
CHAPTER I

COMPUTATIONAL STRUCTURES AND COMPUTABILITY ON THEM

1. Computational structures

As noted in the preface, we shall consider computability
not only of functions, but also of a large variety of other
kinds of function-like objects. However, we feel it would be
not wise to start with the general case from the very begin-
ning. Therefore we shall first consider a certain notion of
computability concerning ordinary functions, as well as its
natural generalization for the case of multiple-valued func-
tions (cf. Sections 2 and 5 of this chapter). Although this

1notion can be reduced to other ones which are well-known ,
it provides a class of examples which we consider useful for
the better understanding of the general theory and for the
demonstration of its applicability.

The above mentioned notion of computability will concern
unary functions in so-called computational structures. These
will be a certain kind of algebraic structures (possibly
partial).

Definition 1. A computational structure is a 7-tuple�����
J
�
L
�
R
�
T
�
F
�
H � � where � is an infinite set, J is�

an injective mapping of � into ���
L and R are partial

mappings of � into ���
T and F are total mappings of �

into ���
H is a partial predicate on � and the following

equalities are satisfied for all s
�
t
�
u in ���

L 	 J 	 s � t 
�
� s
�

R 	 J 	 s � t 
�
� t
�

H 	 T 	 u 
�
� true
�

H 	 F 	 u 
�
� false �
If �����

J
�
L
�
R
�
T
�
F
�
H � is a computational structure,

�������������������������������������������������������������
1 For a typical case of the considered situation, such a

reduction can be found in Soskov [1985].
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then the mapping J can be used for coding ordered pairs of
elements of � by elements of ��� and L

�
R provide us with

the corresponding means for decoding ( dom L and dom R must
include the set rng J

� without necessarily being equal to
it). As to T

�
F
�
H
� we could regard all values of T and F

as codes of the logical values true and false
� respective-

ly, and the partial predicate H can be regarded as a means
for the corresponding decoding (of course, this predicate
will transform into logical values all elements from its
domain, although some of these elements could belong neither
to rng T nor to rng F ).

Three examples of computational structures �����
J
�
L
�
R
�

T
�
F
�
H � follow.

Example 1. Let � be the set
� ��� 0 � 1 � 2 � 3 � ������� of the

natural numbers, and let
s tJ ��� s t � 2 � 3 �

L ��� u ��	 u 
 �
R ��� u ��	 u 
� �

(where 	 u 
 and 	 u 
 denote the exponent of 2 and of 3
�� �

respectively, in the prime decomposition of u if u > 0
� and

they denote 0 if u � 0 ). Let T ��� u � 1 � F ��� u � 0 � and	
true if u > 0

�
H 	 u 
��
 false if u � 0 ��

Example 2 (cf. Moschovakis [1969]). Let B be some set,
oB be the set B �� O � � where O is some object not in B

�
oand � be the least set containing B and closed under

formation of ordered pairs (in the mentioned paper, this set�
is denoted by B ). The ordered pair operation used in the
construction of � is assumed to be chosen in such a way

othat no element of B is an ordered pair. Let J be the
mapping � s t � � s � t � � and the mappings L

�
R be defined

by the conditions

L 	 O 
� R 	 O 
� O
�

L 	 u 
� R 	 u 
� � O � O � for all u in B
�

L 	 � s � t � 
� s
�

R 	 � s � t � 
� t for all s
�
t in �

(in Moschovakis [1969], these mappings are denoted by �
and � � respectively). Let T ��� u � � O � O � � F ��� u � O � and	 otrue if u � B �

H 	 u 
��

o�

false if u � B �
The computational structure obtained in this way will be

called the Moschovakis computational structure based on B
and will be denoted by � (the element O is not indicat-

B
ed in the name and in the denotation, since the concrete
choice of O can be usually considered immaterial).
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Example 3. Let an FP � system in the sense of Backus
[1978] be given. Denote by � the set of all its objects

2with the exception of the special atom
� � Let J be the

mapping � s t � � s � t � � and L
�
R be the functions having as

their domain the set of all non-empty finite sequences of
elements of � and selecting from each such sequence its

3first and its last member, respectively . Let T and F
be the constant functions whose values at all elements of� are equal, respectively, to the atoms meaning truth and
falsity. Let dom H be the subset of � containing exactly
these two atoms, and let H have the value true for the
first of them and the value false for the second one.

Note that in all three above examples T and F are con-
stant functions, and this could be considered to be a typi-
cal case.

We should like to add several further examples of compu-
tational structures. In some of them, T and F will not be
constant functions.

Example 4. Let � be the set of all infinite sequences
of real numbers, and J

�
L
�
R
�
T
�
F
�
H be defined as follows:

J 	 � s �
s
�
s
� ������� � � t �

t
�
t
� ������� 
�� � � � � �

�
s
�
t
�
s
�
t
� ������� �� � � �

L 	 � u �
u
�
u
� ������� 
� � u �

u
�
u
� ������� �� � � � �

4

R 	 � u �
u
�
u
� ������� 
� � u �

u
�
u
� ������� �� � � � �

5

T 	 � u �
u
�
u
� ������� 
� � 1 � u �

u
�
u
� ������� �� � � � � �

F 	 � u �
u
�
u
� ������� 
� � � 1 � u �

u
�
u
� ������� �� � � � � �

�������������������������������������������������������������
2 The objects of the FP - system can be described as fol-

lows. One starts from some objects called atoms, among them
one meaning truth and another one meaning falsity (Backus
denotes them by T and F

� respectively). Also a special
atom

�
is provided whose meaning is "not defined". Then the

set of the objects of the FP - system consists of all atoms,
of the empty sequence � and of all non-empty finite se-
quences �

u
� ����� � u � whose members u are already con-�

n i
structed objects of the system distinct from

� �
3 L and R could be identified with the functions which

Backus denotes by 1 and 1r �
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�
true if u > 0

��
H 	 � u �

u
�
u
� ������� 
���� � � �

false if u < 0�
( H 	 � u �

u
�
u
� ������� 
 is not defined if u � 0 ).� � � �

Example 5. Let ��� �
I
����� �

L
� �

R
� � be an operative

space in the sense of Ivanov [1986] (cf. Section II.2 of the
present book for the definition). Let � be the set of the
elements of the semigroup � � and let H be defined as fol-
lows: 	

true if u � L
� �

dom H ��� L � � R � � � H 	 u 
��
 false if u � R
� ��

Then ��������� � � u � L � u � � u � R � u � � u � L � � � u � R � � H � is a com-
putational structure.

Example 6. Let �����
J
�
L
�
R
�
T
�
F
�
H � be an arbitrary

computational structure. Then the following three 7 � tuples
are also computational structures:

����� � t s � J 	 s � t 
 � R � L � T � F � H � �
�����

J
�
L
�
R
�
F
�
T
�
not H � �

����� � t s � J 	 s � t 
 � R � L � F � T � not H � �
If L 	 � R 	 are the restrictions of L and R

� respectively,
to the set rng J

� and H 	 is the restriction of H to the
union of rng T and rng F

� then �����
J
�
L 	 � R 	 � T � F � H � and�����

J
�
L
�
R
�
T
�
F
�
H 	 � � too, are computational structures.

Example 7. Let B be an arbitrary non-empty set whose
elements are not ordered pairs, and let � be the least set
containing B and closed under formation of ordered pairs.
Let J ��� s t � � s � t � � and the mappings L

�
R be defined by

the conditions

dom L � dom R � ��
 B �
L 	 � s � t � 
� s

�
R 	 � s � t � 
� t for all s

�
t in � �

Let T ��� u � � u � u � � and F be defined by induction as fol-
lows: F 	 u 
� u for all u in B

� and F 	 � s � t � 
� F 	 s 
 for
all s

�
t in � � Let 	

true if u � B �H 	 u 
��
 �
false if u � B �

Then �����
J
�
L
�
R
�
T
�
F
�
H � is a computational structure.

This structure (with an exchange between the codes of truth
and falsity) has been introduced and used, in essence, in
the thesis Soskova [1979].

Example 8. Let ���
J
�
L
�
R be defined in the same way

as in the previous example, but for the particular case of
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B � � � Let T ��� u � � 0 � 0 � � F ��� u � 0 � and	
true if u

�
0
�

H 	 u 
��
 �
false if u � 0 �

Then �����
J
�
L
�
R
�
T
�
F
�
H � is again a computational struc-

ture. It has been used, in essence, in the thesis Ignatov
[1979].

Exercise. Show that we get an equivalent form of the
definition of computational structure if we make the follow-
ing two modifications (or one of them) in it: (i) omitting
the requirement J to be injective; (ii) replacing the re-
quirement � to be infinite by the requirement � to be
non-empty.

2. Computability of partial functions
with respect to a given computational structure

For each set ��� let � 	 � 
 denote the set of all par-p
tial mappings of � into � � If � and � belong to this
set then their composition ��� (denoted also by ����� ) is
the element � of � 	 � 
 determined by the condition thatp

��	 u 
	�
��	���	 u 
�

for all u in � . The identity mapping � u � u of � onto �
will be denoted by I �

M
Suppose now a computational structure � � ����� J � L � R �

T
�
F
�
H � is given. Then we shall define two other binary

operations in � 	 � 
 � The first one will be called � �p
combination, and it will be denoted by � � By definition,
for arbitrary � � � in � 	 � 
 , � 	�� � � 
 is the element �p
of � 	 � 
 determined by the condition thatp

��	 u 
	� J 	���	 u 
 � ��	 u 
�

for all u in � � The second one will be called � � iter-
ation (iteration, for short). The result of its application

4to the elements  and � of � 	 � 
 will be denoted byp�  � ��� � and it will be named the iteration of  controlled
by � . By definition,

�  � ��� is the function � determined
by the following condition: ��	 u 
� w iff there is a finite
sequence v

�
v
� ����� � v of elements of � such that� � m

�������������������������������������������������������������
4 Compare with the denotations used in Buchberger [1974].



6 I. COMPUTATIONAL STRUCTURES AND COMPUTABILITY ON THEM

v � u
�

v � w
���

j � H ����� v ��� � true
�

v �	� � v ��� �
 m j j + � j
j < m H ����� v ��� � false

m
(in Pascal-like denotations, the function � can be repre-
sented by means of the declaration

function ��� u: ����� ;
var v �� ;

begin
v � � u ;
while H ����� v ��� do v � �	� � v � ;
��� � v

end ; ).

It is useful to note that��� ��� ����� � � u ��� if H ����� u ����� true �(1)
� ��� ����� u ����� u if H ����� u ����� false ��

One more operation looks very natural, namely an oper-
ation of definition by cases, which will be called  "!
branching. This is a ternary operation in #$���� which willp
be denoted by %�� By definition, for arbitrary � �'&��'( in
#$���� , %���� �'&��'( � is the element � of #$���� determinedp p
by the condition that ��� u � � w iff

H ����� u ��� � true
� & � u � � w ) H ����� u ��� � false

� ( � u � � w �
In some issues, however, this operation could be not taken
into account since it can be expressed by means of the pre-
ceding ones (see Exercises 1 and 2).

Using the operation % � we can formulate the following
characterization of the iteration as a least fixed point:
for arbitrary ��� � in #$���� � the equalityp
(2)

� ��� ��� � %���� � � ��� ��� ��� I �
M

holds, and
� ��� ��� is a subfunction of each *,+,#$���� whichp

satisfies the condition that %���� � * ��� I � is a subfunction
M

of * (compare, for example, with Mazurkiewicz [1971] or
Scott [1971, Section 7]). Of course, (2) is an easy conse-
quence of (1) (the only additional thing needed for deriving
(2) is the fact that H ����� u ��� is defined for all u in
dom

� ��� ��� ). As to the second part of the statement (the
minimality of the iteration), we prefer not to give its
proof here, since in a further section of this chapter the
more general (and a little more complicated) case of the
iteration of multiple-valued functions will be considered
(cf. also Exercises 3 and 8 after this section).

