputable in B;
(ii) a nmappi ng of # into ¥ is G —conputable in

Bu{p,> -5 0.} iff this mapping can be represented in
the form AT T TGP s s s Ty s TS where T
i's sonme mappi ng of #"™ into ¥ G—conputable in B.

Proposition 6. Let B8 be a subset of ¢. Then each el -
enent of ¥ or mappi ng of # into ¥ G —conputable in
B is also &—conputable in sonme finite subset of B.

Exer ci ses

1. Let & be an iterative conbinatory space. Using Ex-
ercise 11.3.8, show the existence of an el enent ¢ of
CC]VPG(Q) such that ¢n=2n for all n in N. Wite
t he correspondi ng system of inequalities of the form1.(3).

2. Let 6=<x%,1,86, 10, L, R, =, T, F> be an iterative
|

conbi natory space, | be a positive integer, and K=% .
Usi ng the denotations from Exercise I1.1.40 and the result
fromExercise 11.3.9, consider the iterative conbi natory
space

K, 1, e, T, L', R, >, T, F>.

Generalizing the denotation ©, let us adopt that, for each
subset B8 of ¥, B denotes the set of all constant map-
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pings of K into 8. Let By o0 § be the projection nap-
pings from K into ¥, i. e.

Yy s Y 2=, » =1, ..., 1,
for all Uy oos Y in ¥. Let T be an arbitrary mapping

of ¥ into ¥. Prove that T is G—conputable in B in the

sense of Definition 2 iff T is an elenent of &’ GK—com

putable in B U{E , s Bl and T is G—elenentary in B8
in the sense of Definition 4 iff T is an element of %’
el ementary in B U{E, ..., E}.

3. (The First Recursion Theoremfor |eft-linear map-
pings) Let 6=<%,1,86,T,L,R, =, T, F> be an iterative
conmbi natory space, | be a positive integer, and B,, ..., B

be | eft-honogeneous nappi ngs of # *1 into ¥ which are
G—conputable in a given subset B8 of ¢. Let the map-

pi ngs Ty» -+ T of ¥ into ¥ be defined by neans of
the equalities
l"i('ci,...,'cl):Bi(I,'c1,70...,'c|), =1, >

Prove the follow ng statenents '
(i) the systemof inequalities

'cizr‘i('ci,...,'cl), i=1, ..., 1,
has a | east sol ution <Tys o00n T2 in ?I;
(ii) the conponents Tys o0s T of the nentioned | east

solution are G—recursive in B;

(iii) the least solution of the above system of inequal -
ities is also the | east solution of the system of equations

ti:r‘i(ti, ...,’CI), =1, ..., 1.

Hint. Use TheoremI1.6.2 and Proposition II1.4.1.

4. (Conpare with Remark 1) Let 6=<%,1, ¢, I, L, R,
=, T, F> be an iterative conbi natory space. In the nota-
tion used in Exercise 1.12, prove that CC]VPGCB) consi sts

of those elenents of ¥ which can be generated from el -

OThe statenents in this exercise are true for arbitrary

mappi ngs Ty» -+ T of ¥ into ¥ which are G —conput abl e
in B, but such a generalization is nuch nore difficult to
be proved, and it will be the central result in the present

book.
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ements of the set {dl, 15, R, K, K, ,Stcdl, 155, Std(R, L5,

St ¢St cl >>, StcLd, StCR>, St(TO, St(F>}uSt (B> by neans of
mul tiplication and iteration. Show that iteration can be
replaced by G, ,—iteration in this statement. Prove that a

mapping ' of #" into ¥ is G—conputable in B iff
this mapping is representable in the form

ree,, ..., 8 >3X=r"<CStce,>, ..., Stce >,
1 n 1 n

where T is explicitly definable in the al gebra obtai ned
fromthe semgroup ¥ through its enrichnment by iteration
or G,—iteration and by the constants fromthe above set.

Hint. Use Exercises I1.1.7, 11.1.10, 11.3.5 and Proposi -
tions I1.5.1, 11.5.5.

5. Let =<7, IM"’, €, I, L™, R, =, T™, F”> be the conbi -
natory space from Exercise I1.4.11 (the conbi natory space of

the 0L —-fuzzy relations corresponding to a given conput a-
tional structure), but under the extra assunption that

<M, J,L,R, T, F, H> is a standard conputational structure
on the natural nunbers in the sense of Section I.3 (hence
M—=IN). Prove that, for each unary partial recursive func-
tion f, the corresponding f~ is G-conputable in the set
{S~, P~}, where S=au.u+1l, P=au.u-=1.

H nt. Use Theorem . 3.1.

6. Let & and S be such as in the previous exercise.
Show that (N>~ is G—conputable in {S™, (N x{0, 1>}™}.

H nt. See the exercise to Section |.86.

7. Let & be such as in Exercise 5, and let, in addi-
tion, the lattice I be a linearly ordered set. Let ¥ be

the set of all ¢ from ¥ such that for any fixed | in

L\ {0} the set {<u, v>=N: ocu, v>>|1} is recursively
enuner abl e. Prove that, for each recursively enunerabl e sub-
set f of N®, the corresponding f~ belongs to #, and,
whenever B<#, then COVPG(B)E}{.

8. In the situation from Exercises 5 and 7, suppose fur-
thernore that the lattice 0 has finitely many el enents.
For each | in 0, let g be the element of ¥ defined in
the foll owi ng way:

Let B be the subset of ing of Sv, P, (N>~

F S [
and all el ements g of ¥ with o0<I| <1. Prove the
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equality CC]VPG(B):R.

Hint. To prove the inclusion HECC]VPGCB), suppose ¢
is an arbitrary element of #. Let the elenents of 0L be
I1, I2, Ik, wher e ’I]:|1>|2>... >Ik:®. For
i =1, 2, ..., k—1, choose sone three-argunent primtive re-
cursive function hi such t hat

pCu, V)>Ii+1 &~ JweNN (hi Cu, v, w=0>
for all natural nunmbers u and v, and set
%, =(at. h cLctO, LR, RECt D)™,

i
p; =€ CLR>™.
i

Prove the equality ¢ =y Il ™, ICCNT D™, CN®>™~>>, where
1//22(;1{1 R Z(xz > e e Z(xk_z R Z(Xk-i R
agv, pk_i), pk-2)’ p2), pi).

9. Let 6=<97%, IM"’, €, I, L, R, =, T™, F”> be the
conbi natory space from Exercise I1.4.13 (a conbi natory space
rel evant to V-—definedness), but under the extra assunption
that <M, J, L, R, T, F, H> is a standard conputati onal
structure on the natural nunbers. Let S=au.u+1,
P=au.u=1. Prove that, for each unary partial recursive
function f, the corresponding f~ is G-—conputable in
the set {S~, P~}.

10. Let &, S and P be such as in the previ ous exer-
cise. Prove that, for each recursively enunerabl e subset f
of NZ, the corresponding f~ is G-—conputable in the set
{S~, P, (N°>™).

Hint. Take a three-argunment primtive recursive function
g such that

<u, v>ef & JweN C(gCu, v, w =0>

for all natural nunbers u, v. Take al so an one-ar gunent
partial recursive function f0 such t hat fogf, and the

first conponents of all pairs from f belong to domfo.
Set h=at.gdL(t D), LRCED, REct > and prove the equality
f~=sch~, f _~L~, CLR™IC~, TCANT>Y, (N7X~>3).
11. Let &, S and P be such as in Exercise 9, and |et
A be a subset of IN belonging to the class Hi of the ana-
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| ytical hi erarchy71. Prove that the el enent <l » A> of ¥
is G—conputable in {S~, P~, (N°>™}.

Hint. Take two-argument primtive recursive functions
g, and g9, with the foll ow ng properties:

(i) a natural nunber u belongs to A iff each infinite
sequence of natural nunbers has sone finite initial segment
Wi th a sequence nunber s satisfying the condition

gi(s, u):O;72

(ii) whenever s is the sequence nunber of a finite
sequence <s_, S .»S_ > of natural nunbers, and t

1> n-1
is an arbitrary natural nunber, then g,¢s, t> is the se-
guence numnber of the sequence <Sys S5 - S, 45 U
Then set
h.=at.g cLctO, Rto, i =1, 2,

|
L = [Tch, ~TcL™, (N°>~>, R, h,~1

and prove the equality

<l s A> = SCCNZ O™, I y~> R LIRS 170,

12. Let & be such as in Exercise 9. Let ®, be the set
of all elenents <f, A> of ¥ such that f is recursively
enunerable, A is a Hi—set, and A<=domf. Prove that,
whenever BSHK, , t hen COVPG(B)EHO.

H nt. Use Exercises I1.4.17 and 11.4.18 to show t hat ®,
is closed under iteration.

13. (Non-determnistic conputability with unbounded non-
determ nism cf. Skordev [1980, Chapter 1V, Section 1.2,
Exanpl e 9], and al so Skordev [1987]) In the situation from
Exercises 9 and 12, let B be the subset of ¥ consisting

of S~, P* and <N°>~. Prove the equality CC]VPGCB):RO.

"LEor the definition of this class, cf. for exanple
Rogers [ 1967, & 16.1].

"2Here and in the next condition (ii) a sufficiently
good effective enuneration of the set of all finite se-
guences of natural nunbers is supposed to be fixed, the se-
guence nunber of the enpty sequence being equal to 0. The
exi stence of a primtive recursive function g, with the

property (i) follows fromthe assunption that A is a Hi—
set (cf. Rogers [1967, & 16.1, Corollary V]).
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Hint. To prove the inclusion }{OECC]VPGCB), use the
validity of <f,A>:f"’<I[N,A> for all <f, A> in R, -

14. Let & and P be such as in Exercise 9. Let

e=<e, N>, where e={<u, v>eN": u=v}. Prove that e
is G—conputable in the set {P~, (Nx{0, 1}>}.

Hint. Prove the equality
e=L[P™, Z(I[N"', (N x{0, 1}>~, FvO1.
15. Let G, S, P be such as in Exercise 9. Let 3{2 be

the set of all elements <f, A> of ¥ which have the fol -

| owi ng properties: (i) both f and A are recursively enu-
merable, and A<domf; (ii) for each u in A, the set

{v: <u,v>ef} is finite, and (iii) there is a partial re-
cursive function which transforms each u from A into the
cardinality of {v: <u, v>ef}. Prove that, whenever 7393“72’
t hen COVPGCB)EHE. Use this result to conclude that N>~

is not G-—conputable in {S~, P”, (Nx{0, 1}>™~} (conpare
W th Exercise 6).

Hint. Use the fact that condition (iii) can be repl aced
by the requirenment to exist an algorithmproducing a |ist of
the elenments of {v: <u, v>ef} for any given u in A.

16. (Non-determnistic conputability with bounded non-
determ ni sm Pazova [1978], cf. also Skordev [1987]). In the
situation from Exercises 9 and 15, let B be the subset of
¥ consisting of S~, P¥ and (Nx{0, 1}>~. Prove the equal -
ity COVWP_(B>=#).

Hint. To prove the inclusion 3{22 CC]VPGCB), suppose

p=<f, A> is an arbitrary el enent of 3{2. Take two-argu-

ment primtive recursive functions 9,> 9, and one- ar gunent

primtive recursive function h such that the follow ng
equi val ences hold for all natural nunbers u, v, w:

<u, v>ef & JseN (g,qu, $>=0 & h(s>=v>D,

ueA & card{v: <u, vxefl=t &
JIs <N (g Cu, sO=0 & hds>=t>D.

Take al so a two-argunment partial recursive function 95 such
t hat
{v: <u, v>ef}:{g3(u, D0 <t},

whenever u<A & card{v: <u, v>ef}=t. Consider one-argu-

ment functions h1’ h2, h3 corresponding to 9,>9,-9; as
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in the hints to Exercises 10 and 11. Set
Lt =L[TICL™, CSR>™D, Z(hz"', SCCN x{0, 1}>~, T, h1~)’ F~>
and prove the equality
(p:Z(hz"’, h~, h3"’1'[(L"’, e(Ph)"’))LH(I[N"', F>,
where ¢ is the element of ¥ defined in Exercise 14.

17. (Non-determnistic conputability with unbounded non-
determ ni sm and possi bl e unproductive term nation) Let 6,
S, P be such as in Exercise 9. Let # be the set of all
elenents ¢ of ¥ such that the first conponent of ¢ is

. . 1
recursively enunerable, and the second one is a m —set. Let

B be the subset of ¥ consisting of S, P, (N°>~ and
<@, N>. Prove the equality CC]VPG(B):R.

Hi nt. Prove that <f, [N>eCC]VP6(73) for each recursively

enunerabl e binary relation f, and use the validity of
<f,A>:<f,[N><I[N,A> for all <f, A> in #*.

18. (Non-determnistic conputability with bounded non-
determ ni sm and possi bl e unproductive term nation) Let 6,

S, P be such as in Exercise 9. Let Rb be the set of all
elements <f, A> of ¥ such that both f and A are recur-
sively enunerable and the conditions (ii) and (iii) from
Exercise 15 are satisfied. Let B be the subset of ¥ con-
sisting of S, P¥, (Nx{0, 1}>~ and <@, N>. Prove the

equality CC]VPG(B):}{b.
Hint. Prove that <{<u, v>eN": u>Vv}, N>< COWP_(BD.

19. Let 6=<%,1,86, T, L, R, =, T, F> be an iterative
conmbi natory space, B be subset of ¥, and I be a map-

pi ng of # into ¥ G—conputable in B. Prove that a

mappi ng I’ of # into ¥ exi sts, also G-conputable
in 8B, such that, for all e +> 6 in ¥ and all z in
€, the equality

rde, (z, >, ..., 8, (z, I)):l"’(ei, Cees el)(z, [ >
hol ds. Prove a simlar result for mappings G—elenentary
in B.

Hi nt. Use induction on the construction of I. For the
case of iteration, apply Corollary I1.3.1.

MR
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3. Representation of the partial recursive functions
in iterative conbinatory spaces

W first recall the representation of the natural
nunbers from Section I1.2. Nanely, if 6=<%,1, 6,1, L, R,
>, T, F> is an iterative conbi natory space then an arbit-
rary natural nunber n is represented by the el enent

n=R/"L, of ¥, where L, =<T, 1>, R,=cCF,1>. In order to
i ntroduce a representation of k—tuples of natural numbers
by means of elenents of ¥, we first define an extension of
the operation mM allowing its application to an arbitrary
non-zero nunber of elenents of ¥. Nanely, an el enent

Cpys o oes 92 is defined for each k—tuple

S P> of elenments of ¥, where k=1, by setting
((p):(p, ((po,(pi, ey (pk):H((po, ((p1, R (Pk))

(the denotation <¢, y> used until now is obviously a par-
ticular case of the denotation just introduced). The repre-

<@, -

sentation of a k—tuple <N, o, N> of natural nunbers
wi || be acconplished by neans of the el enent (ﬁ, W)
of ¥. Note that this elenment is normal (in the sense of
Definition I1.1.2) for every choice of the natural nunbers
Nys -on Ny

Remark 1. Another way to represent <N, N,, ..., N> i's
used in lvanov [1986]. Follow ng that way, we ought to re-
present the above k—-tuple by the el enent W @ﬁ
of 7.

Now we shall fix the representation of the natural
nunbers and of k—tuples of natural nunmbers by neans of
correspondi ng functional expressions of the formal system
A from Section I1.7.

Definition 1. For each natural nunmber n, a functional
expression n* is defined in the following way: 0* is (T,)
and ¢(n+1>* is (F,)n* for each natural nunber n.

Qovi ously, for each natural nunber n the expression
n* does not contain variables, and, if sone iterative com
bi natory space & is given, then the value of n* in &
is equal to n (independently fromthe choice of the val u-
ation of the variables). W note also that all expressions
n* are normal in the sense of Section Il.7, and the foll ow
ing fornmul as are deducible in the system A:

LO*=T, RO*=A,
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L{n+1>*=Fn*, RdnN+1>=n*
(by Propositions I1.7.6 and 11.7.1).

To fix the representation of k—tuples of natural
nunbers, it is natural to define the formal counterpart of
the extension of 1T defined above. W adopt the convention
that <u> denotes u, and U, > U U, > denotes

Lo e U
(UO, U s oo uk)), what ever the functional expressions

U Uy> Uys o005 U are. Obvi ousl y, Uy ..., U is anor-
mal functional expression, whenever U o5 U are nor mal

functional expressions. Having this denotations at our dis-
posal, we agree to use the functional expression

a*, ..., nk*) as a representation of the k—tuple

<N, oo, N> of natural nunbers. This is again a norm

functi onal expression not containing variabl es.

Now a notion of representation will be introduced for
(possibly partial) functions of one or nore argunents in IN
(in the sequel, such functions will be called "functions in
N" or sinply "functions").

Definition 2. Let f be a function of k argunents in

IN. A functional expression u will be called to represent
f iff w contains no variables and, whenever the equality
(D) f(ni,..., no=m

hol ds, then the fornul a

(2) uan >, ..., nk*)::nf

is deducible in the system A

Remark 2. A possible defect of Definition 3 is connected
with the fact that there is a function with not uniquely
determ ned nunber of argunents, nanely the enpty function
Fortunately, the defect is not actually present, since each
functi onal expression without variables turns out to repre-
sent the enpty function independently of the choice of the
value of k for the application of Definition 3.

Remark 3. CQbvi ously, whenever a functional expression
U represents a function f, then uw represents also all
restrictions of f. This can be considered al so a defect,
but it is not a logical one, and it is conpensated to sone
extent by certain advantages of the definition. In any case,
there is no problemto inpose additional requirenents when
it proves to be useful.

Here are several sinple exanples to the definition
Exanple 1. The enpty expression A represents the func-
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tion I N (by Proposition Il.7.1; the using of this proposi-
tion will be no nore explicitly nentioned).

Exanpl e 2. The functional expression (F, ) represents
the function au.u+1, and the functional expression R
represents the partial function au.u—-1 (not defined at
0).

Exanpl e 3. The functional expression (L>, R) repre-
sents the total function au.u=1 (by Proposition II.7.7
and Corollary I1.7.1; the using of the last corollary wll
be no nore explicitly nentioned).

Exanpl e 4. The functional expression [, T] represents
no function whose donmain is non-enpty. This can be seen by
usi ng the correctness of A.

A necessary condition for the representability of a
function by some functional expression is the existence of a
partial recursive extension of this function. It is so
since, for every functional expression u and any positive
i nteger k, the set of those k+1—-tuples <Ns e, N, M

of natural nunbers, for which the forrmula (2) is deducible,
can be shown to be the graph of sone partial recursive func-
tion (this follows fromthe correctness of the system A

and the fact that its notion of deduction is decidable). The
main result in this section will be that the converse state-
ment is also true.

W first introduce an abbreviation. For each functional
expression U and each positive integer k, we shall denote

by 1* the functional expression UU...U, Wth k repeti-
tions of wu. By 1°, the enpty string will be denoted. Thus

n* can be witten as (F, )"(T,) for each natural
nunber n.

Proposition 1. Wenever U, .., Uu are normal func-

tional expressions, and 0<i <k, then the fornula
Rcu, ..., u>=qu ..., 4>

is deducible in the system A.

Proof. Induction on i wusing Proposition II.7.6..

Corollary 1. Wenever U, ..., Uu are normal functi on-
al expressions, and k=1, then the formula

-1
I% (Ui, ...,uk)_uk

is deducible in the system A.

Proposition 2. Wenever U, ..., Uu are normal func-
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tional expressions, and 1<i <k, then the fornula

-1
L R Uy vy U=

is deducible in the system A.
Proof. Application of Propositions 1 and II.7. 6..

Proposition 3. The functional expression [R (L>F, T)]
represents the function an.O0.

Proof. Let us denote the nmentioned functional expression
by u. By Proposition II1.7.7, the formula

(Lo>F, T) n*=(Ln*>Fn*, Tn*)
is deducible in A for each natural nunber n, and hence the
formula (Lo>F, T) O*=FO0* and all fornul as

(Lo>F, T) n+1>*=TCn+1>*

are deduci ble. Therefore, by Proposition I1.7.8, the fornula
U0*=0* and all fornulas udn+1>*=uUuRcn+1>* are deduc-
ible in A. W conclude that ©0*=0* and all fornulas
Udn+1>*=un* are deducible, and this enables proving by

i nduction that un*=0* is deducible for each natural

nunber n. g
Proposition 4. \Wenever U oo Uy 5 Vs s V) (1 =1)

are functional expressions, X is a normal functional ex-
pression, and the formulas

u.fx:'i/j, i =1, ..., 1,
are deducible in the system A, then so is also the formula
U5 s UDIX=CV, 5 s VD,
Proof. Induction on | wusing Propositions Il.7.1, 11.7.7
and Corollary II.7.2..
Proposition 5. Let f0 be a function of | argunents in
N, and f1’ ...,fI be functions of k argunents in IN. Let

t he functional expressions Uy> U > -5 U Tepresent t he

functions fo’f1’ ...,fI , respectively. Then the functi onal
expressi on U, U, > ...>, Y > represents the function

I
Ani...nk.fo(fi(ni, cees N, ""f|(n1’ s NEOD.
Proof. Denote by f the last function. Suppose n_, ...,
n . mare nat ural nunbers satisfying the condition (1).

Then there are natural nunbers m, ..., m such that the
foll owi ng equalities hold:

f.¢n , ...,n>=m, j =1, ..., 1,
1 ] J
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fo(mi, ...,n]):m.

It follows fromthis equalities that the follow ng formul as
are deducible in the system A:

uj a*, ..., nk*):n}*, =1, ...,1,
(3) ‘uo(mi*, ...,n”,*):m*.
By Proposition 4, the deducibility of the first | of them
inmplies the deducibility of the fornula
(Ui, c ey ul)(ni*, c ey nk*):(mi*, Ce e n”,*),

and fromhere, taking into account the deducibility of (3),
we concl ude that

¥ ¥ _
uo(ui, ...,ul)(nl R ...,nk D> =ni
is al so deducible..

Proposition 6. Let f, g, h be total functions of Kk,
k+2, k+1 argunents, respectively, in N, and let, for all

i and Nys ooes Ny in N the followi ng equalities hold:
hco, ni,...,nk):f(ni,...,nk),
h(|+1,n1,...,nk):g(h(l,ni,...,nk),l,ni,...,nk).

Let the functional expressions u and vV represent f and
g, respectively, and let w be the functional expression

LR[(RL, Y¥R), (L>F, T) L] (L, UR %L, R,

where X is a functional expression representing the func-
tion ai.0, and Y is the functional expression

(v, (F, ) LR F).

Then w represents h.

Proof. Let n n_ be sonme given natural nunbers,

g0 e Ny
and let, for each natural nunber i,
mI:h(l,n1, s .
The statenent to be proved is that all formulas
1 ¥ * * —_ *
Wik, n*, ., n*o=m

are deducible in the system A. Let i0 be sone fixed natu-

ral number. We shall prove the deducibility of the above
fornmula for i:io.

First of all, we note the deducibility in A of the
formul a

1 ¥ E3 XN __ 71 ok ¥ ¥ ¥ ¥
(L, uR xL, R)(l0 > Y o, NS =d x, m » 0%, n*, s N
and of all fornul as
* ] % E3 * Ny ¥ 1 £3 ¥ ¥
‘y(ml,l ,ni,...,nk)_(mlﬂ,(|+1),n1,...,nk).
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The deducibility of the nentioned fornulas follows from
Propositions 1, 2, 4 and the equalities

f(ni, C s nk)::n%,

g(m’l’ni’ CEEENY nk):m+1.

Let Z be the functional expression
[(RL, YR), (L=>F, T) L]

occurring in w. Now we shall prove that, for i =0,1, ...,
io, the following fornula is deducible in A:

ZCC g —1o%, m*, 1%, n*, ...,n >=1<(0 ,n}o > g% n*s oo, n ¥,
This will be done by neans of induction going downwards from

i, to 0. The induction makes use of the deducibility of the
formul a

(L:F,T)L(O*,n}*,io*,nf: “"’k*)::FO*
and of the fornul as 0
(LoF, ) Ladi —i>*, m*, i*, n*, ...,n*>=Td —i>,

where i <i0. Using their deducibility and Proposition
I1.7.8, we observe the deducibility of the formula

¥ * ] % E3 * Ny ¥ * ] % ¥ ¥
Z CO*, n}o > 1% N> o, nk D = (C0*, n}o > 1% N> o, nk D
and of the fornul as
Z((IO—I),n’} > | ’ni""’nk D=
Z(RL,yR)(do—J)*,m*,i*,ni;...,mf),

where i <i0. The deducibility of the first formula gives the

i nducti on base. By the property of ¥ indicated at the be-
ginning, the deducibility of the other ones inplies the
deducibility of the fornul as

Z((io——i)*,rq*, i*,ni*,..., nk*)::
Z((IO—(I+1)) > m % d +1> LA

where i <i(), and this makes the induction step possible.

Applying the proved statenment for i =0, we get the
deducibility of the fornula

H * * * * * —_ * * 1 * * *

ZC %, m*, 0*, n* ..., n > = (C0*, n}o > 1% n*s o n ¥,

It follows fromhere that the fornula
1 * * * * * —_ *
LRZOO,n%,O,ni,.”,nk)_m

0
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is al so deducible. Conmbining this with the property of
(L, uR 2L, R indicated at the beginning, we get the
needed deducibility of the formula

W"(io*, ni*, .., N *F>=m *.

Proposition 7. Each primtive recursive function can be
represented by some functional expression.

Proof. Application of Exanple 2, Corollary 1 and Prop-
ositions 2, 3, 5 and 6..

In the case of partial functions, the notion of repre-
sentati on used above has a certain drawback nentioned in
Remark 3. In connection with this one nore definition wll
be given.

Definition 3. Let f be a function of k argunents in
N. A functional expression u will be called to represent
f strongly iff u represents f and, whenever Nys ooon Ny
are such natural nunbers that <N > .., nk>ezdonﬁ » then,
for each choice of an iterative conbinatory space ¢=<%, |,
€, T, L, R, =, T, F>, the val ue of udn,_, ...,nk>* in &
is the | east elenent of .

Aremark simlar to Remark 2 can be nmade in connection
of this definition, and unfortunately this tine the arising
problemis nore unpleasant. In order to obviate the diffi-
culty, we shall further assune that functions are given to-
gether with the information about the nunmber of their argu-
nment s.

O course, if the function f in the above definition
a total one then the additional requirenment is trivially
filled. Here is an exanple with a non-total function f.

Exanpl e 5. The functional expression [, T] represents
strongly the enpty function (does not nmatter of how many
argunments).

Proposition 8. Let f be a total function of k+1 argu-
ments in N, and let h be the function of k argunents de-
fined by nmeans of the equality

h(ni, Cs nk)c:ui tfdci, n,» ..., nk)::OJ.
Let the functional expression U represents f, and let w
be the functional expression

LI((F,)L, R, (L>F T) u] (xL, ),

where & is a functional expression representing the func-
tion an.0. Then w represents h strongly.

Proof. We first observe the deducibility of the fornmul as

is
f ul
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(4) (xL,) an*, ..., nk*):::(o*, n* ..., nk*),
(5) ((F,)) L, R ¢i*, n* ..., nk*):::((i-kl)*, n* ..., nk*)
for every choice of the natural nunbers N, ..., nk,i.
Suppose now that natural nunbers Nys ooen Ny and | are

gi ven such that h(ni,..., nk)::l. W have to prove the
deducibility of the fornula wanx, L, nk*)::l*. To do this,
we set

n}::f(i,ni, s O, i =0,1, ..., 1,
and note that m >0 for i =0,1, ...,1 =1, but m =0. Since
U represents f, all formulas

udi*, n* ..., nk*)::n}*, i =0,1, ..., 1,

are deducible. Using this, we observe the deducibility of
the formul as

(LoF T ud* n* ....,n*>=Tm*, i=0,1, ...,1-1,
and of the fornula
(LoF, T) ud™*, n>*, ..., n*>=F0*.
Let Z be the functional expression
[((F,)L, R, (L>F T) u]

occurring in w. FromProposition Il1.7.8 and the deduci bil -
ity of the above nentioned formulas, we conclude that fol-
| owi ng fornmul as are al so deduci bl e:
(6) ZCi*, n*, ...,nk*)::z((F,) L, R ¢i*,n*, ..., N>
i =0,1, ...,1 -1,
ZCl*, n* ..., nk*):::(l*, n* ..., nk*).
Maki ng use of the deducibility of the formulas (5) and (6),
we see the deducibility of the formulas
Z(i*,ry%, ...,nk*)::Z((i-kl)*,ni*,..., nk*),
i =0,1, ..., 1 —1.

Now an i nduction going downwards from | to O proves that

1 ¥ E3 ¥ — ¥ ¥ ¥
ZC*, n*s ..., N D=l *, n*s ..., N D

is a deducible formula for each natural nunber not greater
than | . In particular, the formula
* * *y * * *
ZC0*, n*, ..., N, >=(l*, N s N

i s deduci ble. Taking into account the deducibility of the
formula (4) and the fornula

E3 ¥ * N | *k
L ¢l *, n*s ..., n dD=1|*,



3. REPRESENTATI ON OF THE PARTI AL RECURSI VE FUNCTI ONS 163

we finally get the needed conclusion that the fornmul a

* * — | *
wan*, o, N >=I
i s deduci bl e.
Now suppose that natural nunbers Nys> ..., N are gi ven
such t hat <N > e, nk>edomh. Let 6=<%,1,86,1T, L, R, %,

T, F> be an arbitrary iterative conbi natory space, and | et
o be its least elenent. W have to prove that the val ue of

t he functional expression wanx, L, nk*) in & is equal

to o. In other words, the el enent

ep=LC|((F,)L R, <(L—=>F, TOJul1r|(xL, )], W)
of ¥ has to be shown equal to o. By the deducibility of
the forrmulas (4), (5) and the correctness of the system A,
the equalities

(XL, )| <A, o, M O=C0, A, ..., A

[((F)L R [¢,n,...,n>=d+l,n, ....,n0
hold. Let x be an arbitrary fixed elenment of €, and let «
be the subset of © consisting of all elenments of the form

a, n. ..., W)x, where i eN. The second of the above

equalities shows that «4 is invariant with respect to the
elenment o= |((F, )L, R| of . Let x be the elenent
(L—>F, TO|u| of #. shal | check now the inequality

(7) oz(xy—>oo, L.
]
Let y be an arbitrary elenent of 4, i. e.

y=«i, ﬁ s MEOX

for some natural nunber i . Then

(x —>o00, LODYy=(xy —>o0ay, LyD.
W have

xy=CL—>F DlJujd,n;, ..., nOx,
and for sone positive integer m the formula
udi*, n* ..., nk*'*):rri‘e

i s deduci ble since fdi, n,....n>>0. For this m, making

use of the correctness of the systkem A, we get
xy=CL—>F, TOmx=Tm,
and from here we concl ude that
(x >o00, LODYy=<Tm—> o0y, LYy>=o00Yy.

But oy is a normal elenment of the given conbinatory space,
si nce
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oy::(|+j,ﬁ:,...,ﬁ;)x.

Therefore, the equality ooy =0 holds, and, consequently,
oy=C(x—>o0, LY.

Thus the validity of (7) is established, and, using the
definition of iteration and the fact that « is invariant
with respect to o, we concl ude that

o=>LIlo, x1,
- ﬂ - .
i.e. o=Llo, x1y for all y in 4. In particular,

o=Llo, x1¢C0, N, ..., noX=geXx.

Since this is true for all x in €, we see that p=o0. g

We have now everything needed for the proof of a repre-
sentation theoremfor all partial recursive functions.

Theorem 1. For each partial recursive function, there is
sonme functional expression which represents this function
strongly.

Proof. Let h be a partial recursive function of Kk
argunments. By the Kleene Normal Form Theorem (Kl eene [1952,
§ 63]), there are a k+1—argunment primtive recursive func-
tion f and a one-argunent primtive recursive function g,
such that for all natural nunbers N, ...5N the equality

k
hdn n>2gcui (fdi,n_, n>=01>

4o e Ny g0 e Ny
hol ds. Define the k—argunment partial recursive function
h0 by means of the equality

ho(ni, C s nk)c:ul tfci, n,» ..., nk)::O].
By Propositions 7 and 8, there are sonme functional expres-
sion W, strongly representing h0 and sone functional ex-

pression V representing g. Let w be the functional ex-
pressi on vV, . Si nce

hcn sy nk)ng(ho(ni, cees DD

12 k

g2 s Nsoan application of Proposition 5 shows

that w represents h. It remains only to show that the re-
presentation is a strong one.
Suppose that natural nunbers n,....n are gi ven such

t hat <n1,...,nk>edonm. Let 6=<x%,1,6, 0, L, R, =, T, F>

be an arbitrary iterative conbinatory space, and let o be
its | east elenent. We have to prove that the value of the

functi onal expression wdn,, ...,nk>* in & is equal to

o. But this is clear, since <N > .., nk>edonm0, and

for all n
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therefore
|w“ﬁ;..qﬁ;ﬂ:|w|%|ﬂj,”qﬁ;ﬂ:|wo:o]

Corollary 2. Let 6=<%,1,86, 1T, L, R, =, T, F> be an
iterative conbinatory space, and let f be a partial recur-
sive function of k argunents. Then there is an elenment ¢

of CC]VPG(Q) such that, for all natural numnbers N, ...,
N> m:

(i) if the equality (1) holds, then @(ﬁ:,..., ﬁ;)::ﬁﬁ
in G;

(i) if <n1,...,nk>edonﬁ, t hen pCn 5, ..., N D s

the | east elenent of .

Note that a direct proof (wthout using functional ex-
pressions) of this corollary can be obtained by an appropri-
ate nodification of the proof of Theorem 1.

The representability of the partial recursive functions
in the system A can be used to obtain certain negative re-
sults concerning this systemand, nore generally, the prob-
| ens of decidability and axiomatizability of the theory of
iterative conbinatory spaces. Here are sonme results of this
kind. The sign |- in their fornulations and proofs neans
deducibility in the system A (with an exception in Renmark
5 bel ow).

Theorem 2. A functional expression u of the system A
with the follow ng properties can be found:

(i) u does not contain variabl es;

(ii) the set {neN: |—un*=0*} is not recursive
(hence the recursive unsol vability of the problem of decid-
i ng whether a given forrmula is deducible in A);

(iii) there is a natural nunber n such that neither of
the formulas un*=0* and —=Cun*=0*> is deducible in A,
but the second of themis true in all iterative conbinatory
spaces (hence the syntactic and the semantic inconpl eteness
of the system A);

(iv) whenever an iterative conbinatory spaces is given,
the non-recursive set from(ii) coincides with the set of
the natural nunbers n such that un*=0* is true in the
gi ven conbi natory space (hence the recursive unsolvability
of the problem of deciding whether a given fornmula is true
in all conbinatory spaces froma given non-enpty class of
iterative conbi natory spaces).

Proof. Let E be a recursively enunerabl e subset of N
such that N\E is not recursively enunerable. Take f to
be the restriction of the constant function an.0 to the
set E, and take u to be a functional expression which re-
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presents f strongly. Then the formula un*=0* wll be
deducible for all n in E, and this formula will be non-
deducible for all n in N\E (by the correctness of A and
the fact that the value of 0* in an iterative conbinatory
space is different fromthe | east el enent of the space).
Hence the conplement of the set {neN: |-un*=0%*} is not
recursively enunerable. Since the system A is consistent,
the set {neN: J——-Cun*=0*>} is a subset of this conple-
ment. But this subset is recursively enunerable due to the
fact that A has a decidable notion of deduction. Hence
there is some natural nunber n belonging to the difference
of these two sets, and for such an n no one of the fornul as

Uun*=0* and —~Ccun*=0*> could be deducible. It will be
shown now that the second of these two fornulas is true in
all iterative conbinatory spaces. To show this, we note than

the concerned n does not belong to domf, since otherw se
the first one of the fornulas woul d be deduci ble. Therefore,
if eé=<%,1,86, 1T, L, R, =, T, F> is an iterative conbi na-
tory space, then the value of un* in & will be the |east
el ement of ¥, and hence the second of the fornulas will be
true in &. By the correctness of the system A, the proof of
(iv) can be reduced to showing that if for sonme natura
nunber n the formula un*=0* is true in sone iterative
conbi natory space then, for the sane n, this formula is de-
ducible in A. And it is really so, since such a natura
nunber n is obliged to be in domf (otherw se the val ue of
un* would be the | east el enent of the space).

Remark 4. The functional expression U used in the
above proof can be (in principle) effectively found. As to
the natural nunmber n with the property (iii), to assure
such a possibility also for its construction, it is suffi-
cient to choose E to be a creative set.

Remark 5. One could try to replace the system A with
sonme other formal systemin order to avoid the negative re-
sults in paragraphs (i) and (ii) of Theorem 2. Unfortunate-
ly, there are no reasons to be optimstic in this respect,
since very few properties of A have been used in the proof
of Theorem 2, nanely: the strong representability of the
partial recursive functions, the correctness of the system
Its consistency (which follows fromthe correctness) and the
fact that the system has a deci dabl e notion of deduction.
These properties will be preserved at | east in the case when
A is replaced by sonme correct extension of it having a
deci dabl e notion of deduction (in particular, the properties
are preserved if we replace A by the system A’ from Sec-
tion I1.7). But even if these conditions are weakened to
sonme extent, the unpl easant situation renmains. For exanple,
the recursive unsolvability from(ii) remains if the fornu-
las of the kind u=v of A are anong the fornulas of the
consi dered system sinple (not necessarily strong) represen-
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tability of the partial recursive functions is present, the
notion of deduction of the systemis decidable, and instead
of correctness and consi stency the foll ow ng weaker assunp-
tion is fulfilled: there is no functional expression Z
such that both fornmulas z=0* and z=1* are deducible.

| ndeed, suppose that a system S with these properties is
gi ven. Then take an one-argunent partial recursive function
f which has no recursive extension and no val ues different
from O and 1. Let uw be a functional expression repre-
senting this function. W assert that {neN: |—un*=0%*}
is a non-recursive set again (the sign |- neaning deduci b-
ility in S this time). O herwi se, we could obtain a recur-
sive extension g of f by setting gcn>=0 in the case
when un*=0* is deducible, and g¢cn>=1 in the opposite
case.