Now we shall define a notion of relative computability
of elements of #$���� with respect to the given computa-p
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tional structure  �
Definition 1. Let

�
be some subset of #$������ The el-p

ements of #$����  "! computable in
�

(computable in
� �

p
for short) are those elements of #$���� which can be gener-p
ated from elements of � L � R � T � F ��� � by means of compo-
sition,  "! combination and  "! iteration.

Of course, if each element of
�

is computable in
���

(in particular, if
�

is contained in
���

) � then each el-
ement computable in

�
is computable in

��� � Exercise 1
below shows that I and the function, whose domain is emp-

M
ty, are  "! computable in � � From Exercise 2 and the com-
putability of I , it is seen that %���� �'&��'( � is always

M
 "! computable in � � �'&��'( � ; hence including % as an
additional generating operation in the above definition of
computability would not enlarge the set of the elements of
#$���� which are  "! computable in

� � However, one couldp
ask whether there are not other reasonable effective con-
structions in #$���� which could enlarge this set. In thisp
book it will be shown that in some sense such other con-
structions do not exist. In particular, functions computable
by means of a large class of recursive programs will be
found to be computable in our sense.

By considering an uniform variant of the introduced com-
putability notion, we could also define  "! computability
for operators in #$������ Here is the corresponding defini-ption.

Definition 2. Let
�	� #$���� � and let 
 be a mapping ofp

l��#$������ into #$���� � where l is some positive integer.p p
Then 
 is called (an operator)  "! computable in

�
(com-

putable in
� � for short) iff, for arbitrary ( � ����� �'( in� l

#$���� � there is an explicit expression for 
�� ( � ����� �'( �p � l
through L � R � T � F �'( � ����� �'( and elements of

�
by means� l

of composition,  "! combination and  "! iteration, the form of
the expression not depending on the concrete choice of ( ������� �'( �

l

Remark 1. The above definition can be formulated more
precisely using induction. We could, for example, adopt the
following formulation:

(i) For each �,+�� L � R � T � F ��� � � the mapping ( ����� ( ��� is  "! computable in
� �� l



8 I. COMPUTATIONAL STRUCTURES AND COMPUTABILITY ON THEM

(ii) The mappings
 ( ����� ( � ( � i � 1 � ����� � l � are� l i -computable in

� �
l(iii) If 
 and 
 are mappings of ��#$������ into� � p

#$���� � which are  "! computable in
� � then so arep  ( ����� ( ��
 ��� ( � ����� �'( ��� 
 ��� ( � ����� �'( ��� �� l � � l
� � l ( ����� ( � � � 
 � ( � ����� �'( � � 
 � ( � ����� �'( ��� �� l � � l
� � l ( ����� ( � � 
 � ( � ����� �'( � � 
 � ( � ����� �'( ������ l � � l
� � l

Example 1. Exercises 1 and 2 below show that % is an
operator computable in � �

In the next two sections, the problem will be studied
which are the functions  "! computable in certain sets

�
for computational structures  as in Examples 1.1 and 1.3
(in the case of Example 1.1, also the computable operators
will be considered). For the computational structures de-
scribed in Example 1.2, the same problem will be studied a
little later, as a part of the more general problem concern-
ing multiple-valued functions.

Exercises

(In all these exercises, a computational structure
 ���  � J � L � R � T � F � H � is supposed to be given)

51. Prove that
� ��� T � � � � and

� ��� F � � I for all
M� +,#$������p

2. Let L � � � � T � I � � R � � � � F � I ��� For arbitrary � �'&��
M M( in #$���� � prove the equalitiesp

%�� L �'& R �'( R � L � �	&�� %�� L �'& R �'( R � R � �	(��� �
%���� �'&��'( � � R

�
R � ( R � L � R � R � & R � L � � ��� � L � �

(compare the last one with the equality
� � � � a � b � � ��� K K a T T � K � K b T � K!

in Böhm and Jacopini [1966, p. 369], taking into account the
difference in denotations, the absence of our operation

�

there and the fact that iteration there has the semantics of
while not ).

3. Let ��� � ��� be arbitrary elements of #$���� � and letp
* ��� � ��� ����� Prove that * is a solution of the equality
 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

5 We identify functions with their graphs, hence � is
the function whose domain is empty.
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* � %���� � * ����� � � and * is a subfunction of each *,+,#$����
 p
which satisfies the condition that %���� � * ����� � is a sub-
function of *��

4. Suppose T and F are constant mappings. Let #T � u � � a � F � u � � b for all u in  � Define elements 0 �
# # 61 � 2 � ����� of  as follows :�

# J � b � b � if k � 0,k � � #�
J � a � � k ! 1 � � otherwise.

Prove the existence of an element & of #$���� which isp
 "! computable in � and satisfies the condition

# #& � n � � � 2 n � for all n +�� .
Hint. First construct an element � of #$���� which isp

 "! computable in � and satisfies the equality
# # # #� � J � k � l ��� � J ��� k ! 1 � � � l + 1 � �

for all non-zero k in � and all l +��'�
5. Prove the conclusion of Exercise 4 without the as-

sumption that T and F are constant mappings, and using
the following weaker assumption about a � b � a and b are
fixed elements of  such that H � a � � true � H � b � � false �

6. Let the dual (or while not ) iteration
� ��� ��� ofd� controlled by � be defined be exchanging true and

false in the definition of
� ��� ��� (i. e.

� ��� ��� is thed
 � ! iteration of � controlled by � � where  � ���  � J � L �
R � F � T � not H � ). Prove that the mapping

 � ��� � ��� ��� d
7is  "! computable in � �

Hint. Show that not H ����� u ��� � H ��%���� � F � T � � u ��� for all
� in #$���� and all u in  �p

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
6 This generalizes a representation of natural numbers

from Moschovakis [1969] (cf. Section 7 of his chapter).
7 Consequently,

 � ��� � ��� ��� is  � ! computable in �
(since

� ��� ��� is the dual iteration in  � ). Note that
iteration in the examples, considered in the papers Skordev
[1975, 1976 a, 1976 b, 1976 c] and in Chapter I of the book
Skordev [1980], is the same as in the examples which will be
given in the next sections, since it was defined, roughly
speaking, as the dual iteration in the corresponding struc-
tures  �
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7. Let
�	� #$���� � and let  � be some of the threep

other computational structures related to  � which were
mentioned at the end of Section 1. Prove that the elements
of #$���� �  � ! computable in

� � are the same as its el-p
ements  "! computable in

� �
8. Let ��� � ��� be arbitrary elements of #$���� � andp

let * ��� � ��� ����� Suppose K is a subset of  such that

� � u � + K for all u + K � dom ��� and * is an element of
#$���� such that the restriction of %���� � * ����� � to K isp
a subfunction of *�� Prove that the restriction of * to

K is a also a subfunction of *��

3. On a procedure for generating
the unary partial recursive functions

In this section, a characterization will be given of the
unary partial recursive functions as the elements of #$� � �p
 "! computable in

� � where  is a certain computational
structure whose carrier is � , and

�
is a certain finite

subset of #$� � � . By giving such a characterization we aimp
to show the place of the theory of partial recursive func-
tions as a special case of the general theory developed fur-
ther in this book. As a suitable computational structure  �
the one from Example 1.1 can be taken.

Let T � F � H be the same as in Example 1.1, i. e.
T �  u � 1 � F �  u � 0 � and �

true if u > 0 �H � u � � � false if u � 0 ��
Let S �  u � u + 1 � P �  u � u � 1 � It will be said that  
is a standard computational structure on the natural numbers
iff  ��� � � J � L � R � T � F � H � � where J is a recursive func-
tion of two variables, L � R are partial recursive functions
of one variable, and the equalities L � J � s � t ��� � s �
R � J � s � t ��� � t hold for all s � t in � (as an example of
such a structure the computational structure from the above
mentioned example can be taken).

Theorem 1. Let  be a standard computational structure
on the natural numbers. Then the unary partial recursive
functions are exactly those elements of #$� � � which arep "! computable in � S � P � �

Remark 1. If  ��� � � J � L � R � T � F � H � satisfies the
above assumption, and

�
is a subset of #$� � � containingp
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�
S � P ��� then T and F can be omitted as initial elements

in the definition of ��� computability in �	� This follows
from the equalities I 
 P S � F 
�� P � I �� T 
 S F � So the� �
theorem states that the unary partial recursive functions
are exactly those elements of ��� �	� which can be generatedp
from L � R � S � P by means of finitely many applications of
composition, ��� combination and ��� iteration. We think
this result must be considered well-known, but we are not
able to give a relevant bibliographical reference.

Proof. Let ��
�� � � J � L � R � T � F � H ��� We set ��
���� �	� �p
��
 � S � P � for short. Let � be the set of all elements of�
� which are ��� computable in �	� Since all elements of � �
are partial recursive, we have only to show that, converse-
ly, all unary partial recursive functions belong to ����

For each integer n greater than 1 � we set

J ������ "!#��� � 
 J � s � J � s �$������� J � s � s � ����� ��� �
n
�

n
� %

n � � n
and then we define � to be the set of all functions

n
having the form &'��(*)+�,�.-�� J ������ "!#��� ��� � where -'/0����

n n
�

n
�

The theorem will be proved if we succeed to show that the
union of the sets �1���2���2�$����� contains the initial� % 3
partial recursive functions S � F and 4 s ����� s � s for�

n i
n 
 1 � 2 �$������� i 
 1 � 2 �$������� n � and this union is closed
under substitution, primitive recursion and 5'� operation.

Of course, S � F /��1� and also 4 s � s 
 I belongs� � � Nto �6� If n > 1 then�
i � �s 
 L R � J ������ "!#��� ���

i n
�

n
for i 
 1 � 2 �$������� n � 1 � and

n � �s 
 R � J ������ "!#��� ��� ;
n n

�
n

hence 4 s ����� s � s /0� for i 
 1 � 2 �$������� n.�
n i n7�8

For showing that 9;:�� is closed under substitution,
n

n=
�

it is sufficient to prove the following two statements:

(i) If f /0� � n < 1 � � and ='/0� then
n

�
4 s ����� s �.=�� f ������ "!#��� ��� /0�>��

n
�

n n
(ii) If f � f �$������� f /0� � m > 1 � n < 1 � then� %

m n
4 s ����� s � J � f ������ "!#��� � �$������� f ������ "!#��� ��� /0�>��

n m
� �

n n
�

n n
The truth of (i) is obvious in the case when n 
 1 � If

n > 1 then (i) follows from the fact that
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f ������ "!#��� � � -�� J ������ "!#��� ����
n n

�
n

implies

=�� f ������ "!#��� ��� � ='-�� J ������ "!#��� ��� ��
n n

�
n

and ='-'/0� � whenever � ��- /*���� �
For the proof of (ii), it is sufficient to show that

4 s ����� s � J � f ������ "!#��� � � f ������ "!#��� ��� /0� � whenever�
n

� �
n

% �
n n

f � f /*� � n < 1 � � The last is obvious in the case when� %
n

n 
 1 � If n > 1 then we use that

f ������ "!#��� � � - � J ������ "!#��� ��� � i 
 1 � 2 �
i
�

n i n
�

n
implies

J � f ������ "!#��� � � f ������ "!#��� ��� ��� ��- ��- � � J ������ "!#��� ��� �� �
n