The formul ati on of the next theorem does not concern the
deductive nmachinery of the system A and uses only a snal
part of its syntax and semantics (however, the proof of the
t heorem nakes use of the information in Theorem 1 about the
deductive nachinery of A).

Theorem 3. There are functional expressions u and Vv
with the foll ow ng properties:

(i) u and v do not contain vari abl es;

(ii) for every choice of an iterative conbinatory space,
the set {neN: |un*|=|V|} is not recursively enunerable,
and this set does not depend on the choice of the conbina-
tory space.

Proof. Let u be chosen in the sane way, as in the
proof of Theorem 2, and let v be the functional expression
[, T]. Then the set described in (ii) always coincides with
the set N\E fromthe same proof..

Theorem 3 can be used for show ng the non-axi omati zabil -
ity of any given non-enpty class of iterative conbinatory
spaces. Let & be such a class of conbinatory spaces. W
shall show that no formal system S is possible with the
foll owi ng properties: the system S has a deci dabl e notion
of deduction, the equalities between functional expressions
are anong the formulas of S, and an equality between func-
tional expressions without variables is deducible in S iff
this equality is true in each conbi natory spaces of the
class &. Suppose S is a formal systemwi th this proper-
ties. Then, taking functional expressions u and v wth
the properties from Theorem 3, we can formthe set of al
natural numbers n such that the formula un*=v is deduc-
ible in S. This set nust be recursively enunerable due to
the assunption that S has a decidable notion of deduction
On the other hand, according to the | ast assunption about
S, this set nmust coincide with the set from paragraph (ii)
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of Theorem 3, and this is a contradiction.

We should Iike to end this section by nmentioning that
sonme ot her representations of nunber theoretic functions in
an iterative conbinatory space can be obtai ned by applica-
tion of the representation theorens from Georgi eva [ 1984]
and |vanov [1980, 1986] to the compani on operative space of
t he gi ven conbi natory space.

Exer ci ses

1. Let A be the formal system defined in the foll ow ng
way. The | anguage of A, is contained in the | anguage of A

and consi sts again of functional expressions and fornul as.
Functi onal expressions of A, are t hose functional expres-

sions of A which contain neither variables nor the synbol
> . Formul as of A, are those formulas of A which have the

form u=x, where U, x are functional expressions of A, »

and a is normal (in the sense of Section Il.7). The system
has the follow ng axions and rul es of inference, where u,
vV, X, Y, Z are functional expressions of A, » and %, Y, Z
are normal :

X=q L(x, ¥) =2 R(X, ¥) =Y

U= VIX=y UA=Y VI=Z
vV U=y (u, v) ax=(9v, 2)
va=Tz [u, v] ur=y VX=FZ
[u, V] x=Y [ u, v] x=x

Show that all fornulas deducible in A0 are deduci bl e al so

in A. Adopting the sane definitions for the notions of re-
presentation and strong representation of a function as in
the case of the system A but with A replaced by A, »

prove that all partial recursive functions are strongly re-
presentable in A, -

Hint. Make use of the deducibility in A, of the fornu-

las <n+1>*=(Fn* n*). Use the functional expression
R[(F, F), L] (L, TR instead of (L>F, T).

2. (Soskov [1979, p. 40]) Let M be the set B* from
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Moschovaki s [ 1969] B in the special case of B=N (of

course, the identification of sone elenents of B*¥\B wth
nat ural nunbers nust be declined in this case). Let 2a be
t he correspondi ng conput ati onal structure mg P be the

mapping au.u=1 of N into N, and Z be the mapping of NN
into M defined as follows: Zu>=<0O, O> for all u in
N\ {0}, Zc0>=0O (pay attention to the difference between
"0" and "O"!). Let =9 (M>, k be a positive inte-

ger, and f be a partial napping of N into N. Prove that

the followi ng two conditions are equival ent:
(i) there is an element ¢ of ¥ such that ¢ is U—

conputable in {P, Z} and, for all natural nunbers n_, ...,
n > the equality

fan s oo D=ed<n , <n o, <N NS> 33D
hol ds;

(ii) f is partial recursive, and, for all Nys ooon Ny
satisfying the condition <N > .., nk>edomf, t he i nequal -
ity fdn, s noO=max{n , ..., N} hol ds.

Hint. To prove the inplication from(ii) to (i), apply
Corollary 2 to represent f in the iterative conbinatory
space Gp(‘u) and, in addition, construct U—conputable in

{P, Z} elenents o, B, ¥ oOf ?p(M) such that, for all

LN L in IN,
al<n , <Ny, ... <N 5 NS>0 33=Cn , ..., N XN D,
BC<N » <N, oo <n£_1, nk>>...>>):max{n1, Cees nk},
y(<mxn >, n>>=nmnin{m, n}
(where 1 is the elenent of ¥ representing i in Gp(‘u)).

3. Prove the existence of a conbinatory space <%, 1, 6,
m L, R, =, T, F> which is not iterative, but, however, for
all o, x,p in ¥, the element ut. (x —>7t0o, pd> exists,
and the equality

ut. <x —>t0o, pod=put. x —>7tT0o, | D
hol ds.

Hint. Use the conpl eteness theorem for the predicate
cal culus and the semantic inconpl eteness of the system A
wWith respect to the class of the iterative conbinatory

8¢f. also Section I.7 of the present book.
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spaces.

4. The First Recursion Theorem
for iterative conmbi natory spaces

In the whole section (including the exercises), an iter-
ative conbi natory space

G=<¥%,1,e, 10, L, R, =, T, F>

and a subset B of ¥ w Il be supposed to be given. In
Proposition 2.2, the fact was established that all elenents
of ¥ and all mappings in § G-conputable in B8 are

fi xed-point definable in the corresponding partially ordered
al gebra 6¢(G, B>. The probl em was noted whet her the converse
is true, and giving an affirmati ve answer was prom sed. In
the present section a theoremw || be proved giving this
answer. The theoremw || be called "First Recursion The-
orem', since it is simlar to the First Recursion Theorem
fromthe ordinary recursion theory dealing with partial re-
cursive functions in IN. The logical relationship between
the two theorenms will be discussed in the next section on
the basis of the considerations from Chapter |

The sinplest case of the First Recursion Theorem can be
fornmul ated as follows: whenever T is a mapping of ¥ into
g, and T is G-—conputable in B, then the elenent u<t.T'C(tD
exists and this elenent is also G—conputable in 8. This
is a particular case of the follow ng nore general formula-
tion:

Theorem 1 (Non-paraneterized version of the First Recur-
sion Theoren). Let | be a positive integer, and Ty» -+ T

be mappi ngs of # into ¥ which are G—conputable in B.

Then the system of inequalities

(1) T 20 (T s s T s r=1, ..., 1|,

has a | east solution <Tys oo T and the conponents of
this solution are G-—conputable in 3.

If we allow the right-hand sides of the inequalities in
(1) to contain paranmeters, then we obtain a stronger version
of the theorem

Theorem 2 (Paraneterized version of the First Recursion
Theorenm). Let | and n be positive integers, and Ty> s
T be mappi ngs of ™ into ¥ which are G —conputable in
B. Then mappi ngs Ay» oos A of " into ¥ exist such

,Gn

I
that, for any choice of 6,5 - in ¥, the | —tuple
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<A1(81, ...,en), ""Al(ei’ ...,en)>
is the | east solution <Tys o00n T2 of the system of in-
equalities
> =
(2) ’Cr_l_'r(ei,...,en,’ci,...,’CI), r=1, ..., 1,
and Ay» ---> A are G—conputable in B.

Remark 1. Theorem 2 is stronger than Theorem 1, since
there is a sinple way to obtain Theorem1 fromit (nanely
by introducing fictitious paranmeters and repl acing them by
suitable elenents of %), and no sinple way is seen for the
converse reduction. W shall restrict ourselves to proving
Theorem 2.

Remark 2. The case of arbitrary positive integer | is
in a sense not essentially nore general than the case of
| =1, since there is an easy way to reduce the first case
to the second one (see Proposition I1.4.3). Such a reduction

has been used in Skordev [1980].74 However, the proof which
will be given here (follow ng the papers Skordev [ 1984,
1989]) will not use a reduction of this sort.

Remark 3. The case of arbitrary positive integer n in
Theorem 2 can be reduced to the case of n=1 by consider-
| +1

i ng the mappings Tys ooes T of ¥ into ¥ defined by
nmeans of the equalities
1_';.(8, T, > ...,'cl):

r ce0, o1, ..., en2,8R", Tys oo T2 T=1, ., 1.
| ndeed, suppose t hat A s -5 A oare mappings of ¥ into ¥
G—conputable in B8 and such that, for every fixed 6 in
¥, the | —tuple <AL €O, ., A CEO> is the | east solution
<Tys o00n T2 of the systemof inequalities

T =2T'C6, T., ...,T, D, =1, ...,1.
r r 1 I

Since the systemof inequalities (2) is equivalent to the
system

T >T"CN.(8. 5, ..., 086D, T., ...>T, D, =1, ...,1,
r [ N | n 1 I

we can obtain the needed Ays -s A by setting
ACe s s 8 =ACILCO,, .58 00, 1 =1, ...,

" The proof given there is based on a previously proved
normal form theoremfor the considered mappi ngs, and there-
fore the case of a single inequality turned out to be easier
t hen.
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This reduction will be used in the proof of Theorem 2 for
reduci ng the anmount of witing.

Proof of Theorem 2. Making use of the above renmark, we
shall restrict ourselves to the case of n=1. Thus we sup-

pose t hat Ty»> >, are mappi ngs of "™ into ¥ which
are G-—conputable in B, and we shall prove the existence
of mappi ngs Ays -s A of ¥ into ¥, also G-conputable
in 8B, such that, for any fixed @ in ¥, the | —tuple

<A €O, .., A CEO> is the | east solution <Tys o00n T2 of
the system of inequalities

(3) 'crzr‘r(e,'ci,...,'cl), r=1, ..., 1.

Wthout |oss of generality, we can suppose that Ty» -+ T

are sinple operations of the partially ordered al gebra

€CG, B>. In fact, by Proposition 2.2, the mappings I , ...,
r, are fi xed-point definable in the partially ordered al -
gebra 6(G, B>, and this enables applying Theorem1.1 to the
system (3). According to that theorem there are a natural

nunber m and an | +m—tuple AP A of I +m+l1l—ary
simpl e operations of €(G, B> such that, for each fixed e
in ¥, if <¢,, ..., ¢ ., > is the |east solution
1 | +m
STys vvvs Ty of the system
>T —
(4) tr_l"r(e,ti,...,th), r=1, ..., 1 +m
t hen <P s s 9> is the | east solution <Tys o00n T2 of

the system (3). Thus the system (3) can be replaced by the
system (4) for the purpose of the present proof, and so the
theoremis reduced to its particular case when the given T,

., I, are sinmpl e operations of the partially ordered al -

gebra 6(G, B>. From now on, they will be assuned to be such
operations, i.e. each T, wi Il be assuned to have one of the
foll owi ng forns:

XUy U
XYy - Y, - s
Mg Uy Uy U Y
Mg Uy ¥y U U0
Mg Uy ¥y U U YO

where i, ], k are fixed nunbers fromthe set {0, 1, ..., 1},
and « is sone fixed elenent of {I,L,R, T, Ffus.
One nore reduction of the problemw |l be done, nanely

to consider only the case when the only mapping of the first
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Hnmammeg,.”,Flis A%wf”%.wo,amlMInwmms

i,j,k belong to the set {1, ...,1}, i.e. the case when
each inequality of the system (3) has one of the follow ng
forns:

(5) T, =6,

(6) T, = s

(7) ’CrZ’Cj T, >

(8) 'ch('ci,'cj),

(9) T, = (T, %'cj > T, s

where i, ], k are fixed nunbers fromthe set {1, ..., 1}, and
a is some fixed elenment of {l,L,R, T, Ffus. In fact, if

it is not this case then, nmaking use of TheoremlIl.4.1 (on

elimnation), we could replace the system (3) by another one
obtained in the followi ng way: we add the inequalities
'q+1zl > T 65 repl ace each inequality of the form T 2T
by the inequality T 2T T, and repl ace by T| 4o each occur -
rence of e in some inequality not of the forn1tr2:e. e

shal |l further assunme that each inequality of (3) has one of
the fornms (5) - (9).

The next steps in the proof have an intuitive expl ana-
tion as the arrangenent of some coding. Its purpose is to
enable imtation of a sort of stack-inplenentation of a sys-

temof nutually recursive nonadic procedures75. The conpo-

nents t,, ..., T of the | east solution can be regarded as
such a system of procedures, and the elenments 1, ..., T of
¥ will be used as their "codes" (the elements of {I,L, R, T,

FruB mnust be regarded as the basic primtive procedures,
and e as an external procedure which can be chosen arbit-
rarily). Since the operations T and X correspond to cer-
tai n non-nonadi ¢ operations on nonadi ¢ procedures, sone ad-
ditional "codes" will be used for certain, so to say, aux-
iliary nonadi c procedures having one nore paraneter besides
their argunent (such procedures arise from procedures with
two paranet ers—argunments by means of so-called "curryfica-
tion"). Here is a nore concrete description of these other
"codes" and their intuitive neaning:

(i) if 1<r<l, and there is an inequality of the form
(8 with this r in the system(3), then, for each x in &,
the element T+r ¢x, 1> will be the "code" for the "proce-

75The term"nonadic" is used here in the sense of "hav-
i ng one paraneter-argunent”.
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dure" <l, t. x>, which arises at the representation of the
i nequal ity
'CrXZ('Ci,'Cj)X
into the form
T X=d, T XJ>T X;
r i k

(ii) if 1<r<Il, and there is an inequality of the form
(9) with this r in the system(3), then, for each x in &,
the element T+r ¢x, 1> will be the "code" for the "proce-
dure" (I %’Cj X5 T, XD, which arises at the representation of

the inequality

>
’CrX_(’Ci %’Cj , ’Ck)X

into the form
> .
'CrX_(| %'CJ.X, 'CIX)'CiX,

(iii) for each y in ©, the element 2 +1cCy, 1> of &
will be the "code" for the "procedure"” <y, >, which arises
at the representation of elements of the form ¢l, T XDy

into the form Cy, I)1:j X.

Note that all "codes" |isted above are normal el enents
of «.

The "stacks contents"” will be represented by neans of
products of the form ni---npUc, where ¢ is sone fixed
el emrent of €, and Mys oo My are the "codes" of sone

"procedures” subject to execution in this order (the product
Oc representing the contents of an "enpty stack"). O
course, the object donain where the "procedures" act is re-
presented by neans of the set © The task of "application”
of the above sequence of "procedures" to an "object" X

will be represented by nmeans of the el enent

X, ”1""7pUC)’
whi ch obvi ously belongs to © (since ni...npUc€€). The

i npl ementation of the given "system of procedures” will con-
sist in a step by step transformati on of such "task repre-
sentations” one into another. W are going now to construct
a mapping E of ¥ into ¥, G-elenmentary in B, such that,
for any fixed e in ¥, the elenent ECe> of ¥ "perforns”

t he mentioned transfornmation.

The conditions which nmust be satisfied by ECe> are the
fol |l ow ng ones:

1) If 1<r<I|, and there is an inequality of the form
(5) or (6) with this r in the system(3), then

ECOOCX, rz>=C6X, 2D
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or
ECOO(X, 2> =CaX, 2D,
respectively, for all x and z in @.

2) If 1<r<I|, and there is an inequality of the form
(7) with this r in the system(3), then

ECeOCX, r zD>=(X,

] z>
for all x and z in .

3) If 1<r<Il, and there is an inequality of the form
(8) or (9) with this r in the system(3), then for all x,
y,zZ in &,

ECOOCX, rZzD=CX, I I +r (x, 1>z
in both cases,
ECOOCY, T+r <x, 1 >Dz>=<Cx, ] 2T +1cCy, 1 >z>
if the inequality has the form(8), and
ECOOCY, T+r (X, 1 Dz2>=Cy —> X, ] 2>, (X, Kz>>
in the other case.
4) For all x,y,z in &, the equalities
ECOO X, 21 +1cCy, | >Dz> =<y, x>, 2D,
ECOO>(Xx, 0z2>=Cx, 02>
hol d.

Fromthe already presented intuitive point of view all
equalities in 1) —4) except the second one in 4) correspond
to rules of the mentioned step by step transformati on of
"task representations”. The equality E(8>(x, 0z>=<Cx, 02>
i's needed for technical reasons, and it has the intuitive
meani ng that "tasks with an enpty stack"” are transforned
into themnsel ves.

O course, the existence of such a mapping E nust be
proved before going on further. This can be done by using

Proposition 11.2.2. W recall that a binary operation A in
¥ has been defined in Section I1.2 by neans of the equal -
ity

ACp, ¥>=CLR—> p<L, RO, ycL, PO,
and then the definition was extended by setting

A((po, Py (pn):A(qu, A((pi, ..., ACp 1 (pn)...)).

n_
It is clear that, for each natural nunber n greater than

1, the restriction of the operation A to %' is a napping
G—elenentary in . W recall also the equalities
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ACQy > - s 9 (X, r_):qor X, 1>, r=0,1, ..., n,
ACoy s s 9 20X, (F 10T =9 <x, 1),
whi ch have been proved in Proposition I1.2. W note that

these equalities inply imrediately the equalities
ACQy > - s 9 (X, r_y):qor (X, y>, r=0,1, ..., n,
ACoy s s 9, 00K, (B 10NyD> =9 Cx, y).

Having in mnd all this, we see that it is sufficient to
define the mapping E by neans of the equality

E(e):A(EO(e), Ei(e), . E2| +1(e)),
wher e E,» E,» ---»E,,, are G—elenentary in B8 and satis-
fy the follow ng conditions:
10) If 1<r <I|, and there is an inequality of the form
(5) or (6) with this r in the system(3), then
Er(e)(x,Z):(ex,Z)
or
Er(e)(x,z):(ocx,z),
respectively, for all x and z in @.
20) If 1<r<I|, and there is an inequality of the form
(7) with this r in the system(3), then
Er(e)(x,Z):(x,TTZ)
for all x and z in &.
30) If 1<r <I|, and there is an inequality of the form

(8) or (9) with this r in the system(3), then, for all x,
y,Z in &,

E (65X, 2> =X, PTT+r cx, 1>z>
in both cases,
E , (82¢y, (X, [ >Dz>=<Cx, ] 2T +1cCy, | >z>
if the inequality has the form(8), and
E , (82¢y, (X, | 2z2>=Cy —> X, ] 2>, (X, Kz>>

in the other case.

40) For all x,y,z in €, the equalities

E | 4,62 (X, Ocy, I >z>=<Cy, x>, 2D,
E (8 (X, z2>=x, 02>

hol d.
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The exi stence of E > Enb oo 1—:2I ) with the above

properties is seen by neans of their explicit construction.
Nanely we can set Er(e):(eL, R> for the first case of

10) and Er(e):(ocL, R> for the second case. To satisfy
20), we can set Er(e):(L, ] R>. Satisfying 30) can be
achi eved by setting Er(e):(L, i T+r> in both cases,
E , (8>=CLR, J2I+IcL, R>
if the inequality has the form(8), and
EI +r(e):(L%(L, ] ROR, (L, KRORD

in the other case. Lastly, it is convenient to set

E, ,,C62=CCLR, LD, R°>, E (8>=cL, ORD.
Note the possibility that no conditions are inposed on sone
E, with | <s<2l; in this case we can choose E, arbit-

rarily (for example, we can set Es(e):l ).

From now on, a mapping E with the |isted properties
wi |l be supposed to be fixed. Using this mappi ng, we shall

construct certain nmappi ngs Ays -os A of ¥ into &,

which will be &—-conputable in 8 on the basis of their
construction, and it will be proved (by hard work) that, for
any fixed e in ¥, the | —tuple <A €8, Ly A COO> i's

t he | east sol ution <Tys o00n T2 of the system of inequal -
ities (3).

The i dea how to construct A €8> i's straight-forward

after the intuitive explanations given until now If sone
"object” x is given, and T, =A (6> has "to be executed

at x", then it is natural to formthe "task representa-
tion" <x, r0x> (taking x in the role of c¢) and then to
start an iteration of the step by step transfornmation per-
formed by ECe>. The term nation condition for this iteration
nmust obvi ously be "obtaining a task representation with an
enpty stack”. The "result of the execution” will be the "ob-
ject™ y in such a "termnal task representation” <cy, 0xD.
Witing all this in a formal way, we get the follow ng defi-
nition of the mappings A , ..., A

(10) Ar(e):L[E(e), (L—>F, TOR1cl,r0>, r=1, ..., 1.

The G-—conputability of these mappings in 8 is evi-
dent, and the rest of the proof is devoted to the other
statenent about them

From now on, the elenent e of % wll be considered
as fixed, and, for the sake of brevity, we set
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e =EC(B)D,
L=[EC(BD, (L>F, TOR1,
(11) ar:Ar(e), r=1, ..., 1.

For the needs of the proof, we set also, for each ¢ in &,
s, =LI[ECE>, (L—>F, DRicl, r0c>, r=1,...,1.

We shal | prove that <&, ..., af> is the | east solution

<Tys o00n T2 of the systemof inequalities (3) (from here,

using the arbitrariness in the choice of ¢, it would be
easy to draw the same concl usi on about <8, 5 - v a|>).

The elenments 1, ..., T of ¥ and all elenents of the
form scz, 1>, nentioned in the paragraphs (i) - (iii) of
the intuitive explanations at the beginning of the proof,
will be called coding elenents. As already noted, all these
el ements are normal.

For any given ¢ in €, let A be the set of all el-
enents of € having the form ”1"'T’pUC’ where p is a
nat ural nunber (possibly 0), and Mys oo My are codi ng
el enents. Let 7. (the set of all possible "task represen-

tations" corresponding to c) be the set of all elenents of
€ having the form ¢x, y> for sone x from € and sone
y from e - From now on, except for the concluding part

of the proof, an element ¢ of € wll be supposed to be
fixed.

One nore definition will be useful for the further expo-
sition. Let yi,yz,zi,zzbe sonme elenents of ©. It will be

sai d that y,» Yy, are proportional to z,,2, i ff
yizni...npzi, y2:n1...np22

for sone p and sone Mys wven M such as in the definition
of the set ¢ P

In view of the considerable I ength of the present proof,
sone statenents in it will be formulated as | ermas accom
panied with their own proofs.

Lemma 1. Let z , 2z, be given el enents of &, Ays Ay be

given elenments of ¢. \Wenever X, y,» Yy, are el ements of &,

Y,» Y, bei ng proportional to Z,5>2,, l et the inequality
ALK Y D= A, X, Y 0

hol d. Then, for any choice of the coding elenent =z, the
i nequal ity
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(12) A eX, my, D= 2a elX, Ny,
hol ds under the sane conditions on Xx, Y,» Y,

Proof. Since the inequality A (X, Yy 2= a,0X, y, D> can be
witten in the form A Cly dx=a,d, y Ox, it follows that
A Cly d=a,dd,y D whenever y,» Y, are el ements of @

proportional to z,,z,. Let 7 be an arbitrary coding el -

ement, X,y .Y, be el ement of &, Y,» Y, bei ng proportion-
al to Z,,2,- There are several possibilities for =7, and
they will be scrutinized separately.

At first, |let us consider the case when n=r for sone
romthe set {1, ..., 1}. If the corresponding inequality

T f
(3) is T, 26 then, by the condition 1) on E, the equal-
es

i n
iti
A eX, my D=2a, (BX, Yy >=2 al, y, 28X, t=1, 2,

hol d, and the validity of (12) follows. The case, when the
inequality in (3) concerning T is of the form(6), can be
treated in the same way. '

Consi der now the case, when this inequality has the form
T, 2 T Then, by the condition 2) on E, the equalities

A (X, my, D=2, (x,TTyt), t =1, 2,
hol d. Since TTyi,TTyz are again proportional to Z,5>2,5
the inequality (12) turns out to be valid also in this case.
Suppose now the inequality is of the form T, = (T, ’Cj)

or of the form T, = (T, %’Cj > Ty Then, by the first clause

of condition 3) on E, the equalities

A (X, My, D=2 X, I T+r cx, I)yt), t =1, 2,
hol d, and since 1 T+r ¢x, 1Dy, » i T+r ¢x, | >y, are propor-
tional to Z,5>2,, the validity of (12) is sure again. So we
finished with the case when n=r for sone r fromthe set

{1, ..., 1}

Anot her possibility is that mn=I+r ¢z, 1> for sone z
in &€ and sone r fromthe set {1, ..., 1}. Two cases are
possi bl e now. the case, when an inequality of the form

T, = (T, ’Cj) Is present, and the case, when there is an

inequality of the form T, = (T, %’Cj > Ty In both cases,

t he second clause of condition 3) is applied. In the first
of the cases, we get the equalities
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A eCX, my D=2, (Z, ] 2T +1¢x, I)yt), t =1, 2,
and we use the fact that the elenents | 21 +1<x, I)yt are

proportional to the elenents z, . In the second case, we
have the equalities

A X, my, D=2 (X—(Z, Tyt), (z, Kyt)):
X — 2, (z, Tyt), A CZ, Kyt)), t =1, 2,

and we use the fact that both Tyi,Ty2 and Kyi,Ky2 are
proportional to Z,,2,-

The |l ast possibility is that n=21+1¢z, | > for sone
Zz in . Then the first equality in condition 4) is appli-
cable, and we get the equalities

A e (X, my D=2, ((Z, X3, Y D, t=1, 2,
which imrediately inply the validity of (12) in this case.
Lenmma 2. The set 7. is invariant with respect to «¢.
Proof. Let A and A, be arbitrary elenents of ¥

satisfying the inequality A,z A, Ve have to prove the
T
Cc

i nequal ity AEZ A e Consi der an arbitrary el enent of

J
c

7. - By the definition of the set T » this el enent has the

form <x, y>, where xe6 and ye e - There are two possi bil -
ities: y=0c or y=my, where =7 is sonme coding el enent,

and Yo is again an el enent of I - In the first case, nak-

ing use of the second equality in condition 4) on E, we
observe that

A e(X, YO =2 (X, ¥, t=1, 2,
and hence
A LeCX, yO= A, e X, yO.

The sane inequality is true also in the second case, hy
Lenmma 1, applied to 21:22:60..

Lemma 3. There is an elenment g of ¥ such that
BX, nZ2>={nX, 2D
for each coding elenent m and all x, z in &.

Proof. W set B=ACB, > Bys -5 By 1y 2> where A is

the operation from Section I1.2, and Bo> By» + s Boj iy
are elenments of ¥ satisfying the foll ow ng conditions:
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Bs(x,Z):(§x,2), s=1, ..., 1|,
B (X5 €Y, | >z>=C(sCy, 1 >x, 2>, s=1+1, ..., 2] +1..

Remark 4. Fromthe proof of the above lemma, it is seen
that the elenent B can be chosen to be G—elenentary in
@, but we shall not make use of this fact.

Lemma 4. For each z, in &, there is an elenent ¢ of

¥ such that, whenever y, z are proportional to Uc,zo,
then yy=z.

Proof. Let B be an elenent of ¥ having the property
fromLemua 3, and | et

p=Lrg, (L—>F, TORI.

It is easy to see that, for all x,z in € and all coding
el enents =7, the follow ng equalities hold:

p(X, 02>=X, p{X, nZ>=pdC(nX, Z)D.

Therefore
p (X, np...niUC):ni...an
for all x in € and each finite sequence Mys oo My of

codi ng el enents. Mking use of this, we check that, for each
z, in &, the correspondi ng el enent

y:p(zo,p(UC, I D>
has t he needed property. o
Lenma 5. \Whenever X> Y, 2,2, belong to ©, and vy, z
are proportional to Uc,zo, t hen
L(X, Z2>= L(|,ZO)LL(X,y).
Proof. Let z, be an arbitrary element of ©. W take an

elenent ¥ with the property fromLenma 4 and note that,
whenever x,y, z belong to 6, and y, z are proportional
to Uc,zo, t hen

L{X, ZOD=1(X, yYy2=k (X, YD,

where k=1L, yR>. Making use of Lemma 1, we concl ude
that, for any choice of the coding element 7, the equality

Le(X, nzod=kelX, ny>
hol ds under the sane conditions on X, Yy, z. Since
Lte(X, nZ2od=1{X, nZ>=k{X, Ny
under the above conditions on =7, X, Yy, z, we see that
K(X, nyod=ke X, ny>
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whenever xe6, yes, and m is a coding elenent. On

the other hand, if we take nmerely 0Oc and z, as y and z,

respectively, in the equality kX, y>=11x, 2>, we get
K(X,UC):L(X,ZO):L(|,ZO)L(X,UC).

Thus, for any y in ¢ and all x in &, the follow ng
equal i ty hol ds: ¢

Kk(X, y>=«L—>F, TODOR—>«ke, L, zO)L))(x, yD.
Hence we have the inequality
k> ((L—->F, TODOR—>«kse, L(I,ZO)L)).

J
c

Fromthis inequality, Lemma 2 and the definition of iter-
ation, the inequality
Ki L(',ZO)LL
g
Cc
follows, i. e.
K(X, YO = L(|,ZO)LL(X,y)
for all x in € and all y in A hol ds. Si nce
KX, YO=1(X, 2D

whenever y, z are proportional to Uc,zo, t he proof of
the lenma is thus conpl eted..

Lemma 6. For all x and z, in &, the inequalities
L(X,I’_ZO)ZL(|,ZO)3::X, r=1, ..., 1,
hol d.
Proof. Application of Lenma 5 to y=r0c, z=r12
Lemma 7. For all x in &, the inequalities
L(x,r_Uc)ZCI,Uc)afx, r=1, ..., 1,

o'n

hol d.

Proof. We apply Lemma 6 to zO:Uc and use the fact
t hat L(|,0C_):(|,OC)._.

Lemma 8. For all y in &, the equality
Ledl, 2T+1¢Cy, 150cO>=<y, 1>
hol ds.
Proof. For all x in &, we have
Ledl, 2T+1cCy, 150cOx=Leedx, 21 +1cCy, 1 >0cO>=
L <y, x>, 0cO>=L <y, xO, Uc):(y,x):(y,l)x..

Lemma 9. The | —tuple <ai, ...,af> is a solution of
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the system of inequalities (3).

Proof. Let r be sonme of the nunmbers 1, ..., 1. W
shall prove the inequality
s¢>r co, 8%, ..., 8%.
r r 1 |

For all x in &, we have
a‘r:x:Lz,(I ,T0cOx=Liecx, r0cD,
and therefore it is sufficient to prove that
Liecx, TOCO>=T (O, 85, ..., § X

for all x in €. The various possibilities concerning the
formof the inequality

trzrr(e,t
wi |l be considered separately.
If the inequality is T, 26 t hen we have
LeedX, r0c>=LcCex, 0co>=LcCl,0clrex=6Xx=
€O, 85, -5 80X,
The case of T, 2« is quite the same - one has only to re-
place 6 by a.

Let the inequality be t >t t. . Then, applying Lenma
6, we get S
Leedx, T0co>=Lcc(x,ijOcO=Lccl, 7Ucmfx:
afafx:rr(e, 855 s 80X,
Now suppose the inequality is ’CrZ(’Ci,’Cj) or it is
T, = (T, %’Cj > Ty Then, again by application of Lenma 6,

we get

T, D

12 |

LeedX, r0cO=Lc¢x, i T+rcx, 1>0co>=
Locl, T#Fex, 150¢>87 x.
W note also that, for all y in &, we have
Ledl, THr ¢x, 150cdy=Lceedcy, I+r x, 1 >0cD.
At this point, the reasoning branches.

Let us consider first the case when the inequality is
T Z(’Ci,’cj). Then, for all y in &, we have

r
Leedy, T+r ¢x, 150c>=Lce(x, ] 2[+IcCy, 1>0cO>=
Lecl, 2T+I¢y, |)UC)8;:X:(y, I)ajf:x:(l , aJF:X)y

(Lemmas 6 and 8 have been applied). Taki ng advantage of the
arbitrariness in the choice of y, we conclude that
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Lecl, T#r ¢x, 1 >0c>=<¢l, aJF:X),
and hence
Leecx, r0co=dl, afxmfx:(af, ajf:)x:
€O, 85, -5 80X,

Now we go to the case when the inequality has the form
trzz(ti——>tj, T, - Then we have, for all y in &,

Leedy, T+r x, 150c>=LceCy —>x, ] 0c), (x, kKOcO>>=

(y—eafx,aﬁx)::d —9afx,aﬁX)y.
Therefore
Lecl, T#r ¢x, 1 >0¢> =<l %afx, 8 X,
and hence
Leedx, r0co=<l %afx, aﬁx)afx:(af%af, aﬁ)x:
€O, 85, .05 80X g
W are going now to prove that <ai, Ce s af> is the
| east solution of the system (3).
Lemma 10. Let <¢ , ..., 0> be an arbitrary sol ution

of the system (3). Then @rzzaf, r=1, ..., 1.
Proof. W define an elenment m of ¥ such that
n(x,TZ):(wrx,Z), r=1, ..., 1|,
m(X, SZ>=¢e(X, Sz>, s=I1+1, ...,2I| +1,
for all x and z in @.

Such an el enment can be constructed with the help of
Proposition I11.2.2 in a simlar way as E(e> was. An intu-
itive interpretation can be given to the elenent m in the
same spirit as in the case of E(e>. This interpretation is
the sane as the one of E(e>, except that now the el enents
1, ...,T of ¥ play the role of "codes" of Py s P s

respectively, and P> ---> @ are treated as primtive

procedures. In other words, we give a newintuitive inter-
pretation of a part of the "procedure denotations”, and the
element m "perforns” the step by step transformation of
"task representations” corresponding to this new interpreta-
tion. The formal treatnment of the correspondi ng concept of
"result of carrying out the tasks" can be done by using the
el enment

v=Llnm, (L—>F, TORI,

whi ch can be regarded as "transform ng the task representa-
tions into the results of carrying out the tasks".
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We shal |l prove now t hat
(13) v(X, nzZD>=>vedlX, nZD

for all x,z in € and all coding elements 7. To do this,
we first show that

(14) U(X,r_Z):U(|,Z)(er, U(I,I’_Z):u(l,z)qor
for r=1, ..., and all x, z in . In fact, we have
vCl , T ZOX=vX, rZd=vndX, r z>=
U((er,Z):U(|,Z)(er.

Now we go to the proof of (13) in the case of n=r, where
1<r<I. In this case,

v(X, nz>=vudl, Z)(erZU(| > ZOT €85 @ 5 s @ OX.
We shall prove the equality
(15) ue(x,nZ):u(l,z)rr(e, Py s P OX.
The proof will be by consideration of the various cases

concerning the formof the inequality
T 2T (6, T, > .5
r r 1
If this inequality is T, 26 t hen
vedX, nz>=vd6X, z2>=vll, z2>eXx =
vdl, ZOT . CO5 @ 5 -5 9 X,

The situation is conpletely simlar also in the case of in-
equality of the form T, = If the inequality is tthj T,
t hen

’CI).

US(X,T)Z):U(X,r]_Z):U(|,]_Z)(piX:
vdl, Z)qoj ®; Xx=uvudl, ZOT €85 @ 5 -5 9 X,
Let the inequality has the form T, = (T, ’Cj) or the

form T, Z(’Ci %’Cj , ’Ck). Then

velX, NZd=v X, I I +r (X, | Dz>=vdl, [ +r (X, |)Z)(pi X.
W note also that for all y in &,
vCl, T+r (x, 1 D2y =vy, T+r (x, 1 Dz>=
vy, I+r (x, 1 >Dz>=vedy, T +r (x, 1 Dz).

Suppose first the inequality has the form T, 20T, T D
Then b

vedy, T+r x, 1 Dz>=vdx, ] 21 +1Cy, | Dz> =
vdl, 2T +1¢y, I)Z)qoj X.
But
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vdl, 2T +1cCy, 1 >DzOow=vdw, 2 +1Cy, | Dz> =
v cw, 21 +1cCy, | Dz>=vedw, 21 +1Cy, | DzD> =
vy, W, zo>=uvudl, 2>y, | Dw.
Therefore
vdl, 2T +1Cy, 1 >z>=vudl, z>Cy, 1D,
and hence
u(I,TiT(x,I)Z)y::u(I,Z)(y,I)wjx:m(l,Z)(l,@jx)y.
Thus
u(I,TiT(x,I)Z)::u(I,Z)(I,@jx),
and, consequently,
vedX, nz>=vdl, z>, ¢, X2, Xx=vdl, z>Cp, ¢; X =
vdl, ZOT €85 @ 5 -5 9 X,
Now suppose the inequality is trzz(ti——>tj, T, - Then
vedy, IT+r X, 1 Dz>=vdy —> X, ] 2D, (X, Kz>>=
<y —>udX, | 2J, v(x, Kz>>=
(y—eu(I,Z)wjx,u(I,Z)wkx):
U(l,Z)(l—%@jX,@kX)y.
Hence
u(I,TiT(x,I)Z)::u(I,Z)(I—9@jx,@kx),
and therefore
vedX, nz>=vdl, z>(l %(pj Xs @ X9 X =
vdl, z>Cop, %(pj > (pk)X:U(I > ZOT €85 @ 5 - -5 9 X,

Thus the equality (15) is established in all possible
cases, and so the inequality (13) is proved under the as-
sunption that n=r for some r fromthe set {1, ..., I}.

It remains to prove (13) for n=T+r ¢y, | >, where ye<t,
1<r<I|+1. Then

VX, NZ)=vuX, [ +rCy, I Dz>=vndx, T +r <y, 1 >z =
velX, [+r ¢y, I >Dz>=velx, nz),
and hence (13) is valid again.
Maki ng use of (13) we shall prove now the inequality
(16) v= ((L—>F, TODR—ve, v.

J
c

Let x be an arbitrary elenment of ©, and y be an arbit-
rary el ement of e - W have to prove the inequality
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(17) v(X, Yy>=2L—->F, TOR—ve, vdX, yD.
There are two possibilities: y=0c or y=my, wher e

n s sone coding el enent, and Yo agai n belongs to e -
In the first case

(C(L—>F, TODOR—>ve, udX, yo>=vdXx, Yy,
and in the second one
((L—>F, TOR—>ve, uDX, yo=vedX, yo><vdlX, yd,

hence (17) holds in both cases, and thus (16) is estab-
l'i shed.

By Lemma 2 and the definition of iteration, the inequal -
ity (16) inplies the inequality
U= vUlL.

J
c

Let r be some of the nunbers 1, ...,1, and let xe&@.
Then <x, r0c><9_, and therefore, by the above inequal -
ity, we have

v(X, r0co>=vedx, r 0co.
Maki ng use of (14) and of the definition of v, we get
u(x,TUC):u(I,UC)@rx:L(I,UC)wrx:@rx
On the ot her hand,
uu(x,TUC):u(I,Uc)afx:afx.

Thus

o, X = afx, r=1, ..., 1,
for all x in ©, and therefore

(prZS(r:, I’Zl,---,l-.

Lemmas 9 and 10 show t hat <ai, Ce s af> is the | east
solution of the system (3), independently of the choice of
c in ¢ Hence <&;, ..., af> does not depend on this
choi ce. Making use of this, we shall now show t hat

s=s , r=1, ...,1,

r r
wher e s are the el enments defined by (10)-(11). In fact, if

re{l, ..., |1} then
afx::afx::LL(l,TUX)X::LL(I,TU)X::arx
for all x in &.
The proof of the First Recursion Theorem (in its param
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eterized version) is thus conpleted..

Some applications of the First Recursion Theoremw || be
given in the next sections. W finish this section by nen-
tioning explicitly a useful thing fromthe proof of the the-
orem Nanely, the conponents A €8> of the | east solution

of the systemof inequalities (3) are defined by nmeans of
the equalities (10), where the mapping E is G-—elenentary
in B. This is a certain kind of normal form and applica-
tions of this fact also will be given in the sequel.

Exer ci ses

1. Show that, after a small nodification of the proof of
Theorem 2, the mapping E used there can be chosen to be of
the form

ECe>=C(n—>0, (6L, R™2>),

where x, o are elenments of ¥, G—elenmentary in @, and
m is sone positive integer.

Hint. Wthout |oss of generality, it can be assuned that
there is only one inequality of the form T, 26 in the sys-

tem(3). Take m to be the corresponding r, and choose yx
so t hat

—y_[Fif i#m and i =<2l +1,
X(X")—{T if i=m

2. Gve a nodified proof of the First Recursion Theorem
avoi ding the use of coding elenents with the intuitive mnmean-
i ng described in (i) and (ii).

H nt. Show that inequalities of the form T, = (o, tj)
with a<{l, R} and of the form trzz(R——>tj, T, > can
be used instead of using inequalities of the fornms (8), (9).

3. (Cf. the translation operation in |Ivanov [1986])
Prove the existence of a mapping T of ¥ into ¥ wth
the foll owi ng properties:

(i) T is G—conputable in o;

(ii) for all e in ¥ and all natural nunbers n, the
equalities

TCeo>L,=L,6, T(6OR, =R, TC(6),
TC8OdN=ne
hol d.
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5. Application of the First Recursion Theorem
to some concrete iterative combi natory spaces

(I') The relationship to the First Recursion Theoremin
the ordinary recursion theory. In this subsection, the rel a-
tionship will be discussed of Theorem4.1 and 4.2 to the
Kl eene First Recursion Theorem (Kl eene [ 1952, & 66, Theorem
XXVI]) in the ordinary recursion theory.

There are two kinds of iterative conbinatory spaces
closely related to ordinary recursion theory, nanely the
spaces Gp(‘u) and G Lu> (fromExanples 11.1.2 and 11.2.1,

respectively) corresponding to any standard conputati onal
structure Au=<N,J, L, R, T, F, H> on the natural nunbers.
If 8 is sone subset of the semgroup ¥ of the conbinatory
space, i.e. a subset of ?p([N) or of F{ND, respectively,

then 2a—conputability in 8 is equivalent to conputabil -
ity in B in the considered conbinatory space. Therefore,
having in mnd the results from Sections 1.3 and |.6, it is
natural to take B8=4{S, P} in the case of Gp(‘u) and

B=4{S, P, [N2} in the case of G LU, where S, P are the

functions au.u+1 and au.u-=1, respectively. In the

first case, the elenents of the conbi natory space, which are
conputable in B, are the unary partial recursive functions,
and the mappi ngs conputable in 8 are the u—recursive
operators which transformunary functions into unary ones.
In the second case, the mappings conputable in 8 are the
enunerati on operators transform ng binary relations into

bi nary ones. W shall apply now Theorens 4.1 and 4.2 to
these two cases, restricting ourselves to the case of | =1.
In the statenments obtained in this way, we shall consider
unessential the restriction only to unary functions and bi -
nary rel ati ons, because of the effective one-to-one corre-

spondence between NN and NK with k>1. For the sake a
brevity, we shall consider only Theorem 4.2 regarding
Theorem 4.1 as a particular case of it.

Let us consider first F=% (N> with B={S, P}. Then

we get the statenent that, whenever TI' is a u-—recursive
N+

mappi ng of ¥ into ¥, then, for all 8,5 -5 6 in
¥, the el enent MT-TCO, > s 6, > > of ¥ exists, and
this elenent is uniformly u—recursive in 8,5 -5 6 (in

the case of n=0, this neans that pu<t.I'Ct> exists and
it is a partial recursive function). A conparison with the
statement of the Kl eene First Recursion Theorem shows t hat
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nei ther of both conpared statenments covers the other one.
The nain differences between these statenents are the fol -
| owi ng ones: (i) the statenent fornul ated above concerns
u—recursive operators, whereas the Kl eene Recursion The-
oremdeals with arbitrary recursive operators, and (ii) in
t he concl usi on of the above statenent, up—recursiveness in
8,5 -5 6 is asserted, whereas in the conclusion of the

Kl eene Recursion Theoremonly partial recursiveness in o, >
> 6, is clained. Thus the above statenent has a strong-

er assunption and a stronger conclusion than the Kl eene
First Recursion Theorem and hence this statement is a re-
sult different fromthe Kl eene Theorem Moreover, the state-
ment is not directly obtainable by the usual proofs of the
Kl eene First Recursion Theorem (such as the proof in Kleene

[1952, § 66] or Rogers [1967, §11.5]).°® The situation be-
conmes sinpler when n=0, since the conclusions of the com
pared statenents are equivalent in this case. Therefore the
Kl eene First Recursion Theoremis stronger in the case of
n=2~0.
Now consider #=g (N> with 8={S, P, N°}. Then we

get the statenent that, whenever T is an enunerati on oper-
ator acting from "
in ¥, the elenent purct. ree, , ... 6, > > of ¥ exists,

and this elenment is uniformy enuneration reducible in o, >

into ¥, then, for all 8,5 -5 6

> 6, (in the case of n=0, this nmeans that u<t.I'¢(tD

exists and it is a recursively enunerable relation77). The

Kl eene First Recursion Theoremfollows easily fromthe above
statenent (cf. Rogers [1967, Theorem 11-XI1]). In this sense
our First Recursion Theoremis a generalization of the

Kl eene First Recursion Theorem

W note also that sone steps toward a nore direct cover-
ing of the Kleene First Recursion Theorem by the abstract
theory are undertaken in the paper |vanov [1981], where sone
suppl enments to the theory in this direction are nmade.

Anyway, we hope that no serious objections could arise

76Unfortunately, we are not able to give a bibliographi-
cal reference concerning this statenment. A direct proof of
its validity is known to the author since 1968 or 1969, and
then he presented the result in a semnar talk at Mscow
Uni versity.

"This is a wel | -known fact (see, e. g. Rogers [1967,
Theorem 11-XI1])
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agai nst the nane given by us to the considered result from
t he previous section.

(I'l) Elimnation of recursion in FP—systens. In Sec-
tion 1.4, the programmability in a FP—system (in the sense
of Backus [1978]) has been shown to be equivalent to 2aA—
conputability in a certain subset B of ?pCM), wher e

U=<M,J, L, R, T, F, H> is the conputational structure cor-
responding to the given FP—system (cf. Exanple 1.1.3), and
B consists of all primtive functions of the system and of
the constant functions corresponding to the various el enents
of M. However, this result was obtained under a strong re-
striction on the use of the FP—system nanely only program
mabi ity without recursion has been considered. The restric-
tion is quite unpleasant, since recursion in the form of
so-called definitions is allowed in the original FP—
systens, and alnost all interesting exanples of prograns in
such a systemuse recursive definitions. Now we are able to
show t hat using the nmentioned form of recursion does not

enl arge the class of the programmbl e functions.

A definition of the nmentioned kind is an equality whose
| eft-hand side is sone non-primtive functional synbol, and
whose right-hand side is sonme functional form possibly con-
taining the functional synbol fromthe |eft-hand side (in
this case, the definition will be called to be recursive).
To use a series of definitions is also allowed, and thus
right-hand sides of equalities nay contain several non-
primtive synbols. Cearly, a functional form containing
non-primtive functional synbols represents an operation in
¥ (MD; an inspection of the proofs of Lenmas |.1.2-1.1.7

shows that this operation is 2aA—conputable in B. Backus

is not conpletely explicit about the semantics of the recur-
sive definitions, but his exposition does not contradict to
the traditional |east-fixed-point semantics, and we shall
adopt it in the further considerations. So a series of defi-
nitions can be considered as defining the | east sol ution of
t he correspondi ng system of equati ons.

But ?a—conputability in B8 is equivalent to &_(MD—

conputability in ®B. Therefore an application of the First
Recursion Theorem from Section 4 shows that the functions
defined by a series of definitions of the FP—system are

al ways GpCM)-—conputabIe in B, and therefore, by Theorem

I.4.1, they are programrmabl e without using definitions. Thus
the use of definitions and, in particular, of recursive ones
in the prograns of an FP—system can be eli m nat ed.

An anal ysis of the proof of the First Recursion Theorem
given in Section 4 shows its constructive character in the
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sense that an algorithmexists which transforns any | —
tupl e of expressions for Ty» -+ T into sone | —tuple

of expressions for the conponents of the correspondi ng | east
solution. As a consequence, the existence of an al gorithm
foll ows which transfornms arbitrary prograns in an FP—system
into such ones which do not contain definitions. O course,
the algorithmw ||l be quite bad froma practical point of
view (conplicated prograns produced by the algorithm nuch

| onger execution time of these prograns in conparison with
the execution time of the source ones). There are sone par-
ticular cases when better results can be obtai ned by neans
of specific nethods (certain such cases are indicated by
Backus hi nsel f).

It is worth mentioning that also a result about the
elimnation of the essential recursions in the programi ng
| anguage LI SP can be established in a simlar way.

(I'11) Equival ence of prime and search conputability on
B* with ﬂnB—conputabiIity i n correspondi ng subsets of

?W{B*). In this subsection, the sane assunptions will be

adopted and the sanme denotations will be used as in Section
.7, where we started to study a possibility to characteri ze
prime and search conputability in the sense of Mschovakis

(1969) in the ternms of ﬂHB—conputabiIity. W recall that

the following results (Propositions 1.7.1 and |.7.2) have
been established for each subset A of B* and each choice
of Uy o oos Y in ?n{B*) ( €y denoting the set of al

constant single-valued functions whose domain is B* and
whose val ues belong to A, and my bei ng the conput ati onal
structure from Exanple I.1.2):

Al'l elenments of ?nfB*), whi ch are ﬂnB—conputabIe in
CaU{Y s - s Y s bel ong to PCCA, Y 5 -5 /AF al
el ement s of ?th*)’ whi ch are ﬂnB—conputabIe in € u{y, »
Y (B*)z}, bel ong to SCCA, Uy oo Y0

It was nmentioned there that al so the converse statenents
are also true if only one-argunent functions fromthe clas-
ses PCcA, Ups ooes ¥y and SCcA, Yy» ---> YO are con-

sidered, but the proofs will be given further in the book.
Now the tinme has arrived to prove these converse statenents,
and thus to obtain the follow ng result:

Theorem 1. Let A be a subset of B* and Uy ooos ¥y s
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¢ be elenents of ?m(B*). Then
(i) ¢@ePCCA, Uy ooes ¥y iff ¢ is my —conput abl e
in € u{y,, - 5y}
(ii) ¢@eSCCA, Uys oos ¥y iff ¢ is me—coerutabIe
. *x 2
I n @Au{zpi, cees Y s (B >7}.
Proof. O course, we have to prove only the inplications

fromleft toright. To do this, we firstly recall that the
sets PCcA, Uy ooes ¥y and SCcA, Yo -5 YD are defi ned

on the basis of two partial nultiple-valued operations
{e}<a,>---»q > and {e}V(qi, -5 Q0 fromel enents e, a,
s g of B into B™, and these operations are introduced
by means of sonmewhat conplicated recursive definitions. W

have, roughly speaking, to show that these recursive defini-
tion cannot take us out of the scope of the M, —conput abi | -

ity, and this will be done by a suitable application of the
First Recursion Theoremto the conbi natory space
. G:Gm(fIIIB). |

Let ?:?m(B >, M=DB*, | :IM. W define two el enents
w and W, of ¥ in the following way: <p, r><cw iff there
are a natural nunber n and elenents e, dy> -+ 0 of M
such that p=c<e, Cys oes 0> and r is a value of
{e}ca,» --.> 9.2, and simlarly for W, with the only dif-

ference that {e},, occurs i nstead of {e}. The nobst inport-
ant part of the proof consists in proving that

(1) weCOMPC{Y, > - -5 ¥, }s
(2) w,cCOVPC{Y, > s ¥ (B*>%1).
This will be done in several steps.
First of all, we note that, according to the definition

of the operation {e}<a,>---> 9.2, the relation w is the

| east elenent t of ¥ which satisfies the foll ow ng con-
ditions for all e, g, h,q,r,s,t in M and all natural
nunbers j, k, m, n:

0) if 1<j<I then

T(<CKO, 14m, j», Kyt 5o tm>>>):'1’j (s);
1) <L, n, r», Ly s -on qP>I=T;
2) T(<L2, m+1», «s, tys st 2>>=s;
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3) T(<K3, m+2», €S 58,5t 5 st D3O =<S,, 8,5
40) T(<4, m+l, 0%, «s, t_, .., tm>>>):L(5);
41) T4, mtl, 1D, «s, t , .., tm>>>):R(5);
5) t(<«5, m, g, h», Qs t O3> =
T(<Lg, KTC<h, &t , ..., t »>>O,t , ..., t »>);
. o 1 m 1 m
60) if seB” then
T(<«6, m+1l, g, h», «s, Ly tm>>>):
T(<Qg, XS, t1’ cey
61) T(<&6, m+1, g, h», Ks 58,5 0, 5., 1 O>=
t(<h, &T(<&6, m+1, g, h», €8 st s s T 93D,
T(<&6, m+1, g, h», SCTRP tm>>>),
S S, > t1’ sy tm>>>),

Tt >>);
m

1 2
7) whenever k<n, then

T(<KL7, n, k, g», “ysos s O yys A yns oo A P> =

TG, €U,y > Uyooeen Ay Oy ps -oon A >

8) T(<«8, k+m+1l, k>, e, s, ,...,85 ,1t ,...,t >>>)=
1 k 1 m

T(<e, <<S1 > s Sk>>>).

As to the relation W, > it is the |least elenment <t of

¥ which, for all e, g,h,q,r,s,t in M and all natural
nunbers j, k, m, n, satisfies the above conditions and the
foll owi ng additional condition:

9) T(<«9, n, g», “yseen Q> =
{r: d<g, «r, qy»-o qn>>>)90}.
The formul ated characteri zati ons of w and w, as | east

el enents of ¥ satisfying certain conditions remain valid
if the following condition is added to the other ones:

*) each element of domt has sone of the forns indi-
cated as argunents of t in the left-hand sides of the
equalities in the other conditions.

We shall show that each of the systens of conditions
1)-8), *) and 1)-9), *) is equivalent to a certain equality
of the form t=r<¢t>, where I is a mapping of ¥ into it-

self, G-conputable in {y ,, ..., v} in the case of the
first systemof conditions, and &-—conputable in Wy s
Y M2} in the case of the second one. Wen this will be

done, then an application of the First Recursion Theorem
will inmediately yield the validity of (1) and (2). W shall



5. APPLI CATION TO CONCRETE COVBI NATORY SPACES 195

give the construction of T for the case of the second sys-
tem of conditions, and the construction for the other case
wi || be obtainable by neans of an obvious sinplification.

In order to construct the mapping I with the needed
properties, we shall first define sone elenents of ¥ re-
presenting certain subsets of M, and, in particular, cer-
tain subsets connected with the natural nunbers (by saying
"natural nunbers", we nmean the elenents of M representing
natural nunbers). If K is a subset of M then the repre-
senting function of K is the total function on M having
the value 1 at all points of K and the value 0 at all
other points of M (1 and O considered as elenents of M).

For each natural nunber j, let X, be the function
representing the one-element set {j}. Al functions X,
are G-—conputable in @, as it is seen fromthe equalities
xoz(l —F, ¢cL—>F, T2,
Xj +1:(I %(xj L, xOR), F>.
Let N be the function representing the set of all
natural nunbers, and x_ be the function representing the

set of all elenents of M having the form <k, n>, where k
and n are natural nunbers, and k<n. W shall prove that
N and X bel ong to CC]VPG(Q). This can be done directly,

but we prefer to use the First Recursion Theorem and the
fact that N and x_ are the only solutions of the equa-
tions

'c:(xoﬁT, Cl %(XOR%’CL, F>, F>O
and
T =C(l %(XNL%(XNR%
(L—>R—>tcL?, LR, F>, R, F>, F>, P,
respectively.
Let x_ be the function representing the set of all el-

enents of M having the form <k, n>, where k and n are
natural nunbers, and k=n. This function also belongs to
CC]VPG(Q) due to the equality

x. = = L > R—
x.—>F, (x_(R, LO—F, T>5, F>, B>, F).

The next elenent of ¥ which will be considered is the
function Xy representing the set of all elenents of M
having the form QWb o ui>>. The function X is the

only solution of the equality
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T=Cl — (x L 5L —> (R—> T (L%, R, P, %, R F2, FO,
hence x<<>>eCC]VP (@)(5 t 0o0.
Now t he exi stence of an el enent o, of CC]VPG(Q) with

the follow ng property will be proved: whenever k is a
nat ural numnber, and an el enent “y> o5 q» with n>k
is given, then

(3) o, (<K, «q 5 .., q 7> =<, -5 Q>

In fact, by the First Recursion Theorem the follow ng equa-
tion has a solution T belonging to CC]VPG(Q)

T=CL—> (L, (LR, Rt(L?, (L?, RORYD, (F, Fo.
I f we denote by o, such a solution T then an induction on
k shows the validity of the equality (3).
Al so the existence of an el enent o, of CC]VPG(Q) W th

the follow ng property will be proved: whenever k is a
nat ural nunber, and an el enent “y> o5 Q> with n>k is
gi ven, then

02(<k, <<q1, C s qn>>>):<<qk+1, Oy> ~oos O > Ao - oo qn>>.

In fact, it is sufficient to take as o, an G —conput abl e
in @ solution T of the equation

t=CL-—CLR, (LR, cL, RFOOCLR?, t<L?, (L%, RRFORYD, RD.

Now we shall note the followi ng comon feature of the
el enents of M appearing as argunents in the |eft-hand
sides of the equalities in conditions 0)-9): all these el-
enents are ordered pairs of the form

(4) <« , ...,ui>>, o, ...,vj>>>

with i =2 and u2:j. Let D be the set of all such

el enents of M. The elenents of D are exactly those el-
ements of M for which none of the functions |, x<<>>L,
x<<>>R, L3, x:(LReL, LR> has a value in B°. The el enents

t of ¥ with donmains contained in D are exactly those
which are representable in the form

t=Cl > L —> xR (L% > G (LRPL, LR > p,
T, DO, T, T, ID.

Therefore we shall try to express the system of conditions
1)-9), *) by an equality of the form

(5) ©=d —>Cx L —>Cx, R—>L> > (LRL, LR)— PCo),
@G>, @, @5, @, B,
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where P is G-conmputable in {y , ..., , MY, Of
course, we have to bother about the behaviour of PCt> only

on the elenents of the set D. If p is the elenent (4) of
D then u =LRL<p> and therefore we shall ook for a

mapping P of the form
P('c):(xoLRL%PO('c), (xiLRL%Pi('c), (XZLRL%PZ('C),
(stRL%Ps('c), (x4LRL%P4('c), (XSLRL%PS('C),
(XGLRL%PG('C), (x7LRL%P7('c), (XSLRL%PS('C),
(ngRL% Pg('c), 1 DPDPPPPPPY)
with P, ..., P, G-—conputable in {y , ..., y , MY, It

is not difficult to check that the equation (5) will be
surely equivalent to the systemof conditions 1)-9), *) if

we defi ne PoCTI5 -+ PgCTO in the foll ow ng Way:78

Po(t):(stzﬁ(LR%(xiLR3L%z//1LR2,
L, LRL—>y, LR, ..., <y ,LRL >y LR,
Cx, LR3L%:/;| LR, @>>...5, @, @,
P(TO=Cx L2 SLRL, @),
P(tO>=Cx,l° > (LR>LR, @, o),
PCTd=Cx, L% > (LPR— (LR, LR, @), &),
P, (T =Cx L2 5 (LR— (x LRL — L®R,
x,LR°L >RLF, &>, @5, 9,
P.CTO=Cx, LZ > tC(LR’L, <I, FOLR, ©(LR'L, RO, R, o,
P (T =Cx, L° > (LR— (LR > tcLR'L, <, F°LR,
<L, LR, L2R?, R®>, ©(L, LR, RLR?, R®,
L2R%, RLR?, R3O, t(LR3L, R, @, o,
PCTd=Cx, LZ > Cx_(LRL, LRLY
t(LR'L, o, C(LRL, R», @5, ),
PoCTO = Cx L2 — Cx_(LR’L, LRPLY —
T(LR, o, (LR’L, LR, R*>>, @5, o),

Y

8I'n sone of the ri ght - hand expressions, application of
the operation mM to nore than two arguments occurs. The
meani ng of such abbrevi ations has been defined at the begin-
ning of Section 3.
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Pg(t)::(x3L2-—>
(xot(LR3L2, (I, FOLRL, R, RLY—>R, @>¢l, M2, @>.
Thus the G—conputability of o in {y,, ...,y , M)

is established. For proving the G-—conputability of w in
{Yy» ---> ¥}, we can use t he same construction, but with @

i nst ead of (XQLRL%PQ(’C), @> in the expression for

PCt> (note that M® does not occur in the expressions for

PyCTO, + oy PgCTD).

Suppose now that the element ¢ of ¥ belongs to
PCCA, Uys oovs Y0 Then there is sonme elenment e of A¥*

such t hat
(g2 = wi<e, Kg»>>

for all g in M. Let e be the constant function, assign-
ing the value e to all elenents of M. The above equality
can be rewitten into the form

(p:(l)(g, T, I > F)

(again the extension of the operation T to the case of
nore than two argunents is used, for short). Fromthe defi-
nition of the set A*, it easily follows that, for each el-
enent of A*, the corresponding constant function is G-
el enentary in €y - In particular, so is the function e,

and hence ¢ is G-—conputable in NEE PN
Since G—conputability is equivalent to M, —conput ability

in the considered case, the statenent (i) of the theoremis
t hus proved. The statenent (ii) is treated in a quite sim-
| ar vay. o

Corollary 1. Under the assunptions of Theorem 1, the
fol | owi ng equi val ences hol d:

(i) @<=PCCA, Uy ooes ¥y iff ¢ can be generated from
el ements of the set CaU{¥ys 5 ¥ 5 Lo R} by means of
conposition, me—con‘ni nation and me—iteration;

(i) ¢@e=SCCA, Uy ooes ¥y iff ¢ can be generated
fromel enents of the set Cau{Uy s o on ¥ s (B*>>, L, R} by
nmeans of conposition, me—con‘ni nation and me—iteration.

Proof. The elements T and F can be generated from
L by neans of the above three operations due to the fact

t hat L3[L, Licu>=0 for all u in B*..
We carried out the proof of Theorem1l with fixed v, »
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S Y and used the non-paraneterized version of our First
Recursi on Theorem The only place, where Uy o oos Y t ake

part in some construction fromthe proof, is the definition
of the mapping P.. W could use the same construction to de-
. o | +1 . . .
fine P, as a mapping of ¥ into %, including also v, »
S Y into the list of the argunents of P, - After doing

the sanme for the conposite mapping P, the paraneterized
version of the First Recursion Theorem can be applied, and
so we can proof that all operators prine conputable with
constants from A are ﬂnB—conputabIe in €y and all oper-

ators search conputable with constants from A are My —
conmputable in €ALJ{M2}. The converse statenments are al so

true, as an analysis of the proof of Propositions I.7.1 and
|.7.2 follows. Thus prime and search conputability are
equi val ent to ﬂnB—conputabiIity (and to G MO —conput -

ability) in suitable sets of el enents of ?m(B*) not only
in the case of functions, but also in the case of operators.

The characterizations fromCorollary 1 can be useful in
vari ous proofs concerning prinme and search conputability,
especially in the direction fromsuch a conmputability to oth-
er properties. They have been used, for instance, in Ditchev
[ 1981, 1983, 1984, 1987] and Soskov [1983, 1984, 1987].

Since prine and search conputability turn out to be par-
ticular cases of conputability in conbinatory spaces, the
general theorens concerning the |ast conputability are ap-
plicable to prinme and search conputability. For exanple, our
First Recursion Theorem from Section 4 inplies a First Re-
cursion Theorem for prine conputability and one for search
conputability. As we nentioned in Section |.7, there is such
a theorem for search conputability in Mdschovakis [1969],
but only for the case of total single-valued Uy ooos ¥y s

and one for prime conmputability is briefly nentioned w thout
conplete fornulation. The results established until now in
this book show that both theorens are valid w thout any re-
strictions on Uy ooes ¥

W shall note two known facts which are i nmedi ate corol -
| aries of Theorem 1l (to be nore precise, the inplication
fromthe theoremto themis imediate only in the case when
one-argunent functions are considered, but this restriction
is not essential, as nentioned in Subsection (Il) of Section
1.7).

Corollary 2 (Lemma 31 of Mbschovakis [1969]). Prine com
putability inplies search conputability.
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Corollary 3. Search conputability from A in Uy o oos Y

is equivalent to prine conputability from A in Uy ooos ¥y s
cB*>>. 9

The | ast corollary enabl es obtaining the First Recursion
Theorem for search conputability as a corollary fromthe
First Recursion Theorem for prine conputability.

Renmark 1. Besides the characterization of prinme comput-
ability from Theorem 1, other characterizations of it as
A—conmputability are al so possible. Two such characteri z-
ations can be found, in essence, in the thesis Soskova
[1979]. In the first of them my i s changed by restricting

L and R to B*\B°. In this case one has to add to the set
CaU{Yy s -5 ¥} also the total function yx defined by the

condition that xCu>=0 for all u in B, and xCu>=1 for

all other u in B*. The second characterizati on concerns
functions in the closure of B under ordered pairs (wthout
using the elenent O). It turns out that the prine conput-
ability for such functions is equivalent to 2a—conputabil -
ity, where u is the conputational structure from Exanple
1.1.7.

(I'V) Application to Friedman-Shepherdson conputability.
In this subsection, the assunptions and the denotations of
the previous one renmain valid, and a certain additional as-
sunption wll be made.

In Section 2, we nentioned the Soskov’'s characterization

(Soskov [1987]) of the Friedman- Shepherdson conputability.80
Suppose 4 is a partial algebraic structure with the car-

rier B, Yoo ---> Y are el enents of ?n{B*) representing

the primtive functions and the primtive predicates of «
(the elemrents 0 and 1 of B* used for the representa-

tion of the truth values), and ¢ is an el enent of ?n{B*)
representing sone partial operation in B. Under this addi-

" As Professor Y. N. Moschovakis informed us in 1975, the
validity of this statenent has been noticed several years
bef ore by sonme of his students.

80 e. conputability over an abstract structure by
means of recursively enunerabl e definitional schenes (Fried-
man [ 1971], Shepherdson [1975]). As shown by Soskov, the
same notion of conputability can be introduced al so by using
recursively enunerable determnants in the sense of Ershov
[ 1981].
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tional assunption, Soskov’'s characterization enabl es suppl e-
menting Theorem 1l by the foll owi ng statenent, which shows

t hat Fri ednman- Shepherdson conputability is again a particu-
| ar case of conputability in iterative conbi natory spaces:

(iii) the partial operation represented by ¢ is Fried-
man- Shepherdson conputable in «4 iff ¢ is M, —conput abl e

in {uy, sy s N}
As noted in Soskov [1987], a characterization of this
sort of the notions of prinme, search and Fri edman- Shepherd-

son conputability nmakes clear that absolute prine conput-
ability in Uy o oos Y i npl i es Fri ednman- Shepherdson conput -

ability in 4, which inits turn inplies search conputabil -
ity in zpi,...,zpl.ltisso, si nce {zpi,...,xpl}isa
subset of {y,, ..., Y, ,[N2}, and N° is me—coerutabIe

in ¢(B*>® (as seen fromthe equality [Nz:p(B*)zp, wher e
p:(xN%| >, @D, and XN | are the sanme as in the proof

of Theorem 1). O course, imediately the corollary follows
t hat Fri ednan- Shepherdson conputability in « is equival ent

to absolute prine conputability in Uy ooos ¥y s N° ( by

Theorem 18 of Soskov [1987], this is equivalent to a par-
ticular case of Theorem5 of the sane paper). Extending this
equi val ence to the case of operators, we see the validity of
a First Recursion Theorem al so for the Friedman- Shepherdson
conputability.

Exer ci ses

1. Let Uu=<M,J, L, R, T, F, H> be the conputati onal
structure corresponding to a given FP—system and let B be
sonme subset of ¢ _<(M> containing the functions tl, apndl,

eq and @ (for the denotations, cf. Section I.4). Prove
the u—conputability in B of the functions distl, distr
and trans, determined by the equalities

distl ¢<s, o>>=09,

distl ¢<s, <t s oo tk>>):<<s, t,> ..., <S, tk>>,
distr (<@, s> =09,
distr(<<t1, ...,tk>, s> =<<t, , 5>, ...,<tk,s>>,
trans(g>=9, transd<g, ..., @>>=0,
transc<<t 5 oo b >y, <t o, t SS) =
K<ty ven b >s o, <ULt S

and by the condition that distl, distr and trans are
defined only for such types of objects which are indicated
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as argunments in the | eft-hand sides of the corresponding
equalities.

Hint. Use the First Recursion Theorem or try a direct
construction. Results fromthe exercises to Section |.7 also
can be useful. In the case of the function trans, it could
be convenient to start by the construction of a function
which is U—conputable in B8 and acts on ordered pairs in
the sane way as trans.

2. To the assunptions of the previous exercise, add the
assunption that N<™M and the functions 0, 1 belong to
B, as well as the function + which is defined only for
ordered pairs of natural nunbers and assigns to each such
pair the sumof its conponents. Prove the U—conputability
in 8 of the function length which is defined only for
the finite sequences of elenments of M and assigns to each
such sequence its | ength.

3. Gve a direct construction (not using the First Re-

cursion Theorem of elenents XN X > Oy and o, of

CCNPG(QI) with the properties needed for the proof of The-
orem 1.
4. Prove that m,—computability in {y,, ...,y N}
is equivalent to ﬂnB—conputabiIity in Uy 5 ¥ 5
B*x{0, 1}}. Prove also the equality
B*x{0, 1} = C(B*>° > T, F).

6. Normal Form Theorens for conputabl e el enents
and mappings in iterative conbinatory spaces

In this section, the same assunptions will be nade as in
Section 4. Nanmely an iterative conbi natory space

6=<%,1,86, T, L, R, =, T, F>
and a subset B of ¥ wll be supposed to be given.

We start by recalling a fact nentioned in Section 4 af-
ter the end of the proof of the First Recursion Theorem W
noted that a mapping E of ¥ into ¥ exists such that E
is G—elenmentary in 8, and, for all e in ¥, the conpo-

nents Ai(e),..., Al(e) of the | east solution of the con-

sidered system of inequalities 4.(3) are expressed by neans
of the fornulas 4.(10). The system 4.(3) in question had a
special form nanely each inequality in it had sone of the
forms 4.(5)-4.(9). However, the above statenent renains val -
id also in the general case, i.e. for an arbitrary system
4.(3) with Ty» -+ T G—conputable in B. It is so, since
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the | east solution of such a general system consists of the
first | conponents of a system having a greater nunber of
unknowns and containing only inequalities of the forns
4.(5)-4.(9).

Let us now apply this to the system consisting of the
single inequality

T=2I(6>,

where ' is an arbitrary nmapping G-—conputable in 8. Since
the |l east solution T of this systemis equal to I¢(e>, we
get the follow ng result:

Proposition 1. If T is a mapping of ¥ into § G-
conputable in B, then a mapping E of & into ¥ exists
such that E is &—elenentary in 8, and, for all e in %,
the equality

(1) r<e>=LIECOD, (L—>F, TOR1<l, TOD
hol ds.

There is no problemin generalizing this proposition to

mappings ' of " into ¥, for arbitrary positive integers

n. The change will be only that E will be then also a

mappi ng of ¥" into ¥. W shall not give the corresponding

formul ation explicitly. However, it is worth giving the for-
mul ation, so to say, for n=0.

Proposition 2. If ¢ is an element of ¥ &-—conputable
in B then an element ¢ of ¥ exists such that e is
G—elenentary in B, and the equality

(2) p=Lle, C(L>F, TOR1<l, 10>
hol ds.

We think no argunmentation is needed for the truth of
Proposition 2 after Proposition 1 is established.

The expressions in the right-hand sides of (1) and (2)
can be considered as normal formrepresentations of TIde>
and of ¢, respectively. O course, the elenents ¢, 10D,
(L—>F, TOR, L occurring in these expressions have their
origin fromthe coding adopted in the proof of the First
Recursi on Theorem These el enents can be replaced by sone
ot her ones by changing the nentioned coding. O course, nak-
i ng changes in the heavy proof in question is not a pleasant
task, and it is not clear enough to what extent nodifica-
tions can be made. Fortunately, their is an easier way to
make such nodifications, nanely by application of Corollary
I1.6.5. Here is a result which follows from Propositions 1
and 2 in this way.

Theorem 1. Let <ZE, €y &5 £5> be a ternary join nmechan-
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ismin ¥ having the follow ng properties: (a) the mapping

= and the el enents €,> €,» &, are G—elenentary in B,

(b) the el enments €,» €,» E, are normal . Let x and p be el-
enents of ¥ which satisfy the conditions (ii) and (iii) of

Corol |l ary 11.6.5.81 Then each mapping I of ¥ into ¥
which is G-—-conmputable in B can be represented in the form
(3) rCe>=plECBD, x1&,

with sone mapping E G-elenentary in B, and each el enent
¢ of CC]VPG(B) can be represented in the form

p=ple, x1 &,
with sone elenent £ from ELEI\/b(B).

Proof. Let T be a mapping of ¥ into ¥ whichis G-
conputable in B. By Proposition 1, the mapping I isS repre-
sentable in the form

(4) rCe>=p, LE (6D, x, 1 >
wher e E, is a mapping G—elenentary in B, and Po > Xg > 9
bel ong to ELEI\/b(@). Then, by Corollary I1.6.5, the equality
(3) holds with

ECO>=ECE , £ 0, (X, —> £,E,€C00, £ 0,2

and this E is G—elenmentary in B by the assunption (a)
about the given join nechanism The case of an elenent ¢
of CC]VPGCB) i's sim'lar..

Maki ng use of Exanple I1.6.4, we obtain the follow ng
sinpl e | ooking particul ar case of the above theorem

Corollary 1. Each mapping ' of ¥ into ¥ which is
G—conputable in B can be represented in the form

rce>=RIECBD, L1CT, (T, I 5>

with sone mapping E G-elenentary in B, and each el enent
¢ of CC]VPGCB) can be represented in the form

81
l.e. pg,=1, and x& =Fn,, x&=Tn, x&, =Tn,

for some nornal el enents Ng» My» N, - W note that these con-
ditions will be surely satisfied by
p=2Cl,1,1D>, x=2CF, T, T),

and these concrete p, x are G—elenentary in B8, as far as
the mapping Z is G-—elenentary in 8. In the natural ex-

anpl es known to us, the mapping Z is always G-—elenentary
in @, and so will be the concrete p, ¥ constructed above.
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(5) p=Rre, L1CT, (T, 1>
with sone elenent ¢ fronlELENb(B).

Many ot her particul ar cases can be obtai ned by using
other ternary join nechanisns in ¥ (for exanple, that ones
fromExercise 11.6.5). O course, all these results can be

i medi ately generalized to mappings ' of " into ¥, for

arbitrary positive integers n.

Remark 1. Sone other nornmal formrepresentations of com
put abl e el enents and mappi ngs of certain nore special kinds
can be obtained by applying the normal formtheorens from
Georgi eva [1980] and Ivanov [1980, 1986] to the compani on
operative space of the given conbi natory space.

A conparison is appropriate of the normal formrepresen-
tations obtained in this section and the Kl eene nornmal form
of the partial recursive functions. The main difference be-
tween themlies in the fact that the Kl eene nornal form uses
u—operation, and our nornmal formuses iteration instead.

In order that both normal form make sense, let & be the
conbi nat ory space (Spou) corresponding to a standard conpu-

tational structure Uu=<N, J, L, R, T, F, H> over the natura
nunbers, assuming that J, L, R are primtive recursive. Let
B={S, P}, where as usually S=au.u+l1l, P=xu.u=1.