% �
n

� %
n
�

n
and � ��- ��- � /0� , whenever - ��- /*���� % � � % �

Let f /0�1� g /0�2� and h be the two-argument function� 3
defined by

h � 0 � u � � f � u � � h � j + 1 � u � � g � h � j � u � � j � u � �
8We shall prove that h /0� � From an intuitive point of%

view, the proof will be based on a functional-style transla-
9tion of the following Pascal-like function declaration

which represents h �

function h � t � u � �	� � � ;
var s � v � j � � ;

begin
s � 
 t ; v � 
 f � u � ; j � 
 0 ;
while s > 0 do
begin s � 
 s � 1 ; v � 
 g � v � j � u � ; j � 
 j + 1 end ;

h � 
 v
end ; �

�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�
8 The more general case of primitive recursion, when

f /0�6� g /0� � and h is n + 1 - ary, can be easily reduced
n n +

%
to the case considered now. Roughly speaking, we have only
to substitute J � u �� "!�� u

�
for u �

n
�

n
9 Compare with Backus [1978]. Our ��� combination and ���

iteration correspond to the binary case of his operation
called construction and to his while � operation, respect-
ively (note, however, that no explicit use of list objects
is made in our case, and natural numbers are the only ob-
jects).
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Namely, we first construct � � � /*� such that�
� ���.� t � u ��� � J � t � f � u � � 0 � u � �

4� � J � s � v � j � u ��� � J � s � 1 � g � v � j � u � � j + 1 � u �
4 4

for all t � u � v � j in
� � For that purpose, we take

� 
 � � L � � � f R � � � F � R ����� �% 3� 
 � � P L � � ��- R � � � S L R � R ����� �
where -'/0� and g 
�4 v j s �.-�� J � v � j � s ��� � Having such � � �� 3
at our disposal, we prove that

� � � L  � � J � t � u ��� � J � 0 � h � t � u � � t � u �
4

for all t � u in
�

(to do this, we could, for example, use
induction on j as well as the first case in (1) for proving
that

� � � L  � � J � t � u ��� � J � t � j � h � j � u � � j � u �
4

for all j � t � u in
�

satisfying j � t ; then we could take
j 
 t and use the second case in (1)). From the established
equality, we get

h � t � u � � L R � � � L  � � J � t � u ��� �
and we have only to note that L R � � � L  � /0� ��

We are now going to the case of 5'� operation. Suppose
f /0�2� and g is the unary function defined by%

g � u � � 5 j � f � j � u � 
 0 ��
10We shall prove that g /0� � Again a Pascal-like function�

declaration will be written for the intuitive explanation of
the proof, namely the following one which represents g �

function g � u � �	� � � ;
var j �

�
;

begin
j � 
 0 ;
while f � j � u � > 0 do j � 
 j + 1 ;
g � 
 j

end ; �
The corresponding functional-style translation needs func-
tions � � � /*� such that�

� � u � � J � 0 � u � � � � J � j � u ��� � J � j + 1 � u � �
and such functions are � 
 � � F � I � � � 
 � � S L � R � � Taking

�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�
10 The more general case, when f /0� and g is n -ary,

n +
�

can be reduced to this case.



14 I. COMPUTATIONAL STRUCTURES AND COMPUTABILITY ON THEM

-'/0� such that f 
�4 j u �.-�� J � j � u ��� � one proves that�
� � ��-" � � u � � J � g � u � � u �

for all u in
� � (To do this, one could express what the

equality � � ��-" � � u � 
 w means by the definition of itera-
tion, and then see that necessarily v 
 J � j � u � � j 
 0 � 1 �j
������� m � in the corresponding finite sequence v � v �$�������� �
v � So � � ��-" � � u � 
 w turns out to be equivalent to the
m

existence of a natural number m such that

J � m � u � 
 w
���

j ��-�� J � j � u ��� > 0 ��� -�� J � m � u ��� 
 0 �
j < mi. e.

J � m � u � 
 w
���

j � f � j � u � > 0 ��� f � m � u � 
 0 �
j < m

Obviously, this condition is equivalent to the condition
J � g � u � � u � 
 w ). From the proven equality, it follows that

g � u � � L � � ��-" � � u � �
and the only thing left is to note that L � � ��-" � /0� .���

If - �$��������-2/*��� �	� then the functions 5 - recursive�
l p

in - �$��������- are, by definition, those partial functions�
l

which can be generated from the initial partial recursive
functions and the functions - �$��������- by means of substi-�

l
11tution, primitive recursion and 5'� operation. Using al-

most the same proof as above, one can prove

Theorem 2. Let � be a standard computational structure
on the natural numbers. If - �$��������-2/*��� �	� then the�

l p
unary functions 5'� recursive in - �$��������- are exactly�

l
those elements of ��� �	� which are ��� computable in the setp�
S � P ��- �$��������-�� ��

l

Also a uniform version of the above theorem is valid. A
lmapping � of ����� �	��� into ��� �	� is called a 5'� recur-p p

sive operator iff there is an explicit expression for

�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�
11 Since - �$��������- are not necessarily total, the�

l
notion of 5 - recursiveness in - �$��������- has, in general,�

l
a narrower scope than the notion of partial recursiveness in
- �$��������- (cf. Myhill [1961], Skordev [1963], Rogers�

l
[1967, Ch. 13, Theorem XIX, and also the footnote on p. 362
of the Russian translation] or Sasso [1975]).
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����- �$��������- � through the initial partial recursive func-�
l

tions and - �$��������- by means of substitution, primitive�
l

recursion and 5'� operation, and the form of this expres-
sion does not depend on the concrete choice of - �$��������

12- � Then a simple analysis of the proof of Theorem 2
l

shows that, whenever � is a standard computational struc-
ture on the natural numbers, the 5'� recursiveness of �
is equivalent to its ��� computability in

�
S � P � �

Exercise. Prove that Theorem 1 remains valid if we re-
place

�
S � P � in its formulation by

�
P � � (This result is

essentially contained in Soskov [1985, pp. 9-10]).

Hint. Prove that S is ��� computable in
�
P � � To do

this, first establish the existence of an element
�

of
��� �	� such that

� � J � s � t ��� 
 s � t for all s � t in
� � andp�

is ��� computable in
�
P � � Then construct an element�

of ��� �	� which is also ��� computable in
�
P � andp

satisfies the condition
� � u � > u for all u in

�
(you

could, for example, take
� � u � to be the first one greater

than u among the numbers J � 0 � 0 � � J � 1 � J � 0 � 0 ��� �
J � 1 � J � 1 � J � 0 � 0 ����� �$����� � .

4. On the interconnection between programmability
in a FP - system and � - computability

In this section, we suppose that an FP � system in the
sense of Backus [1978] is given. Let ��
���� � J � L � R � T � F �
H � be the corresponding computational structure described
in Example 1.3. We aim to characterize the programmability
in the given FP � system by means of ��� computability in a
certain subset � of ����� � � Programmability in the FP � sys-p
tem, as defined by Backus, concerns strict total functions
in ���

��� ��� i. e. total mappings of this set into itself
which transform

�
into

� � These functions are in one-to-
one correspondence with the elements of ����� � � each =p
from ����� � corresponding to its natural extension top
���

��� � obtained by assigning the value
�

to all elements

�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�
12 If (as it is the case here) partial functions are

allowed as arguments of the operators then the class of the
5 - recursive operators is narrower than the class of all
recursive operators (in the sense of Rogers [1967, Section
9.8]). Cf., for example, Skordev [1963, 1976], Bird [1975]
or Sasso [1975].
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of
���������

not belonging to dom 	�
 For our purposes, it is
convenient to modify inessentially Backus’ notion of pro-
grammability by replacing the strict total functions in���������

by the corresponding elements of �� ��� 
 After thisp
modification, the notion can be briefly described as fol-
lows.

Some elements of �� ��� are chosen as primitive func-p
tions, among them the functions L and R from Example 3.1
and the functions null � tl and apndl defined by the
equalities �

t if s �����null  s ����� f otherwise,�
tl �� s � ��� ��� apndl �� s ����� ��� � s ���
tl �� s � t � 
�
�
!� t � ��� � t � 
�
�
!� t ���"

k
"

k
apndl �� s ��� t � 
�
�
!� t �#� ��� � s � t � 
�
�
!� t ���"

k
"

k
where t and f are the atoms meaning truth and falsity,
respectively, and tl and apndl are defined only for such
types of objects which are considered in the left-hand sides
of the corresponding equalities. Starting from primitive
functions, new ones are constructed using so-called func-
tional forms and recursion. At this stage of our exposition,
we restrict ourselves to the construction by means of func-

13tional forms . The corresponding notion of programmable
function can be described by the following inductive defini-
tion:

(i) all primitive functions are programmable; $
(ii) for each s in

� � the constant function s � assign-
ing the value s to all elements of

� � is programmable;

(iii) the composition of every two programmable elements
of �� ��� is programmable;p

(iv) if 	%� 
�
�
!��	 (n & 1) are programmable elements of"
n

�� ��� � then so is the function �	%� 
�
�
!��	 � defined byp "
n

the condition that

�	%� 
�
�
!��	 �  t ��' �#	( t � � 
�
�
!��	) t � �"
n

"
n$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$

13 It will be shown later in this book (namely in Subsec-
tion (II) of Section III.5) that recursion does not enlarge
the class of the programmable functions (cf. also Skordev
[1982 a]).
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14for all t in
�
;

(v) if ����	���� are programmable elements of �� ��� �p
then so is �������	���� � � where � is the branching operation

15in � defined in Section 2;

(vi) if � and � are programmable elements of �� ��� �p
then so is �	������
 (the �

$
iteration of � controlled by

16� );
(vii) for each s in

� � if 	 is a programmable element
of �� ��� � then so is the function bu 	 s defined byp

bu 	 s  t ��' 	��� s � t � � ;
(viii) if 	 is a programmable element of �� ��� � thenpso is the function a 	 defined by

17a 	��� ��� ��� a 	��� t � 
�
�
!� t � ��' �#	� t � � 
�
�
!��	� t � � ;"
k

"
k

(ix) if 	 is a programmable element of �� ��� � then sopis the function / 	 defined by

/ 	��� t � 
�
�
!� t � ��' 	��� t ��	��� t � 
�
�
 	��� t � t � � 
�
�
 � � � �"
k

" �
k
$ "

k
( dom  / 	 � consists only of non-empty sequences of elements

18of
�
) .

Let  consist of all primitive functions of the given� $
FP
$
system and of all functions of the form s � where s � �

(cf. clause (ii) in the above inductive definition). If$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
14 Backus denotes this function by �!	%� 
�
�
!��	�
�
 We do"

n
not use this denotation due to the conflict with our denota-
tion for iteration in the case of n

�
2 


15 Backus uses the denotation ��
$��
	���� � for the element

�������	���� � 

16 Backus’ denotation for the function �	������
 is

while ����

17Backus’ denotation for a 	 is ��	�

18 Another variant is also considered by Backus, where

� also belongs to dom  / 	 � 
 Then the function / 	 is
defined by the equalities / 	��� ��� u and

/ 	��� t � 
�
�
!� t � ��' 	��� t ��	��� t � 
�
�
 	��� t � u � � 
�
�
 � � � � �"
k

" �
k

where u is some fixed element of
� 
 Including this vari-

ant in the inductive definition formulated now would cause
no essential modification in our exposition.
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 �  then the following holds:�
Theorem 1. The programmable elements of �� ��� are ex-p

actly those elements of �� ��� which are �
$
computable inp�


The proof of this theorem is based on 7 lemmas.
Lemma 1. �

$
computability in  implies program-�

mability.