Then all elenments of ¥ (N> G-elenentary in B are prim -

tive recursive, and therefore Corollary 1 inplies represent-
ability of all unary partial recursive functions ¢ in the
form(5) with primtive recursive e. Cbviously, the repre-
sentation (5) is different fromthe Kl eene representation.
However, (5) is sufficient in the considered case to see
that ¢ can be obtained fromsone primtive recursive func-
tions by nmeans of substitution and a single application of
the u—operation. It is so, since the equality
te, Licu> =e®Ycu,

hol ds, where

ecud =put [Lcetcud>=01.

The question is justified, whether a normal formtheorem
i's possible which directly conprises the Kl eene Normal Form
theoremas a particular case. There are exanpl es show ng
that one can hardly expect a natural generalization of the
Kl eene theoremto the case of arbitrary iterative conbi na-
tory spaces. Nanely an iterative conbinatory space & and a
set B of its elenents can be indicated (see Exercises 2
and 3) such that:

(i) for the elenments of the space, there is a natura
noti on of u—recursiveness in B;
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(ii) there are el enents of CC]VPGCB) whi ch are not u—
recursive in 8.

On the other hand, a natural generalization of the Kleene
theoremto this case nust inply that all elenments -
conputable in B are u—recursive in 8.

Exer ci ses

1. Show that the statenents of Propositions 1 and 2 are
particul ar cases of the statenent of Theorem 1, i.e. in any
given iterative conbinatory space <%, 1,6, T, L, R, =, T, F>
t he assunptions of Theorem 1 can be satisfied by

p=L, = —>F, TOR
and sone appropriate ternary join nechanism <=, £ , & , £,>
with
g, =<, 10>.

2. (Cf. lvanov [1977, 1978]) Let the conbinatory space
6G=<%,1,6,1T,L,R, = T, F> be the space Gp(‘u), wher e

AU=<N, J, L, R, T, F, H> is a standard conputational struc-
ture on the natural nunbers, and the functions J, L, R are
primtive recursive. Let S=au.u+l, P=2au.u=1. Consid-
er the mappings r, and T, of ¥ into ¥ defined as fol-

| ows:

r,<e>=Rr¢PL, R, L1,
r,ce>=RicL, SR>, 81dl, F>.
Prove the equalities
I,Co>CICt, ud> ~e' cud,
Fz(e)(u)ﬁut [ecu, t >=01,
where 6 ranges over ?p([N), and t, u range over N. Prove

that, for all Uy o oos Y and ¢ in ?p([N), the foll ow ng
statenents hol d:
(i) the function ¢ is primtive recursive in Uyo oo

Y, iff ¢ can be generated from I, F, S, L, R, Uy o oos Y
by means of conposition, T and r,;

(ii) the function ¢ is up—recursive in Uy o oos Y i ff
¢ can be generated from I, F, S, L, R, Uy o oos Y by means
of conposition, T, r, and r, .

3. Let & be the conbinatory space from Exercises 2.9-
2.18, and let the functions J, L, R be prinmtive recursive.
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Consi der the mappi ngs r, and T, of ¥ into ¥ defined

in the sane way as in the previous exercise, but with N>

L~, R, F~¥, S~, P~ instead of |, L, R, F, S, P, respectively.
Prove the existence of an el enent of COWP_({S™, P, ([Nz)"'})
whi ch cannot be generated from Iy~> F7 S L™, RY, (N>~ by
means of conposition, T, r, and r, .

H nt. Prove that, whenever an elenent <f, A> can be
generated from Iy~> F7> S¥ L™, R, (N>~ by nmeans of conpo-
sition, I, r, and T, then A is in the arithmetical hier-
archy (cf. Rogers [1967, & 14.1] for the definition). Then
use Exercise 2.13 and the existence of Hi—sets whi ch are

not in the arithnetical hierarchy (cf. Rogers [1967,
§ 16. 1]).

4. Prove the strengthening of Theorem 1 which arises
after replacing the words "with sone mapping E G-
elementary in 8" by the text "with sonme mapping E of the
form

EC6>=C(n—>o0, k(BV, | DD
with m, o, k, v 66— elenentary in B".

H nt. Use Exercise 4.1 to represent T in the form(4)
with E, havi ng the form
E,C0>=Cm, —>0,, (oL, R™>),
where m is sone natural nunber, and n,» o, are G-
elenentary in @. Show that, for each & in ¥, the el enent

E (6 i s the conponent T, of the | east solution

<Tys Tys Tgs Ty of the system

2 4

>
'Ci_'C20(0,

'C2 > (XO —> 'C3 > po))

>
1:3_(110%1: , 1:4),

20-0
1:421:2(8L, R™2>,

To apply TheoremI1.6.3 to this system use the join nmechan-

ism <z, €y &, > gzU, ng, 52&2>, wher e

= ('to, T. > T » 1:3, 1:4)::.('1:0, T ,H*(’Cz, 1:3, 1:4)).

1 2 1
At the application of the theorem use an appropriate el-
ement & of the form

(m—> o, EZU(GLp’ > erzp’ D).
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Taking this & as E(e>, apply Exercise I1.1.16 to represent
EC6> in the needed form

7. Universal conputable el enents

in iterative conbinatory spaces

Again an iterative conbi natory space
6=<%,1,86, 0T, L, R, =, T, F>

and a subset 8 of ¥ wll be supposed to be given. For the
sake of sinplicity, we shall suppose that T and F bel ong
to €. Qur exposition will be close in its spirit to the

content of a manuscript of L. lvanov witten in 1977.
W shall first give a series of definitions.

Definition 1. For each subset g of &, the conbination
closure of g is the |east subset of ¥ containing ¥ and
cl osed under the operation TI.

Qobvi ously, the conbination closure of any subset of @
is again a subset of &.

Definition 2. Let w be an elenent of %, and «4 be a
subset of . An elenment o of ¥ wll be called canonical -
ly «4—expressible through o if e=wdz, 1> for sonme el-

enent z of the conbination closure of «4u{T, F}. 82 The el -
enment o wll be called «4—universal for a given subset g
of ¥ if all elenents of % are canonically «—expressible
t hrough wo.

Definition 3. An elenent of ¥ wll be called absol ute-
ly normal if this elenment belongs to the conbination closure
of the set {I, T, F}.

Qovi ously, all absolutely nornmal elenents of ¥ are
normal and G—elenentary in 9.

Definition 4. An elenment w of ¥ wll be called com
pletely universal for a given subset § of ¥ if w is
g —universal for gu{lL, R}, and absolutely nornal elenents

82Note that the condition 6=wdz, | > is equivalent to
the condition that ex=wdz, x> for all x in ©. The el-
enment z of © can be regarded as a code for the element o
of #. In the book Skordev [1980] only sone special elenents
of the conbination closure of {T, F} play the role of such
codes, nanely the elenents of the form nT, used there al so
for the representation of the natural nunbers (cf. Exercises
8-10 after this section).
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Ng»> My> My Mg exi st such that the follow ng equalities
hold for all a, x,y in ©:

w(noa, | >=a,

w(ni(x, Yo, I D=wdX, | Dwdy, | D,

w(nz(x, YO, I D=CwdX, | D, vy, | >,

w(ns(x, YO, I D=TwdX, | D, oy, | D1.

The exi stence of a conpletely universal elenent is not
obvi ous even for the enpty subset of &. Postponing the ex-
i stence problem we shall prove first a proposition show ng
t he useful ness of the conpletely universal elenents in case
t hey exi st.

Proposition 1. Let w be conpletely universal for the
subset 8 of ¥. Then, for every subset « of ©, the el-
ement o IS «4—universal for the set CCNPG(BLJﬂ).

Proof. Let « be an arbitrary subset of ©, and « be
t he conbi nation closure of «u{T, F}. For any fixed z in
4, the set {ne¥: mze« } is closed under T and contains
{l, T, F}. Hence mze« for any z in «4 and any absol ute-
ly normal elenent m of &. Having this property at our dis-
posal, we can use induction along the generation of the el-
enents of CCNPG(BLJﬂ) for proving that any such elenent is

canonically «4—representable through w. The only step in
this proof, which needs explicit nmentioning, is the verifi-
cation that T and F are canonically «—representable
through w - the first equality in Definition 4 is used at
this step. g

The main result in this section reads as foll ows.

Theorem 1 (Exi stence of conputable conpletely universal
el enents). Let the subset B of ¥ be finite. Then there is
an elenent o of CIWPGCB) such that w is conpletely
uni versal for 3.

Proof. W set
_ ni::i_, i =0,1, 2, 3,
which inplies Q-Hdhzzl. We shal | construct nappi ngs T,
r,»Ty which are G—elenentary in @ and satisfy the fol-
|l owi ng conditions for all x,y in € and all T in ¥:
I (todn X, yo, I D=tX, | >Oty, | J;
I, <t n, (X, yo, 1 D=t X, | O, Ty, | O}
CTo g (X, YD, D=0t dX, | D, Tdy, [ D1.
If ¢=cn ¢x,y>, 1> then | =R, x, y>=R™L¢c, hence
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x:L§+HJ; y:§+2Lg
Si nce
TX, DTy, 1 D=TtX, TCY, | D>

for all x,y in &, it is clear that we can define r, in
the foll owi ng way:

r(oo=tCLRL, TCRPL, RO

(the right distributivity of the nornmal elenents with re-
spect to T is used). Even sinpler we see that an appropri-
ate definition of r, can be the foll ow ng one:

rz(t):(r(LR3L, R, t<R'L, ROD.

More problens arise in connection with the definition of
Ty since there is no right distributivity of the nornal

el enents with respect to iteration. In this case we shall
use the fact that

[TdX, | >, Ty, | D1 =
[TCL®, RYCCX, yD, I D, TCRL, ROCCX, Yy, | D1 =
RrcL, T<¢L?, R>>, TC(RL, R>1CCX, yD, | D,

by Corollary I1.3.1. Hence r, can be defined by neans of
the equality

r,ct>=RicL, z¢cL2, R, T¢(RL, ROI1R'L, R.

After having the nmappi ngs r,» I,»T we can wite

the equalities fromDefinition 4 in fhe ?orm

(1) wdnya, | >=RLdn a, | 5]

(2) W, (X,y),l)zl"i((o)(ni X, y>, 1>, i=1,2,3.
We shall look for an elenent w, which satisfies these

equalities (for all a, x,y in ) and, in addition, the
equalities

(3) w(Q?ET,I)::ka(GIET,I), k=1, ..., m,
where y , ..., Yy, are the elenents of Bu{lL, R}.
Taking into account the equalities
LR =Fi§ -1, j =0, ...,j -1,
LR =T,

we see that the equalities (1), (2) and (3) will be surely
satisfied if the follow ng equality hol ds:

w=CL—>RL, (LR—>T,Cwd, (LR 5T, w, (LR —> T W,
LR 5y, R, ..., (LR™ W R W RY... D3350
By the First Recursion Theorem the above equality is satis-
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fied by sone w in CC]VPG(B), and the fact of satisfying
the equality guarantees that o is conpletely universal for

73..

Remark 1. If w is such as in the above theoremthen
clearly CC]VPG(B) is equal to the set of the el enments of

¥ which are canonically @-—representable through w.

For the computabl e conpletely universal elenments an ana-
| ogue holds of the s—m—n Theorem fromthe ordinary recur-
sive function theory. Wthout aimng at thorough formal ana-
| ogy, we shall fornulate this anal ogue as foll ows.

Theorem 2 (s—m—n Theorem for conputabl e conpletely
uni versal elenents). Let weCC]VPG(B), and let w be com

pletely universal for B. Then an elenent o of ELEI\/b(@)

exi sts such that o<¢z, x> belongs to the conbination clo-
sure of {z, x, T, F}, and

w(Z, (X, ¥Y2O2=w(c(zZ, X2, YD
for all x,y,z in &.

Proof. By Proposition 1, the element w is @—universal
for CC]VPG(B). Therefore the elenents | and w are canoni -

cally o-—representable through w, i.e. | =wdz , 1,
w=wdz , 1> for sone el enents Z,> 2, of the conbi nation
closure of {T, F}. W choose such z_,z , as well as el-
ement s Ny » My » M, with the properties fromDefinition 4.
Then we have
w(zZ, (X, yIdD=wdz, X, | Dy =
wCZ, Cwln X, 1D, w(z [ D>y =
w(w(noz, 1 D, w(nz(nox, ZO), Dy =
w(zi, I)w(nz(noz, nz(nox, ZO)), Dy =
w(ni(zi, nz(noz, nz(nox, ZO))), Dy =
w(ni(zi, nz(noz, nz(nox, ZO))), yo.
Thus it is sufficient to choose o so that
oz, X):ni(zi, nz(noz, nz(nox, ZO)))
for all z,x in €, and this can be achi eved by setting
O‘ZT)i(Zi, nz(nOL, nz(nOR, ZO)))..

Anot her formof the s—m—-n Theoremis given in the ex-
erci ses.

One of the nost inpressive applications of the s—m-n
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Theoremin the ordinary recursive function theory is the
proof of the Second Recursion Theorem The above s—m—n
Theor em nakes possible a simlar application.

Theorem 3 (Paraneterized Second Recursi on Theorem for
conmput abl e conpl etely universal elements). Let we CC]VPGCB),

and let w be conpletely universal for ®B. Then an el enent
p of ELEI\/b(@) exi sts such that pz belongs to the conbi-

nation closure of {z, T, F}, and
wlpzZ, Yo=wlwlz, pZ2o,y>
for all y,z in &.

Proof. Let o be an elenent such as in Theorem 2. W
find an element z_ of the conbination closure of {T, F}

such that, for all x,y,z in €, the equality
WCZ, (Z, (X, ¥YII>=wlw(zZ, 0 (X, X2, y>
hol ds. Such a z, exi sts by Proposition 1 and by the fact
that, for all x,y,z in € the equality
wWCw(Z, 0 (X, X2, Yyo>=wlwlL, (LR, LR>), Rz, X, ¥YyOD

hol ds, and wdw(L, c(LR, LR>), RZ)GCOVP (B>. By the prop-
erties of o, we have the equalltles

wCz,, (2, (X, YIII=wlo(Z,,, 2J, (X, YyID=
w(o(o(zz, 22, XD, ¥YD.
Therefore
w(o(o(zz, 2, X2, ¥YO=w(w(Z, 0 (X, X2, YD

for all x,y,z in &, and, in particular, this will be
true for arbitrary y,z in & and X=0¢z,, 2. Thus it is

sufficient to choose p so that
pZ :0'(0'(22, z), 0(22, Z>),
i.e. to set
pZO'(O'(Zz, I D, 0(22, I ))..
Sonme other forms of the Second Recursi on Theorem are
given in the exercises.
Exer ci ses

1. (Second formof the s—m-n Theorem for conputable
conpl etely universal elenents) Let w be an el enent of

CC]VPGCB) conpletely universal for B. Let 4 be a subset

of ¥, and ¢ belong to CC]VPG(Busd). Then an el enment y of
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ELEI\/b(sd) exi sts such that yx belongs to the conbi nation
closure of «4u{x, T, F}, and

PpCX, YoO=0YX, y>d
for all x,y in @.

2. (Non-paraneterized Second Recursion Theorem for com
put abl e conpl etely universal elenents). Let w be an el-

enent of CC]VPG(B) conpletely universal for B. Let « be
a subset of ¥, and e belong to CC]VPG(Busd). Then there is

an elenent e of the conbination closure of «4u{T, F} such
that, for all y in ©, the equality

we, yo=wdoe, y>
hol ds.

3. (Second form of the non-paraneterized Second Recur-
sion Theoren) Let o be an el enent of CC]VPGCB) compl etely

uni versal for B. Let « be a subset of ¥, and ¢ belong
to CC]VPG(Busd). Then there is an elenent e of the conbi-

nati on cl osure of «4u{T, F} such that, for all y in &,
the equality

wde, yo>=9¢pde, y>
hol ds.

4. (Second formof the Parameterized Second Recursion
Theorenm) . Let w be an el enent of CC]VPGCB) conpl etely uni -

versal for B. Let «4 be a subset of ¥, and ¢ belong to
CC]VPG(Busd). Then an elenent y of ELEI\/b(sd) exi sts such

that yx belongs to the conbination closure of «4u{x, T, F},
and

WYX, YOI =YX, (X, YD
for all x,y in @.

5. (Effectiveness of the conputable mappings) Let w be
an el enent of CC]VPGCB) conpl etely universal for B. Let

4 be a subset of ¥, and T be a mapping of ¥ into ¥
which is G—-conmputable in Bu«d. Prove the existence of an
el enent o of ELEI\/b(Busd) such that, for any z in &,

¥z belongs to the conbination closure of «4u{x, T, F}, and
the equality

I'Cwdz, | DD=wdyz, 1D

hol ds. Generalize the result to mappi ngs of # into 7,
where | is an arbitrary positive integer.

H nt. Use Exercise 2.19 and the s—m—n Theorem In the



214 I11. COWPUTABI LITY IN | TERATI VE COVBI NATORY SPACES

case of | >1, start with representing (z,> 15 ..., (z , )
in the form m (=, 1, s T (2, | >, where 2=0C2,5 52,
and m_, oo, Toare G—elementary in 9.

1
6. Let the set B be finite. Prove the existence of an
el ement w of CC]VPG(B) such that the set ELEI\/b(B) is

equal to the set of the elenents which are canonically @—
expressi bl e through o.

7. Suppose the set B is finite, all elenments of
ELEI\/b(B) are normal, and there is an elenent <t of

ELEI\/b(B) such that Tx=+=x for all x in . Prove the
exi stence of a nornml el enent of CC]VPGCB) whi ch i s not
G—elenentary in B.

8. Let the set B be finite. Prove the existence of an
el ement w of CC]VPGCB) with the follow ng properties:

(1) COWP_ (B ={w_: NnelN}, wher e wn:w(ﬁT, >
(ii) there are two-argunent primtive recursive func-
tions hi,hz,h3 such that, for all i,j in N,
whl(i,j) =W, wj > whz(i,j) :((oi > wj), wh3(i,j) :[wi s wj].
9. Let w be an el ement of CC]VPGCB) with the proper-

ties fromthe previous exercise. Prove the existence of a
two-argunent primtive recursive function f with the fol-
| owi ng property: for each one-argunment recursive function
g, there is a natural nunber k such that

_ “g(n) = “f(k, n)
for all n in IN.

Hint. Use Corollary 3.2 to show that, for each one-
argunment recursive function g, there is a natural nunber
k such that

wg(n) :w(wknT, )

for all n in N. Prove the existence of a primtive recur-

sive function f such that nT=w for all n in IN.
0 fo(n)

10. Let w be an el enent of CC]VPGCB) with the proper-

ties fromExercise 8. Prove the followi ng Second Recursion
Theorem for any elenent ¢ of CC]VPGCB), there is a natu-
ral nunmber m such that

wdmT, y>=pdmT, y>
for all y in € (conpare with Exercise 3).
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H nt. Represent ¢dnT, 1> in the forn1(ﬁwn), where h

is some primtive recursive function. Then apply the state-
ment of the previous exercise to the function

gin> =hdf ¢n, ndD,
where f is the sane as there.

8. A notion of search conputability
in iterative conbinatory spaces

In this section (including the exercises), an iterative
conbi nat ory space
6=<%,1,86, 0, L, R, =, T, F>,

a subset 8 of ¥ and an elenment U of ¢ are supposed to
be given, and the foll ow ng assunptions concerning U are
made:

(i) for all x in €, the inequalities
U=x, x=xU

hol d;

(ii) for all ¢ in ¢ and all x in &, the inequality

CoX, 1 OU=Cpx, W

holds;83

(iii) U=L, U=R.

Exanple 1. Let G:GﬁmL\MHthxm,LL,RT,R
H> is a conputational structure. Then the above assunp-

tions are satisfied if we set U=M>. The same is true al so
in the case when CBZ:GH{QL E>, where U is as above, and

E is sone set having no common el enents with the set M
Example 2. If 6=6_u>, where UA is the sane as in the

previ ous exanple, then no elenent U in ¥ exists satisfy-
I ng the above assunpti ons.

Intuitively, the element U nust be considered as
describing unrestricted search in the data domain, i. e.
choi ce with unbounded non-determ nism

Remark 1. The element U is not necessarily the great-
est element of . This can be seen fromthe second part of

8 This assunptions is surely satisfied in the case when
t he conbinatory space © is symetric.
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Exanple 1. Fromthe proposition which will be proved bel ow,
it follows that U is always the | east upper bound of the
set &, hence U is unique (if it exists at all).

Proposition 1. Let s and ¥ be elenents of ¥ such
that s>yx for all x in € Then sx=>=g% for all x

in &, and aszU.84

Proof. Let x be an arbitrary elenent of €. Then, for
all 'y in €, we have

SXYy=8X=29YX=7Y,

and fromhere the inequality sx=y follows. Now we use
this inequality in the following way: for arbitrary x in
€, we have

SX=8XX=>8XUx=>=qyUxX,
hence aszU..

Definition 1. An elenent of ¥ w1l be called search
G—conputable in B if this elenent is G—conputable in
BU{U}.

Remark 2. |If Gzzenfﬂ%), wher e me is the Moschovaki s

structure based on B (the conmputational structure from
Exanple 1.1.2), and B=6 U{y,> -5 Y }» t hen, by The-

oremb5.1, the elenents of ¥ search G-—-conputable in B
are exactly the unary functions in SCCA, ¥, » ---,W|)-85 Thi s

can be regarded as a justification for the term nology in-
troduced by the above definition. O course, the general
theory of &—conputability can be applied to the introduced
noti on, but neverthel ess additional work is needed in order
that the study of this notion becones notivated enough. W
shall show that an interesting general statement concerning
search G—conputability can be proved. To do this, we shall
first study the properties of the elenent U in nore de-
tail.

Proposition 2. For all x in € and all ¢ in %, the
equalities

84 The assunptions concerning U are not needed for the
truth of the first statenment in the concl usion.

85 Anot her exanpl e deserving attention can be obtained by
t aki ng G=06, (U, B={Aau.u+l,au.u-=1}, where A is a

standard conputati onal structure over the natural nunbers.
In this case, as we know from Section |.6, the el enents of
¥ search G—conputable in B8 are exactly the recursively
enuner abl e binary rel ations.



8. A NOTION OF SEARCH COWVPUTABI LI TY 217

xU=x, Ux=U, CpXx, I OU=Cpx, W
hol d.
Proof. For all x in &, we have
XUz xXx =X,

and since we have al so the converse inequality, the equality
xU=x follows. The proof of the second equality is nore
conplicated. By application of Proposition 1to s=U, y=1I,
we see that Ux=1 for all x in ®. Therefore (using also
x=xU), we have

Ux =Uxy =UxUy =1 Uy = Uy

for all x,y in € Hence Ux=Uy for all x,y in
€. Let x be an arbitrary element of ©. Then

Uxy =Ux =Uy

for all y in €, and consequently Ux =U. For the proof of
the third equality, suppose sone ¢ from ¥ and some X
from & are given. Then, for all y in &, we have

CoX, W=CpX, yoO=CpXx, 1Dy,
and therefore, by Proposition 1, the inequality
Cox, W=Cpx, I OU

hol ds. Since we have al so the converse inequality, the proof
i's conpleted..

Proposition 3. The equalities LI, UO=RcU, I>=1 hold.
Proof. For all x in &, we have
L, Wx=LXx, UxX>=LX, I >Ux=xU=Xx,
R(U,I)x:R(Ux,x):R(I,x)Ux:xU:x..

Proposition 4. Let %, 8, ¢ be elenents of %, and |et
the inequality s8>y Cp, x> hold for all x in €. Then also

the inequality s=ydCp, W hol ds. 8°

Proof. Let y be an arbitrary elenent of €. Then, for
all x in &, we have

Sy=yCp, X0y =9Cpy, | Ox.

From here, naking use of Propositions 1 and 2, we concl ude
t hat

Sy=zyCpy, | DU=9yCpy, W=yCp, WYy.

8 The case of =1 of this proposition is due to
L. I vanov.
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Since y is arbitrary, this conpletes the proof..
Proposition 5. For all y in %, the equality
cl, Wydl, UW=cycL, LR, o<l , W
hol ds.
Proof. For all y,z in &, we have
Cl,youcl, zo=Cydl, z>,y>=
cycL, LR, POl , ¢z, y>><cycL, LR, o<l , U.

From here, by Proposition 4, it follows that, for all y in
€, we have

CycL, LR, RROCl, W=cl, youcl, U=cycl, U, y>.
Appl yi ng Proposition 4 once nore, we get
cycL, LR, REO<l, W= cydl, W, W.
On the other hand, for all x in €, we have
YL, LR, RROCl, x>=cycl, LxD, RxD<cycl, UxD, UXD> =
cycl, U, W,
hence, again by Proposition 4, the inequality
cycL, LR, RPO<l, W= cydl, W, W.
Thus we proved the equality
cycL, LR, REO<l, W=cycl, U, W,

and it remains only to note that, due to the second equality
in Proposition 2, also the equality

A, Wyd, W=cyc, U, W
holds..

Proposition 6. For all y and x in ¥, the follow ng
equal ity hol ds:

tycl, U, x1=LrycL, LR>, R®D, yL1<¢l, U.
Proof. Let
L=ycl, W, 1, o, =rcycl, LR, R, xL1,
o, =uwcl, W, o,=ccL, LR, .

Then

LL2(| ) U):(XL%LLZO'Z, Locl, W,
and, nmaking use of Exercise Il1.1.20 and Propositions 2, 3,
5, we get

LL2(| ) U):(X%LL20'2(| >, W, LA, U=
(X%LL2(| ) U)O‘i, | D.
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This equality inplies the inequality
Lo, ¢l W=,

To prove the converse equality, it is sufficient (by Prop-
osition 4) to prove that, for all x in €, the inequality

L12LL2(| > XD
hol ds. This is equivalent to proving the inequality

LiLiLLz,
where « is the set of all elenents of the form <y, x> wth
Yy, Xe€. The set 4 is invariant with respect to o, > by

Exercises 11.1.39. On the other hand, for all y,x in &,
we have

(xL—euiLoz,L)(y,x)::(x—euiL(w(l,Lx),Rx),I)ys
(x—euiL(w(l,Ux),Ux),I)y::(x—euiL(l,U)oi,I)y::
x—>t,0,5 I)y:z,iL(y, XD,
and this conpletes the proof..

Now the main result about search &—conputability wll
be fornul at ed.

Theorem 1 (canoni cal representation of search G—com
put abl e el enents). Each elenent of ¥ search &-—conputable
In B can be represented in the form ocl, U>, where ¢ is
sone elenent of ¥ G-conputable in 3.

Proof. During the proof, we shall call canonically re-
presentable the elements of ¥ having the form ¢cl, U,
wher e qMECCNPGCB). The proof will contain several |emmas.

Lenma 1. Al elenents of CIWPGCB) are canonically re-
present abl e.

Proof. If e belongs to CIWPGCB) then e is canonical -
|y representable, by the equality
e=e6Ld, W,
which follows from Proposition 3..
Lenmma 2. The elenment U is canonically representable.
Proof. Using the equality
U=Rd, W,
which follows from Corollary II.1.2..

Lemma 3. The nultiplication preserves the canonical re-
presentability.

Proof. If e:%pz,Wmmag:wﬁd,UL =1, 2,
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and o, >, are G—conputable in B, then, by Proposition
5, the equality
6=, Cp, L, LR, R>cl, W
hol ds, and clearly o, Co, (L, LR, RF> is also G —conput abl e
in B. o
Lemma 4. If o6 is canonically representable, and p be-

l ongs to CCNPG(B), then <(p, 6> is also canonically repre-
sent abl e.

Proof. If e=¢cl, U then
Cp, 8>2=CplL, >, W,
by Exercise I1.1.15 and Proposition 2.

Lenma 5. The operation T preserves the canonical re-
presentability.

Proof. Application of Lemmas 1, 3, 4 and of the equality
(61, 82):(R, 82L)(| » 81),
which follows fromExercise I1.1.14 and Coroll ary II.1.2..

Lemma 6. If e is canonically representable then the
element (e, L1 is also canonically representable.

Proof. If e=¢c, U, and qMECCNPGCB), t hen, by
Proposition 6, the equality

e=LipcL, LR, R®D, LZ1¢l, W
hol ds, and clearly l_[@(L,I_R),Ff{L Lz]eCIWPGCB)..

Lemma 7. The iteration preserves the canonical represen-
tability.

Proof. Application of Lemmas 1, 3, 5 and of the equality
te,» 6,1 =Rice,, 156 R, L1Co,, 1),
known from Corollary II.5.2..

Having Lenmas 1, 2, 3, 5 and 7 at our disposal, we prove
by induction that all elenments of ¥ search &-conputable
in ® are canonically representable..

In Section |.6, we represented an arbitrary recursively
enunerabl e binary relation e in the form

6 =ACODTICI , N,
where ACe> is sone partial recursive function, and | =1

O course, the possibility of such a representation is a
particul ar case of Theorem 1, but this cannot be regarded as
an application of the theorem since the above representa-
tion has been already used for proving the &—conputability

N
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of e in the set {Au.u+1,AU.UL1,[Nz}. A real applica-
tion can be done in the case nentioned in Remark 2, and the
result obtained in this way easily inplies the foll ow ng

st at enent :

Corollary 1. Let A be a subset of B¥*, Uy o oos Y be

partial multiple-valued functions in B*, and e be an n-—
argunent function from SCCA, Uy oos Uy D Then there is an

n+1—argunment function ¢ in PCCA, Uy ooes ¥y such
that, for all Ay -+ 0 in B*, the equality

edq, » ...,qn):U{<p(q1, cees Qs T r  B*}
hol ds.

No doubt, a direct proof of the above result nust be
surely possible. Such a direct proof can be based on the

i dea of replacing finitely many arbitrary choices in B* by
a single choice of an appropriate nore conplicated el enent

of B*. However, we note that the Normal Form Theoremin
Moschovaki s [1969] (Theorem 1 of the paper) gives directly
the result of Corollary 1 only under the extra assunption
t hat Yoo ---> Y are si ngl e-val ued and total.

Having in mnd Exercise 5.4, one could try to give an
abstract treatnent of the Friedman- Shepherdson conputability
by studying G-—conputability in Bu{cU—T, F>}. Addition-
al assunptions will be probably needed for the success of
such an attenpt.

A certain drawback of the considerations in this section
is that iterative conbinatory spaces having an elenment U
with the properties (i)-(iii) are encountered not too often.
In connection with this, we nention the paper |vanov [1981],
si nce anot her generalization of search conputability is
studi ed there, which covers also sone iterative conbinatory
spaces w thout such an el enent U.

Exerci ses

1. Prove the equality U =U.
Hint. Use the first two equalities in Proposition 2.

2. Let %, 8, ¢, ¥ be elenments of ¥, and let the in-
equality s=yCpXx, y> hold for all x in ©. Prove that
also the inequality s=yCpU, y> holds.

3. Let # be the set of all elenents e of ¥ which
satisfy the inequality e<U, and let B<#, d —=1,1>ek.
Prove that all elenents of ¥ search G-conputable in B
bel ong to #.
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4. Prove that each element o of the set ELEM_ (BU{U}>

can be represented in the form e=¢dl, U, where ¢ is some
el ement of the set ELENb(B).

9. On the formalization of the proof
of the First Recursion Theorem

In Section I1.8, sone formal systens have been intro-
duced aimng at a strength sufficient for the fornmalization
of the theory presented in this book. It would be very tir-
ing to carry out a systematic investigation of all proofs
for making clear their formalizability. Therefore we shall
concentrate our attention on the heaviest of the proofs,
nanely the proof of the First Recursion Theorem presented
in Section 4. W shall discuss the problem of fornulating
and proving the statenent of the theorem by the nmeans of the
formal system A’ from Section I1I.8.

First of all, we note that the First Recursion Theorem
is formulated in Section 4 in a way not directly translat-
able in the | anguage of A’. One of the difficulties lies in

t he using the notion of mapping, say, of # into ¥, Ssince

the system A’ has no variables for such nappi ngs. Anot her
difficulty lies in using the notion of a subset of ¢, name-
ly a subset B8 of ¥ is supposed to be given. W nust show
first a way for obviating these difficulties. W shall pro-
pose now a netanat hematical statenent which can be regarded
as a refinenment of the mathematical result in question.

I nstead of considering mappi ngs, we shall consider func-
tional expressions containing variables for elenments of .
Such variables will be used both for the unknowns and for
the paraneters. As to the set B, Propositions 2.5 and 2.6
enabl e reduction of the general case to the case of B8=0,
and in this case the second difficulty disappears. In the
light of this, we think the followi ng statenent is accept-
abl e as a netanmat hematical counterpart of the First Recur-
sion Theorem from Secti on 4.

Theorem 1. There is an al gorithmwhich transforns each

non-enpty finite sequence U oo of functional expres-
sions into a sequence of functional expressions Vis o oos V|
cont ai ni ng none of the variabl es f1’ ...,fI and such that

the following two fornulas are deducible in the system A:
(1) f1:Vi&"'&fM:% :%fizﬁﬁ&...&flzul,
(2) f12u1&"'&f|2u|:$f1zvi&"'&f|2%'
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Proof. By TheoremI1.8.1, it

t he above fornmul as are deduci bl e the system A’. There-
fore only deducibility in A wll be considered throughout
this proof. The way of proceeding will be by show ng that
the proof of the First Recursion Theorem from Section 4 can
be formalized in A. W shall stress on the places where
the formalization encounters difficulties. To be close to
that proof, we shall restrict ourselves to the case when
there is at the nost one variable different fronlfi, ces

f which may occur in sone u and we shall assune that

I
this is the variable f|+1 (it will appear in the places

where 6 occurs in the original proof, and f1’ s foowil

I
appear in the places where T,» ---> T OcCCuUr, respectively).

It is possible to give a fornmalized counterpart of the
reduction of the general case in the First Recursion Theorem
to the special case when each one of the inequalities has
some of the forms 4.(5)-4.(9). This will be a constructively
descri bed transformati on of finite sequences of functional
expressions into other such sequences, and the description
nmust be a part of the description of the algorithm More-
over, for each concrete system of functional expressions,
there is a deducible in A” formal counterpart of the state-
ment describing the interdependence between the | east sol-
ution of the initially given systemof inequalities and of
the new one obtained fromit. W |eave the correspondi ng
details to the reader

is sufficient to show t hat
in
I

From now on, we assune that the nmentioned reduction is
carried out, and we have a concrete non-enpty finite se-

quence U , ..., U of functional expressions each of them

ei ther being sone of the expressions A, L, R, T, F,f|+1 or

havi ng sone of the forns fjfi ,(fi,fj), (fiafj, fQ with i,

j»k fromthe set {1, ..., 1}. Then an explicit construction

can be given of the expressions Vis o os V| by sinply re-

witing in the | anguage of A’ the expressions for E (6,

> B, €00, then the expression for ECe> formed from
them and, at last, the expressions for A, 8D .5 A CBD
(we recall that functional expressions representing the par-
ticular natural nunmbers have been introduced in Section 3,
nanely an arbitrary natural nunmber n is represented by the

functional expression (F, )"(T,), denoted by n*). The nore
difficult thing is to show the deducibility in A" of the
corresponding formulas (1) and (2). This will be done by
formalization of the corresponding part of the proof from
Section 4.



224 I11. COWPUTABI LITY IN | TERATI VE COVBI NATORY SPACES

Sonme portions of the proof can be carried out in A
Wi t hout essential troubles. For exanple the definition of
the notion of a coding elenent can be easily fornulated in
the | anguage of A’. The definition of the set e is the

first place, where the formalization is not obvious, since
it is not clear how to express in the |anguage of A’ the

property of an elenent of ¥ to be the product of finitely
many codi ng el enents.

In an informal presentation of the proof, the definition
of ¥, can be given in the formof an recursive definition,
nanel y: ye?, iff y=0c or y=mnz for sone coding el-
enent m and sone el enent z of e - One possible way to

transformthis in an explicit definition (again in the non-
formal |anguage) is to define ¥, as the | east subset « of

€ wth the properties that 0ce«, and whenever 7 is sone
coding elenent, and z is an elenent of «, then mz be-
longs to «4 too. OF course, before giving such a defini-
tion, one first proves that such a | east subset exists, and
after giving the definition, one shows that the equival ence
fromthe fornmul ated recursive definition is actually true
for the explicitly defined - Al'l this can be carried out

in the system A, due to the existence of variables for
subsets of ©, to the presence of the conprehension schene
.6.(19), and to a certain nonotonicity of the condition in
the right-hand side of the recursive definition in question.
We shal |l describe bel ow a general nmethod of using such re-
cursive definitions within the system A’.

For arbitrary natural nunmbers j and k, |et sJCsk be
an abbreviation for the fornula ve, (c eS =—=C eSk). Then
the followi ng | etma hol ds.

Lemma 1. Let a&Cc , s > be a formula of the system A’
such that there are no free occurrences of S, inthis for-
nmul a, and S, is free for S, in the fornula. Let the fol-
|l owi ng formul a be deducible in the system A’:

(3) S, <S8, => e , s >= 2 , S >
(where eCc, , s,> means aCc, so)(si/so)). Then the foll ow
ing formula is also deducible in A :
(4) ds, (Ve (c es & e, 500 &
Vs, (Ve Cacc , s, 0=>C =S 0=>5, <5, 0.

Proof. W start with an application of the conprehension
schenme 11.6.(19) giving the formula
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(5) 3s,Vc,(c =5, &

Vs, (Ve <Cacc , S, 0=>C =S 0=>C =S, O
(this fornmula states the existence of the intersection of
all subsets of © which, taken as val ues of s, » satisfy the

formul a Vs, Ve, (cb(co,si):)coesi)). The rest of the
proof is a verification that any set S, with the property

stated in the formula (5) has also the property stated in
the formula (4). O course, the only problemis to show that
the property of S, from (5) inplies

Ve, (c s, & dCC S 0.