Proof. All functions from the set
�
L � R � T � F � �  are�

programmable according to clauses (i) and (ii) above. On the
other hand, clauses (iii), (iv) and (vi) assure that pro-
grammability is preserved by composition, �

$
combination

and �
$
iteration. � $

Lemma 2. All primitive functions and all functions s �
where s � � � are �

$
computable in  
�

Proof. All such functions belong to  
� �

Lemma 3. The operations considered in clauses (iii), (v)
and (vi) preserve �

$
computability in  
�

Proof. We use the definition of �
$
computability in  �

and Exercises 2.1, 2.2. �

Lemma 4. The operation considered in clause (iv)
preserves �

$
computability in  
�

Proof. The following equalities hold for all 	���	%� 
�
�
!�"	 in �� ��� � where n > 1 :
n p $

�	 ��� apndl �����	���� � �
�	%� 
�
�
!��	 ��� apndl �����	%���	 � 
�
�
!��	 ��� 
"

n
" �

n
�

Lemma 5. For each function 	�� which is �
$
computable

in �� and each element s of
� � the function bu 	 s is�

also �
$
computable in  
� $

Proof. We use the equality bu 	 s � 	����� s � I � and
MExercise 2.1. �

Lemma 6. Whenever 	 is a function �
$
computable in

�� then a 	 is also �
$
computable in  
� �

For the proof of this lemma, see Exercise 3 of the pres-
ent section. An easier proof will be given later in the
book, after proving an algebraic generalization of the First
Recursion Theorem.

Lemma 7. Whenever 	 is a function �
$
computable in

�� then / 	 is also �
$
computable in  
� �

For the proof, see Exercise 4 of the present section. An
easier proof could be given after Section III.4.
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Of course, the non-trivial part of the proven theorem
consists in the converse statement of Lemma 1, i. e. in the
statement that programmability implies �

$
computability in

the set  used in the theorem (this part was proven by
means of the remaining 6 lemmas). Therefore a reduction of
the set  will increase the value of the theorem. When
defining the set  used in this theorem (namely the set
 ), we have put all primitive functions of the FP

$
system�

in it 
 Now we should like to mention that the theorem re-
mains valid after leaving only a small number of the primi-
tive functions in �
 In Skordev [1982a], a variant of the
theorem was proven, where only 8 among the primitive func-
tions are taken as elements of #� namely the four arithme-
tical operations + � - � * � � and the functions tl � apndl �

19atom � eq 
 The corresponding proof uses the generalization
of the First Recursion Theorem mentioned above and can be
given later in the book. However, some simple parts of
that proof are included in exercises after the present sec-
tion (for the rest, cf. Exercises III.5.1 and III.5.2).

Exercises

(In all these exercises, � is the computational structure
considered in this section, and  is some subset of $
�� ��� containing the functions tl � apndl � eq and � )p

1. Prove the �
$
computability of the function null

in �

2. Let reverse be the element of �� ��� determined byp

the condition that dom  reverse � consists of all finite se-
quences of elements of

�
and by the equalities

reverse �� ��� ���$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
19 The last two of these functions have the following

definitions: �
t if s is an atom,atom  s ����� f otherwise,� �

t if s
�

t �eq �� s � t � ����� f otherwise,�
where dom  eq � consists only of two-element sequences from� 
 We note the following small difference between the com-
putational structure � used here and the one implicitly
used in the quoted paper: the function R used in that pa-
per is defined only for sequences from

�
having more than

one member, and the value of R on such a sequence is equal
to its second member.
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reverse �� t � 
�
�
!� t � ��� � t � 
�
�
!� t � � 
"
k k

"
Prove the �

$
computability of this function in �


Hint. Prove the equality $
reverse

�
L � �	��� null � R 
 �������� I � �d M

where � � �� apndl ���� L R � L � � tl � R � (for the meaning of
�	������
%� cf. Exercise 2.6).d

3. Let 	 be a function �
$
computable in �
 Prove the

�
$
computability of the function a 	 in �

Hint. Prove the equality $

a 	 � L � �	��� null � R 
 �������� reverse � �d
where � � �� apndl �����	 L R � L � � tl � R � 


4. Let 	 be a function �
$
computable in �
 Prove the

�
$
computability of the function / 	 in �

Hint. Prove the equality

/ 	 � L � �	��� null � R 
 ���� L � tl � � reverse �d
where � � ���	 �� L R � L � � tl � R � 


5. For each non-zero natural number i � let il and ir
be the elements of �� ��� determined by the condition thatp
dom  il � and dom  ir � consist of all finite sequences of
at least i elements of

� � and � for each such sequence s �
the values il  s � and ir  s � are equal, respectively, to
the i

$
th member of s from the left and to its i

$
th

20member from the right. Prove the �
$
computability of the

functions il and ir in �

6. Let tlr and apndr be the functions determined by

the equalities

tlr �� s � ��� ��� apndr ��#��� s � ��� � s ���
tlr �� t � 
�
�
!� t � s � ��� � t � 
�
�
!� t ���"

k
"

k
apndr ��#� t � 
�
�
!� t ��� s � ��� � t � 
�
�
!� t � s �"

k
"

k
and by the condition that tlr and apndr are defined only
for such types of objects which are indicated in the left-
hand sides of the corresponding equalities. Prove the �

$
computability of the functions tlr and apndr in �


7. Let the functions rotl and rotr be determined by
the equalities

rotl �� ��� rotr �� ��� ���$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
20 Backus denotes the function il simply by i 
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rotl �� t � 
�
�
!� t � ��� � t � 
�
�
!� t � t ���"
k

�
k

"
rotr �� t � 
�
�
!� t � ��� � t � t � 
�
�
!� t �"

k k
"

k
$ "

and by the condition that dom  rotl � and dom  rotr � consist
of all finite sequences of elements of

� 
 Prove the �
$

computability of the functions rotl and rotr in �

Hint. Prove the equalities$

rotl
� �� null ����� apndr ���� tl � L ��� �$

rotr
� �� null ����� apndl ���� R � tlr ��� 


8. Let not be the element of �� ��� determined by thep
equalities dom  not ��� � t � f � � not  t ��� f � not  f ��� t 
 Prove
the �

$
computability of the function not in �


Hint. Prove the equality not
� �� I � F � T � 


M
9. Let and and or be the elements of �� ��� de-p �

termined by the equalities dom  and ��� dom  or ��� � t � f � �
and �� t � t � ��� t � and �� t � f � ��� and �� f � t � ��� and �� f � f � ��� f �
or �� f � f � ��� f � or �� f � t � ��� or �� t � f � ��� or �� t � t � ��� t 

Prove the �

$
computability of the functions and and or

in �

Hint. Prove the equalities

and
� �� null � tl � tl ��	�� � � �

or
� �� null � tl � tl ����� � � ,

where
	 � �� L ���� R � T � F � ���� R � F � F ��� �
� � �� L ���� R � T � T � ���� R � T � F ��� �

and � is the element of �� ��� whose domain is empty.p

5. Computability of multiple-valued functions
with respect to a given computational structure

Given a set
� � we shall denote by �� ��� the set ofm

all binary relations in
� � i. e. the set of all subsets of�� 
 The elements of �� ��� will be regarded as unary mul-m

tiple-valued functions in the following sense: if 	 � �� ���m
and u � � then the values of 	 at u will be, by defi-
nition, those v in

�
which satisfy the condition

� u � v ��� 	�
 Identifying the unary partial functions in
�

with their graphs (i. e. adopting the equality

	 � � � u ��	� u � ��� u � dom 	 �
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for ���������
	 ), we shall regard them as elements of thep
above defined set �����
	�� Obviously, the above definition ofm
values is in agreement with this identification. Of course,
the operation of composition in �����
	 which naturally ex-m
tends the corresponding operation in �����
	� will be definedpas follows: if ������������
	 thenm��������� u  w ����� v ��� u  v � ������� v  w � ����	��
(i. e. ��� is the usual composition of the binary relations� and � ),

Suppose now a computational structure � ��� �
 J  L  R 
T  F  H � is given. Then natural extensions of the �"!
combination and the �"! iteration from �����
	 on �����
	

p m
are the operations defined as follows: for all ������#��$
in �����
	�

m % �������	&����� u  w ����� s � t ��� u  s � ������� u  t � �����
J � s  t 	&� w 	��'

and � u  w � �&()#��$+* iff there is a finite sequence v  v , -�����) v of elements of � such that
m

(1) v � u � v � w ��. j ��� v  true � � H $��,
m j

j < m � v  v � ��#�	/��� v  false � � H $�
j j +

-
m

where H $������ u  p ����� v ��� u  v � ��$�� H � v 	&� p 	��0� Also �"!
branching will be defined in �����
	�� This will be the ter-m
nary operation 1 defined as follows:

1 ��$�������	&����� u  w ��� � u  true � � H $���� u  w � ���32� u  false � � H $���� u  w � �����0�
A least-fixed-point characterization of iteration in�����
	 is contained in the followingm
Proposition 1. Let #��$��������
	�� Then the equalitym()#��$+*�� 1 ��$�"()#��$+*4#� I 	

M
holds. More generally, for each 5 in �����
	 the equalitym5 ()#��$+*�� 1 ��$� 5 ()#��$+*4#� 5 	
holds, and 5 ()#��$+* is the least element 6 of �����
	

msatisfying

(2) 6�7�1 ��$� 6 #� 5 	��
Proof. Let8������ u  v ��� � u  true � � H $���� u  v � ��#��'9 ����� u  v ��� � u  false � � H $���� u  v � � 5 �0�
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Then 1 ��$� 6 #� 5 	&� 6 8 � 9 for all 6 in �����
	�� It is knownm
(cf., for example, Blikle [1971]) that the element��� ����

m m9 8 � 9���� 8�� ��� 9 8
m=
,

m=
,

of �����
	 is the least solution of the equation 6 � 6 8 � 9m �
and of the inequality 6�7�6 8 � 9 � Thus

9 8 is the least
solution of the equation 6 � 1 ��$� 6 #� 5 	 and of the ine-

mquality (2). On the other hand, � u  v � � 9 8 iff there
are an element w of � and a sequence v  v  �����) v of, -

melements of � such that

(3) v � u ��. j ��� v  v � ��8�	/� v � w ��� w  v � � 9 �,
j j +

-
m

j < m
After taking into account the definitions of 8 and

9  we
see that (3) is equivalent to the conjunction of (1) and�� w  v � � 5 � Hence

9 8 � 5 ()#��$+*��
	
Remark 1. The given definitions of iteration and branch-

ing use only the components � and H of � � Thus we could
consider such operations in every situation when a set �
and a partial predicate H on it are given. Obviously, the
above proof and hence the proven proposition remain valid in
such a more general case.

Now we shall define the notion of relative computability
of elements of �����
	 with respect to the given computa-m
tional structure � � The definition will be quite similar to
the corresponding definition for elements of �����
	��

p
Definition 1. Let � be some subset of �����
	�� Them

elements of �����
	 �"! computable in � (computable in � m
for short) are those elements of �����
	 which can be gener-m
ated from elements of � L  R  T  F � � � by means of compo-
sition, �"! combination and �"! iteration.

As before, if � is computable in �  and each element
of � is computable in �� then � is computable in �� � In
the case when � is a subset of �����
	� the elements ofp�����
	 computable in � are exactly the same as the el-m
ements of �����
	 computable in � . In particular, I andp M
the empty relation are elements of �����
	 which are �"!m
computable in � � As before (cf. Exercise 1 below), the el-
ement 1 ��$�������	 is always �"! computable in ��$�������� ;
hence including 1 as an additional generating operation in
the above definition of computability would not enlarge the
set of the elements of �����
	 which are �"! computable inm
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� � Again, one could ask whether some other reasonable ef-
fective constructions in �����
	 could, however, enlargem
this set. And again, it will be shown in this book that in
some sense such other constructions do not exist.

We could also define �"! computability for operators in�����
	��
p

Definition 2. Let � � �����
	� and let � be a mapping ofm
l�������
	�	 into �����
	� where l is some positive integer.m m

Then � is called (an operator) �"! computable in � (com-
putable in �  for short) iff, for arbitrary �  �����)�� in-

l�����
	� there is an explicit expression for � ���  �����)�� 	
m -

l
through L  R  T  F ��  �����)�� and elements of � by means-

l
of composition, �"! combination and �"! iteration, the form
of the expression not depending on the concrete choice of�  �����)����-

l
Of course, the above definition can be formulated more

precisely using induction. We omit the corresponding formu-
lation.

Exercises

(In all these exercises, a computational structure� ��� �
 J  L  R  T  F  H � is supposed to be given,
the corresponding set �����
	 is denoted by �� andm

the functional relation I is denoted by I )
M

1. Prove the statements of Exercises 2.2, 2.6 and 2.7
for the case when �����
	 is replaced by � �������
	��

p m

2. Prove that � is a semigroup with respect to compo-
sition, and I is a unit of this semigroup (this means that� is closed under composition, composition is associative
in �� and the equalities I � � � I � � hold for all �
in � ).

3. Prove that composition, �"! combination, �"! branching
and �"! iteration are monotonically increasing operations in� with respect to the partial ordering of � by inclusion.

4. For all ����� � �� in �� prove the equalities

1 � T ������	&���� 1 � F ������	&����
��1 ��$�������	&� 1 ��$� � �� � ��	

(compare with Mc Carthy [1963]).!5. For each s in �
 let s be the constant function 
assigning the value s to all elements of � � Let � be
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!the set of all elements of � having the form s  where
s ��� � Suppose � and � are such elements of � that� x 7 � x for all x in � � Prove that � 7 �+�

6. Let � be the same as in Exercise 5. For all x and
y in �  prove that

% � x  y 	 also belongs to �  and the
equalities L

% � x  y 	&� x  R

% � x  y 	&� y hold.

7. Let � be the same as in Exercise 5. For all �����$� � in � and all x in �  prove the equalities% �������	 x �
% ��� x �� x 	� 1 ��$�������	 x � 1 ��$ x �� x �� x 	�% ��� x  I 	 � �

% ��� x  � 	�
% � I �� x 	 � �

% � � �� x 	
1 � I �� x �� x 	 � � 1 � � �� x �� x 	��

8. Let � ���&� Prove that

% � I  I 	 � �
% � �  � 	 iff

� �������
	��
p

9. Let #��$� 5 be arbitrary elements of �����
	� and letm6 � 5 ()#��$+*�� Suppose K is a subset of � such that v � K,
for all � u  v � in # with u � K  and 6 is an element of�����
	 such that 6�7�1 ��$� 6 #� 5 	 � � K � �
	�� Prove thatm6�7�6 � � K � �
	��,

6. The recursively enumerable binary relations
considered as multiple-valued functions

In this section, an application of the notion of comput-
ability in �����
	 will be made, which will be similar tom
the application of the notion of computability in �����
	�

p
made in Section 3. Namely, a characterization will be given
of the recursively enumerable binary relations as the el-
ements of ����� 	 �"! computable in �  where � is a cer-m
tain computational structure whose carrier is � , and � is
a certain finite subset of ����� 	 .m

Let � �����  J  L  R  T  F  H � be a standard computational
structure on the natural numbers in the sense of Section 3
(in particular, � could be the computational structure
from Example 1.1). Let the denotations S and P have the
same meaning as in Section 3 (namely, S ��� u � u + 1 
P ��� u � u � 1). Let I � I � Before formulating and prov-�
ing analogues of Theorems 3.1 and 3.2, we shall indicate a
way for reducing some problems about multiple-valued func-
tions to problems concerning partial functions.

Lemma 1. For arbitrary � ���� let � � � 	 be the re-
striction of the function R to the set
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�
u � dom L ��� dom R ��� L � u 	�
 R � u 	���������

Then each of the elements � and ������	 of � can be gen-�
erated from the other one and L 
 R 
 S 
 P 
�� by means of
finitely many applications of composition, J � combination
and iteration �

Proof. It is easy to check that the following two equal-
ities hold: �

����������	���� I 
���	�
 ������	!����� I 	������ L 
 R 	��
Since ��� I 	 is a partial recursive function, Theorem 3.1 and
the remark after that theorem imply that ��� I 	 can be gen-
erated from L 
 R 
 S 
 P by means of finitely many applica-
tions of composition, J � combination and iteration �#"

Now we shall formulate the analog of Theorem 3.1.

Theorem 1. The recursively enumerable binary relations
in � are exactly those elements of �$���%	�
 which are &'�m�
computable in the set

�
S 
 P 
������

Proof. Clearly, all elements of �$���%	�
 &'� computablem�
in
�
S 
 P 
����(
 are recursively enumerable relations in ���

For proving the converse statement, consider an arbitrary
recursively enumerable binary relation ) in ��� Let ����)�	
be the corresponding partial function defined as in Lemma 1.
Since ����)�	 is partial recursive, Theorem 3.1 shows that
����)�	 is &'� computable in the set

�
S 
 P ��� Now it is suffi-

cient to apply the lemma. "
Remark 1. The exercise after Section 3 shows that we�

could formulate the above theorem with
�
P 
���� instead of��

S 
 P 
������
Remark 2. An inspection of the proof of the above the-

orem shows that each element of �$���%	 &'� computable in them� �
set
�
S 
 P 
���� can be represented in the form *+��� I 
���	�


where * is some element &'� computable in the set
�
S 
 P ���

A certain generalization of the above theorem will be
the analog of Theorem 3.2. The generalization concerns enu-
meration reducibility of binary relations in � (for the
definition of this notion, cf. Rogers [1967, Section 9.7],
where the enumeration reducibility of a subset of � to
another one is considered, and it is obvious how the defini-
tion could be generalized in order to consider reducibility
to several relations).

Theorem 2. Let ,�
-�����
�,.�/�$���%	�� Then the binary0
l m

relations in � enumeration reducible to ,�
-�����
�, are0
l
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exactly those elements of �$���%	 which are &'� computablem�
in the set

�
S 
 P 
���
�,�
-�����
�, ���0

l
Proof. Again only that part of the proof needs to be

exposed, where one has to show that each binary relation
enumeration reducible to ,�
-�����
�, is &'� computable in0

l
the above set. Suppose )+���$���%	�
 and ) is enumeration re-m
ducible to ,�
-�����
�,$� It is seen from Lemma 1 that � and0

l
������	 are mutually enumeration reducible for each �+���!�
Since enumeration reducibility is transitive, it follows
that ����)�	 is enumeration reducible in ����, 	�
-�����
�����, 	��0

l
But ����)�	 and ����, 	�
-�����
�����, 	 are partial functions.0

l
Therefore ����)�	 is partial recursive in ����, 	�
-�����
�����, 	��0

l
From here, the existence of a two-argument function h fol-
lows which is � � recursive in ����, 	�
-�����
�����, 	 and satisfies0

lthe condition
�
u
�
v ������)�	� u 	!� v �+����� t � h � u 
 t 	!� v 	�	��

In the case when l � 1 
 this follows from Lemma 5 in Skordev
[1973, pp. 164-165], and the general case can be considered
using the corresponding straight-forward generalization of
the mentioned lemma. Consider now the unary function

� �	� u � h � L � u 	�
 R � u 	�	��
It is also � � recursive in ����, 	�
-�����
�����, 	�� Therefore (by0

l
Theorem 3.2) � is &'� computable in the set

�
S 
 P 
�����, 	�
0

�����
�����, 	���� Since h � u 
 t 	�
 � � J � u 
 t 	�	 for all u 
 t in �%

l �

the equality ����)�	!� � ��� I 
���	 holds. This, together with
Lemma 1, completes the proof. "

A uniform version of the above theorem is also true. It
concerns enumeration operators (for the definition of this
notion, cf. Uspensky [1955], where such operators are called
computable operations, or Rogers [1967, Section 9.7]). Let a

lmapping � of ���$���%	�	 into �$���%	 be given. Then � is anm m
enumeration operator iff � is &'� computable in the set��
S 
 P 
������

�
Exercise. Prove that � in Theorems 1 and 2 can be

replaced by �� � 0 
 1 ��� �
Hint. Prove the equality � �	� S 
��� � 0 
 1 ��� F �
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7. On the notions of prime and search computability

(I) A recollection of definitions. Moschovakis [1969]
introduced the notions of prime and search computability
which generalize the notion of computability for the case of
an arbitrary object domain. We shall recall here (up to un-
essential technical details) the formulations of some defi-
nitions from that paper.

oLet B � O and B be such as in Example 1.2, i. e. B
ois some set, O is some object not in B � and B is the set�

B ��� O ��� A set B is defined by the following inductive
clauses:

o
�

(i) if u � B then u � B ;� �
(ii) if s � t � B then 	 s � t 
�� B �

where the definition of ordered pair is chosen in such a way
o

�
that no element of B is an ordered pair (i. e. B is the� �
set � from the example in question ). If A  B then A�
is, by definition, the least subset X of B containing
A ��� O � and satisfying the condition

21�
s
�
t ��	 s � t 
�� X ����� s � X � t � X ���

The natural numbers 0 � 1 � 2 � 3 � ����� are identified with
the elements O � 	 O � O 
 � 	�	 O � O 
 � O 
 � 	�	�	 O � O 
 � O 
 � O 
 � ������
of B � respectively. �

Mappings L and R of B into itself are defined as in
the example mentioned above, i. e.by the conditions

L � 0 ��� R � 0 ��� 0 �
L � u ��� R � u ��� 1 for all u in B � �

L ��	 s � t 
���� s � R ��	 s � t 
���� t for all s � t in B

(as we pointed, Moschovakis denotes these mappings by �
and � � respectively).

If u ����� � u � B ! then " u ����� � u # is an abbreviation$
m

$
m

%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%
21

�
The definition of A given in Moschovakis [1969]

sounds somewhat differently, but it is equivalent to the
present one. In the special case when A � B � this least�
subset is obviously B � hence the above definition does not
cause inconsistency in the denotations.
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for 	 m � 	 u � 	 u ����� � 	 u � 0 
 �����&
�
�
 (in Moschovakis$ �
m

[1969], this element is denoted by 	 u ����� � u 
 � but in the$
m

denotation of ordered pair, round brackets are used in that
paper).