Nanely here the assuned deducibility of (3) is used. Mking
use of it, one shows that

Ve, cace, , S 0 =>C, =S,
is inplied by the property of S, stated in (5). To show
that the sanme property inplies also

Ve, (c es, => acc , S 0D,

one uses the above fact, as well as the deducibility of the
formul a

3s, V¢, (c es, & oCC, S 0D
(this formula is obtainable by one nore application of the

conprehensi on schenme 11.6.(19)). The deducibility of (3) is
used again in this last part of the proof..

Clearly the way to consider A Wi thin the system A on

t he base of the above lemma is to apply the lemma to a for-
mul a eCc,, S, expressing the condition that the val ue of

Cq is equal to Oc or to mz, where n is sonme coding el-

enent, and z belongs to the val ue of S, - Such a formul a
is, for exanple,

(6) C0:0*C1 \Y% E|f0302 (00:f002 & \I/(fo) & € <=s.2,

wher e \I/(fo) is a formul a expressing the statenent that the
val ue of f0 is a coding el enent (f0 being the only free
vari abl e of \I/(fo)), and the variable c, is intended to

have the value c¢. It is obvious that, at the above choice
of the formula oCC, , S, the corresponding forrmula (3) is

deducible in the system A’.

The consi derati ons made until now enable the fornali z-
ability in A of the reasoni ngs about A whi ch use the
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following two properties of this set: (a) the equival ence,
formul ated as a recursive definition of S s and (b) the
fact that A is contained in each subset «4 of & such

that c<«, and whenever 7 is sonme coding elenment, and z
is an elenent of «, then mz belongs to «4 too. Further we
shal |l consider only a non-formalized version of the proof of
the First Recursion Theorem and we shall use the set A

in this version, but with the restriction to base all our
non-t aut ol ogi cal reasoni ngs about A only on the properties
(a) and (b) of this set.

Havi ng the set ¥, at our di sposal, we can inmediately
define the set 7., ant its properties can be reduced to
the properties of A

The next place with non-obvious formalization is the
definition of proportionality. W shall reduce also this
definition to the recursive definition of a certain subset
of €. Gven two elenents z,,2, of &, we can replace the
definition of the property of y,» Y, to be proportional to
z,,2, by the definition of the set of all elenents of @€
having the form Y, » ¥, wher e y,» Yy, are proportional to

Z,,2,- Denoting this set by Pz, > 2,0, We can i ntroduce

1’
it non-formally by the follow ng recursive definition:
XePCz, , 2,0 i ff X=(z ,z,> or there are a coding el enent

n and el enents Y,» Y, of € such that X=0ny, > ny,> and
y,»y,2eP(z, ,z,>. Lemm 1 enabl es the formalization of
such reasoni ngs about Pz, 52,0 whi ch are based on (c) the
above equi val ence and (d) the fact that Pz, 52,0 i's con-
tained in each subset «4 of € such that (z,,z,0<d, and
whenever Cy,»y,0<=d and m is sone coding elenent, then
(ny,» ny,><d4 too. Nanely it is appropriate to apply Lemm
1 with the following formula in the role of oCC,, S,

(7) c,=(c,,c)) v3f0303304(00:(foc3,foc4) &

\I/(fo) & (03, 04) 5,25
wher e \I/(fo) is the sane as in the case of the previous re-
cursive definition, and c,»C, are i ntended to have val ues
z, and z, > respectively).

In the sequel, the proportionality of y,» ¥, to z .2,
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will be replaced by the condition that Cy,»¥,2=PCZ, 52,0,

and our non-tautol ogi cal reasoni ngs about Pz, 52,0 will be
based on its properties (c) and (d).

For exanple, Lemma 4.1 will be fornul ated so:

Let z ,2z, be given el enents of &, Ays Ay be given el -
enents of ¥. \Whenever X, y,» Yy, are el ements of ©, and
Cy,»Y,2=PCZ, 52,0, l et the inequality

A K Y, 2= A, 0K, Y, D

hol d. Then, for any choice of the coding elenent =z, the
i nequal ity

Aie(x, ny1)2 Aze(x, ny2)
hol ds under the sanme conditions on X,y .Y,

Simlar changes nust be done in its proof. The first
pl ace in the proof, where properties of the set Pz, 52,0

nmust be used, is in the investigation of the case when the
considered inequality has the form tthj T - In this case

one has to nmake the concl usion (TTyi, T]‘yz)e?(zi, z,>
fromthe assunption Cy,»Y,2=PCZ, 52,0, and obviously this

can be done on the basis of the property (c). The situation
is simlar in all other places of the proof of this | emm,
where properties of PCz, > 2> must be used.

The formul ati on of Lenmma 4.2 needs no nodification. In a
pl ace of the proof, the fact that ye?, is used to concl ude

that y=0c or y=my, where =7 is sonme coding el enent,
and Yo is again an el enent of I - O course, this can be
done on the base of the property (a) of e - However, the

| ast sentence in the proof of the |lemma needs a nore detail -
ed argunentation now. In that sentence the case is consider-
ed of y=mYy, where =7 and y, are as above. It is clained

that the inequality
ALeX, YOZ A e X, YO
can be obtained by application of Lenta 1 to 21:22:60.

To make such an application in the new form of presentation,
we have to verify that, whenever x, y,» Yy, are el enents of

€, and y,»¥,2 bel ongs to ?¢c0c, 0c>, then the inequality
A X Y D= A, X, Y D
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hol ds, the inequality ALz A bei ng assuned. To neke the

J
c

verification, it is sufficient to be able to concl ude
Y, =Y, <9, fromthe fact that y,» Yy, are el ements of &,

and y,»¥,2 bel ongs to ?¢c0c, 0c>. The possibility of such

a concl usi on needs an argunentation now. But this is not the
only problem The application of Lemma 1 to the considered
case woul d give the conclusion that

Aie(x, nyo)z Aze(x, nyo)
in case we know t hat Y, > yo)e?(Uc, 0c>, and instead of
this condition we have Yo7 - Al'l these problens can be
sol ved by proving the follow ng three statenents:

. Let z be sone elenent of ©. Whenever y,» Y, are
el enents of €, and y,»¥,2 bel ongs to ?¢z, z>, then
Yi=Ys-

1. Let z be sone elenent of €. Whenever y,» Y, are
el enents of €, and y,»¥,2 bel ongs to ?¢c0c, z>, then
yiey’c.

[11. Whenever yes, then ¢y, y>ePc0c, 0c>.

The statenments | and Il follow in an obvious way from
the property (d) of the sets Pz, 52,0 (in the proof of 11,

al so the property (a) of A is used). The statenent 111
follows fromthe property (b) of A (the property (c) of

t he set 73(21, 22) W th z,=2,=12 is also used in the
proof).

The statenent and the proof of Lemma 4.3 can be fornmal -
i zed without any difficulty. As to the Lemma 4.4, there are
nore probl ens connected with its proof, and we shall consid-
er thema little later. O course, the formulation of the
| emma at the present approach will be the follow ng one:

(#) For each z, in &, there is an elenent y of ¥

such that, whenever vy, z are elenents of ©, and <y, z>
bel ongs to #<¢0c, z,2, then the equality ¥y =2z holds.

For the time being, we shall show how to present the
rest of the proof of the First Recursion Theoremin the
needed form possibly using al so the above statenent.

The new formul ati on of Lenmma 4.5 reads as foll ows.
Whenever x, Y, Z,,2 belong to &, and <y, z> bel ongs
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to #¢c0c, z,2, t hen
L(X,Z)EiL(|,ZO)LL(X,y).

For the proof of this statement one nore statenent is
needed in addition to the new version (#) of Lemma 4.4 which
still waits to be proved. This other statenment is the fol-
| ow ng one.

V. Let z_ be an arbitrary el enent of €. \Whenever
yes, then there is some z in € such that <y, z> be-
longs to #<¢0c, z,0.

The proof of this statenment can be easily carried out on
the base of the property (b) of ¢ (using also the property
(c) for the set #C0c, z_>). ¢

Maki ng use of the statenent 1V and the fornul ated above
version (#) of Lenma 4.4, we can carry out the proof of the
new version of Lemma 4.5 without necessity of other changes
in the proof from Section 4, except replacing the condition
that y, z are proportional to Uk:,zo by the condition that
y, Z)e?(Uc,zo).

The formnul ation of Lemma 4.6 remains wthout nodifica-
tion, and the nodification in the proof is obvious. No
changes are needed in the formulations and in the proofs of
Lenmmas 4.7-4.10. No changes are needed al so in the concl ud-
ing part of the proof.

So the only remaining obstacle is the difficulty in
usi ng the proof of Lemma 4.4 for the purpose of proving the
version (#) of this lemma. W are going now to expl ain how
to overcone the obstacle in question.

Looki ng at the proof of Lemma 4.4, we see a strong pres-
ence in that proof of the idea of conversion of a finite

sequence m_ , ..., m, of coding elenents into the sequence
My oo My This idea appears in the formof transform
ation of products LR npUz i nto products np...nix. Un-

fortunately, the | anguage of the system A’ does not give a
sinple means to express the statenent that two given el -
enents of € can be represented as such two products, with
sonme given z, x and one and the sane finite sequence n, »

©a My of coding elenents. To obviate this difficulty, we

shall consider, for any given X,y in €, a subset Qdx, y>
of &€ with the following non-formal definition: this subset
consists of the elenents of the form

cz, np C. niy),

wher e Mys oo My are coding elenents, and z is an el enent
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of € such that the equality

X_ni... an
holds. So to say, Qdx, y> consists of all elenents of @€
whi ch can be obtained from <(x, y> by consecutive novi ng of
coding elenents fromthe left of x to the left of y. The
sanme set can be introduced, again non-formally, also by the
foll owi ng recursive definition: weQ(x,y> iff w=dx, y>D
or there are a coding elenent 7m and elenments x’,y’” of @
such that w=dx’, ny’> and (nXx’', y'D>=QlX, y>. Lemma 1 en-
ables the formalizability of this recursive definition.
Theref ore reasoni ng about the sets Qdx, y> is acceptable
fromthe point of view of formalization in A” if such rea-
soning is based on (e) the above equival ence and/ or on (f)
the fact that Qd(x, y> is contained in each subset «4 of @
with the property that <x, y>e«4, and whenever 7m is a cod-
ing elenent, and (nx’, y'>ed for sone elenents x’,y’ of
€, then x’, ny’D>e«d too.

Some properties of the sets Q(x, y> wll be formul ated
now as statenents V, VI, VII, and these statements will be
proved in a way which can be formalized in the system A’.

V. Whenever Xx, Yy, X', Yy’ are elenents of €, and x’, y’>D
bel ongs to Qdx, y>, then Qx’', y’'><=QCx, yD.

Proof. Application of the property (e) of Qdx, y> and
the property (f) of QX5 y' . g

VI. For each z in € and for each y in the set S s
there is an elenent x of € such that ¢z, y>eQdx, 0cD.

Proof. Let « be the set of all elenents y of € such
that for each z in © the condition ¢z, y>=Q(x, 0cD is
satisfied for some x in €. The element O0c belongs to «,
since ¢z, 0c>eqQCz, 0c> for each z in &, by the property
(e). Suppose yed4, and let m be an arbitrary coding el -
enment. We shall showthat nmye« too. To do this, we take
an arbitrary elenment z of € and choose x in € such that
(nz, y>=Q(x, 0c>. Then ¢z, ny><Q(x, 0c>, again by the
property (e). So we established that mye«4. Fromthe proved
properties of «, making use of the property (b) of ¢ , we
conclude that ¢ <. ¢

VI . Whenever X> Y, Z,X,,2Z, are el enents of € satis-
fying the conditions

(X, Y2=Q0X, 0c>, <y, z>eP<C0c, z,2>
t hen
(z,, X,2=QCZ, XJ.

Proof. Let X z, be sone fixed elenents of €. W shall

0,
denote by « be the set of all elenents <y, z>, where vy, z
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belong to &, and, for all x in €, the inplication

(8) (X, YI=QCX Oco> = (zZ,, X,2<QCZ, X>
hol ds. The proof will be carried out by proving that «
contains the set Pc0c, z,2, and this will be done by using

the property (d).
Let us first show that <¢Oc, z,2<=4. Suppose X is an

el enent of © satisfying the condltlon (X, Uc)eQ(x Oco.
Then, by the property (e), the equality

‘X, Uc):(xo, Oco

hol ds or there are sonme coding elenment n and sone el ement
y of © such that 0c=mny. The second case is obviously

i npossi bl e and therefore X=X, . Hence the condition

(z,, X, 2<=QCZ 5 XD is satisfied. Thus the inplication (8)

hol ds When Uc and z, are substituted for y and z, re-

spectively.

Now suppose that <y, z> is sone elenent of «, and 7
is sonme coding elenent. We shall show that d<ny, nmz> also
bel ongs to «. For that purpose, suppose that x is an el-
enent of © satisfying the condition

(X, MY><=QCX,, 0co.

Then, by the property (e), my=0c or there are elenents
x’,y"” of © and coding elenent =7 such that

X, MY>=CX"5, 0" Y’ D, (" X', Y D2sQX,, 0co.

The first case is inpossible, and the equality in the second
case inplies (as easily seen) the equalities

X:X’, ’n:’n’, y:y’
Ther ef or e

(X, Yy>=Q0X,, 0co.

From here, nmaking use of the assunption that <y, z>e«4, we
concl ude t hat

€z, X,2=0QCzZ, nXD.
By the property (e),
(z, nX>€Q(nz, X,

and this, together with the statement V, inplies the inclu-
sion

QCZ, NXD<SQ(nzZ, XD.
Therefore
(ZO, XO)eQ(nZ, XD,
and we see that the inplication (8) holds when 7y, nz are
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substituted for vy, z, respectively..

W are now ready to give a proof of (#) in the needed
styl e.

Proof of (#). As in the proof of Lenmma 4.4, we construct
an element p of ¥ such that, for all x,z in & and all
coding elenents =7, the equalities

p(X, 0Z2>=X, pX, nZdD=pdCNX, 2D

hol d. Fromthese properties of p, we nmake the foll ow ng
concl usion: (g) whenever X, <6 and We QX » 0c>, then the

equality pPW=X_ hol ds. To make this conclusion, we take a
fixed el ement Xq of € and denote by « the set of all el-
enments w of © satisfying the condition pPW=X_ . From t he
properties of p, it follows that (X, > O0coed, and, when-

ever n is a coding elenent, x, z are elenents of &, and
(nX, z>ed, then (x, nzd>ed too. By the property (f), this
i nplies the inclusion QCX, Oco<= 4.

Suppose now an arbitrary el ement z, of € is given. As
in the proof of Lemma 4.4, we set

¥=p<Z,, pC0cC, | D).
Let y, z be elenents of € such that

(9) <y, z>=P<0c, z,0.
W have to showthat yy=z, i.e. to prove the equality
pCz, >, pC0cC, yI>>=2z.

By the statenent 11, yes, - Hence, by the statenment VI,
there is an el enent Xq of © such that
(10) (oc, y><=QX, » Oco.

From here, by the property (g) of p, the equality
p(Ec,y):x0
follows, and it remains to prove that pCZ > X, 0=2.

W note that (9) and (10) enable an application of the
statenent VII, and the conclusion fromits application is

(z,, X,2=0QCz, Oco.
Usi ng once nore the property (g), we get the needed equal -
ity.
[ |
So we kept our pronmise to prove the statenent (#) in a
way which can be formalized in the system A’. Thus we show

ed the formalizability in A" of the proof of the First
Recur si on Theorem from Secti on 4. =
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By proving Theorem 1, we denonstrated that the formnal
systens from Section I1.8 are sufficient for the formaliz-
ation of quite conplicated proofs fromthe theory of iter-
ative conbi natory spaces. The observant readers will prob-
ably notice that we used the conprehension schene |1.6.(19)
to a very small extent. Its nain application was to nake
possi bl e sone recursively defined subsets of © to be used
in a formalized way, and in fact the recursive definitions
in question had a quite special form Therefore it is natu-
ral to try to weaken the formal systens, and in particul ar
t he nentioned schene, without losing the validity of a the-
oremof the sort of Theorem 1. A possible weakening of the
used formal systens is indicated in the exercises.

Exer ci ses

1. Show that the fornulas (6) and (7) in the proof of
Theorem 1 can be replaced by sone fornmulas having bound
vari ables only of the type c, - Describe a nethod for a

simlar nodification of other formulas having connection
with the notion of a coding el enent.

2. Show that the use of the sets Qdx, y> in the proof
of Theorem 1 can be replaced by the use of a set ® which
is connected with themin the following way: ® consists of
all elements <w, ¢x, y>>, such that x,y belong to &, and
w belongs to Qdx, y>. For the set ®, give a recursive
definition which is in the scope of Lenmma 1, and trace out
t he changes in the proof of the statenent (#) due to using
R instead of the sets Qdx, yD.

3. Show that Theorem 1 remains valid if we make the fol-
| owi ng changes in the system A: (i) on the formula & in
t he conprehensi on schene 11.6.(19), we inpose the restric-
tion that bound variables only of the type c, can occur in

®; (ii) we add as a new axiomthe fornula (4) for the case
when eCc,, S, is atranslation in A of the fornula

C,<ss, Vv 3Ic, ((00,01)653 & c ,=s.0.



APPENDI X
A SURVEY OF EXAMPLES OF COVBI NATORY SPACES

1. Introductory remarks

In the preceding chapter, a notion of conputability has
been introduced for the case of iterative conbinatory spaces
and sonme general theorens have been proved for this notion.
In this way, a generalization of a certain part of the ordi-
nary theory of conputability has been obtained. O course,
an inportant thing for a generalization is the variety of
exanpl es covered by it. Fromthe first two chapters of the
book, it is clear that our generalization covers various
exanpl es, and, in particular, some ones connected with no-
tions of pr|n0|pal i nterest. However, it does not becone
clear how large is the class of all possible exanples and
whet her there are such ones which are essentially different
fromthe nentioned so far. W cannot give an exhaustive an-
swer to the first of these questions, but we shall show t hat
the diversity of the exanples of iterative conbinatory
spaces is considerably greater fromwhat is shown by the
exanpl es presented up to now.

W shall start our reviewin the next section with a
short recapitulation of the exanples nentioned in the pre-
ceding text of the book. We hope this will help the reader
to have a better orientation, all the nore that sone of
these exanpl es have been given not in the nmain text, but
only in sone exercises, and, in addition, some of the ex-
anpl es coul d be acconpanled with more detailed intuitive
expl anations. In the next several sections sone cl asses of
ot her exanples will be presented. As it is clear from what
has been said above, we shall be interested mainly in iter-
ative conbi natory spaces. However, also certain exanples
wi |l be given of conbinatory spaces which are of sone inter-
est without being necessarily iterative.
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2. Arecapitulation of the exanples presented so far

Al nost all exanples of iterative conbinatory spaces con-
sidered yet are based on conputational structures. The defi -
nition of the notion of conputational structure has been
i ntroduced in Section I.1. Intuitively, a conputational
structure is an infinite set supplied with a pairing nechan-
ismand with a nmechanismfor coding truth and falsity. A
conput ati onal structure

U=<M,J, L, R T, F, H>

wi |l be supposed to be given in the rest of this section,
except for the |ast paragraph (the functions J, L, R form
t he pairing mechanism and the functions T, F together
with the predicate H formthe nmechanismfor coding truth
and falsity).

One and the sane conputational structure can be used as
a base for the construction of different conbinatory spaces.
Each of themis characterized by the choice of a partially
ordered sem group ¥, and the elenments of ¥ can be intu-
itively regarded as representing the behavi our of devices
which transformelenents of M into elenents of M. The na-
ture of the devices can be different in different exanples,
and the consideration of non-determ nistic devices is a
fruitful source for the construction of conbinatory spaces.
Comput ati onal procedures are considered a particul ar case of
devi ces.

The semi group nmultiplication in ¥ corresponds to se-

guential conposition (piping) of devi ces. 87 The sem group ¥
nmust have an identity | with the intuitive interpretation
that | represents a device carrying out the identical
transformati on of the elements of M into thenselves. The
functions L, R, T, F nust be elenents of ¥ in the sinplest
cases, or, in the nore conplicated ones, there nust be el-
enents of ¥ corresponding to L, R, T, F in sonme natura

way. The function J is used for the definition of the com
bi nati on operation mM in ¥. The operation T corresponds to
conbi ning two devices so that both of them nust be consecu-

87 The devi ce obt ai ned by sequential conposition of two
devi ces proceeds as follows: the first of the given devices
nmust be applied to the input data, and if its work termn-
ates successfully, then the correspondi ng output data is
used as i nput data for the second of the given devices. The
out put of the second device is considered as the output of
t he sequential conposition of both.
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tively applied to the given input data, and then the func-
tion J nust be applied to the obtained pair of results;
this kind of conbining of the devices will be called J-—

conbi nati on. 88 The predicate H is used for the definition
of the branching operation = in ¥. The operation = cor-
responds to if H-—conbination of three devices, i.e. to
conmbining themin such a way that the result of the applica-
tion of the first one to the input data determ nes which of

the other two devices to be applied to the sane data. 8% In
the case of an iterative conbinatory space, an operation
called iteration is determined inplicitly through the al -
ready |listed ones, and it corresponds to an operation of

whil e H—conbinati on of two devices.90

88 Mor e preci sely, the device obtained by such a kind of
conbi nati on proceeds as follows. The first of the given de-
vi ces nust be applied to the input data, and if its work
term nates successfully produci ng sonme output data s, then
t he second of the given devices nust be applied to the sane
i nput data as the first one. If the work of the second de-
vice al so term nates successfully and produces some out put
data t, then the object J¢s,t> is considered as the output
data of the conpound devi ce.

89A nore preci se description of the action of such a
conbi nation of three devices reads as follows. The first of
t he given devices nust be applied to the input data. The
wor k of the conposed device may successfully term nate only
in case the work of the first device term nates successfully
and produces an output data r belonging to the domain of
the predicate H. In such a case, if the value of H(r> is
true then the second of the given devices nust be applied
to the initial input data, and the result of its work is
considered as the result of the conpound device, otherw se
the third of the given devices nust be used in the sanme way
i nstead of the second one.

OThe while H—conbination of two devices proceeds as
foll ows. The processing of the input data starts with an
application of the second device to it, and a successful
term nation of the conplete process is possible only in the
case when this application produces an output r bel onging
to the domain of the predicate H. In this case, if the val-
ue of H(r> is false then the conplete process terni nates
and the initial input data is considered as the output data,
otherwise the first device is applied to the initial input
data, and if this application produces sone output v then
v is taken as new initial input data, and everything is
repeated fromthe begi nning.



2. RECAPI TULATI ON OF EXAMPLES PRESENTED SO FAR 237

The semigroup ¥ nust contain a subset © which con-
sists of the constant mappings of M into itself in the
si npl est cases, or, in the nore conplicated ones, of sone
el enents representing these mappings in sone natural sense.

The sinpl est exanple of a conbinatory space corresponds
to the study of determ nistic devices by neans of the exten-
sional description of their input-output behaviour. In order
that the conbinatory space is an iterative one, we mnust al-
| ow sone devi ces produci ng no output for some (or even for
all) input data. Mathematically, this case is characterized
by choosing ¥ to be the partially ordered sem group :7pCM)

of all partial mappings of M into M (cf. Section 1.2 for
the definition of ¥ _<(M>). The correspondi ng conbi natory

space i s denoted by Gp(QL) (cf. Exanple 11.1.2). The de-

scription of the above |isted operations in this conbinatory
space can be found in Section |.2, and a characteri zation of
t he conputabl e el enments and of the conputable mappings is
given in Section |I.3 for the case when U is a standard
conput ati onal structure over the natural nunbers, and the
functions au.u+1 and au.u=1 are anong the el enents of

¥ taken as primtive ones (we recall the fact that the

A —conmputability defined in any of the cases considered in
Chapter | is equivalent to the conputability in the corre-
spondi ng conbi nat ory space).

A nore conplicated exanple corresponds to the study of
non-determ ni stic devices again by neans of the extensional
description of their input-output behaviour (the determ nis-
tic devices regarded as a particular case of the non-deter-
mnistic ones). In this case one chooses ¥ to be the par-
tially ordered sem group F oM of all binary relations in

M (cf. Section |I.5 for the definition of ?h{ff)). The cor -
respondi ng conbi natory space is denoted by G u> (cf. Ex-

anple I1.1.1). The description of the operations in this
conbi nat ory space can be found in Section |I.5. In Section
|.6, a characterization is given of the conputable el enents
in this conbinatory space for the case when A is a stan-
dard conputational structure over the natural nunbers, and
the functions au.u+1 and au.u-=1 together with the re-

lation N° are anong the elenents of ¥ taken as primtive
ones (the sem group ?p(rf) i s considered as a subsem group

of F M according to identification of the functions with

their graphs). A characterization of the conputable elenents
is given also for the case when 2 is the Mdschovaki s
structure M, over a given set B (cf. Exanple 1.1.2 for
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the definition of mg and Section I.7 and Subsection (I11)
of Section II11.5 for the nentioned characterization).

The next kind of exanples correspond to the study of the
data processi ng devices by neans of an enriched extensional
description of their input-output behaviour including also
the error nessages arising in sone cases of unsuccessful
termnation. A set E is supposed to be given such that
EnM=9o (the elenents of E represent the possible error
nmessages). The sem groups ?p(rt) and F (M are ext ended

to sem groups ?pCM, E> and F M E>, respectively (cf.

Section |1.8), and the correspondi ng conbi natory spaces are
denot ed by Gp(m; E> and G LU, E> (cf. Exanples I1.1.4 and

[1.1.3). A description of the operations in these conbi na-

tory spaces can be found in Section |I.8. For the case when U is
a standard computational structure over the natural numbers,
characterizations of the conputable elenents for different
choices of the primtive elenents of ¥ can be found in
Theorem1.8.1 and Exercises |1.8.5-1.8.7.

In the case when E consists of a single elenent, then
t he conbi natory space G U, E> is isonorphic to another

one whose senigroup consists of all ordered pairs <f, A>
W th fe?m(M) and A<M (cf. Exercise |.8.5). This conbi-

natory space is due to S. N kolova and the ordered pairs
<f, A> nentioned above have the following intuitive inter-
pretation as descriptions of devices: f is the usual exten-
sional description of the input-output behaviour of the de-
vice, and A consists of those input data which are safe
wWith respect to rise of failures (i.e. no termnation with
an error message i s possible when starting with them.

In the conbi natory space fromthe above paragraph, the
partial ordering inits semgroup is defined by neans of the
fol |l ow ng equi val ence:

<f,A>><g, B> & f 29 & A<B.

A change only in the definition of the partial ordering,
turns this conbinatory space in a quite different one. The
new partial ordering is defined by neans of a nore conpli -
cated equi val ence, nanely

<f, A>><g, B> & f 29 & A2B &
VYueBVV (<u, v>ef = <u, v>eg>

(cf. Exercise I1.4.13). The change in the partial ordering
|l eads to a quite different operation of iteration (see Exer-
cises I1.4.17 and 11.4.18). The characterization of the
iteration in the conmbinatory space obtained in this way sup-
ports the following intuitive interpretation of the ordered
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pairs <f, A> as an appropriate one for this case: f 1is
agai n the usual extensional description of the input-output
behavi our of the device, but A consists now of those input
data for which the work of the device necessarily term nates
(i.e. the work termnates in all possible variants of pro-
ceeding starting with the input data in question). In the
case when U is a standard conputational structure over the
nat ural nunbers, and a conbi natory space of the above type
is considered, the elenents of the sem group are character-
i zed which are conputable with respect to sone naturally
chosen primtive elements (cf. Exercises I11.2.9-111.2.18).

In Exercise I1.4.19 a nodification of this kind of com
bi nat ory spaces is noted. Nanely a change is made in the
definition of the sem group of the space by including the
addi tional requirenent A<domf inposed on the pairs

<f, As. 91 such pairs can be used for the same kind of de-
scription as above in the case of devices with no possibil-
ity of unsuccessful termnation (they can be used also for a
description of arbitrary devices, but with a slightly dif-
ferent intuitive interpretation of A: the elenents of A
nmust be those input data for which the work of the device
necessarily term nates successfully).

In Exercise I1.4.11 a fuzzy anal ogue is given of the
conbi nat ory space G LU In the conbi natory space con-

structed there, the sem group consists of all @0 —fuzzy bi-
nary relations in M, where L is a lattice satisfying sone
not very restrictive assunptions. An explicit characteri z-
ation of the iteration in such a conbinatory space is given
in Exercise 11.4.16. In Exercise I11.2.8, the case is con-
sidered when 2 is a standard conputational structure over
the natural nunbers, and the lattice L is a finite |inear-
|y ordered set. In this case, a characterization is given of
the 0L —-fuzzy binary relations which are conputable with
respect to sone naturally chosen primtive ones.

From the preceding chapters al so sone possibilities are
seen how to construct new conbi natory spaces starting from

al ready constructed ones. Remark 11.1.6 indicates a way for
nodi fyi ng the branching operation, and it can be easily seen
that such a nodification will produce an iterative conbi na-

tory space if the given conbinatory space is iterative. A
bit later a possibility to nodify the elements L and R in
sonme cases is nentioned. Sone exercises al so indicate ways
for the construction of new conbi natory spaces. For exanple,

Exercise I1.1.40 introduces the power-space GK, where ©

TThis is actually the case studied in the earlier pub-
l'i cati ons of the author.
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is an arbitrary conbinatory space, and K is an arbitrary

non-enpty set (this construction will be generalized in Sec-
tion 10). Exercise I1.3.9 shows that K is iterative,
whenever G is iterative. Exercises 11.4.10 and 11.4.21

illustrate the possibility to consider subspaces of sone
conbi nat ory spaces.

Exercise I1.4.22 indicates sone exanples of iterative
conbi nat ory spaces, which are constructed by using, so to
say, generalized conputational structures. Nanely M, J, T
and F are used, which are as in an ordinary conputati onal
structure, but L and R could be not single-valued on the
el enents not belonging to rngJ, and al so the nechani sm for
the interpretation of the elenents of M as truth and fal-
sity could be anbi guous for the elenents not belonging to
rngTurngF. W shall discuss again sonme situations of a
simlar sort in Section 5.

3. Further exanples of conbinatory spaces
consi sting of fuzzy binary relations

In this section, a part of the assunptions and the nota-
tions fromExercise I1.4.11 will be adopted, nanmely the fol -
| owi ng ones. W suppose that a set M and a lattice L. are
given. W assune that L. has a greatest elenent 1 and a
| east el enent ©, where 1 =+0, and the range of each mappi ng
u of M into L has a |east upper bound in L with the
property that

| Asuprngu=sup{l Aucud>: ueM}

for all | in L. W shall denote by ¥ the set of all 0L —
fuzzy binary relations in M, i.e. all mappings of M® into
L. The set ¥ wll be considered with the conposition oper-

ation defined by neans of the equality
ey =AUW. sup{ydu, VO A oV, W: VeM}

and with the partial ordering defined by neans of the equiv-
al ence

P> Y& VUV CpCu, VD= ydlu, VID.

For each subset f of 2%, we shall denote by f~ the el-

enent of ¥ defined by

1 if <u, v>ef,
0 if <u, v>ef.

We adopt the follow ng definition: a 0L —-fuzzy partial
ordering on M is any element e« of ¥ which satisfies the
condi tions

f~Cu, V):{
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eCU, U>D=1, edu, VoOAedv, W=<¢elU, W,
eClU, VO=1 & eCV, UD=1 = u=V

for all u,v,w in M. Ooiously, if f is an ordinary par-
tial ordering in M then f~ is a L—fuzzy partial ordering

in M. In particular, so is IM"'.

Remark 1. The condition that edu, VvJ>Aedv, W < edu, W
for all u,v,w in M is obviously equivalent to the in-

equal ity ef<e.

If ¢ is a L—-fuzzy partial ordering in M then we shall
denote by ¥ _ the set of all e in ¥ which satisfy the
condi ti ons

£€6=6¢c=206.

Clearly, these conditions are satisfied for all e in ¥ if
e:IM"'. In the case of an arbitrary 0L —fuzzy partial order-

ing € in M, the above equalities are equivalent to the in-
equalities
<o, 6c<86,

expressible as the conditions that

edu, VOA edv, W=6du, W, edu, Vo>XABCV, WO =g6dUu, W
for all u, v, w in M. Consequently, €T (i.e. 82:8),
whenever ¢ is a L —fuzzy partial ordering in M. The equal -
ity 2 =¢ i mplies that ef"'ee?e for each subset f of M°.

For each @I —fuzzy partial ordering ¢ in M, the subset
7. of ¥ is obviously closed under conposition, and ¢ is

an identity of the subsem group 7 of . OF course,
Fo=7 in the case when e:IM"'. W shal | consi der F. as

a partially ordered sem group, using the partial ordering
i nduced by the partially ordering in . A subset 6, of

this semgroup will be defined as follows. For each s in
M, we set

S =M x{s},

i.e. s is the constant function assigning the value s
to all elements of M. The equality s~e=s"~ is easily ver-
ified, and therefore eSVeF . W note that

CeS™OCU, W ==¢e(S, W

for all u,w in M. The set of all elenents e£s~, where

seM, wll be denoted by €, (in the case when e:IM"’ this

set coincides with the set & fromExercise 11.4.11).
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We shall generalize the construction from Exercise
[1.4.11 in the followng way. The set M w | be supposed
to be the first conmponent of a conputational structure

U=<M,J, L, R, T, F, H>.

In addition, an @oL—fuzzy partial ordering ¢ in M wll be
supposed to be given such that the follow ng conditions are
satisfied for all s,t,s’ ,t’,u,v in M:

(1) eddCs,tD,JdCs",t"D>>=¢eCsS,S'DAeCt,t’D;
(ii) if f is sone of the functions L, R then
uedomf & vedomf = eCu, vO<edfcud, fCvd);
(iii) if f i1s some of the functions T, F then
eCu, vo < edcfcud, fcvd);
(iv) uedomH & vedomH & H(u> +HV> = eCu, v>=0.

Exanple 1. For an arbitrary choice of the conputational
structure U, the above conditions are obviously satisfied
if e=I e

Exanpl e 2. Suppose M is an infinite set, and J is an

i nj ection of M® into M. Let e be an L —fuzzy partial or-
dering in M such that 0ernge and the condition (i) is
satisfied for all s,t,s’ ,t” in M. In particular, & could
be the image =~ of a partial ordering = in M such that

(D) J(s,tD>2JCs",1t"> & s=2s” & t=>tr

for all s,t,s’,t” in M (besides the trivial case when

e:IM"’, such is the case also when M is the partially or-
dered sem group of an operative space, and J is the oper-

ation mM, init). W shall nowdefine L, R, T, F, H so that
<M, J,L,R, T, F, H> will be a conputational structure, and
the conditions (ii)-(iv) will be also satisfied. W define
the functions L and R by the conditions that

domL =domR=rngJ,
and
LCJ(¢s, tO>O>=s, RdICs, tO>=t

for all s,t in M. For the definition of T, F, H, we con-
struct elenments a and b such that

eCa, b>=¢eCb, a>=0.
Nanely we set a=1Jda,, bo), b:J(bO, a,>s wher e a, » b0 are
el enents of M satisfying the condition that eca, » bo):nnl.
Then we set

T=a, F=Db, domH={a, b}, Ha>=true, Hcb>=false.
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Exanple 3. Let Au=<M,J, L, R, T, F, H> be the Mschov-
akis structure based on an arbitrary set B, and €, be an

arbitrary oL—fuzzy partial ordering in B. Then there is a
uni que L —fuzzy partial ordering ¢ in M satisfying the
conditions (i)-(iv) such that e is an extension of €g > and

eCu, v>=0 whenever u and v are elements of M not be-
l onging to one and the sane of the three sets B, {O} and

M\ B° (where B°=Bu{O}).

Proof of the statenent of Exanple 3. The inposed condi -
tions on ¢ determ ne uniquely its values on the pairs not

in ¢\B°®, and the condition (i) requires that
(2) e(<S, t>, <s’", t">>)=eCs, S"DAeCt, t’D

for all s,t,s’,t” in M. Therefore an easy induction shows
t he uni queness of ¢ if such an ¢ exists at all.

To prove the existence, we define & by recursion al ong
the construction of the elenents of M fromelenents of B°.

Nanely we define first £ on the pairs not in M\ B°Y? by
setting edu, v> =g Cu, v in the case when both u and v

belong to B, &C(O, OO=1, and eCu, v>=0 when u and vV
are elenments of M not belonging to one and the sane of the

sets B, {O} and M\ B°. Then we use the equality (2) to
extend the definition of & to all pairs in cr\ B°YZ.

The 0L —fuzzy relation ¢ defined in this way satisfies
the condition (i), and it is an extension of €, assi gni ng

the value 0 to the pairs indicated in the statenment of the
exanple. It remains to prove that ¢ is a L—-fuzzy partial
order in M, and the conditions (ii)-(iv) are also satis-
fied.

By induction on u we show that eCu, u>=1 for all wu
in M. An induction on v shows the validity of the inequal-
ity edu, V>XAedv, W<gedu, w> for all u,v,w in M. The
inmplication eCu, v>=1 & eCv, ud=1 —» u=Vv also can be
proved by induction (for exanmple, on u). O course, all
t hese inductions nake use of the correspondi ng properties
of e .
0

To verify the fact that condition (ii) is satisfied, we
consi der separately the case when u and v are both in
B, the case when they are both in {O}, the case when they are

both in M\ B°, and the case when they are not in one and
the sane of these three sets. The validity of the condition
(iii) follows imMmediately fromthe fact that T and F are
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constant functions, and the validity of (iv) follows direct-
ly fromthe definition of € m

2

Now we shall define an operation m_ from & to ¥
by means of the equality € €

I _Cp, YOCU, VO=suUp{edu, SOA YU, t DA edI(s, t D, VvD:
€ seM, t eM)}
(in the case when e:IM"’, this operation coincides with the
operation T from Exercise I11.4.11). W shall prove now
t hat rngmn_<g_. Let ¢, y be arbitrary el enments of Fe o

and r, u, Vv, w be arbitrary elenments of M. Then
He(qo, YoCu, VO A edv, W =
sup{edu, SOAYCU, t DA eCI(S, t D, VOAelV, W: SeM, t eM} <
sup{eCu, SOA YU, tO>Aedd(s, tD, W: SeM, teM} =
He(qo, Yodu, W,

eCr, UDAT _Cp, YOCU, VO =
sup{edr, U>A pCUu, SOAYCU, t DA eCI(S, tD,VD: seM, teM} =

sup{Cedr, U>A eCu, SOOACedr, UDA YU, t IO AedICS, 1D, VD
SeM, t eM} <

sup{eCr, sOAYCr, to>Aeddds, t>,vd>: seM, teM}=
M_Cp, YOCr, vO.
Thus I is a binary operation in 7.
3 into ¥ be defined by
nmeans of the sanme expression as in Exercise I1.4.11, nanely

>Cx»> ¢> YO2CU, VO =CCHy>Cu, trued> A pCu, v>OvVv
CCHyxD>Cu, fal sed> A ydu, vDD,
wher e

Let an operation = from 7

C(Hy> Cu, p>=sup{xCu, sO: SeHl(p)}. 92
Let x, ¢, ¥y be arbitrary el enments of Fe W shall show
that =Cx, ¢, y> belongs to 7 too. For that purpose, we
first note that, for all r,u in M, we have
eCr, UDA CHyD>Cu, p>=sup{edr, ud>AxCu, sd: SeHl(p)}S
sup {x<r, s: SeHl(p)}:(Hx)(l’, p>

%2 Note that the defini ng equality of = can be witten
in the following sinple formin the conditions of Exanple 2:

SCxs > YICU, VO =CxCU, adA eCUu, VOOV (xCu, bD A ydu, vDD.
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(pe{true, false}). Nowit is easy to prove that, for all
r.u,Vv,w in M, the inequalities

Cxs> @5 YOCU, VIO A eV, W = 3Cx, ¢, YyoCU, W,
eCr, UDAZCx, ¢, YO2CU, VO=3Cx, ¢, YO2Cr, VD
hol d.

The facts concerning the generalization pron sed above
are formulated in the foll ow ng proposition.

Proposition 1. The 9—tuple
<¥ ,e,6_ ,0I _,el™e, eR"e, =, eT™, eF>
14 14 4

is a symretric and iterative conbinatory space. The iter-
ation in this conbi natory space can be characterized in the
same way as in Exercise |l.4.16, nanmely

Lo, x1CU, W):SUp{pm(u, W : meN},

wher e 1
- A
pCUs WO sup{j :0((Hx)(vj > true)/\a(vj > vj +1))/\
(Hx)(Vm, false>: Vos Vys +oos Vi eM, vV =1, Vm:w}.

W | eave the proof to the reader, restricting ourselves
only to giving the follow ng brief instructions:

1. Verify that
(6eS™OCU, v>=26Cs, VD
for all e in 7 and all s, u,v in M.
2. Making use of condition (ii), verify that
CeL™edCICs, t D, vD>=geCS, VD, (eRYed>CI(S, tD, vD=¢ell, VD
for all s,t,v in M.

3. Making use of condition (i), verify that, for all
s,t in M, the equality

1'[8(8§"', et~ =¢eu™
hol ds, where u=J¢s, t>D.
4. Verify that
Ce T”OCU, s> =eCTCu>, s>, C(eFY>Cu, s>=¢eCFCu>, s>
for all u,s in M.
5. Making use of condition (iv), note that
e(TCu>, sO>=0
for all s in Hlcfalse>, and
eC(FCu>, s>=0
for all s in Hictrue>.
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6. Verify that, for all e in 7 and all u in M,
sup{edu, Vv>A CHegd>(v, p>: veM} =CHB>CU, p>
(pe{true, fal se}).

7. To prove that the conbinatory space is iterative and
to obtain the expression for the iteration, use the Level
Orega Iteration Lenma (Proposition 11.4.4) and Proposition
I1.4.6.

Remark 2. In the conbinatory space from Proposition 1,
the elements eL~e and eR>e of ¥, can be repl aced, re-

spectively, by the 0L—-fuzzy relations L' and R in M
whi ch are defined as foll ows:

L' Cu, vO>=sup{eCu, JCv, WD : weM},
R Cu, v>=sup{eCu, JCw, VDO : weM}.
These 0L —fuzzy relations also belong to Fe o and the state-

ment of Proposition 1 renmmins valid after doing the nmention-
ed replacenent. We | eave the verification of this to the
reader, and we restrict ourselves only to the follow ng
hint: prove that

L' ¢J¢s, tD, v)=¢eCs, vD, R J¢s,tD, vD>=¢glt, vD

for all s,t,v in M (conpare with instruction 2 for the
proof of Proposition 1).

It is probably worthwhile to reformulate the result from
Proposition 1 for the case when L has only two el enents
and hence ¢ is the inmage =~ of sone ordinary partial or-
dering = in M. W shall give the refornmulation in the
terms of ordinary relations and of such an ordinary parti al
orderi ng.

The conditions (i)-(iv) in such a situation require that
for all s,t,s’,t” in M the equivalence (1) holds, the
functions L, R, T, F are nonotonically increasing (L and R
in their donmains), and the inequality u>v is inpossible
when

uedomH & vedomH & HCuD> == HCvD

The partially ordered semgroup ¥ is actually F M
in this situation, and its subsem group Fe o which will be
denoted by %_ now, consists of the elenents e of F oM

sati sfying the condition that
<U, V>e6 & V=W = <U, W>e86,
Uu=v & <V, W>eb6 — <U, W>e86
for all u,v,w in M. O course, this subsem group will be
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considered with the partial ordering by inclusion, which is
the partial ordering induced from F M. If s is an el-

enent of M then the L —-fuzzy relation £s™ is the inmge of
the relation

S, ={<u, v>eM : s>V}
The last relation is an elenent of ¥_, and the set of all
such relations will be denoted by €>_. Instead of eL™e¢,
eRYe, T and eF, the relations -
L. ={<u, v>eM>: Ju’ v’ CU=u’ & <U’, V' >l & Vv’ =VvD},

\

@_:{<u, vseM©: Ju’ IV’ U= U & <U’, V' >R & V' =V},
T, ={<u, v>er": Tcud=v},
F_={<u, v>eM”: FCu>>v}
wi Il be considered. The binary operation T_ corresponding
o M is defined as foll ows: -
Il

_Cp, YO ={Cu, v>eM®: Is It (<U, S>cp & <U, t>cy &

- J(s, t >=VvD}.
The operation = in ¥_ is the restriction of the operation

> from F M. In this denotations, the particular case of

Proposition 1 corresponding to the considered situation
yields the follow ng result (which, of course, can be proved
also in a direct way):

Corollary 1. The 9—tuple
2)2) 62) HZ’ LZ’ g) Z) TZ’ FZ>

is a symretric and iterative conbinatory space. The iter-
ation in this conbi natory space can be characterized in the
same way as in the conbinatory space F M.

Remark 3. In the above situation, it is obvious that,
for all s,t in 2, the inclusion s_=t_ holds iff the in-

equality s>t holds in 2. Therefore the set ©_, consider-

ed as a partially ordered set by using the partial ordering

i nduced from ¥_, turns out to be isonorphic to the par-

tially ordered set M. This, together with Exanple 2 or
Exanple 3, gives an affirmative answer to a question of
D. Vakarel ov, nanely the question whether a conbinatory
space <%, 1,6, 1T, L, R, =, T, F> is possible such that the
partial ordering in € induced from ¥ is different from
the identity relation in &.

Remark 4. The above renmark, together with Exanple 2 and
the el ementary properties of conbinatory spaces, shows which
are, up to isonorphism the possible partial orderings in-

<¥
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duced in the sets & fromthe partially ordered sets ¥ in
conmbi natory spaces <%,1, 6, 1T, L, R, =, T, F>. The charac-
terization (given in Skordev [1976c]) is the follow ng one:
exactly those partial orderings can be obtained in this way
at which the Cartesian square of the partially ordered set
i's isonorphic to some subset of this set (the Cartesian
square considered with the natural partial ordering in it
whi ch corresponds to the partial ordering in the given set).

4. Probabilistic exanples
of iterative conbinatory spaces

(I') On data processing devices with probabilistic non-
determ nism A conputational structure

U=<M,J, L, R T, F, H>

wi |l be supposed to be given throughout the whole section.
We shal |l construct sone conbi natory spaces whose el enents
coul d be used as descriptions of probabilistic data proces-
sing devices transformng elenments of M into elements of
M. The devices in question are thought about as non-
determ ni sti c ones whose out put depends on the input in a
probabilistic manner. To be a little nore precise, we must
say that each concrete application of the device to the in-
put data should produce at the nobst one correspondi hg out -
put, but different concrete applications to the same input
data could lead to different results (including possibly
productive term nation of a concrete application and no out-
put data produced by another one); in general, the result of
the application could be not predictable, but certain state-
ments about the result nust have a definite probability.
Such non-determ nistic data processi ng devices and the com
putability of random functions by them have been studi ed,
for exanple, in the papers Santos [1969, 1971].

(I'l) The case of discrete probability distributions. The
si npl est case of probabilistic non-determ nismof data pro-
cessing within the given set M is that one when, given any
i nput data from M, there is a corresponding discrete dis-
tribution function indicating the probabilities of all el-
enents of M to be the output data, as well as the prob-
ability that no output data will be produced (of course, in
the case of an uncountable set M nost of its el enents nust
have a zero probability to be the output data). The inforna-
tion about the distribution functions corresponding to al
possi bl e input data can be collected in a function e from

M° to the interval (0, 11 of the real line R so that, for

any fixed u in M, the function av. eCu, v> assigns to al
el enents of M their probabilities to be the output data
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when the device is applied with input data u. Cearly, for
all u in M, the inequality

(1) ZQ(u,V)sl
\Y

nmust be satisfied,93 the value of the |eft-hand side expres-
sion being the probability of a productive term nation of
the work at the input data u, and the difference between 1
and this value being the probability that no out put data

wi |l be produced by this wor k. %4

W shal |l now construct a combi natory space correspondi ng
to such a kind of mathenmatical description of the behaviour
of sonme non-determnistic devices. To do this, we have to
make cl ear what mat hemati cal operations on the functions 6
correspond to those three ways of conbi ning devices which
have been used until now as an intuitive background for the
definition of conposition, conbination and branching (see,
for exanple, the beginning of Section 2).

W shall denote by ¥ the set of all functions e from
2

M= to 10, 1] which satisfy the inequality (1) for all wu
in M. This set will be considered as a partially ordered
one by supplying it with the partial ordering defined as
follows: =y iff ¢cCu, v>>ycu,v> for all u,v in M.
For any two elenents ¢ and y of ¥, we define a real-
val ued function ¢y by means of the equality

PY=AUW. ) ycU, VeV, W,
\
This is a matri x product known fromthe theory of Markov

processes, at |east for the case when M is countable. The
function ¢y is easily seen to belong again to . If ¢

9 The convention is adopted that, for each each non-
negative real -valued function t on M, the synbol ZI{V)
denotes the | east upper bound of all finite suns v
’C(V1)+ Ce +'c(vn),

wher e Vys> ---5 Vv oare di stinct elements of M.

94V@ note that, in the case of a countable set M, the

non- negati ve real -val ued functions e on M sati sfying,
for all u in M, the equality

ZQ(u,V)::l
Vv

are called stochastic matrices and the nunbers eocu, v> are
naned transition probabilities.
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and y describe the behaviour of sone devices then, under a
certain i ndependence assunption, the function ¢y describes
t he behavi our of their sequential conposition, where the de-
vice described by y is applied first, and its output data
is taken as the input data for the device described by o.
The nmultiplication in ¥, defined in this way, is obviously
nonotonically increasing, and it turns out to be associ-
ative. So ¥ becones a partially ordered sem group.

Using simlar intuitive considerations and the nentioned
i ndependence assunption, we see that the follow ng defini-
tions of a binary operation T and a ternary operation X
are in concordance with the other two ways of conbining de-
vi ces:

MCp, ¥ Cu V)_{(p(u,L(V))l//(u, Rcvo>y if verngld,
> > - 0 i f

verngd,

SCx, @> YICU, VO =CCHyDOCuU, truedpdu, v>o>O+
C(CHyx>(Cu, fal se>ycu, v,

wher e
CHx> cu, p>=Yxcu, s> |s<H o,
S

|A]] denoting 1 if A is true and O otherw se. The oper-
ations m and = can be shown to transformelenents of ¥
again into elenents of ¥ (for the proof of the statenent
concerning T, it is useful to verify that

ZH((p, ¥ Cu, V)zZ(p(u, S)Zl//(u, tO
Y S

for all ¢,y in ¥ and all u in M).

If f is a partial function from M to M, then we
shall represent f by the elenments f~ of ¢ defined as
fol | ows:

f~cu, v>=|<u, v>ef |.

Let © consist of the elenments of ¥ representing in this
sense the constant total mappings of M into M. Then the
fol |l owi ng proposition holds:

Proposition 1. The 9—tuple

©C =<7, IM"’, ¢, I, L, R, =, T, F~>
is a symetric and iterative conbinatory space. For arbit-
rary o, x in ¥ and arbitrary u,w in M the equality
(0 0]

Lo, x1CU, WD = z p LU, W

m=0

hol ds, where
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p LU, W=Y Y ... ) [lVy=U & V =W]| x
V.V \
01 m
m1
(Hx)(vm,false) [1 ((HX)(W
j =0
The verification of the conditions fromthe definition
of the notion of a synmetric conbinatory space will be |eft
to the reader (an analogy with the proof of Proposition 3.1
can be instructive). Wen properties of the operation T
are considered, it is convenient to use the follow ng equal -

ity:

> true)ofvj, vj+1)).

ICp, YO Cu, V):zzgo(u, SOYCu, tO1,~CICs, t, V.
S

The fact that & is iterative can be established by using

the Level Orega Iteration Lenma (Proposition I1.4.4), and
the expression for the iteration can be obtained by suppl e-
menting an application of Proposition I1.4.6.

In the case when A is a standard conputational struc-
ture over the natural nunbers all sunms with summtion vari -
abl es ranging over M can be witten as ordinary infinite
series. For exanple, the condition (1) can be witten as
fol |l ows:

(0 0]
Y ecu, v>=1.
V=0
In this case, a characterization will be given for the el-

enents of ¥ conputable in the set
B=4{S", P, a},
where S=au.u+1l, P=au.u=1, and

1 .
alu, v =12 if v=1,
0O if v>1

(the element o« of ¥ characterizes the "data processing by
tossing a coin“).95 The characterization reads as foll ows.

Theorem 1. Let the conputational structure u be a
standard conputati onal structure over the natural nunbers,
and let & be the iterative conbinatory space from Proposi -
tion 1. Then, for each element e of ¥, the follow ng two

9w note that in Tabakov [1977] the set of the elenents
of ¥ is studied which are in a certain sense prinmtive re-
cursive with respect to o« (this elenent is denoted there
by A).
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conditions are equival ent:
(a) e is G—conmputable in B;

(b) the set of all quadruples <k, |, u, v> of natura
nunbers satisfying the inequality

'ITI< QCU, V)
i's recursively enunerable.

Proof. The inplication from(a) to (b) is proved by a
nore or |less straightforward induction along the construc-
tion of e. Suppose now e satisfies the condition (b). W
shall give an outline of the proof that condition (a) wll
be al so sati sfi ed.

W first note that, for each one-argunent partial recur-
sive function f, the corresponding elenent f~ of ¥ is
G—conputable in {S~, P*} (hence also in B). This fol-
|l ows from  Theorem|.3.1 and the fact that the napping
Af. f~ is a honmonorphismw th respect to the operations
conposition, conbination and iteration in the iterative com
bi nat ory spaces Gp(QL) and 6.

The next step is to prove the G—conputability in 3
of the elenent B of ¥ defined in the follow ng way:

27U i v<2Y,
BCU, VD =
0 if v=2Y

(in Tabakov [1977] this elenent is denoted by egm). The
intuitive idea of the proof is based on the fact that a bi-
nary representation of an arbitrary nunber which is | ess

than 2" can be obtained starting fromthe enpty string by
appending u times a 0 or 1 digit on the right, and if
the choice of this digit is realized by tossing a coin then,

for each nunber less than 2", the probability that a repre-

sentation of this number will be obtained is equal to 2"
(the enpty string is considered as a representation of the
nunber 0). W hope the reader will be able to transform
this intuitive idea into an actual proof (we note only that
t he nentioned non-determ nistic appending of a 0 or 1
digit on the right can be described by the el ement

(at. 2LCt O+ RCt ))’“H(I[N"', o
of ¥).

The following lemma will be needed further, and the idea
of its proof is simlar to an idea used in Tabakov [1977].

Lenma 1. Let h be a one-argunent recursive function,
and G be such a two-argunent recursive function that, for
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all natural nunbers u, the equality
(0 0]

z &u, v = 2w
V=0

holds.96 Then the elenent aAuv. Xu, v>2°
G—conputable in B.

Proof. W construct a two-argument recursive function
H such that

h(W of 7 is

Hou, ro=max{i : ) &u, v>=r}

v<i
whenever r <2MY 1t s easy to see that, for any fixed
u and i, the equation Hu, r>=i has exactly &Xu, i>D

solutions r satisfying the inequality r < ohtu) Using this
fact, one can verify the equality

auv. Gau, v>2 "W —eat . HeLet >, Ret DOV TC v, gh™D.

Now, |eaving the details to the reader, we note that the
foll owi ng conclusion can be drawn fromthe assunption that
e satisfies the condition (b):

There are three-argunent recursive functions X and Y

such t hat
(2) eCu, v>=1im
n—oo

Xcn,u,vD
YCn,u,Vv>o+l

for all u,v in N, and
X<n,u,vD < Xcn+1l,u,Vv>D
YCn,u,vo+1l ~ YCn+1,u,vO+1

for all n,u,v in IN.

Maki ng use of the representation (2), we shall obtain an
appropriate representation of ecu, v> as the sumof an in-
finite series.

Lenmma 2. There are two-argunent recursive functions
A, D, an one-argunent recursive function B and a three-
argunment recursive function C such that

96I.e., for all u in IN, there is a natural nunmber n
such t hat
n

Z(XmV):me,

V=0
and Xu, v>=0 for all v greater than n.
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m
0<Acm, u><28(M z cem, u, v = 20(mu)

V=0
Ccm u, v>=0, v=m+1l, m+2, m+3, ...

for mu in N, and
Q0

ecu, VD = z

m=0
for all u,v in IN.

Proof. Let D be the set of all rational nunbers of the

form —T where m and n are natural nunbers. W shall

2
note three statenents concerning the construction of nunbers
from D having certain connections with given rational
nunbers. In fact we shall need the translations of these
statenents in the ternms of existence of certain recursive
functions, but, for the sake of brevity, forrmulations wll
be given using the words "one can effectively find".

The first statenent asserts the well-known density of
the set D in the set of the non-negative rational nunbers,
nanel y:

1. For any two rational nunbers a and b satisfying the
inequalities O0<a<b, one can effectively find a nunber d
from D satisfying the inequalities a<d<b.

To have an explicit exanple of a translation of the kind
menti oned above, we shall refornmulate this statenent as fol -
| ows: there are four-argunment recursive functions M and N
such t hat

ACO,u>ACl,u> ACm—1,u>D

A(m,u))C(m,u,V)
2B(o) 2B(1)"' 2B(m-1)

(1- >B(m) >D(m, u)

i MG Lj Lk, D> K
< - 2 <
j+1 2N(|,J,k,|) | +1

whenever i,]j, k, | are natural nunmbers satisfying the in-
equalities

i .k
j +1 [ +1 -
The next statenment of such a nature is the follow ng
one:
2. Let a, s A and b1’ ...,bS be rational nunbers
satisfying the inequalities
Osai <bi , 1 =1, ...,5s,

and let d be a nunber from D satisfying the inequalities
a+...+a_<d<b +...+b_.
1 S 1 S
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Then one can effectively find nunbers d ...,d_from D
satisfying the conditions S
ai<(¥ <bi’ i=1, ..., S,

d1+...+dS:d.

The proof of this statenment is by induction, and it
makes use of Statenent 1. The translation of Statement 2 in
the terns of existence of certain recursive functions wll
be omtted (as well as the translation of the next one).

3. Let a , ..., ag be non-negative rational nunbers

satisfying the inequality

a+...+a <1,

1 S
and e be a positive rational nunber. Then one can effec-
tively find nunbers c¢ and d ...,ds from D satisfying
t he conditions

c<1l, d+...+d =1,
1 S
q—escdis%, i =1, ..., S.

For proving this statenent, we first consider the case
when a +... +aS::0. In this case, we set ¢ =0, d1::1,
d2::... ::dS::O. O herwi se, using statenment 1, we choose a
nunber ¢ from D satisfying the inequalities

max {a, —e, 0}+. ..+nnx{a —e, 0}<(:<a .o tag,

and then, naking use of statenent 2, we choose nunbers d
sy dS from D such that

nax{ai-e,O} a, .
c sdisE—, i =1, ..., S,
d1+...+dS:1.
The nunbers c, d1""’ dS constructed in this way satisfy
the formnul ated conditions.
Now we set
Xcn,u,v>

en(u’V)“Y(n,u,V)+1’
and we address ourselves to the construction of functions
A, B, C, D with the needed properties. This will be done
in the formof a construction of the functions

Ucn, u> =AU ©yen gy, vy = &N UL V0
oB(n) 5D(n, u)
whose values will belong to © for all m u,v in N.

These functions nmust be effectively conputable, and they
nmust satisfy the follow ng conditions:
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m

(3) O<Um, u><1, ZV(m, u, v>=1,
V=0

(4) vém, u, v>=0, v=m+1l, m+2, m+3, ...
Q0

(5) ecu, VD = z Wm, u, v,
m=0

wher e
Wm, u, v>=UcO0, ud... Um—1, udcl—-Um, ud>o>VvVim, u, v>D.

W shall ensure the validity of the equality (5) by con-
structing the functions U and V so that the inequalities

(6) e(u,V)—l—sz Wm, u, v><86 Cu, VD
n 2n n
m<n
wi Il hold whenever v <n.
The functional values Udn, u>, V¢n, u, v> will be de-

fined for any fixed value of u by recursion on n. If n=0
then the requirement concerning the inequalities (6) is
trivially satisfied. Suppose now that, for all values of m
whi ch are | ess than sone given natural nunber n, val ues
fromthe set D are effectively assigned to the expressions
of the form Uim, u> and Vdm, u, v> in such a way that for
all v which are less than n the inequalities (6) hold,

and for all m which are less than n the conditions (3) and
(4) are satisfied. Then the expressions Wm, u, v> wth
m<n wll also nake sense. W set

6, UV — z Wem, u, v

m<n
a — > V:O, 1, ceey n.
UcO,ud...UCn-1,u>

The nunbers a,, 8,5 -
negative, as it follows fromthe inequalities
6  (u,Vv>=e Cu, v>=0
n+1 n

and the validity of (4) and (6) for m<n and v<n, re-
spectively. By (1)-(4), we have the inequalities
n

n
z 6, U, VO < z ecu, v><1
V=0

V=0

a are rational. They are non-

and the equalities



4. PROBABI LI STI C EXAMPLES OF COVBI NATORY SPACES 257

n n
z ZV\(m,u,V):z ZV\(m,u,V):
V=0 nNKn mn<n v=0
z UcO, ud...Um—1, udcl—Ucm, ud> =
m<n
z cUc0, ud>...Um-1, ud—W0, u>...Um, ud> =
m<n
1—-UcO0, ud...Un-1, uw.
Hence
a0+a1+...+an51,

and therefore, by Statenent 3, one can effectively find
nunbers ¢ and d_, d ., d fromthe set D such that

0 1> 7 n
< + ...+ —
10 1, d0 dn 1,
a — <cd <a , v=0, ...,n.
\' 2n+1 \" \'

W set
Un, u>=1-c,
Vcn, u, V):dv, v=0, ..., n,
Vén, u, v>=0, v=n+l,n+2,n+3, ...
Then the inequalities

1
6,,,CU> V)—2n+1 < z Wm, u, v> < e Cu, v>
nm<n+1
will hold whenever v<n+1, and for all m which are | ess
than n+1 the conditions (3) and (4) will be satisfied..

Havi ng now Lenmas 1 and 2 at our disposal, we shall re-
present the element e of ¥ in a formshowing its G-
conputability in ®B. For that purpose, making use of the
functions A, B, C, D fromLenma 2, we define one-argunent
recursive functions h, h- and two-argunent recursive func-
tions G, G in the follow ng way:

h(U):B((U)O), h'(U):D((U)O, (U)i)’
Gu, 05=2"" _Accus_, cud >, Gou, 1>=Accud, , cud, >,
xu, v>=0, v=2,3,4, ...,
G Cu, V):C((U)O, ud, 5 vo.
Then we set
o=auv. Gu, v>2 MW o —suv. Gcu, vo2

Then ¢ and ¢° are elenents of ¥, and, by Lemma 1, they
are G-—conputable in B. The G—conputability of e in B

h (u)
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(and hence the validity of the theorem) will be established
by proving the equality
(7) 6= fY, 9107,

where f =au.2u, g=au. 3"

For the proof of (7), we set ¢=1f", ¢1. An easy cal cu-
| ation, using the fornula for the iteration from Proposition
1, shows that

m1 .
ccu, 2Mud> = oc2Mu, 0> T 92 u, 1O
j =0
for all natural nunmbers u, m and (Cu, ww=0 %n t he case
when u, w are such natural nunbers that w=2"u for all
m in IN. Therefore

(e 0]
Cpr LOCU, vV>= Y Cu, 2Mu> ¢ ¢2Mu, vo =
m=0
(e 0]
m m m 1 .
Y 92Mu, 057 2u, v> T o2 u, 1.
m=0 j:0
Then
Co’ Lg™~dOCU, vO=Cp’ 1O3Y, vo=
*© m 1
y 02 34, 009 c2M 34, v> T o2 .3Y, 1> =
m=0 j:0

2B(mM 2 ,D(m u) Ly 5B(1) =6CU, Vo g

(0 0]
m1 .
z (1_A(m,u))C(mALV) ACj ,uD
m=0
Theorem 1 shows that the made choice of the set B

| eads to a natural notion of conputability for random func-
tions in IN. There are sone reasons to assune that this is
t he nost general notion of effective conputability for such
functions. At any rate, the class of the conputable random
functions will be not enlarged if we add to B sone ot her
elements e of ¥ satisfying the condition (b) (for ex-
anple, an elenent e describing "data processing by neans
of a dice"). It would be interesting to conpare the conput-
ability notion studied in Theorem1l with other notions from
the literature, e. g. with sone notions introduced by Santos
in his papers nmentioned in Subsection (1).

The semigroup ¥ of the conbinatory space from Proposi -
tion 1 is a subsenm group of a | arger one which will be de-
not ed by F - The el enents of F, o are arbitrary mappi ngs

of M into the closed interval [0, ool (the value oo in-

cluded). The partial ordering, the nmultiplication and the
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ext ensi ons m and 2 of the operations T and = to F

are defined by nmeans of the sane expressions, with only one
detail needing special care, nanmely the neani ng of the prod-
ucts 0.co and oco.0 which now may occur at the eval uation
of the expressions. It turns out to be appropriate for our
pur poses to assign the value 0 to these products. After
adopting this convention, we have the follow ng result.
Proposition 2. The 9—tuple
G =<% ,I .~ @610 ,L7 R, , T F>
00 00 M 00 00
is a symretric and iterative conbinatory space, and the
iteration in this space can be expressed in the sane way as
in Proposition 1.

The proof of this proposition is alnpst the sane as the
proof of Proposition 1, and the nodifications are mainly in
the direction of sinplification (since now no problens arise
about the convergency of the sunms with summati on vari abl es
rangi ng over M, and nothing like the condition (1) has to
be verified).

It is reasonable to |ook for sonme intuitive interpreta-
tion of the el enents of F and of the operations on them

There is a sinple interpretation for those el enents of F

whose ranges are contained in Nu{co}. Nanely one could
consi der non-determnistic devices wi thout probabilistic
features, and, when given such a device, one could describe
it by the element e of F such that, for all u,v in M,

eCu, v> is equal to the nunber of the possible conputation
paths leading from u to v. Mre arbitrary el enments of F o

can be used in a simlar way for the description of non-
determ ni stic devices which enploy the two kind of choices:
the conpletely free and the probabilistic ones. In this case
an el enent of F coul d descri be the device by assignhing to

each pair u, v of elements of M the expected nunber of the
possi bl e conputation paths leading from u to v (the prob-
ability that a path is possible being calculated by nulti-
plication taking into account only the probabilistic choices
occurring along the path).

(I'1l) The case of probability distributions character-
i zed by measures on a o—field of sets. In this subsection,
the additional assunption will be nmade that a o—field &
on M is given, i.e. a set & of subsets of M such that
Mceg, and & is closed under difference and under finite
and count abl e unions. The foll ow ng coordi nati on between &
and the conputational structure u wll be al so assuned:

(i) for any set E belonging to &, its pre-inages
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L '¢E>, R'E>, T'%E>, F'E> belong to &, and its pre-imge

J B> bel ongs to every o—field on M contai ni ng anong
its elenents all Cartesian products E xE”, where E’ and
E” belong to &;

(ii) the sets H'ctrue> and H'cfalse> belong to €.

Exanple 1. Let 2u be the Mdschovaki s conputati onal
structure based on an arbitrary set B, and | et &, be an

arbitrary o—field on B. Let & be the |east one anong the
oc—fields #¥ on M which have the foll ow ng properties:
(a) €, <K, (b) {Oye¥#; (c) whenever E° and E” belong to

¥, then E’ xE” also belongs to #. We claimthat the con-
ditions (i) and (ii) are satisfied in this case. The valid-
ity of (ii) is clear fromthe equalities

H'true>=m\B%, H'cfalse>=8B%° B°=Bu{0}.
To verify (i) we note first that, for any E in &, the pre-

I mage L""CE> is either the set ExM or the union of this
set with one or both of the sets {O}, B, and a simlar

st at enent concerni ng R'CE> holds. W note also that each
of the pre-images T B>, F'CE> is either M or @. Thus

the part of (i) concerning L ¢E>, R%E>, T%E>, F%BE> is
satisfied. For the verification of the part concerning

J 'E>, we note the equality
J B> =E\ B°.
Thus it is sufficient to show that, whenever €& is a o—

field on M® contai ni ng anong its elenents all Cartesian
products E’ xE”, where E° and E” belong to &, then
E\B°<g’ for all E in &. This can be shown by verifying
that {E<&: E\B°<g’} is one of the o—fields # on M
havi ng the properties (a)-(c).

Intuitively, we shall consider now non-determnistic
devi ces such that, for any u in M and any E in &, there
is a definite probability that the application of the device
with input data u wll produce an output data belonging to
E. It is natural to require, for a fixed device and a fixed
i nput data u, the dependence of this probability on the
choice of E to be represented by a neasure on & with

val ues not greater than 1.%97 For a fixed devi ce, the infor-

A measure on € is a o—additive non-negative real -
val ued function on €. It is habitual to admt oo as value
of a nmeasure, but we shall consider only neasures with fi-
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mati on about the nmeasures on & corresponding to all pos-
sible input data can be collected in a function e from
Mxg& to the interval (0, 11, such that, for any u in M,

the function AE. eCu, E>D will be the correspondi ng neasure.
Besi des the condition on the function e corresponding to
this, one nore condition will be inposed, due to technical
reasons, in the definition which will be given bel ow.

We shall denote by ¥ the set of all functions e from
Mxg to the interval [0, 11 which satisfy the follow ng
condi ti ons:

(a) for any fixed u in M, the function AE. 6cCu, BED
(denoted further by ecu, ->) is a measure on §&;

(b) for any fixed E in &, the function au. ecCu, B>
(denoted further by ecC-, E>) is Borel neasurable relative

to .98

Exanple 2. Let 9, €y, € be such as in Exanple 1. Let
6, be a mappi ng of Bxeg, into the interval [0, 11 such
that AE. 6,Cu, E> IS a neasure on &, for any fixed u in
B, and au. 6,Cu, E> is Borel neasurable relative to &,
for any fixed E in g, It can be shown t hat EnBeg, for
any E in & (by noticing that {Ecé&: EnBeg } i s one of

the o—fields # on M having the properties (a)-(c)).
Using this fact, we define a mapping e of Mx& into the
interval [0, 11 in the follow ng way:

eo(u,EmB) if uebB,
0 if ue«B.

It is easy to verify that 6<% and e is an extension of
e

ecu, E):{

o

We shall restrict our intuitive considerations to such
devi ces which can be described (in the already explai ned
sense) by functions belonging to .

If f is a partial function in M then we define a nap-
ping f~ of Mxg& into the set {0, 1} by setting

f~cu, E>=[luef B |
(the nmeaning of the denotations of the form | A| has been

nite val ues.

98 A real -valued function Z defined on M is called
Borel neasurable relative to & iff, for any choice of the
real nunber c, the set {ueM: ZCu>>c} belongs to &.
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i ntroduced in the previous section). For e=f~, condition
(a) is obviously satisfied. As to condition (b), it is

equi valent to the condition that f 'cE>ce for every choice
of E in &. The partial functions in M which have this
property are called neasurable relative to &. Thus we get
the follow ng result:

For any partial function f in M, f~cg iff f is
neasurable relative to &.

By the assunption (i), L, R, T, F are neasurable rel a-
tive to €. Cbvious other exanples of functions neasurabl e
relative to & are INI and the constant total nappings of
M into M.

Remark 1. In general, the mapping af.f~ of the set of
t he neasur abl e el enents of ?p(M) into ¥ is not necessar-

ily an injection. This mapping is an injection iff, for any
two different elenents s and t of M, there is a set E
from & such that s<E, t «E.

The set ¥ w |l be considered by the natural parti al
ordering defined as follows: >y iff ¢Cu, ED>ycCu, ED
for all u in M and all E in &.

To define for the elenents of ¥ a multiplication cor-
respondi ng to the sequential conposition of devices, we need
an operation of integration. The informati on needed for the
formul ation of the definition is the foll ow ng one:

|f Z is a bounded real -valued function defined on M
and Borel neasurable relative to &, and u IS a neasure on

€, then a real nunber J Zdu is defined called the inte-
M

gral on M of Z with respect to u; the sane nunber is de-
not ed al so by J ZCcvD ucdv)y, and, of course, other vari-
M
abl es can be used instead of v (for the definition of the
integral and for its properties which are used in the se-
quel, cf., for exanple, Loeve [1977]). Instead of J we
M

shall wite sinply J

Here is the definition of the product ¢y of two el-
enents ¢ and y of ¥: this is a mapping of Mxg& into R
determ ned by neans of the equality

CoydCu, E):J(p(v, E>ycu, dvD.

The basic facts concerning this product are formulated in
the foll owi ng proposition.

Proposition 3. The set ¥ is closed under the nmultipli-
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cation defined above. This set considered with the intro-
duced partial ordering and nultiplication is a partially

ordered sem group, and IM"' is an identity of the sem group.

Proof. To show that ¥ is closed under nultiplication,
suppose that ¢ and y are sonme elenments ¥. Fromthe in-
equalities

0<ocv, E><1,

using the elenentary properties of the integral, we get the
i nequalities

0=<CpydQu, ED=<ylu, M.

These inequalities show that all values of ¢y belong to
the interval 10, 11. Making use of the o—additivity of all
functions of the form ¢Cv, -> and of the nonotone conver-
gence theorem we easily see the o—additivity of the func-
tion CpydCu, -> for any fixed u. Suppose now sone fixed
set E from €& is given. W shall show the Borel neasurabil -
ity of the function Ceyd(-, ED. To do this, it is suffi-
cient to show that, for each Borel measurabl e bounded non-
negative function Z on M, the function

(8) AU.IZ(V)I//(U,dV)

is also Borel neasurable. If Z is a function of the form
aAv. |lveE ||, where E  is sone fixed set from &, then

t he corresponding function (8) is y¢-, E,>» and hence this

function is Borel nmeasurable. The case of an arbitrary Borel
nmeasur abl e bounded non-negative function Z can be reduced
to the above case by representing Z as the limt of a non-
otonically increasing sequence of |inear conbinations of
functions of the above form Thus we proved that pye=9.

The nultiplication in ¥ is obviously nonotonically in-
creasing. To show its associativity, we suppose that el-
enents ¢, y and x of ¥ are given. Let us denote yx by
6. Then

ocw, E):I:/;(u, E>xcw, dud

for all weMm, Ec€, and we have to prove the equality
Coydx=9¢p6. In other words, we have to prove that, for
all weM, Ecg, the follow ng equality holds:

I(J@(v, E>ycu, dvD ) xcw, du)zj(p(v, E>ecw, dv).

To prove it, it is sufficient to show that, for each Borel
nmeasur abl e bounded non-negative function Z on M, the
equality

(9) I(IZ(V)!//(U, dv>)xcw, du):IZ(V)e(W, dv>
holds for all w in M. If Z is a function of the form
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Av. |lveE ||, where E is sonme fixed set from &, then the
above equality is true, since it is equivalent to the equal -
ity

Iw(u, E >xcw, dud>=ecw, E_ >.

The general case can be reduced to this special one in the
same way as in the first part of the proof.