Suppose now some partial multiple-valued functions
� �$�

����� � � in B are given,
�

being n % ary for j � 1 � ����� �
l j j

22l. We are going to describe now an index construction used

by Moschovakis for defining the notions of prime and search
computability. For the definition of prime computability, a
partial multiple-valued operation � e � � q ����� � q � from el-$

n� �
ements e � q ����� � q of B into B is defined by means of$

n
the following recursive definition (here and further in this
section, the letters e � g � h � q � r � s � t denote elements of�
B � and the letters j � k � m � n denote natural numbers):

0) if 1 � j � l then
� " 0 � n + m � j #�� ��� ����� � � � t ����� � t ��� � ��� ����� � � � ;

j
$

n
$

m j
$

n
j j

1) � " 1 � n � r #�� � q ����� � q ��� r ;$
n

2) � " 2 � m + 1 #�� � s � t ����� � t ��� s ;$
m

3) � " 3 � m + 2 #�� � s � s � t ����� � t ��� 	 s � s 
 ;$ � $
m

$ �

4 ) � " 4 � m + 1 � 0 #�� � s � t ����� � t ��� L � s � ;� $
m

4 ) � " 4 � m + 1 � 1 #�� � s � t ����� � t ��� R � s � ;$ $
m

%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%
22 We treat an n % ary partial multiple-valued function� �

n+
$�

in B as a subset of � B � � the values of
�

at
	�� ����� � � 
 being all objects r satisfying the condi-$

n
tion that 	�� ����� � � � r 
 belongs to

� � This point of$
k

view is only formally different from the one in Moschovakis
[1969], where an n % ary partial multiple-valued function� �

n�
in B is a mapping of � B � into the set of all sub-�

sets of B � (The set of all values of
�

at 	�� ����� � � 
$
n

will be denoted by
� ��� ����� � � � � and in the special case$

n
when this set consists of a single element, that element
will be also denoted by

� ��� ����� � � � ). Let us mention that$
n

denotations � � ����� � � instead of
� � ����� � � are used in$

l
$

l
Moschovakis [1969].
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5) � " 5 � m � g � h #�� � t ����� � t ���$
m� g � � � h � � t ����� � t � � t ����� � t � ;$

m
$

m
o6 ) if s � B then�

� " 6 � m + 1 � g � h #�� � s � t ����� � t ��� � g � � s � t ����� � t � ;$
m

$
m

6 ) � " 6 � m + 1 � g � h #�� ��	�� � s 
 � t ����� � t ���$ $ � $
m� h � � � " 6 � m + 1 � g � h #�� � s � t ����� � t � �$ $

m� " 6 � m + 1 � g � h #�� � s � t ����� � t � �� $
m

s � s � t ����� � t � ;$ � $
m

7) whenever k < n � then
� " 7 � n � k � g #�� � q � ��� � q � q � q ����� � q ���$

k k+
$

k+
�

n� g � � q � q � ��� � q � q ����� � q � ;
k+

$ $
k k+

�
n

8) � " 8 � k + m + 1 � k #�� � e � � ����� � � � t ����� � t ���$
k

$
m� e � � s ����� � s ���$

k
For the definition of search computability, an operation� e � � q ����� � q � is defined recursively through replacing� $

n
of � by � in the above definition and appending the�

following additional clause:

9) � " 9 � n � g #�� � q � ��� � q ��� � r � � g � � r � q � ��� � q ��� 0 ���� $
n � $

n
Let � be a n % ary partial multiple-valued function in� �

B � and let A be some subset of B � The function � is
called prime computable from A in

� � ����� � � iff there$
l�

is some e in A such that

��� q � ��� � q ��� � e � � q � ��� � q �$
n

$
n�

for all q � ��� � q in B � It is called search computable$
n �

from A in
� � ����� � � iff there is some e in A such$

lthat

��� q � ��� � q ��� � e � � q � ��� � q �$
n � $

n�
for all q � ��� � q in B � The set of all partial multiple-$

n �
valued functions in B which are prime computable from A
in

� � ����� � � and the set of all ones which are search$
l

computable from A in
� � ����� � � are denoted by PC � A � � �$

l
$

����� � � � and SC � A � � � ����� � � � � respectively. The elements
l

$
l

of the sets PC � � � � � ����� � � � and SC � � � � � ����� � � � are$
l

$
l

called, respectively, absolutely prime computable in
� �$

����� � � and absolutely search computable in
� � ����� � � �

l
$

l



7. ON THE NOTIONS OF PRIME AND SEARCH COMPUTABILITY 31

(II) Prime and search computability of one-argument
functions and

� % computability. In the sequel, we shall
B �

assume that
� � ����� � � belong to � � B � � i. e. they are$ l m �

one-argument partial multiple-valued functions in B � This
is not an essential restriction since, according to Lemmas
22 and 32 in Moschovakis [1969], it is always possible to
replace a system

� � ����� � � of arbitrary partial multiple-$
l� �

valued functions in B by some
��� � ����� � ��� from � � B �$

l msatisfying the conditions

PC � A � � � ����� � � ��� PC � A � ��� � ����� � ��� � �$
l

$
l

SC � A � � � ����� � � ��� SC � A � ��� � ����� � ��� ���$
l

$
l�

Let 	 B � J � L � R � T � F � H 
 be the computational struc-
ture

�
from Example 1.2, i. e. J ��� s t �&	 s � t 
 � the map-

B
pings L � R are the same as in Subsection (I), T ��� u � 1 �
F ��� u � 0 � and �

otrue if u � B �
H � u ����	

o

false if u � B ��

Let A  B � and let � consist of all constant single-
A �

valued functions whose domain is B and whose values belong
to A � We shall prove now the following two propositions:�

Proposition 1. All elements of � � B � � which are
� %

m B
computable in � ��� � � ����� � � � � belong to PC � A � � � ����� � � ���

A
$

l
$

l�
Proposition 2. All elements of � � B � � which are

� %
m B� �

computable in � ��� � � ����� � � � � B � � � belong to
A

$
l

SC � A � � � ����� � � ���$
l

Proof (of both propositions). We shall use some of the
notations whose meaning is explained in the upper part of
page 430 in Moschovakis [1969]. For short, let us set� � PC � A � � � ����� � � � � � � SC � A � � � ����� � � � �$ $

l
� $

l� ��� � B ����� � � i � 1 � 2 �
i m i

Obviously,
� L � R � T � F � � � ��� � � ����� � � ���  �

A
$

l
$

� �� L � R � T � F � � � ��� � � ����� � � � � B � ���  �
A

$
l

�

By means of Lemmas 2, 17 and 26 in Moschovakis [1969] it is
easily shown that


and


are closed under composition$ �
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and
� % combinatiion. The proof will be completed if we
B

succeed to show that


and


are closed also under
� %$ �
Biteration.

For uniformity in the denotations, we set
� � e � q ����� � q ��� � r � � e � � q ����� � q ��� r � �$ $

n
$

n� � e � q ����� � q ��� � r � � e � � q ����� � q ��� r ���� $
n � $

n
Let � and � belong to

 � where i � 1 or i � 2 � We shall
i

prove that ��� � ��� also belongs to


. Denote by � the
i

function � v �&	 L � v � � 	 R � v � � 0 
�
 (having the property that

����	 v � k 
���� 	 v � k + 1 
�
for all v in B and all natural numbers k ), and consider
the partial multiple-valued function of three variables �
which is defined by the equality�

o	 v � 0 
 if s � B ���� s � e � v ����	 � � � � e � ��� v ����� otherwise.	
i

It is easy to see that ��� � (to do this, we make use of
ithe equality

����	 s � s 
 � e � v ����
������ s � e � v � � ����	 s � e � v � � t � t � e � v � �$ � $ $ $ �

where 
 is the partial multiple-valued function of six
variables which is defined by means of the equality


�� s � s � t � t � e � v ������� � � e � ��� v ����� ).$ � $ �
i

Then the partial multiple-valued function � e v �������� v � � e � v �
also belongs to

� � This allows an application of the re-
i

cursion theorem from Moschovakis [1969] given by Lemma 21 in
the case when i � 1 or by Lemma 29 in the case when i � 2 ��
Its application provides us with an element e of A such�
that

� � e � v ����������� v � � e � v �
i

� �
�

for all v in B � We shall now show the equality

��� � ��� � u ��� L � � � e � u ��� �
i

�

and this will complete the proof.

Suppose w ����� � ��� � u ��� By the definition of
� % itera-
B

tion, there is a finite sequence v � v � ����� � v of elements� $
mof � such that

v � u � v � w � �
j ��	 v � true 
�� H � � 	 v � v 
�������

m j j j+
$

j < m � 	 v � false 
�� H ���
m

According to the definition of H � the above condition is
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equivalent to the following one:
ov � u � v � w � �

j ����� v � \ B � � � 	 v � v 
������ ��
m j j j+

$
j < m

o��� v ��� B � � �
m

From here, using the definition of � � we conclude that

������� v � � e � v ��� ��� � � e � ��� v ������� ��� � � e � v ���
j

�
j i

�
j i

�
j+

$
for j � 0 � 1 � 2 � ����� � m % 1 � and

������� v � � e � v � ��	 v � 0 
��
m

�
m

Hence
� � e � v ��� ��� � � e � v ��� � j � 0 � 1 � 2 � ����� � m % 1 �
i

�
j i

�
j+

$
� � e � v � ��	 v � 0 
��
i

�
m m

Now an easy induction shows that
� � e � v � ��	 v � k 
 � k � 0 � 1 � 2 � ����� � m �
i

�
m-k m

Namely, if k < m and 	 v � k 
 belongs to
� � e � v � �

m i
�

m-kthen

	 v � k + 1 
 ������	 v � k 
���� ��� � � e � v ��� � � � e � v ���
m m i

�
m-k i

�
m-k-

$
In particular,

� � e � v � ��	 v � m 
��
i

� �
m

Consequently,

w � v � L � � � e � v ����� L � � � e � u �����
m i

� �
i

�

Conversely, we have to prove that

L � � � e � u ��� � ��� � ��� � u �
i

�� �
for all u in B � For each element r of B � let us define
a natural number � r � (the complexity of r ) in the

ofollowing way: � r ��� 0 for all r in B � and �
� 	 r � r 
������ r � + � r � + 1 for all r � r in B �$ � $ � $ �

Our goal will be reached if we succeed to prove the follow-
ing statement: whenever r � � � e � u � � then L � r � ����� � ��� � u ���

i
�

This statement will be proven by induction on the value of
� r ��� Suppose r � � � e � u ��� Then r ��������� u � � e � u ��� Hence

i
� �

or ����� h � e � u � for some h belonging to ��� u ��� If h � B ��

then r � 	 u � 0 
 and H � ��	 u � false 
 ; consequently,
	 ��� � ��� � ���� � I � ����	 u � u 


B
and therefore, by Proposition 5.1, ��� � ��� ��	 u � u 
 � i. e.

oL � r ��� u ����� � ��� � u ��� Consider now the case when h 
 B � Then%
H � ��	 u � true 
 and r ����� � � e � ��� u ����� � i. e. r ����� r � �

i
�
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% % % % % �
r � � � e � u ��� and u ����� u � for some r and u in B � From

i
� %

the definition of � � it follows that � r � > � r � � and hence% %
we may assume that L � r � ����� � ��� � u ��� But then we see that%
L � r ��� L � r � ����� � ������ u � � and consequently

	 ��� � ��� � ���� � I � ����	 u � L � r � 
��
B

By Proposition 5.1, it follows that ��� � ��� ��	 u � L � r � 
 � i. e.
L � r � ����� � ��� � u � again. �

Remark 1. In the above proof we used Proposition 5.1
only partially, since the inclusion

��� � ��� � 	 ��� � ��� � ���� � I � �
B

is sufficient for the application of the proposition in the
proof. On the other hand, that proposition gives a least-
fixed-point characterization of iteration, and such a char-
acterization suggests another way of proving Propositions 1
and 2 above, namely by application of the First Recursion
Theorems for prime and for search computable functions. For
the case of search computability, the First Recursion The-
orem is formulated as Theorem 2 in Moschovakis [1969], but
its assumptions there include the superfluous one that� � ����� � � are totally defined and single-valued. As to$

l
the case of prime computability, the validity of the First
Recursion Theorem is noted in Remark 11 of the same paper
(without explicit listing of the assumptions needed for the
proof).

Of course, the converse statements of Propositions 1 and
2 are not true, since PC � A � � � ����� � � � and SC � A � � � ����� �$

l
$

� � contain functions of arbitrary number of arguments.
l

However, if we replace PC � A � � � ����� � � � and SC � A � � � ����� �$
l

$� �� � by � � B ��� PC � A � � � ����� � � � and � � B ��� SC � A � � �
l m $

l m $
����� � � � � respectively, then also the converse statements

l
of Propositions 1 and 2 are valid. This fact will be proved
in a natural way in Subsection (III) of Section III.5 on the
basis of results from the general theory which we are going
to present. We note that a direct proof of the same fact is
given in the previous version Skordev [1980] of this book,
but that proof is quite a long one (more than eleven pages).

The above mentioned conversion of Propositions 1 and 2�
will give a characterization of the classes � � B ���m�
PC � A � � � ����� � � � and � � B ��� SC � A � � � ����� � � � (for$

l m $
l

the case when
� � ����� � � are unary), which is much more$

l
simpler than their characterization in Moschovakis [1969].
Since prime and search computability in/of functions of sev-
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eral variables are easily reducible to prime and search com-
putability in/of corresponding one-argument functions, the
details about the number of arguments could be considered
not very essential, and we could just say that a consider-
able simplification of the definitions of prime and search
computability will be reached by means of the mentioned con-
version.

Remark 2. The presented proof of Propositions 1 and 2
essentially uses (via the recursion theorem) the eight
clause of the definitions of � e � � q ����� � q � and$

n� e � � q ����� � q ��� On the other hand, as noted in Remark 8� $
n

of Moschovakis [1969], that clause is superfluous in the
definition of � e � � q ����� � q � � at least in the case when� $

n� � ����� � � are single-valued and total. Therefore a proof$
l

of Proposition 2 not using that clause is desirable. For
such a proof, cf. the exercise below. Note that similar
things can be done also in the case of Proposition 1, but in
this case one must compensate the removing of the eight
clause by a clause concerning � % operation (cf. Remark 10
in Moschovakis [1969]).

Exercise. Prove Proposition 2 in the case of a defini-
tion of � e � � q ����� � q � not including the eight clause.� $

n

Hint. To show that


is closed under
� % iteration,�
B

suppose � and � belonging to


are given, and show the�

existence of functions � and � in SC � A � � � ����� � � � �� $ $
l

with the following properties:
o� � s � u ��� u for all s in B ��

� ��	 s � s 
 � u ��������� � s � u ��� �� $ � � $�
or if s � B �

� � s � r ����	$ �
otherwise.	

Then prove the equality

��� � ��� � u ����� ��� ��� � u � � u ��� �� � �� �
where � � � B � and � ��� r ��� ����� r � � r ���� � $

8. Computability in the case of
unproductive termination taken into account

The intuitive idea behind our considerations up to now
was connected with characterizing of computational proce-
dures by their input-output relations. Suppose a set � is
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given. Then, given a computational procedure transforming
elements of

�
into elements of

���
its input-output rela-

tion consists of all ordered pairs � u � v � such that u
can be transformed into v by means of the given procedure.
This relation surely belongs to ��� ���	� and it belongs tom
��� ��� in the case, when the given computational procedurep
is a deterministic one.

When computational procedures are characterized by their
input-output relations, then no distinction is made between
cases when the computational process never terminates and
ones when this process terminates without yielding a result.
However, the difference between these cases is an important
one from the point of view of practice. Therefore it is
natural to look for some more detailed mathematical charac-
terization of computational procedures, which takes also
this difference into account. Such a characterization will
be considered now. The characterization will be based on
considering a set E

�
whose elements can be regarded as er-

ror messages, and on the convention that unproductive termi-
nation of the application of the procedure to the element

23u transforms u into some element of E 

Suppose E is some fixed set having no common elements

with the set
� 
 Then we shall consider sets ��� ��� E � andp

��� ��� E �	� defined as follows: ��� ��� E � is the set of allm p
partial functions � such that dom �� � and rng �� ��� E �
�������������������������������������������������������������

23 There is also another intuitive interpretation of the
elements of E

�
namely as sorts of failures which may arise

during computation. When using this interpretation, we may
adopt that the rise of a failure during the application of
the procedure to an element u of

�
transforms u into

the element of E corresponding to the concrete failure. It
is not obligatory to assume that the rise of a failure nec-
essarily causes unproductive termination - the computation
could sometimes go on and lead to some (possibly incorrect)
result (also more than one failure could arise during the
course of a certain application of the procedure). This in-
tuitive interpretation of the elements of E is suggested
by an idea of S. Nikolova arisen in joint work with I. Soskov
and expressed and used by her in 1988. The idea is to char-
acterize a computational procedure by the ordered pair con-
sisting of the corresponding input-output relation and the
set of those elements of

�
which, taken as input values,

are safe with respect to rise of failures during the appli-
cation of the procedure (for the respective technical de-
tails, cf. Exercise 3 after this section).
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and ��� ��� E � is the set of all subsets of the Cartesianm
product

� � � ��� E � 
 Clearly, ��� ��� E � is a subset ofp
��� ��� E � (note also that ��� ����� ��� ������� � ��� ��� E � andm p p p
��� ����� ��� ������� ���� ��� E � ). The composition ��� of twom m m
elements � and � of ��� ��� E � will be defined as the uni-p
on of their usual composition and the relation ��� � � � E �	�
i. e.

��� �	� � u � w ��
�� v �	� u � v ������ � v � w �� � ���
24� u � w ������ w  E � 


Obviously, ���� ��� ��� E � whenever � and � belong top��� ��� E
� 
p

Suppose now a computational structure � � � ��� J � L � R �
T
�
F
�
H � is given, where, for the sake of simplicity, the

predicate H is assumed to be total. Then we shall define
also � � combination, � � branching and � � iteration in
��� ��� E � 
 The following definitions can be intuitively mo-m
tivated in the spirit of the footnote concerning the defini-
tion of composition in ��� ��� E � :m� �	� � � ���	� � u � w ��
�� s  � �	� u � s �� ���

��� t  � �	� u � t ������ J � s � t ��� w
��� � u � w ������ w  E ���

� u � w �� ��� w  E � � �
� ��� � � � � ���	� � u � w ��
 � u � true �� H ��� � u � w �� � �

� u � false �� H ��� � u � w ���� � � u � w ������ w  E � �
and � u � w ������ � ��� iff there is a finite sequence v

�
v
��  


	
	
 � v of elements of
�

such that
m

(1) v
�
u �"! j �	� v �

true �� H ��� � v �
v ���� � ��

j j j +
 

j < m
�	� v �

false �� H ��� v
�
w
� �	� v �

w ���� �
m m m
� v �

true �� H ��� � v �
w ���� � � w  E �	�

m m
where H � �	� � u � p ��
�� v  � �	� u � v ������ H � v ��� p

� � 
 Again it

is easy to see that ��� ��� E � is closed under the introdu-pced operations.

�������������������������������������������������������������
24 The intuitive motivation for including ��� � � � E �

into ��� is the following: ��� must characterize the
procedure consisting in consecutive execution of the proce-
dures characterized by � and � � but unproductive termina-
tion of the execution of the first of these two procedures
implies that unproductive termination of the consecutive
execution of both is present, and the error message is the
same one.
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From a purely mathematical point of view, the above
definition of iteration looks somewhat messy. However, the
iteration again has a least-fixed-point-characterization as
in the previous situations we considered.

Proposition 1. Let � � �� ��� ��� E � 
 Then the equalitym
��� � ��� � � ��� � ��� � ��� � � I ��

holds. More generally, for each � in ��� ��� E � the equal-mity

(2) � ��� � ��� � � ��� � � ��� � ��� � � � �
holds, and � ��� � ��� is the least element � of ��� ��� E �msatisfying

(3) ��� � ��� � ��� � � � 

Proof. For each � in ��� ��� E �	� let ��� be the elementm

� � I of ��� ��� E � 
 Then the mapping ��� 
���� is injective,E m
and �	�
����� always implies ����� 
 For all � � � � � in   
��� ��� E �	� the equalitym

� � ��� � ��� � � �	� � � ����� ���
holds, where

� �	� � u � v ��
 � u � true �� H ��� � u � v ���� � ����	� � u � v ��
 � u � false �� H ��� � u � v �� � �
� u � v �������� v  E � �

and ����� is the ordinary composition of ��� and � as el-
ements of ��� ��� E � 
 Consider now the equation ��� � ����� ���m
and the inequality ����������� ��� with ��� ranging over�
��� ��� E � 
 Their least solution is the element

� � �
whichm

mis the union of the elements
� � � m

�
0
�
1
�
2
� 
	
	
 (cf. the

analogous proof in Section 5). On the other hand, it is easy�
to verify that

� � � � � ��� � ��� � � 
 From here, using the prop-
erties of ��� 
���� mentioned at the beginning, we conclude
that the equality (2) holds, and � ��� � ��� is contained in
each � satisfying (3). �

Remark 1. If ��� is defined as in the above proof then,

for all � and � in ��� ��� E �	� the equality �	��� � � � ��� ���m
holds, where ��� ��� is the ordinary composition of ��� and

��� in ��� ��� E � 
 This suggests another way of treatment ofm
the subject of this section: to consider

� �� ��� ��� E � 
 ��� E � I �m E
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with the ordinary composition in it instead of ��� ��� E �m
with the unusual composition which we introduced. Roughly
speaking, this is the way used in Example 2 of Skordev
[1980 a] for the case of E consisting of a single element.
A similar situation is present also in Example 2 of Lukanova
[1986] (given previously in Lukanova [1978]), where, in es-
sence, the case corresponding to ��� ��� E � is consideredp
for such an E 
 Note however that only composition turns
into the ordinary one when using this other way, while com-
bination, branching and iteration remain unusual (i. e. not
exactly of the type considered in the previous sections).

Having composition, combination and iteration in
��� ��� E � and in ��� ��� E � at our disposal, we can definep m
relative computability in ��� ��� E � and in ��� ��� E � in ap m
similar way as in the previous sections.

Definition 1. Let � denote ��� ��� E � or ��� ��� E �	�p m
and let

�
be some subset of � 
 The elements of � � �

computable in
�

are those elements of � which can be gen-
erated from elements of

�
L
�
R
�
T
�
F � � � by means of compo-

sition, � � combination and � � iteration.
At the present moment, we shall not comment the introdu-

ced computability notion in the general case, but we shall
demonstrate how things look in a natural special case. Name-
ly, we shall consider the case when E consists of a single
element, and � is a standard computational structure over
the natural numbers in the sense of Section 3, i. e.

� ��� �
J is a recursive function, L

�
R are partial recursive

functions, T
� � u 
 1 � F

� � u 
 0 �
�
true if u > 0

�
H � u ����� false if u � 0 
�

Theorem 1. Let E consist of a single element � � and
let � be a standard computational structure on the natural.numbers 
 Let � � ��� � ��� � � �	� and let S and P be the el-p
ements of 	 defined as follows: S

� � u 
 u + 1 �
�

. u � 1 if u > 0
�

P � u ����� � if u � 0 
�
. 

An element � of � is � � computable in
�
S
�
P � iff ��� �

is a partial recursive function and the set
�
u 
 � u � �	�� � �

is recursively enumerable.

Proof. Let 
 be the set of all � in � such that
��� � is partial recursive and

�
u 
 � u � �	�� � � is recur-.sively enumerable. Obviously,

�
L
�
R
�
T
�
F
�
S
�
P � ��
 � and it

is easy to verify that 
 is closed under composition, � �
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combination and � � iteration. Consequently, all elements of.� � � computable in
�
S
�
P � belong to 
 
 So it remains to.prove that all elements of 
 are � � computable in

�
S
�
P � 


Let � be an arbitrary element of 
 
 Denote by � the
element of � defined as follows:

�
0 if �	� u � � � ��	� u � � � �	� u � + 1 otherwise.�

Then � is a partial recursive function. By Theorem 3.1, �
is � � computable in

�
S
�
P � � where P

� � u 
 u � 1 
 Since com-
position, � � combination and � � iteration in ��� � � are re-p
strictions of the corresponding operations in � � it follows
that � is � � computable in

�
S
�
P � also as an element

of � 
 On the other hand, again in � � we have the equality.� � P � 
 Hence � is an element of � � � computable in.�
S
�
P
�
P � 
 Thus it is sufficient to prove that P is � �.computable in

�
S
�
P � � and this can be done by means of the

equality P
�
L � � � P L � F �	� R � � � I �

I
� 
� � �

Exercises

(in all these exercises, a computational structure
� � � ��� J � L � R � T � F � H � , where H is total, and

a set E with
� � E �	� are supposed to be given)

1. Prove the statements of Exercises 2.1, 2.2, 2.6 and
2.7 for the case when ��� ��� is replaced by ��� ��� E � 
p m

2. Show that composition, � � combination, � � branching
and � � iteration in ��� ��� E � are extensions of the corre-m
sponding operations in ��� ��� 
 Prove that the statements ofm
Exercises 5.2-5.6 remain valid with � � ��� ��� E � 
 Prove them
same for the statement of Exercise 5.7 with the equality� � x � I ����� � � x ��� � instead of

� �	� x � I ����� � �	� x ��� � 
 Under
the assumption that E is non-empty, construct a counter-
example to the equality

� �	� x � I ����� � �	� x ��� � 
 Show that
such a counter-example is not possible if the set E has
only one element and the requirement dom � � dom

��� �
is im-

posed (but
� ��� ��� ��� E � 
 dom � � � � is not closed undermiteration).