The equalities IM"'e:eIM"’:e are also true, since
t hey mean t hat

HVGE"e(u,dV)::je(v,E)"uedv|p:e(u,E)
for all uemM, Ee@..
For any ¢ and y in ¥, a real-valued function TCp, yD

will be defined on Mxg&, and this function will be shown to
belong again to #. In its definition, the o—field &
Will be used, i.e. the least o—field on »° containi ng

anong its elenents all Cartesian products E’ xE”, where FE’
and E” belong to &. W shall nmke use also of the notion
of product of two neasures on &. Nanely, we shall use the
fact that, to any two neasures u’ and u” on &, there is a

uni que neasure u on &% (called the product of wu° and u”~
and denoted by wu’ xu”) such that
uCE" xE”"> =u’ CE" Du”CE”>

for all E',E” in & (for this fact and for some properties
of u xu” needed further, cf. e. g. Loeve [1977]). Here is
the definition of the function TCy, y>:

MCp, YU, E>=Cpcu, - D xycu, - >33 CE>D
for all uemMm, Ecg. It follows fromthis definition that
MCp, YOCU, ED< CplU, - DxycU, - OXC(MD = pCu, MD>xycu, M><1.

A straightforward verification shows that TCep, yoCu, -> is
a measure on €& for any fixed u in M. For the proof of
the Borel neasurability of the functions TCe, y>C-, ED,

where E<é&, we denote by # the set of all K from &
such that the function

AU. Cplu, - D xydu, - IOCKD

is Borel neasurable relative to &. If K=FE xE”, where F’
and E” belong to &, then Ke#, since the above function
will be the product of Borel neasurable functions ¢C-, E'D
and y<¢-, E”> in this case. On the other hand, # is closed
under uni ons of nonotonically increasing sequences and under
i ntersections of nonotonically decreasing ones. Therefore

cr., or exanpl e, oeve , . =€&, and, I n par-
(cf., f l e, Loéve [1977, 1.6]) 2 d
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ticular, J 'E>ex for all E in €. Thus all functions
Cp, Yy>C-, ED, where E<é€&, are Borel neasurable, and hence
MCp, Yyo¥F.

For any x, ¢, ¥y in &, a real-valued function
>Cx, ¢, > Wl be defined by neans of the equality

>Cx> ¢> YOCU, E>D=CHx>Cu, truedpdu, E>+
CHx>Cu, fal se>ycu, BED,

wher e
CHy>cu, pd>=xcu, H cpr>.
W have
>Cx, ¢, YICU, ED < CHyOCu, trued>+ (HyD>Cu, fal se> =
xCU, Hctrue>uH cfalsed>><1,

and the verification of the conditions (a) and (b) for the
function e=3Cy, ¢, y> is straightforward. Hence this func-
tion belongs to ¥ again.

For any s in M, let s be the constant mapping of M
into M wth value s, and let © be the set of all func-

tions s~, where semM. Then the follow ng proposition holds.

Proposition 4. The 9—tuple
©C =<7, IM"’, ¢, I, L, R, =, T, F~>
is a symetric and iterative conbi natory space. For arbit-

rary o, x in ¥ and arbitrary ueM, E<& the equality
(0 0]

[o, x1Cu, E>= z p. (U, ED

m=0
hol ds, where [ is defined by neans of the equality

o,V > E):I(I(...I(I"vmeE"x
m1

(Hx)(Vm, fal se>(TI (H;g)(vj , trued)x
j =0

oV _ > dvm))o(v dv .. )o(vi, dv2))<r(v0 > dvi).

m m2’ m1)'

The proof of this proposition will be not given in de-
tails. A certain part of the things which have to be done
are verifications using well-known properties of the inte-
grals on M. W shall note only sone nonents fromthe proof,
and we hope the readers who are famliar with neasures and
i ntegration on abstract sets will be able to work out the
whol e proof.

1. One verifies that
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(es™oCu, E>=e6cCs, BED
for all e in ¥, all s,u in M and all E in s&.
2. For arbitrary s,t in M, one verifies the equality
nes~, t~o>=u",
where u=JCs, tD.
3. The validity of the equality
ncl ™, YyS™O6=1C6, Y5~

is established by neans of the follow ng cal cul ati ons, which
make use of a representation of the product of two neasures
in the formof an integral and of changi ng of the order of

i ntegration on the basis of Fubini’s theorem

Ccl \ ~, yS~>e5du, E):IH(I v USTOCV, Bdecu, dvd =
I(I MV X CYSTCY, ¢ B>y ecu, dvd =
I(I Vs DXy (s, >3 B>y ecu, dvd =
I(IIM%V,{p: <p,q>eJ4(E)})w(s,dq))e(u,dV):
I(IIM%V,{p: <p,q>eJ4(Enoe(u,dV))w(s,dq):
Ie(u,{p: <p,q>eaT1(E)}))w(s,dq)::
cocu, -DOxycs, O B> =

COCU, -D>xCYS™ICU, - > CEX>> =TICe, y5~OCu, ED.
The validity of the equality
MCpsS™, | \,>6=TCpS™, 6>
can be established in a simlar way.
4. The verification of the equalities
03Cx, o> Y2 =3%(x, 69, 6YD,
=Cl e PS™, YSTOO=3COH, pS~, YS~D
makes use of the linear properties of the integral.

5. To prove that the conbinatory space & is iterative,
we use the Level Orega Iteration Lenma. There is a | east
elenent in ¥, nanely the constant 0, and it is equal to

its product in ¥ with any element of . If {en}?zo is a

nonotoni cally increasing infinite sequence of elenents of
¥, then we define a real-valued function e by nmeans of
the equality
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(10) eCu, E>D= lim e Cu, B>

n—oo n
and prove that e<% (then it is obvious that & is the
| east upper bound of the given sequence). The proof that 6
belongs to ¥ is based on the fact that the limt of a
bounded nonotonically increasing sequence of neasures on &€
is again a neasure on &, and the limt of a bounded nonot -
onically increasing sequence of real functions on M which
are Borel neasurable relative to & is again a Borel neas-
urabl e function. The continuity of the mappings of the form
AT. =Ck, T, IM"’) is seen imediately. The continuity of

t he mappings of the form at. Ttk is seen by application
of the nonotone convergence theorem To show the continuity
of the mappings of the form at. kt, it is sufficient to

prove the follow ng statenent of Helly type: if {en}or‘:zo i's

a nonotonically increasing infinite sequence of el enents of
¥, the real-valued function e is defined by neans of the
equality (10), and Z is a Borel neasurabl e bounded non-
negative function on M, then

JZ(V)G(U, dv>= lim JZ(V)G cu, dvd
n
n—soo
for all u in M (one first verifies this equality in the
case when Z is a function of the form av. |[veE |, where

E, is sone fixed set from &, and then reduces the general

case to this particular one by representing an arbitrary
Bor el neasurabl e bounded non-negative function Z as the
limt of a nonotonically increasing sequence of |inear com
bi nati ons of functions of the above form.

6. The expression for the iteration can be obtained by
suppl enmenting an application of Proposition I1.4.6 to the
application of the Level Orega Iteration Lenma. The proof of
the formula for PVy E> is by induction on m

Remark 2. If 6<%, and Z is a Borel measurabl e bounded
non- negative function on M, then, for any u in M, the

val ue of the integral ZCcv>ecu, dv> is sone non-negative

real nunber (in the particular case when ecu, M>=1, the
nunber in question is the expectation of the function Z
with respect to the probability nmeasure ecu, ->). W shall
denote this number by ecu, Z>, for short. The foll ow ng
equalities hold for all neasurable elenments f of ¥ _ (D,

all %, ¢, 9y in ¥, all u in M and all Borel neasurable
bounded non-negative functions Zon M:

Zcfcud> if uedomf,

(11) f”(“’Z):{ 0 if uedomf,
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(12) CoydCu, Z>=ydu, aAV. <V, Z>),

(13) MCp, YyICU, ZO>=¢Cu, AS. yCu, At . ZCJICs, t DDD),
(14) MCp, YyOCU, Z>=ydu, at. eCu, As. ZCJCs, t DDD)D,
(15) >Cx, ¢> YICU, ZD=xCU, AS. H'Cs, ¢Cu, 2O, ydu, Z>>),
wher e

H-¢s, a, b>=|seH 'ctrue>|Ja+||seH 'cfal se>| b

for all s in M and all non-negative real nunbers a, b.
The equality (12) is, up to denotations, the equality (9)
established in the proof of Proposition 3. The equality (15)
follows fromthe definition of =, the representation of the
val ues of the measures as integrals and the |inear proper-
ties of the integral. For proving (13) and (14), it is ap-
propriate to prove first the equality

(16) MCp, YOCU, Z):INFZ(J)d CoCU, - D> xycu, ->),

and then to obtain themfromit by means of Fubini’s the-
orem The proof of (16), as well as the proof of (11), can
be reduced to proving the equality in the case of

Z=2Axr. ||reE0||,
wher e E0 is sone fixed set from €.

5. Conbi natory spaces of functionals

Remark 2 in the previous section contains sone formulas
whi ch can be used for the construction of conbinatory spaces
not necessarily connected with probability. Here we shall
gi ve such a construction, which is taken (with small nodifi -
cations) fromthe paper Skordev [1980a]. Aresult will be
presented (also fromthat paper) showi ng that each conbina-
tory space is isonorphic to sone conbi natory space construc-
ted in this way.

W suppose that an infinite set M is given together

with an injection J of M® into M and mappings T and F
of M into M such that rngTnrngF=@. Any quadruple
<M, J, T, F> of this kind wll be called a coding struc-
ture. Cearly, if <M,J,L,R, T, F, H> is a conputational
structure, then <M, J, T, F> is a coding structure, and
each coding structure can be extended to a conputati onal
structure, since one could define L, R, H by the conditions

domL=domR=rngJ, LdJC(s,tD>>=s, RIC(s,to>=t,
domH=rngTurngF, HTCud>>=true, H(Fcu>>="false.
A conputational structure consists of mechani sns for coding
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the ordered pairs and the |ogical values true and fal se, and
of correspondi ng decodi ng nmechani sns, whereas in a coding
structure only the codi ng nmechani sns are present. The reason
to consi der now codi ng structures instead of conputational
structures is that in sonme cases it is appropriate to allow
using of slightly nore general decodi ng nechani sns, namnely
ones with non-functional behaviour on the elenents of M

whi ch are not codes.99

The foll owi ng exanple of a coding structure will be used
at the end of this section.
m,L,R,2,T,F> be an

Exanple 1. Let <F . 1,, 6,1
arbitrary conbi natory space, M be the set €, and J be
the restriction of m to M. Let T, F be the mappi ngs of
M into M defined by neans of the equalities
T(u)::Tiu, F(u)::Fiu.
Then <M, J, T, F> is a coding structure.

Com ng back to the general case, we suppose that, be-
sides the coding structure <M, J, T, F>, a partially order-
ed set V is also given, and our intention is to use its
el enents i nstead of the non-negative real nunmbers. For the
time being, the set V is assuned to have at |east two dis-
tinct elenments (further assunptions will be needed | ater).

The set of all total mappings of M into V wll be
denoted by z. The partial ordering in V induces naturally
a partial ordering in zZ. Nanely the inequality zZ>2Z",
where Z', Z” belong to Z, neans that Z”cu>>=Z'cu> for all
u in M.

W shall denote by ¥ the set of all mappings of MxZ
into V which are nonotonically increasing with respect to
t heir second argunent .

Remark 1. The mappings in the above definition of &
can be called functionals. A somewhat sinpler definition of
¥ can be given which is equivalent to the above one up to
I somor phi sm and coul d nake the construction nore simlar to
a construction from Chapter 12 of Ivanov [1986]. Nanely we
could define ¥ as the set of all nonotonically increasing
mappi ngs of z into itself. These mappi hgs can be called
operators, since they transformfunctions into functions. A
nat ural one-to-one correspondence between the functionals
e and the operators © can be fixed by neans of the equal -

ity

99 vie al ready cane across sone coding structures in Exer-
cise Il1.4.22, but w thout nam ng them so.
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eCZOCud =e6du, 2.

The reader could try to translate the further definitions
for the case of such a nodified definition of .

The set ¥ is considered with the natural partial or-
dering init. Nanmely the inequality ¢=y, where ¢, y be-
long to ¥, means that ¢cCu, Z>=ycCu, Z> for all u in M
and all Z in z.

An operation of multiplication is defined in ¥ by
using the fornmula 4.(12). Nanely, for any ¢, ¥y in ¥, we
define a mapping oy of Mxz into V by nmeans of the
equality
(D) CoydCu, Z>=ydu, aAV. eV, Z>)D.

It is easily verified that ¢y belongs again to ¥. The
mul tiplication operation is nonotonically increasing (as a
consequence of the nonotonicity of the elenments of ¥ wth

respect to their second argunents). This operation is also
associ ative as seen fromthe follow ng cal cul ati ons

CCOYIXICW, ZD=xC(W, AV. Coyd(V, ZD> =
xCW, AV. YCVv, AU. pCUu, Z>1),
CoCYxIIW, ZD=CyYxdCW, AU. pCU, ZD> =
xCW, AV. YCVv, AU. pCUu, ZDDD.
Thus ¥ is a partially ordered sem group.

Remark 2. In the variant of presentation nmentioned in
Remark 1, the multiplication in ¥ nust be defined as an
ordi nary conposition of operators, and then its associativ-
ity becomes conpletely evident.

For each total mapping f of M into M, we define a
mapping f~ of Mxz into V by using the forrmula 4.(11)
i. e we set

f~Cu, Z>=2Zcf Cud>

for all uemMm, Zecz. Cearly, all such nmappings f~ belong
to 7.

The el enent IM"' is an identity of the semigroup ¥, as
the foll owi ng cal cul ati ons show

Cl M"'x/;)(u, Z>=ydu, AV. IM"'(V, Z>>=ycu, 2>,
Copl v 2CUs Z>=I v CUs AV pdv, Z>>=pCu, 2.

For each s in M, we, as usual, shall denote by s the
constant total mapping of M into M with value s. Then
s~¥eg for all semMm. The set of all s~, where seM, wll
be denoted by ©. Note that, for all s,u in ¥ and all Z
in Z, we have
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S™CU, Z>=2Z(sCud> =2Z(sD.

For the definition of a binary operation M in ¥, we
have two alternatives - to use either the forrmula 4.(13) or
the forrmula 4.(14) (the right-hand expressions in both for-
nmul as nmake sense for all ¢,y in %, all u in M and al
Z in zZ). It can be shown by neans of exanples that choos-
ing the second of these alternatives would be not conveni ent

for what follows. Therefore we choose the first one, i. e.
we set
(2) MCp, YyICU, Z>=¢CUu, AS. YCu, at. ZCJICs, t DDDD

for all ¢,y in ¥, all u in M and all Z in z. It
is easily seen that TCyp, yo><¥ for all ¢,y in &.

Now we are going to define a ternary operation % in
. The formula 4.(15) is not directly usable for this in
the general situation considered now, since the defining
expression of Hv(s, a, b> contains operations which are no
| onger present (in particular, no predicate H is given).
However, this can be repaired. W nmake the assunption that a

mappi ng H of Mx\V° into V is given such that H is
nonotonically increasing with respect to its second and
third argunents, and the equalities

(3) H ¢Tcu>, a, b>=a, H (FCu>, a, b>=Db

hold for all u in M and all a, b in V. Such a mapping
H always exists. W can, for exanple, set

a if serngT,
H (s, a, b>={b if serngF,
o If serngT urngkF,

where o is sone fixed elenent of V. Having a mapping H
with the properties formul ated above at our disposal, we set

(4) >Cx, ¢> YICU, ZD=xCU, AS. H (s, oCu, Z>, yCu, Z>>>

for all x, ¢, 9 in ¥, all u in M and all Z in Z, and
we see that =Cx, ¢, yo>=<¥ for all x, ¢,y in &.

Proposition 1. Let L', R be elenents of ¥ such that
(5) L’ ¢JCs, t D, Z>=2¢s>, R (s, tD>, Z>=2ZCt>
for all s,t in M and all Z in 7.190 Then the 9—tuple

100guch el enents L’ », R of ¥ always exist. W can, for
exanple, fix sonme elenent o of V and set
f
f

u=Jds,t D,

L’(U’Z):{ uzrng J,
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6=<¥%,1,~ 6 I, L', R, T, F>
is a conbi natory space.

Proof. Sone of the conditions fromthe definition of
the notion of conbinatory space are already verified. W
shall present the verification of the remaining ones.

If e<¥ and seM, then, for all u in M and all Z in
Z, Wwe have

(es™IOCU, Z>=sS"CU, AV. 8¢V, Z>>=6C(sS~Cud, Z>=06Cs, Z).
This inmmediately shows that condition Il1.1.(1) is satisfied.

If p and g are arbitrary elenents of M, then, for all
uin M and all Z in Z, we have

ICp~, q~oCu, Z>=p~Cu, AS. q~Cu, at. ZcJCs, tDOO> =

p~Cu, AS. ZCJCS, 9ODDD =ZCJC(p, QOO =r"Cu, ZJ,
where r =JCp, qO, and hence
mp™, q~o=r",

(L’ ICp™, g~oOCu, ZO>=r"~Cu, av. L' <v, Z>>=L"¢r, Z>=
Z(p>=p~Cu, 2,

(R TICp~, g~OOCu, Z>=r"~Cu, av. R<v, Z>>=R (r, Z>=
Z¢(q> =q~Cu, 2O.

Thus conditions 11.1.(2)-11.1.(4) are verified. The non-
otonic increasing of the operation = is obvious fromits
definition, and hence condition Il.1.(16) is also satisfied.

To show that TY=x=F>, we take two distinct elenents a,
b of ¥ and set Z=)s. H ¢s, a, b>. Then Zez, and

T~Cu, Z>=2ZCTCu>>=a, F“Cu, Z>=2Z(FCu>>=h,

hence T~Cu, Z>+F~Cu, Z>, for any u in M. Thus condition
I1.1.(8) is satisfied.

To check the conditions I1.1.(5)-11.1.(7) and I1.1.(9)-
[1.1.(15), suppose that sone elements ¢, ¥, x, 6 of &,
sone elenents r,u of M and sone Z from zZ are given.
The followi ng cal cul ations, where | denotes | v > cont ain
the verification of the |isted conditions.

CTCp, YIT~ICU, ZO=TCp, YOI, ZD =

VAQ W
0

u=Jds,t D,

R’(U’Z):{ ugrng J

i f
Wi

for all ueMm, Zez.
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eCr, AS. ydr, at. ZCJCs, tDOD) =
Cor~oCu, AS. CyYyr~oCu, at. ZaJCs, t DO =
MCor~, Yyr~>u, 2>,

CTCl , yr~>edu, Z>=e6edcu, av. ICl , yr~oxv, Z>=
eCU, AV. I Vv, AS. CYyr~oCv, at. ZCJ(s, t DDdD =
eCu, AV. I v, As. ydr, at. ZCJCs, t DDO> =
6CU, AV. Ydr, at. ZCJCv, t DODD =
U, AV. CYyr~oCu, at. ZCJICv, t DOd> =TCe, yr~iCu, ZJ,

CICr~, 1 >edCu, Z>=e6du, av. ICr~, | XCv, Z>> =
eCU, AV. r~Cu, as. I Cu, at. ZCJCs, t D> =
6CU, AV. r~du, As. ZCJ(s, UDDDD> =
eCu, AV. ZCJCr, ud>>> =
r~cu, as. eCu, av. ZaJCs, udDdD=TCr~, e>XCu, ZJ,

SCT™, @, YOCU, Z>=T~CU, As. H ¢s, oCUu, ZD, yCu, Z>>D> =
H ¢TCud, oCu, 2>, yCu, Z>3> = oCu, 2,

SCF™, @, YOCU, Z>=F~Cu, as. H ¢s, oCu, Z>, yCu, Z>>> =
H CFCud, oCu, 2>, yCu, Z>>> =ydu, 2D,

COSCx, > YIICU, ZD=3Cx, ¢, YIICU, AV. 6CV, Z> =
xCU, ASs. H (s, pCu, AVv. 6Cv, Z>), ylu, AV. 6CV, Z551) =
xCU, As. H (s, (ep>Cu, Z>, Cey>Cu, Z>>> =
SCx> 8¢, OYIIU, 2D,

CSCxs @> YITVICU, ZD=35Cx> @, YT, ZD =
xCr, As. H (s, oCr, 2>, y(r, Z>>> =
Cxr~oCu, as. H s, Cor™~ocu, 2o, Cyr~oCu, 235> =
SCxr™~, or~, yr~>ixu, 2o,
CSCl, pr™, Yyr~>edu, Z>=06d<Cu, avV. =Cl, or~, yr~>xv, Z>=
eCU, AV. I Cv, as. H (s, Cor™~ov, Zo, CyYyr~oXv, Z>>>=
eCu, aAv. I <v, as. H (s, oCr, Z>, yCr, Z>>> =
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eCu, av. H v, oCr, Z>, y<r, 255> =
ecu, av. H Cv, Cpr~>ocu, 2>, Cyr~oCu, Z>>>=
5CO, pT™, YT™oCU, Z3.
Remark 3. Let Z, be a subset of z satisfying the con-
dition that as. H ¢s, a, b)ezo for some two distinct el-

enents a, b of V (where H is a mapping with the sane
properties as above).For each total mapping f of M into

M, let f° denote the restriction of f~ to the set MXZ .

Let &, be the set of all §°, where se<M. Suppose al so that

a set of mappi ngs of MxZ, into V is given which are

nonotonically increasing with respect to their second argu-
ment, and the follow ng conditions are satisfied:
(a) {I MO, T°, Flyue, =9, ;
(b) the expressions in the right-hand sides of the
equalities (1), (2) and (4) nmake sense for all uemM, ZeZ,,

and their values as functions of u, Z belong to Fo when-
ever ¢, Yy, x belong to T

Then we can define nmultiplication and operations T and =
in Fo by means of the sane formulas (1), (2), (4). The

mul tiplication in Fo wi || be again nonotonically increas-
i ng and associ ative, and therefore Fo al so can be consi d-

ered as a partially ordered sem group. Let L', R be now
el enents of Fo satisfying the equalities (5) for all s,t

in M and all Z in Z, . Usi ng the proof of Proposition 1

wi th the needed obvi ous changes, we can prove that the
9 —-tuple
mL,R,s T°, F°

(0]
e — GI©
GO—<J0, IM , @0,

is again a conbi natory space.

Exanpl e 2. Follow ng |Ivanov [1986, Exercise 27.6], |let
us suppose that a partial ordering is given also in the set
M, the mappings J, T, F are nonotonically increasing, H
is monotonically increasing also with respect to its first
argunment, and L, R are nonotonically increasing total map-
pings of M into M, satisfying the usual condition that

(6) LcJCs, tO>=s, RICs, tOd=t

for all s,t in M. Remark 3 can be applied for obtaining
the statenment of the nentioned exercise. Let Z, consi st of

those mappings of M into V which are nonotonically in-
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creasing, and |et T consi st of those mappi ngs of MxZ
into V which are nonotonically increasing with respect to

both their arguments. Let L’ =L°, R =R°. It can be easily
seen that all assunptions of Remark 3 are satisfied in this
case, and hence the corresponding 9—tuple G, is a conbina-
tory space.

Remark 4. The conbi natory spaces constructed on the ba-
sis of Remark 3 are, in general, not necessarily symetric.
The book Skordev [1980] contains two exanples of symetric
conbi nat ory spaces of the considered kind. In fact they are
probabilistic exanples, but, roughly speaking, using expec-
tations instead of probabilities. W shall fornul ate appro-
priate versions of these exanples in the two theorens bel ow.
Unfortunately, the proofs of these theorens, and especially
of the second one, use too nmuch anal ysis and topol ogy, and
therefore we decided to omt the proofs this tine.

Theorem 1 (Skordev [1980, Ch. Il, Proposition 5.5.2]).
Let the set M be a conpact Hausdorff topol ogical space, and
the mappings J, T, F be continuous. Let V be the set of
t he non-negative real nunbers, and Z, be the set of all

conti nuous non-negative functions on M. Let Fo be the set

of all mappings e of MxZ, into V which have the foll ow
i ng properties:

(a) for any fixed u in M, the functional AZ. ecCu, Z>
is linear and has a norm not greater than 1;101

(b) for any fixed Z in Z, > the function au. ecCu, Z>
i s continuous.

Let L', R be elenents of Fo satisfying the equalities (5)
for all s,t in M and all Z in 20.102 Let Z' and Z' be

101 o
. e. e(u,a121+a222)__a19(u,Zi)+a29(u,22) for all

Z, > Z, in Z, and all non-negative real nunbers a ,a,,
and the inequality ecu, Z><suprngZ holds for all ZeZ, .

1025ych L', R are, for exanple, L° and R° (cf. Re-
mark 3) if L and R are continuous total nappings of M
into M satisfying the conditions (6) for all s,t in M.
As an exanple of a conpact Hausdorff topol ogi cal space ad-
mtting such a continuous pairing nmechani smwe indicate the
set of all infinite sequences of zeros and ones supplied
with the Tychonoff topology. In this case we can find al so

continuous mappings T, F and functions zt, Z' with the
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functions from zo such t hat
Z'eTcud>=Z creur>=1, Zicud+zfcur<1

for all u in M, and let H be the nmappi ng of MxV° into
V defined by neans of the equality

H¢s, a, bo=Z¢s>a+Z ¢sob.

Then the assunptions in Remark 3 are satisfied, and hence
the corresponding 9—tuple G, is a conbinatory space. More-

over, this conbinatory space is synmetric, and the operation
M in it can be defined also by neans of the formula 4.(14).

Theorem 2 (Skordev [1980, Ch. Il, Proposition 5.5.3, and
Ch. 111, Section 3.2, Exanple 15]). Let the set M be a
| ocal |y conpact Hausdorff topol ogical space, and the nap-
pings J, T, F be continuous. Let V be the set of the non-
negati ve real nunbers, and Z, be the set of all bounded

| ower sem continuous non-negative functions on M. Let Fq

be the set of all mappings e of MxZ, into V which have
the foll owi ng properties:

(a) for any fixed u in M, the functional AZ. ecCu, Z>
is linear and has a normnot greater than 1;

(b) for any fixed Z in Z, > the function au. ecCu, Z>
is |l ower sen continuous;

(c) whenever U is a directed upwards subset of Z, >
and supuezo,lo3 then, for all u in M, the equality
ecu, supu>=sup{edu, Z2>: ZeUu}
hol ds.
Let L', R be elenents of Fo satisfying the equalities (5)
for all s,t in M and all Z in 20.104 Let H be a map-

properties fornmul ated next. For instance, we may set TduD
and Fcu> to be always the sequence consisting only of ones
and the sequence consisting only of zeros, respectively,

Z'cu> to be al ways the first nenber of u, and Z'cu> to be
al wvays equal to 1-Z'cu>.

103 The val ues of supu are determned in a pointw se
way.

104 5ych L o R surely exist if there are continuous to-
tal mappings L and R of M into M satisfying the condi-
tions (6) for all s,t in M. In this connection we note
that any locally conpact Hausdorff topol ogical space B can
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pi ng of MxV° into V defined in the sane way as in The-
oreml (with Zt,Zf bel onging to the new zo). Then t he as-

sunptions in Remark 3 are satisfied, and hence the corre-
spondi ng 9—tuple G, is a conbi natory space. Moreover, this

conbi natory space is synmetric, and the operation T in it
can be defined also by neans of the forrmula 4.(14). The com
bi nat ory space G, is iterative, and, for arbitrary o, x in

Fo and arbitrary uemM, Z<eZ,, the equality

(0 0]
(o, x1CU, Z> = z p LU, 2D

m=0
hol ds, where [ is defined by neans of the equality

pnFVO, Z)::o(vo, AV, - oV 5 AV, . .

m1
GOV AV ZCV D xCv L Z > TT xev. , 28> o0,
m1 m m m j:0 ]
Proposition 1 and the renmarks after it do not give suf-
ficient conditions for assuring that the constructed conbi -
natory spaces are iterative. W shall give now two such con-
ditions.

Proposition 2 (cf. Exercise 27.7 in lvanov [1986]). Let
every chain in V (including the enpty one) has a | east
upper bound. Then the conbi natory space & considered in
Proposition 1 is iterative.

Proof. W shall apply the Unrestricted Iteration Lenma
(Proposition I1.4.5). The assunption (i) in it (each chain
in ¢ has a | east upper bound) is obviously satisfied (the
| east upper bound can be constructed by a poi ntw se transi -
tion to | east upper bounds in V). It remains to verify the
assunption (ii), nanely that the mappings at. ¢t, Wth
fixed ¢ in ¥, and the mappings at. tz, with fixed z in
€, are continuous with respect to | east upper bounds of
arbitrary chains. But this continuity is clear fromthe

be enbedded in a | ocally conpact Hausdorff topol ogical space
Wi th a continuous pairing nechanism This can be done by
means of an appropriate extension of the topological struc-

ture fromthe space B to the set B* of the Mdschovakis
conmput ati onal structure my - To satisfy all assunptions of

the theorem we can take also T, F fron1ﬂnB and set

Z'cu>=0, Z'cu>=1 for all u in B°, Zcur=1, Zcu>=o0
for the other u.
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equalities
CpToCU, Z>=1tlU, AV. oCV, Z>),
ctr™~ou, Z>=1t(r, Z>

and the pointwi se character of the |east upper bounds of the

. . o
chains in 7 m

Proposition 3. Let V have a |east elenent, and |l et each
nonotonically increasing infinite sequence of elenents of V
has a | east upper bound. Let Fq consists of all elenents e

of ¥ such that, for any fixed u in M, the napping
AZ.BCu, Z> of z into V is continuous with respect to

| east upper bounds of nonotonically increasing infinite se-
guences in zZ. Let L' and R belong to Fy and H , con-

sidered as a function of its second or third argunent, be
continuous with respect to | east upper bounds of nonotoni c-
ally increasing infinite sequences in V. Then Fo is a sub-

sem group of the partially ordered semgroup ¥, and if 1,
and %, are the restrictions of T and = to ® and to
?03, respectively, then the 9—tuple
Gy =<Fg> ly>6 ML ,R,= T F">
is an iterative conbi natory space.
Proof. It is easily seen that Fo is closed under nulti-

plication and under operations T and = (when considering
the case of =, one uses that the made continuity assunption
about H inplies the continuity of H , considered as a
function of its second and its third argunent sinultaneous-
ly). For each total mapping f of ™M into M, the corre-
sponding f~ belongs to Fo- IN parti cul ar, IM"’, ™, F~

bel ong to Fy and C=7F, . Since L' and R also belong to
Fy and, by Proposition 1, & is a conbinatory space, it

is clear that G, is also a conbinatory space. So it renmins
only to show t hat G, is iterative. This will be done by
application of the Level Orega Iteration Lenma.

Let o be the |least elenent of V. Then o=auZ.o is
t_he | east el enent of Fy » and to=o0 for each T in ¥
si nce

F
o
“o

(todlu, Z>=o0dCU, AV. TV, ZO>=0=0CU, 2D
for all ueMm, Zez.

To show t hat each nonotonically increasing infinite
sequence of el enments of Fo has a | east upper bound in Fy >
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suppose t hat {ek}‘kfo is such a sequence. This sequence has

a | east upper bound e in ¥, and the problemis to show
t hat e<¥, . For t hat purpose, suppose sone U in M isS
fi xed, and a nonotonically increasing seqguence {Zn}‘:i’o of
elenents of Z is given. Let Z be the | east upper bound of
this sequence in Z. Then

O

cOo (o2 @)
ecu, z):sup{ek(u, Z)}kzozsup{sup{ek(u, Zn)}n:O}k:o:

[oc@] [oc@] (o2 @]
sup{sup{ek(u, Zn)}kzo}nzo_sup{e(u, Zn)}nzo'
Thus for any fixed u in M, AZ.eCu, Z> is continuous wth
respect to | east upper bounds of nonotonically increasing
infinite sequences in Z, and hence 0=,

Now |l et k be sone fixed el enent of Fy - As seen in

t he proof of Proposition 2, the mapping at. kTt IS continu-
ous with respect to | east upper bounds of arbitrary chains
in ¥, hence, in particular, it will be continuous with re-
spect to | east upper bounds of nonotonically increasing in-
finite sequences in Fo,- As to the mappings at. Ttk and

AT. Z(Kk, T, IM"'), their continuity follows fromthe equal -
ities
(tkoCU, Z>=kCU, AV. TCV, 21D,
3Ck, T, IM"')(u, Z>=«k(U, As. H (s, Tlu, 25, IM"'(u, Z>>)>
and the continuity of « and H ‘m

W shall end this section by showi ng that the conbina-
tory spaces described in Remark 3 are general enough in the
sense that every given conbinatory space is isonorphic to
some of them This will be seen fromthe foll owi ng proposi-

tion.
Proposition 4. Let <¥,!,6,0,L,R,>,T,F> be

an arbitrary conbinatory space, <M, J, T, F> be the corre-
spondi ng codi ng structure from Exanple 1. Let V be the set
of those elenents « of ¥, which satisfy the equality

au=ao for all u in M,ldS and let M and V be equi pped
with the partial orderings induced from F, . Let H be the

restriction of the operation %, to the set Mx\V°. For each
el ement <t of F, o let T be the mapping of M into V de-
fined by nmeans of the equality

1055one information about the el enents with this property
can be found in Exercise I1.1.26.
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TCud=r1tuU,
and | et Z, be the set of all mappings =T, where te?i.l%
For each element e of F,» l et 6~ be the mapping of MxZ

into V defined by means of the equality

e¥Cu, ToD=r1tou,
and | et Fo be the set of all mappings 6>, where 0¥,
Let 2z and Fo be equi pped by the partial orderings in-
duced by the partial ordering in V. Let the denotations f°
and (N have the sane neaning as in Remark 3, 107 and 1 et
L' =L, R =R". Then:
(i) the set V is infinite;

(ii) the mappings J, T, F, H are nonotonically in-
creasing with respect to all their argunents, and the equal -
ities (3) hold for all u in M and all a, b in V;

(iii) as.Hs, a, b)ezo for all a,b in V;
(iv) all mappings 6, where ey, , are nonot oni cal -
ly increasing with respect to both their argunents;

(v) the mapping ae. e” is an isonorphi smbetween the
partially ordered sets F, and ¥_;

(vi) for all ¢, y,x Iin ¥ 0aII u in M and all Z in
Z,, We have the equalities
CoydvCu, Z> =y CUu, AV. p¥CV, ZD),
(1'[1(<p, YII¥CU, ZO =¢¥CU, AS. YYCUu, At. ZCJCs, 1 DDD),
(Zi(x, O, YIOVCU, Z>=x"Cu, As. H (s, o¥Cu, 2>, y¥Cu, Z>>);
(vii) the equalities |1v:|M°, T>=T°, F>=F hold,
and the i mage of ¢, under ae. 6 is equal to [

(viii) for all s,t in M and all Z in Z, > t he equal -
ities (5) hold.

1’

108 n the case when teM, the above definition of <
gives the result that T<cu>=<t for all u in M, hence there
is no collision between this definition and the previously

given definition of s for seM.

107 e, focu, To=Tcfcud>>=tfcu> for all total mappings
f of M into M and all uepM, TEF, and (N is the set of

all s°, where semM.
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Proof. W shall verify only the equalities in (vi), and
the rest will be left to the reader. Let ¢, ¥, x belong to
F,» U be an el enent of M, and Z be an el enent of Z, .

By the definition of Z, > Z=<t for some <t in F, - Then

YYCU, AV. ¥CV, ZOD =y¥(U, AV. TV =
YU, Ted=ToeyYu=Cpyd'Cu, 2D,

e¥CUu, AS. YYCu, At . ZCICs, t DDD> =
e CU, AS. Yy'Cu, At. 1:1'[1(5, t OO =
pYCU, As. YYCu, at. Tl (s, Ii)t)):
e¥CU, AS. YvCu, ’CHi(S,| 000 =
¢7CU, As. T (S, Ii)x/;u):
e¥CU, AS. ’CH1(|1, Yyud> sd=
pvCu, 'cl'[1(| 1,1/;u)):1:r[1(|1, Yyudpu=
T, Cp, YO U =T Cp, YyOO7CuU, 2O,

xCUu, As. H (s, ¢v¥Cu, 2>, y¥CUu, 215> =
x’CU, AS. Zi(s, TeU, TYUudd =
x“CU, AS. ’Czi(|1, pU, YudSd =
x (U, t21(| 1,qou,x//u)):'czi(li, U, Yyudxyu=
TE (x> 9> YOU=C2 (x, 9, YIO7CU, Z)..

In other words, Proposition 4 says that the given conbi -
natory space <%, ! ,6,T,L,R,%,T,F> i's isonorphic

12 "1” 1
to the conbinatory space Gy =<%F,» INI » 6, I, L', R, X, T°,

F°> constructed as in Remark 3 on the basis of the coding
structure <M, J, T, F>, the sets V, Z > 7, and t he mappi ngs

H,L ,R specified in the proposition. The conbi natory
space ©, construct ed in this way woul d be al so of the kind

considered in Exanple 2 (with the nentioned partial ordering
in M) if we generalize that exanple conveniently (by taking
into account the remark after Exercise 27.6 in |vanov [1986]
and, in addition, allowing L' and R to be not necessarily
generated by nonotonically increasing total mappings).

6. Conbi natory spaces connected with
conpl exity of data processing

In this section, a conputational structure
A=<M,J, L, R, T, F, H>
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i s supposed to be given. A construction will be presented
which is based on the following intuitive idea about the
conpl exity of data processing. W consider devices (possibly
non-determ nistic) which transformelenents of M into el-
enents of M, and we suppose that, whenever a concrete
transformation of this sort is conpleted by sone device,

t hen sonme object is defined which characterizes the conpl ex-
ity of the concrete transformation. This object could be,
for exanple, a nunber neasuring the duration of the work of
t he device, or a nunber neasuring the cost of the concrete
data processing, or a vector consisting of both nentioned
nunbers. If the device sonetinmes uses external sources of

i nformati on, the object in question could be also the nunber
of times during the work when such external sources have
been used.

When a data processing device of this kind is given, we
could use as a mathemati cal description of it the set of al
ordered triples <u, k, v>, such that it is possible the
work of the device with input data u to termnate with
output data v and conplexity k of the data processing.

A natural assunption about the objects neasuring the
conplexity is that an associative operation of addition is
defined for them and this operation has a zero el enent.
Therefore a semgroup E will be supposed to be given with
t he sem group operation denoted as addition, and it will be
assuned that there is an element o of E such that the
equalities k+o=o0o+k=k hold for all k in E. Since E is
a sem group, the associativity |aw

ck+l >D+m=k+cl +n

must hold for all k, |, min E. However, we shall not as-
sunme that the sem group operation in E is necessarily
comut ative (this enables, for exanple, E to consist of
strings, and the concatenation operation to play the role of
addi tion).

After all what has been said above, it is clear that the
used mat hemati cal descriptions of devices will be subsets of
the Cartesian product MxExM. W shall construct an iter-
ative conbi natory space whose semi group will have all such
subsets as its elenments. The multiplication of such subsets
wi |l correspond to sequential conposition of devices, and
t he ot her conponents of the conbinatory space will al so have
a natural intuitive interpretation

Proposition 1. Let ¥ be the set of all subsets of the
Cartesian product MxExM, and let ¥ be partially ordered
by the inclusion relation. Let a nultiplication in ¥ be
defined by the follow ng equality, where ¢, y denote arbit-
rary el ements of ¢:
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ey =4{<u, k, w>:
AvIi ] (KU, 1, V>ey & <V, |, Wep & I +] =kD}.

Then ¥ is a partially ordered sem group.

The proof of this proposition is left to the reader. W
note only that, instead of a direct proof, one can use al so

an enbedding = of ¥ into the partially ordered sem group
?m(MxE), nanmel y
(1) 2COD ={<<U, I >, <V, | >>:

I eE & 3k (<u, k, v>e6 & I +k =] D}.

For each binary relation f in ™M (in particular, for
each partial function f in M), we set

f~={<u, 0, v>: <u, v>ef}.

W shall denote by € the set of those f~ which correspond
to constant total functions f in M.

The prom sed construction of an iterative conbinatory
space is described in the foll ow ng proposition.

Proposition 2. Let ¥ be the partially ordered sem -
group from Proposition 1, and let a binary operation m and
a ternary operation %= be defined in ¥ as foll ows:

Cp, Yo =
{<u, k, w>: 3Is 3t Ji Jj (KU, i, S>ep & <U, |, t>ey &
Jés, tOo=w & i +] =k>D},

2Cxs > YO =
{<u, k, w>: 3Ji 3] ((<u, i, truedeHy & <U, |, W>ep V
<u, i, false>eHy & <u, j, weyd & i +] =k>D},

wher e
Hy={<u, i, p>: 3vi<u, i, V>ey & HvO>=p>D}.
Then:
(i) the 9—tuple
G=<¥, |, 6 I, LV, R, =, TV, F">
is an iterative conbinatory space;

(ii) the conmbinatory space & is symetric iff the ad-
dition operation in E is commutative;

(iii) for any o, x in ¥, any u,w in M and any k in
E, the condition

<u, k, wwelo, x1

is equivalent to the existence of a natural nunber m such
that, for some sequence Voo oo Voo of elenents of M and

some sequences io, ...,im and jo, ...,jm1 of elenments of
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E, the following conditions are satisfied:

VOZU, Vm:W,

<v|,iI , true>eHy &<v|,jI > V| 4 >0 | =0, ..., m-1,
<V_, i _, false>eHy,
- - m m - - .
00+J0)+...+(”n1+Jm1)+lm:k.
The proof of this proposition is again left to the read-
er, since it contains al nost nothing essentially different
fromthe proofs of other statenents of a simlar type which

occur in the preceding chapters and sections. The only nore
specific nmonment is the proof that the symmetry of ¢ Iim
plies coomutativity of the addition in E. This can be done
by taking arbitrary elenments i, of E and applying the

condition I'l1.1.(7 ) to an arbitrary elenment x of © and to

p=Mx{i }x{s}, 6=Mx{]}x{s},
where s is sone fixed elenent of M

Remark 1. If we are interested only in determnistic
devices then we could use a snaller conbinatory space, whose
sem group consists only of the subsets & of MxExM sat-

i sfying the condition that

KU, 1 , V>eB8 & <U, |, W>eB —S | =] & V=W

for all u,v,w in M and all i,j in K. W shall cal
such subsets functional. Let Fo be the set of all function-

al subsets of MxExM. The set Fo contains anong its el-

enents all f~ corresponding to partial functions fin M,
and it is closed under the nultiplication defined in Prop-
osition 1 and the operations 1, = defined in Proposition 2.
Therefore we obtain a conbinatory space by restriction of

t he nentioned operations to Fo and taking it as the sem -

group of the space. It is easily seen that this conbinatory
space is also iterative, and the sanme expression for the
iteration holds in it. Note that each elenent e of F, can

be determ ned al so by neans of two functions having one and
t he sane domain, nanely the partial function from M to M,
consisting of all pairs <u, v>, where <u, k, v>e6 for sone
k, and the partial function from M to E, consisting of

all pairs <u, k>, where <u, k, v>=6 for sone v. W shal
call these partial functions the output conmponent and the
conpl exity conmponent of 6. W nay use this term nol ogy al so
in the case when the whol e conbi natory space from Proposi -
tion 2 is considered, but e is a functional element of .

An illustrative exanple follows. The intuitive idea in
it (containing obvious idealizations) can be described as
foll ows. One considers input-output behaviour and duration
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of the work of devices which transform natural numbers into
natural numbers. The class of those devices is studied which
can be constructed by the nmethods of conbining nentioned in
Section 2 fromprimtive ones corresponding to L, R, T, F
and fromthree additional sorts of primtive devices: ones
transform ng nonentarily any given nunber u into u+1,

ot her ones transform ng nonentarily any given nunber u into
u=1, and third ones which do not change the given nunber,
but cause a delay equal to 1 (sone unit of tine being fix-
ed). The exanple shows that any partial recursive function
can be conmputed by sone device fromthis class with a del ay
given by an arbitrarily chosen partial recursive function
with the sane domain (assunm ng nonentary interactions be-
tween the conponents of the conpound devi ces and nomentary
codi ng and decoding by neans of J, L, R, T, F, H).

Exanple 1. Let u be a standard conputational structure
on the natural nunbers, E be the sem group of the natura
nunbers with the usual addition operation, and & be the
conbi nat ory space from Proposition 2 corresponding to these
A and E. Let B={S™, P”, 8§}, where

S=au.u+l, P=2au.u=1, s§={<u, 1, u>: uelN}.
W cl ai mt hat CIWPGCB) consists of the recursively enuner-

abl e functional elenents of ¢, and obviously these are ex-
actly the functional elenents of ¥ having partial recur-
sive output and conpl exity components. The fact that al

el enents of CIWPGCB) are recursively enunerable and func-

tional is seen by induction on the construction of these

el enents. For the proof of the converse statenent, suppose
© is an arbitrary recursively enunerable functional el-
enent of ¥. Let f and g be the output and the conplexity
conmponent of 6, respectively. Using the partial recursive-
ness of f and g and applying Theoreml.3.1, one can prove
that the elenments f~ and g~ of ¥ are G-—conputable in
{S~, P”}. On the other hand, the follow ng equality hol ds:

e=LisTuCL, P*"R>, R1TICf~, g~>.
The G—conputability of e is clear fromthis equality.

Remark 2. In the thesis Ignatov [1979], the conbinnatory
space fromRemark 1 is considered in the case when A is
the conputational structure fromExanple 1.1.8, and E is
the sane as in Exanple 1. Conputability in this conbinatory
space is used for estimating the conplexity of conputation
of concrete recursive functions. Special attention is paid
to conmputability in the set B consisting, so to say, of
the functions S and P with conplexity 1. Intuitively, the
conmputability of an element e in this set B neans that
t he val ue of the output conponent of 6 can be effectively
conputed, starting fromthe value of the argunent, by using
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as nmany additions and subtractions of 1 as the conplexity
conmponent indicates. A nunber of concrete elenents e are
shown to be conputable in ®, and sone other ones are shown
to be not conputable in B (for exanple, whatever the natu-
ral nunmber n is, the elenent, whose both conponents are
AU.Nnu, is conputable in 8B, and whenever 6 is an el enent
conmputable in 8 and having output conponent au. nu, then
the value of the conplexity conponent of e at u cannot be
|l ess than <n—1>u). Maybe a further study of the conput-
ability in this conbinatory space could |l ead to sone nore
prof ound results.

7. Conbi natory spaces connected with
side effects of data processing

Agai n a conputational structure
A=<M,J, L, R, T, F, H>

i s supposed to be given. In addition, a non-enpty set E is
supposed al so to be given, and its elenments will be now re-
garded as states of the environment in which the data pro-
cessing is carried out. The way of running of the processing
by a given device can, in general, depend not only on the

i nput data, but also on the state of the environnment at the
start of the process. On the other hand, the processing nay
soneti mes have the side effect of changing this state, and
therefore, the state at the end of the processing will be
not necessarily the sane as at the start. In the case of
non-determ ni stic devices the nmenti oned dependenci es are not
necessarily functional, and the mathemati cal counterpart of

the above intuitive ideas will be a binary relation in the
Cartesian product MxE. A pair <<u,i>, <v,j>> of el-
enents of MxE wll belong to this relation if output v

in state j of the environnment is a possible result of a
processing started with input u in state i of the environ-
ment. In this sense such relations will be used as mat henmat -
i cal descriptions of devices, and a conbinatory space w ||
be constructed whose semgroup will consist of all such re-
| ations. The semi group nultiplication will be the ordinary

conposition of relations, since now it corresponds again to
t he sequential conposition of devices.

The followi ng proposition contains the construction in
guesti on.

Proposition 1. Let ¥ be the partially ordered sem -
group 9}§11XE) of all binary relations in MxE. For each

binary relation f in M, |et
f~={<<u, k>, <v, k>>: <u, v>ef, keE}.
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Let © be the set of all f~ corresponding to constant
total functions in M. Let T and = be, respectively, a
binary and a ternary operation in ¥, defined as follows:

MCp, YO =4{<<U, i >, <W, k>>:
s It Jj] (<<U, 1 >, <S, J>>ep &<<U, | >, <t, k>>ey &
J(s, t >=w},

SCxs @ Y ={<<U, I >, <W, kK>>:
3] (<<U, i >, <true, j>>cHy & <<U, | >, <W, k>>ep VvV
<<u, i >, <false, | >>eHy & <<u, | >, <w, k>>eyD},

wher e
Hy ={<<u, i >, <p, ] >>: IV (<U, | >, <V, | >>eyxy & HVvO=pD}.
Then:
(i) the 9—tuple
© =<7, IM"’, ¢, I, L, R, =, T, F~>
is an iterative conbinatory space;

(ii) the conmbinatory space G is symetric iff the set
E consists of a single el enment;

(iii) for any o, x in ¥, any u,w in M and any i,k
in E, the condition

<<U, | >, <W, kd>>elo, x]

is equivalent to the existence of a natural nunber m such
that, for some sequence Voo oo Voo of elenents of M and

some seqguences io, im and jo, ...,jm of elenments of
E, the following conditions are satisfied:
Vo=U, V_=W, iO:i, jm:k,
<<V 0>, <tl’ue,j|>>eHx, | =0, ..., m-1,
<<V, ,j|>, <V|+1,i|+1>>60‘, | =0, ., m=1,

<<V s [ o> <fal se, | m))eHx.

The proof again will be left to the reader. W give only
the following hint in connection with the statenment (ii): to
prove the inplication fromthe synmetry of & to the state-
ment that all elements of E are equal each other, suppose
i, ] are arbitrary elenents of E and apply the condition

*
[1.1.(7 ) to an arbitrary element x of © and to
o =(MxE>x{{<s, i >}, yYy=CMxE>x{{<s, | >},
where s is sone fixed elenent of M.

The conbi natory spaces connected with conplexity of data
processing (cf. the previous section) can be enbedded in
conbi nat ory spaces of the type considered now, and for that
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pur pose the mapping = defined by the equality 6.(1) can be
used. Here is the precise fornulation of this fact.

Proposition 2. Let an associative operation of addition
be defined in the set E, and let this operation has a zero
el enent o. Let

G=<7%, |, € o, L™, R, =, T, F7>
be the conbi natory space fromthe above proposition, and | et

60:<?0,I0,€0,H0,L0,R0,20,T0,F0>
be the conbi natory space from Proposition 6.2. Let = be the
mappi ng of Fo into ¥ defined by neans of the equality
6.(1). Then = is an isonorphic enbedding of the partially
ordered sem group Fo into the partially ordered sem group
¥, the imge of 6, under = is equal to &, and the fol -
| owi ng equalities hold (where (o, x1, denotes iteration
in

60):
=l o=~ ELO>=L", =RDI=R", =T O>=Tv, = >=F,
ECT Cp, YOO =TCECpD, ECYDD,
ECE (x> ¢, YOO =3CE(xD, ECpD, ECYDD,
=(Clo, x]o):[E(J), =2Cx21
(the last three hold for all ¢, ¥, x, 0 in ?b).
The verification of everything what is clainmed in the

above proposition contains no difficult nonments, and we
| eave this verification to the reader. W note only that the
| ast equality could be verified either by using the charac-
terizations of the iteration in the both conbinatory spaces

or by using the Knaster-Tarski-Kl eene representation of
| east fixed points and the fact that the inmage of Fo under

Z is closed with respect to | east upper bounds of nobnoton-
ically increasing sequences,

Remark 1. If E has nore than one el enent, then the
i mge of Fq under Z in the above proposition is surely

different fromthe whole &. This can be seen, for exanple,
by using the fact that, whenever o6 is an el enent of Fy >
then the following condition is satisfied:

YUVVVIi V] (<<U, | >, <V, | >>eE(8) =
3k (<<U, | >, <V, kK>>=EC8D).

Remark 2. A snaller conbinatory space than the conbina-
tory space from Proposition 1 can be constructed by using
the partially ordered sem group ¥ .(MxE> instead of

?m(MxE). We shall not enter into details, since they are
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simlar to things nmentioned in Remark 6.2 (instead of the
nane "conpl exity component”™ now the nane "environnent conpo-
nent" will be appropriate).

8. Sone conbi natory spaces of set-valued partial nappings

As usual ly, a conputational structure
A=<M,J, L, R, T, F, H>

i s supposed to be given. For the sake of sinplicity, the
predicate H will be assuned to be total.

We shal |l consider partial mappings of M into the set
of its subsets. The intuitive idea behind our considerations
will be the follow ng one. When descri bing the behavi our of
a non-determ nistic conmputational procedure, it is sonetines
reasonabl e to proceed as foll ows:

(i) to specify the input data for which the execution of
t he procedure necessarily term nates,

(ii) to specify which are the possible output data cor-
respondi ng to each concrete instance of the input data nen-
ti oned above, and

(iii) to pay no attention to what happens for the other
i nput dat a.

The description obtained in this way can be represented by a
function, which is defined only for the input data mentioned
in (i) and transfornms each instance of these data into the
set of all possible output data corresponding to it. A com
bi natory space will be constructed now which is related to
this intuitive idea.

W shall denote by ¥ the set of all functions e such
that dome<M, rnge<=?PM, where PM is the set of all
subsets of M. W introduce in ¥ the partial ordering which
is usual for sets of partial functions, nanely, for any ¢
and y in ¥, we adopt the convention

p=y & domp =2domy & Vuedomy Cplud =ydudd

(i.e. o=y is equivalent to =2y, taking into account the
interpretation of ¢ and y as subsets of Mx?PM). For any
o and y in ¥, we shall denote by ¢y the elenent e of

¥ determ ned by neans of the follow ng conditions:

(a) dome={uedomy: ydcud><domg};
(b) for any u in dome, the equality
eCud =U{pdvD: veydud}
hol ds.
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Proposition 1. The set ¥, considered with the partial
ordering and the nmultiplication introduced above, is a par-
tially ordered sem group.

Proof. A straightforward verification..

Remark 1. In Exercise Il1.4.13, a conbinatory space has
been defi ned whose sem group consists of all pairs <f, A>
wth f=mMxMmM, A<=M. Let us denote now that partially or-
dered sem group by ¥, - For each such pair <f, A> bel onging

to ¥, let =c<f, A>> be the function e from A to PM
defined by nmeans of the equality

eCud>={v: <u, v>ef}.
Then = is a nonotonically increasing mappi ng of F, onto

¥, and this mapping preserves the nultiplication. If

<f, A> , describes sonme non-determnistic conputational pro-
cedure in the way explained in the footnote to Exercise
I1.4.13, then the corresponding =c<f, A>> will describe the
same procedure in the way consi dered now.

For each partial function f in M, let f~ be the el-
enent of ¥ determ ned by the conditions that domf~ =domf
and f~Cu>={fcud>} for all u in domf. Let & be the set of
all f~ corresponding to constant total functions in M.

Remark 2. If f is a partial function in M, then its
representation in the conbi natory space from Exercise
I1.4.13 is <f, domf>, and obviously =c<f, domf>>=f~.
Therefore the set ¢ defined above is the inage under =
of the set & fromthat exercise.

A binary operation T will be defined in ¥ as foll ows:
if ¢ and y are arbitrary elenments of ¥, then TCyp, yd is
the element e of ¥ such that

dome ={u<=domyp: ¢Cud+0 —> u=domy}, 108

and, for all u in dome and all w in M, the equival ence
Wealud & FS e pdud At eydud (w=JCs, t DD

hol ds.

For each ¥ in ¥, we define a partial mapping Hy of
M into the set of the subsets of {true, false} as foll ows:
dom(Hy> =domy and, for all u in domy, <C(Hx>Cu> is the
i mge of the set x<cu> under H.

For any x, ¢, ¢ in ¥, we shall denote by =Cx, ¢, ¥>

108Coerare with the definition of the operation T in
Exercise |.8.3.
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the element e of ¥ such that

dome ={uedomy: (trueeCHy>(u> = uedompd &
(fal see(Hy>(u> = uedomz//)}

and, for all u in dome and all w in M, the equival ence

Weolud & trueeHydoud & wepdud Vv
fal see(Hy>(u> & weydud

hol ds.

Remark 3. It can be easily verified that the mapping =

of F, onto ¥ preserves the operations T and .

Two further notions will be introduced, and they will be
simlar to notions introduced in Exercise Il.4.17. Suppose
o and x are sone elenments of ¥. An elenent u of M wll
be called o, x—regular iff the follow ng condition is sat-

i sfied
uedomy & (truee(Hy>(u> = u=sdomoD.

An element w of » will be called a o, x—successor of the
elenent u iff

Uedomy & Uedomo & trueeCHy>(ud> & Weodu)d.

It is appropriate also to introduce the notion of a
o, x—path. As in Exercise |I1.4.18, a sequence (finite or
infinite) of elements of M wll be called a o, y—path iff
each termof this sequence except for the first one is a
o, x—successor of the previous termof the sequence. A
o, x—path is called to begin at (to end at) a given el-
enent v of M iff v is the first (the last) termof the
given o, y—path.

Proposition 2. The 9—tuple

=<7, |, € o, L™, R, =, T, F7>

is an iterative conbinatory space. If o and y are sone
elenents of ¥ then (o, x1 is the element e of ¥ deter-
m ned by neans of the follow ng conditions:

(a) dome is the intersection of all subsets Q of M
such that, whenever an elenment of M is o, y—regular, and
all its o, x—successors belong to @, then this el enent
al so belongs to @;

(b) for any uedomse, weM, the condition weedud is
equi valent to the condition that wedomy, falseesdHy>w,
and a finite o, y—path exists which begins at u and ends
at w.

109 Conpare with the definition of the operation = in
Exercise |.8.3.
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The proof of this proposition consists of sinpler vari-
ants of the solutions of Exercises 11.4.13 and 11.4.17. W
| eave this proof to the reader, whom we give the advice to
study those exercises and the hint to the second of them

Remark 4. The domain of (o, x1 can be characterized
al so by using the notion of o, x—path in the same way as in
Exercise I1.4.18. Nanely domio, 1 consists of the el-
enents of M such that all o, x—paths beginning at them
are finite and consist only of o, y—regular elenents.

Remark 5. Using the characterizations of the correspond-

ing iterations in Exercise I1.4.17 and in the above proposi -
tion, one can verify that the mapping = preserves also the
iteration.

Remark 6. It can be easily seen that the conbinatory
space & from Proposition 2 is not synmetric. A synmetric
and again iterative conbinatory space can be obtained if we
replace ¥ by the snmaller set consisting of the parti al
mappi ngs of M into the set of the non-enpty subsets of M
(conpare with Exercise I1.4.19). Note that in this case
domIiCp, y> is sinply the intersection of domp and domy.

Remark 7. Another nodification of the conbinatory space
from Proposition 2 can be obtained if we replace ¥ by its
subset consisting of the partial mappings of M into the
set of the finite subsets of M. Again an iterative conbi na-
tory space is obtained, and this tinme the characterization
of domto, x1 by using the notion of a o, x—path can be
nodi fied as in Exercise 11.4.20. In other words, [o, x]
can be characterized as the mapping e of M into PM
which is determ ned by the condition (b) from Proposition 2,
and the condition that dome consists of the elenments u of
M having the follow ng properties: all o, y—paths begin-
ning at u consist only of o, x—regular elenents, and
there is a finite upper bound for the | engths of these
o, x—pat hs.

Remark 8. A topol ogical generalization of the statenent
in the above remark is possible. Suppose the set M in the
gi ven conputational structure U is a Hausdorff topol ogical

space, the sets domL, domR, H *ctrue>, H'¢false> are open,
and the mappings J, L, R, T, F are continuous (the statenent
fromthe above remark will correspond to the case when the
topology is the discrete one). Then an iterative conbi natory
space arises also if we replace the set ¥ by its subset
consisting of those partial mappings of M into ?M which
have open domai ns and are upper sem continuous in themin
the sense of Berge [1966, Chapter VI, & 1] (the upper sem -
continuity in this sense requires, in particular, the val ues
of the mappings to be conpact subsets of M). It can be
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shown that the iteration in this conbinatory space can be
characterized in the sane way as in the previous remark. For
the proofs, cf. Skordev [1980, Chapter Il, Proposition
5.9.7, and Chapter I1l, Section 3.2, Exanple 20]. In the
same sections of that book also the case is considered when
the additional restriction is inposed on the mappings their
val ues to be connected subsets of the topol ogi cal space M.
In the case of such mappings, it turns out that, for any
fixed u in the domain of [0, 1, all o, x—paths begin-
ning at u and ending at elenents of the set (o, x1Cu>

have one and the same | ength. These topol ogi cal consi der-
ations have sone relation to the interval analysis in the
sense of Moore [1966].

Remark 9. Propositions 1 and 2 renain valid if we re-
pl ace the partial ordering in ¥ by another one which is
defined in the foll ow ng way:

p=y & domp =2domy & Vuedomy Cpdud < ydudd

a notivation for using such a partial ordering can be de-
ived fromthe above-nentioned relation to the interval ana-
sis). To prove that the new conbi natory space obtained in
is way will be iterative, and the iterationin it wll be
the sane, we may use the part (b) of the Unrestricted Iter-
ation Lemma (Proposition I1.4.5). The sanme change of the
partial ordering can be nade also in the nodifications of

G indicated in Renmarks 6-8 (in the case of the spaces from
Remarks 7 and 8, part (b) of the Level Omega Iteration Lenma
is also applicable).

In the case when the given conputational structure is a
standard conput ational structure on the natural nunbers,

sonme results about G-—conputability will be fornul ated
whi ch are counterparts of the statenents of Exercises
[11.2.13, 111.2.16, 111.2.17 and I11.2.18 (and even can be

deduced fromthem by using the mapping Z). These results
are listed in the next proposition. W shall omt their
proofs, and our advice to the reader is to prove them by
sinplifying the proposed way of solution for the nmentioned
exerci ses.

Proposition 3. Let u be a standard conputationa
structure on the natural nunmbers, and let S=au.u+1,
P=Au.u=1. Then:

(1) COMP_C{S™, P¥, Au. N}> consists of the elenments o
of ¥ such that all values of e are non-enpty, dome is a
Hi—set, and the set {<u, v>: uedome & veoCud} is the

intersection of the Cartesian product <dome>xN wth sone
recursively enunerabl e binary relation
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(i) COMP_C{S™, P¥, au. {0, 1}}> consi sts of the el-

enents e of ¥ such that all values of e are finite and
non-enpty, the set {<u, v>: uedome & veedud} is recur-
sively enunerable, and there is a partial recursive function
which transforns each u from dome into the cardinality of

t he correspondi ng set e(u);110
(i) COMP_{S™, P¥, Au. N, au. g}> consists of the el-
enents e of ¥ such that dome is a Hi—set, and t he set

{<u, v>: uedome & veoCud} is the intersection of the
Cartesi an product <¢dome>xN wth sone recursively enuner-
able binary rel ation

(1v) COMP_({S¥, P¥, au. {0, 1}, au. &}> consi sts of the

elements e of ¥ such that all values of e are finite,

the set {<u, v>: uedome & veodud} is recursively enuner-

able, and there is a partial recursive function which trans-
fornms each u from dome into the cardinality of the corre-
spondi ng set eocu>.

Set -val ued partial mappings can be used for the descrip-
tion of non-determ nistic conputational procedures also in
anot her way, which is in the spirit of the ideas from Sec-
tion 1.8 (especially of S. N kolova's ideas which are em
bodied in Exercise 1.8.3). The change in the kind of the
description can be expressed by a change in the clause (i)
at the beginning of the present section. Nanely the words
"t he execution of the procedure necessarily term nates" nust
be replaced now by the words "unproductive term nation of
t he execution of the procedure is inpossible" (or, in a
variant closer to N kolova's ideas, by the words "failures
during the execution of the procedure are inpossible”). The

correspondi ng conbi natory space will be the same as in Prop-
osition 1 up to the partial ordering in ¥ and to the iter-
ation, which will be quite different and will |ook as fol -

|l ows (conmpare with the partial ordering and the iteration
defined in Exercise 1.8.3). The partial ordering will be the
fol |l ow ng one:

p=y & domp Sdomy & Vuedome CpCud =2 ydudd

(this is the inverse partial ordering of that one which has
been nentioned in Renmark 9). The iteration of o controlled
by x will be nowthe mapping 6 of M into PM which is
determ ned by the condition (b) from Proposition 2, and the
condition that dome consists of the elenents of M such

1O A statenent equivalent to this is established in Skor-
dev [ 1980, Chapter IV, Section 1.2, Exanple 8].
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that all o, x—paths beginning at them consi st only of
o, x—regul ar el enents.

9. Sone conbi natory spaces of hybrid nature

Many of the exanpl es of conbi natory spaces consi dered
until now have an intuitive interpretation connected with
certain kinds of descriptions of data processing devices or
procedures. In the different exanples, the correspondi ng
descriptions reflect different aspects of the behavi our of
t he devices or procedures. E. g., we have probabilistic ex-
anpl es of conbi natory spaces and exanpl es of conbinatory
spaces connected with the conplexity of data processing.
Besi des such exanpl es of conbinatory spaces, it is possible
to construct al so conbinatory spaces of descriptions which
reflect simultaneously several aspects of the behaviour in
guestion. W shall indicate now sone conbi natory spaces of
such a hybrid nature.

We shall show first how to construct conbinatory spaces
connected sinultaneously with probability and with conpl ex-
ity of data processing.

W suppose that a conputational structure
A=<M,J, L, R, T, F, H>

and a sem group E are given. The sem group operation in E
wi Il be denoted as addition, and we assune the existence of
an element o of E such that k+o=o0+k=k for all k in
E. The intuitive idea about the data processing devices,
whi ch are the object of study, is the follow ng one. The
devi ces proceed in a probabilistic manner such that, given
any element u of M as input data, for each v in M and
each k in E, there is a definite probability that v wll
be produced as output data, and the conplexity of data pro-
cessing will be equal to k. Mathematically, this state of
affairs can be described by a function e from MxExM into
the interval 10, 11 such that, for any u in M, the equal-

ity
ZZG(U, k, v><1
k v

hol ds. Let ¥ be the set of all such functions 6. W intro-
duce a partial ordering in ¥ in the natural way, namely
o=y neans that ¢cCu, k, v>>ycu, k, v> for all u,v in M
and all k in E. For any two elenents ¢ and y of ¥, we
define a real -valued function ¢y by neans of the equality
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py=aukw. YYY|li +j =Kk [lycv, j, wecu, i, v>.
i j v
One can prove that ¢y belongs to ¥ again, and the nmulti-
plication in ¥ defined in this way is an associ ative oper-

ation. We shall not give the proof, but we shall nention
that it is possible to reduce the proof of the associativity

to the case of nultiplication of mappings of (MxE>® into
(0, 11, and for that purpose it is appropriate to set
ECOX(<U, i >, <v, j>>=)|i +k=] [lecu, k, v>
k

for each e in ¥ and all <u,i>,<v,j> in MxE

(conpare with the equality 6.(1)). Since the nultiplication
in ¥ is obviously nonotonically increasing, the set &
becones a partially ordered sem group.

For each partial mapping f of M into M, we define an
elenent f~ of ¥ by neans of the equality

f~cu, k, v>=|<u, v>ef & k=o].

W denote by © the set of those f~ which correspond to
constant total functions in M.

For any two elenents ¢ and y in ¥, we define a real-
val ued function TCe, y> on the set MxExM in the foll ow
ing way: for any u,v in M and any k in E, we set

MCp, YOCu, k, vO=YY|li +j =k |l ocu, i, LCvOdycu, j, RV
i
if verngJd, and we set TICp, yOCu, k, v>=0 otherwise. It
can be proved that TCyp, y> belongs to ¥ again.

For any x in %, we define a real valued function Hy
on the set MxEx{true, false} by setting

CHx>Cu, i, po>=Y xcu, i, sOfls<H cpo .
S
Then we set

>Cx, > YOCU, K, VO =
YY Wi +i =k [ CCHx>Cu, i, truedecu, j, vod+
' CCHx>Cu, i, fal sed>ycu, j, voD

for all x, ¢, 9 in ¥, all u,v in M and all k in E. It
can be proved that =Cx, ¢, yo=F for all x, ¢, ¥y Iin F.
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The definitions we gave can be notivated by neans of
intuitive reasons concerning descriptions of data processing
devi ces and of sone conbi nati ons of such devices. The fol-
| owi ng proposition (conpare with Propositions 4.1 and 6. 2)
gives a logical justification of these definitions.

Proposition 1. The 9—tuple

©C =<7, IM"’, ¢, I, L, R, =, T, F¥>
is an iterative conbinatory space. For arbitrary o, x in
¥, arbitrary u,w in M and any k in E, the equality

(e 0]
o, x1CU, k, w = z p (U, Ky WD
m=0
hol ds, where
pCUs Ko W =% . Y Y Y Y Y IV, =U & v =W x
Voo Vm'o  'wmlo w1
- m1 - -
(Hx)(Vm, i f al se)ll;lo((Hx)(vI S true)a(vI > 1Y +1))x
N Cigtig2t. .. +ca  +j_ >+i =k].

The conbinatory space & is symmetric iff the addition
operation in E is conmutative.

We shall not present the proof, but we hope that the
readers, who have carried out the proofs of the two ot her
above-nenti oned propositions, will be able to carry out al so
this one.

We shall nmention quite briefly another exanple of conbi-
natory spaces of a hybrid nature. The aspects described by
the el ements of the space now w |l be the foll ow ng one:

i nput -out put relation, including conplexity of the proces-
sing, and set of the input data for which the processing
necessarily term nates. Thus features of the conbinatory
spaces from Exercise I1.4.13 and from Proposition 6.2 wll
be put together.

W assune that 4 and E are the sane as before, and,
for the sake of sinplicity, it is appropriate to suppose
that the predicate H is total. W shall denote by ¥ the
set of all ordered pairs <6, A>, where 8 <=MxExM, A<M.
A partial ordering is introduced in ¥ by neans of the fol-
| owi ng conventi on:

<p, A>2<y, B> &S p2y & A2B &
VYueBVKk VvV (<u, k, v>esp = <uU, k, v>eyD.

A mltiplication in ¥ is defined by nmeans of the equality
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<p, A<y, B>=<py, {ueB: VkVVu, k, v>ey = veAdl>,

where ¢y is the product of ¢ and y as elenents of the
conbi natory space from Proposition 6.2 (i. e. as elenments of
the sem group from Proposition 6.1). W think the rest of
the construction of the conbinatory space can be left to the
reader. The conbi natory space constructed in this way is
again iterative, and the characterization of the iteration
init is a certain hybrid of the characterizations of the
iterations in the above-nentioned two kinds of conbinatory
spaces (i. e. a hybrid of the characterizations from Exer-
cise Il1.4.17 and Proposition 6.2).

10. Products of conbi natory spaces

In this section, we shall generalize a construction from
Exercise I1.1.40, nanely the construction of the power-space

GK, where & is an arbitrary conbinatory space, and K is

an arbitrary non-enpty set. W shall generalize also the

statenent of Exercise I1.3.9 that GK is iterative, when-

ever G is iterative.

W suppose that K is sone non-enpty set, and a conbi -
natory space

@k:<yk,Ik,€k,Hk,Lk,Rk,Zk,Tk,Fk>

is assigned to each k from K. W shall denote by ¥ the
set of all functions e such that dome =K, and e(k)e?k

for all k in K. W nake the set ¥ to be a partially or-
dered sem group by the conventions that, for any ¢, y in
¥, the inequality o>y holds iff, for all k in K, the
inequality ¢Cck>=yck> holds in G, and ¢y is the el-

ement e of ¥ such that eck>=¢Ck>yck> for all k in K.
W set

I:Ak.lk, L:Ak.Lk, R:Ak.Rk, T:Ak.Tk, F=xk. F
€={6<7: VkeK(G(k)e@k)}.

A binary operation T and a ternary operation X are de-
fined in ¥ by neans of the equalities

Cp, ¥y>=2ak. mCo > ¥, 2 ZCx> ¢, Yy =2ak. 2. > 0 YO

The followi ng two propositions can be verified i mredi-
ately (however, the verification of the first of them nakes
use of the Axi om of Choice in the general case).

k’

Proposition 1. For any k in K and any x in €

there is an elenent o of & such that eck>=x. k*
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Proposition 2. For all ¢,y in ©, the elenents
Ty, yd, T, Fp of ¥ also belong to &.

The main result in this section reads as foll ows.
Theorem 1. Let
C=<%,1,¢€¢,0T, L, R, =, T, F>,
where € is a subset of € such that:

(i) for any k in K and any x in @
elenent e of € such that eck>=x;

(ii) for all ¢,y in ©, the elenents TCp, yd, Te, Fo
of ¥ also belong to @©’.

Then:
(a) & is a conbinatory space;
(b) if the combinatory spaces G, are iterative for all

k in K, then @ is also iterative, and, for all o, x in
g and all k in K, the equality

Lo, x1CkD> =T10oCk), x(k)]k
hol ds, where -, -1, neans iteration in G -

Proof. The conditions I1.21.(2), 11.1.(9) and I1.1.(10)
fromthe definition of the notion of conbinatory space are
satisfied due to the assunption that © satisfies condition
(ii) above. To verify condition I1.1.(1), suppose that ¢
and y are such elenents of ¥ that ¢ge>ye for all 6 in
€’ . Then, taking arbitrary k from K and arbitrary x in
€, > Ve, by condition (i) above, can find an elenent e of

€’ such that eck>=x. Using this 6, we get
pCkDOX = pCkDBCk> = CpBdCkd > CyedCkd> =yckd>eCkd = yckDX.
Since x was chosen arbitrary in €, > e concl ude t hat

pCk>>yck>. But k was also arbitrary, hence ¢=>y. The
verification of all other conditions in the definition of
the notion of conmbinatory space is straightforward.

For the proof of (b), suppose that G, is iterative for
all k in K. Let o, x be arbitrary elenments of ¥, and | et
t=2ak. [oCk>, x(k)]k. We shall showthat ¢ is the iter-

ation of o controlled by x in the conbinatory space 6.
Clearly, ¢v=3Cx, to, |>. To check the second condition in
the definition of iteration, suppose that «4 is some subset
of ® invariant with respect to o, and t, p are elenents
of ¥ satisfying the inequality

(1) T=23Cx, TOo, pJ.
A

Ko there is an
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We shall prove that T=>=p¢. For that purpose, we suppose

]
that e is an arbitrary element of 4. W have to prove the
inequality te=pue. Let k be an arbitrary el enent of K.
We must prove that tckd>edck> > pck>uckd>eck>. Let us denote

by A the set of the values at k of the elenments of «.

By this definition, e(k)esak. Qovi ousl y, 4, <6, . It is
easily verified that, whenever sone elenents ¢ and y of
¥ satisfy the inequality ¢>y, then the inequality

]

pCk>> yck> also holds. Hence the inequality (1) inplies the

Ay

i nequal ity

(2) (k> = Zk(x(k), TtCkDoCkD, pCk>D.
A
k

Now we shal |l show t hat A is invariant with respect to

oCk>. Let o and B be elements of P satisfying the in-

equality a= p. W have to prove that oaoCk>= gock>. To

Ay Ay

do this we consider elenents ¢ and y of ¥ such that

(k> =a, yCk>=pg, and eCk’>=yck’> for all k’ in

K\{k}. It is easily seen that ¢=y. Since «4 is invari-
]

ant with respect to o, this inplies the inequality

po=yo. Hence the inequality @Ck>oCk>= yckd>oCk>

] ]
k
holds, i.e. aoCk>> goCk>. Thus we proved the invariance
]
k
of A Wi th respect to oCk>. This invariance, together with

the inequality (2), inplies the inequality

(kD> pCkD LCkD.

Ay

Taking into account the already mentioned fact that eck>
bel ongs to 4, > we get t he needed inequality

(kD> eCk> = pck> L(k)e(k)..

By Propositions 1 and 2, the set € is an exanple of a
set © satisfying the assunptions of the above theorem In
general, smaller sets © could also happen to satisfy
t hese assunptions. For instance, to obtain the statenents

concer ni ng cK as corollaries of the t heorem we can take
€ to be the set of all constant mappings of K into &.
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