3. Let E
�	� ��� � and let � be the set of all ordered

pairs � f � A � � where f  ��� ��� and A � � 
 Let composition,m
combination and branching in � be defined in the following
way:

� f � A �� g � B � � � f g ��� u  B 
�! v �	� u � v �� g �
	 v  A � � � �
� �	� f � A � � � g � B � ��� � � � f � g �	��� u  A 
�� v �	� u � v �� f ���
	

u  B � � �
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� �	� h � C � � � f � A � � � g � B � ��� � � � h � f � g �	��� u  C 

�	� u � true �� H h �
	 u  A � � �	� u � false �� H h �
	 u  B � � � �

where f g
� � � f � g �	� � � h � f � g � and H h are understood in

the sense of Section 5. Let iteration in � be defined by
the equality

� � f � A � � � h � C ��� � � � f � h � � D � �
where � f � h � is understood again in the sense of Section 5,
and D is the set of all elements u of

�
satisfying the

following condition: whenever v
�
v
� 
	
	
 � v is a finite�  

m
sequence of elements of

�
with the property that

v
�
u �"! j �	� v �

true �� H h � � v �
v �� f �	��

j j j +
 

j < m
25then v  C � �	� v �

true �� H h �
	 v  A � 
 Let partial or-
m m m

dering in � be defined by the equivalence

� f � A � � � g � B ��� �
	 f � g � A � B 


Now define a mapping � of � into ��� ��� E � as follows:m
� �	� f � A � ��� f

� �	� ��� A � � E �
for all elements � f � A � of � 
 Prove that � is an one-
to-one correspondence between � and ��� ��� E �	� and thism
correspondence is an isomorphism with respect to composi-
tion, combination, branching, iteration and partial ordering
(i. e.

� �	��� ��� � �	� � � ��� �	� � � � �	� � � �	��� � ��� �	� �	� � ��� �	�	�
� � � ��� � � � � �	��� � ��� ��� �	� � �	� �	� � ��� �	�	�

�������������������������������������������������������������
25 The above definitions of composition, combination,

branching and iteration in � are in essential definitions
given by S. Nikolova in 1988. The definitions of composition
and branching replay, up to unessential details, the corre-
sponding definitions adopted in Example 4 of Skordev [1976 b]
for the elements of a certain subset of � � and the oper-
ation

�
defined above is an extension of the operation

�
from the mentioned example (see also Exercise II.4.13 in the
present book). That example, however, corresponds to a quite
different intuitive interpretation of the second members of
the ordered pairs belonging to the subset in question, and
the corresponding iteration (studied in Skordev [1980, Chap-
ter III, Section 3.2, Example 11]; cf. also Exercises
II.4.17 and II.4.18 in this book) turns out to be quite,different from Nikolova s iteration.
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� � � � � ��� ��� � � �	� �	� � ��� � � � � � � � �
	 � �	� � � � ��� �	�
for all � � � � � in � ).

4. Let the set � and the operations composition, com-
bination, branching and iteration in it be defined as in the
previous exercise. Let I be the element � I � � � of � 
�
Give direct proofs (not using Exercises 2 and 3 above) of
the statements of Exercises 5.2 � 5.4. After changing the
definition of

�
in Exercise 2.5 by setting

�
to consist�

of all pairs � s � � � with s � ��� give such direct proofs
also of the statements of Exercises 5.5, 5.6 and of the
statement of Exercise 5.7 with

� � x � I ����� � � x ��� � instead
of

� �	� x � I ����� � �	� x ��� � 
 Give also a direct proof of Prop-
osition 1 with � and

�
instead of ��� ��� E � and � 
m

5. Let E
�	� ��� � and let � be a standard computational

structure on the natural numbers. Let � � ��� � ��� � � �	� andm.let the function P from � be defined as in Theorem 1.
Prove that an element � of � is � � computable in the set

.  �
S
�
P
� � � iff both the relation ��� � and the set�

u 
 � u � �	�� � � are recursively enumerable.�
6. Let � be the function, determined by the condition� �

that dom � ��� and � � u ��� � for all u in
� 
 Prove that.Theorem 1 remains valid after replacing

�
S
�
P � by��

S
�
P
� � � , and the statement of Exercise 5 remains valid

.  � 
after replacing

�
S
�
P
� � � by

�
S
�
P
� � � � � � where

P
� � u 
 u � 1 (from the point of view of the correspondence
� mentioned in Exercise 3, this is equivalent to some
results obtained by S. Nikolova in 1988).

7. Let E
�	� ��� � and let � be a standard computational

structure on the natural numbers. Let � � ��� � ��� � � �	� andm?let P
�
P
��� � 0 � �	� � � where P

� � u 
 u � 1 
 Prove that an
? 

element � of � is � � computable in
�
S
�
P � iff ��� �

is a partial recursive function, the set
�
u 
 � u � �	�� � � is

recursively enumerable, and there is a partial recursive
function � which satisfies the following conditions:

dom � � dom �	��� � �	� ! u  dom ����	� u ��� 0 � �
	 � u � �	�� � � 

Hint. If �� � � ��� � is a function, and � is a par-

tial function in
�

satisfying the above conditions, then ?� � �	��� � � R � � P � � I �	� �
where � � � ��� � u � 0 ��
 � u � �	�� � � 
 

8. Let � � � � � be arbitrary elements of ��� ��� E �	� andm
let � � � ��� � ���	
 Suppose K is a subset of

�
such that�

v  K � E for all � u � v � in � with u  K � and � is an el-
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ement of ��� ��� E � such that ��� � ��� � ��� � � � � � K � � ��� E �	� 
m
Prove that ����� � � K � � ��� E �	� 
�



CHAPTER II

COMBINATORY SPACES

1. The notion of combinatory space

In the previous chapter, a number of situations were
described, where a set

�
of functions or function-like

objects is fixed and a notion of relative computability for
the elements of

�
can be considered. A common feature of

these situations is that
�

contains an identity element I
and is supplied with a composition operation, an operation�

of combination, a branching operation ��� an operation
of iteration and a partial ordering such that iteration has
a least-fixed-point characterization in terms of branching,
composition and I � In addition, elements L and R of

�

are fixed having a certain connection with the operation of
combination, as well as elements T and F of

�
having a

certain connection with branching. Now we shall give an ab-
stract axiomatic treatment of such kind of situations. For
the first time, we shall leave aside the operation of itera-
tion (having in mind its characterizability by means of the
other operations). Of course, a given number of concrete
situations can be captured by a general notion in infinitely
many different ways. However, we aim to introduce a notion
capturing not only the considered concrete situations, but
also other interesting ones, and giving the possibility to
develop a sufficiently rich theory about it. These require-
ments leave not so much room for arbitrariness, and it is
even not clear whether such a goal can be reached. As we
hope, a positive answer of the last question will be seen
from this book (another solution of the above problem is
given by the notion of iterative operative space studied in
Ivanov [1986]).

The definition, which we shall give now, makes use of
the notion of partially ordered semigroup. We think this
notion is well-known to the reader, but, for the sake of
completeness, we shall recall its definition. Namely, a par-
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tially ordered semigroup is a non-empty set supplied with a
partial ordering and an associative monotonically increasing
binary operation. The partial ordering will be considered

26reflexive . The corresponding denotations will be
�

and� � The binary operation mentioned above will be denoted as
multiplication. Thus, if the semigroup is

� � then the fol-
lowing conditions must be satisfied for all ��������� in

�
:

� ���	�
���� � ���	� ��� � ����� � ����� � ������� � ���
� � ����� � �������������� � ��������� � ��������� � ��� �

An element I of
�

is called an identity of
�

iff

I ���� I ��
for all � in

� �
Now we proceed to the main definition of this chapter -

the definition of the notion of combinatory space.

Definition 1. A combinatory space is a 9-tuple
� ���� � I ��� � � � L � R � ��� T � F � �

where
�

is a partially ordered semigroup, I is an identity
of

� ��� is a subset of
� � �

and � are a binary and a
ternary operation in

� � respectively, L � R � T � F are el-
ements of

� � and the following sixteen conditions are iden-
tically satisfied, when ������������� range over

� � x � y
range over � � and

� � �����	� � �
� ���������	� are denoted by

27� �����	� and
� �����������	� � respectively :

(1) � x � � x � � x � ����� � ���
(2)

�
x � y �
!�� �

(3) L
�
x � y �"� x �

(4) R
�
x � y �"� y �

(5)
� �����	� x � � � x ��� x � �

(6)
�
I ��� x �
��� � ����� x � �

(7)
�
x � I �
��� � x ���	� �

�������������������������������������������������������������
26 In other words, a partial ordering in a set will be

any reflexive, transitive and anti-symmetric binary relation
in it (the anti-symmetry means that inequalities in both
directions between two given elements of the set always im-
ply equality of these elements).

27 These denotations will be systematically used not only
in the present definition, but also in the further exposi-
tion (we should like to mention that we used # instead of
��� in the previous publications on combinatory spaces).
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(8) T
�
F �

(9) T x !�� �
(10) F x !�� �
(11)

�
T ���������	�"����

(12)
�
F ���������	�"����

(13) � � �����������	�"� � ���������������	� �
(14)

� �����������	� x � � � x ����� x ��� x � �
(15)

�
I ����� x ��� x �
��� � ������� x ��� x � �

(16) � � ����� � ����� � I ���������	� � � I ���������	���
The semigroup multiplication in

� � and the operations
� �

� will be called composition, combination and branching in�
� respectively. The combinatory space

�
is called sym-

metric iff
*(7 )

� � x � I �
��� � � x ���	�
for all ����� in

�
and all x in � (obviously, (7) is a

*particular instance of (7 ) ).

Remark 1. The equalities (11)-(13) correspond to some
well-known equivalences from the paper Mc Carthy [1963]. In
connections with counterparts of some other equivalences
from that paper, cf. Exercises 21, 23, 44, 45 after this
section.

Remark 2. Our first publications, where a definition of
the notion of combinatory space appears, are the papers

28Skordev [1975, 1976 b]. There are three things in that
first definition, which make it different from the present
one, namely: (i) instead of (9) and (10), it is required
that T and F belong to � � (ii) the additional condition
is included that x y � x for all x � y in � � and (iii) the

*condition (7 ) is present there instead of (7). A bit later,
in Skordev [1977], the condition from (ii) has been shown to
be redundant (see Proposition 2 in this section). Therefore
the combinatory spaces, considered in the above-mentioned
papers, are exactly those combinatory spaces in the present
sense, which are symmetric and satisfy the condition that

�������������������������������������������������������������
28 For some corrections concerning two examples of combi-

natory spaces in that papers, cf. Skordev [1980, Chapter II,
Section 1.3, Example 12, and Section 5.4, Remark 2] (these
examples can be found, in essence, in Exercise 4.22 of this
chapter and in Subsection (III) of Section 4 of the Appen-
dix).
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29T and F belong to � � The same class of combinatory
spaces has been studied in the book Skordev [1980], with the
unessential differences that quasi-ordered semigroups are

30used there instead of partially ordered ones, and degener-
ate spaces are admitted, where all elements of

�
are equal

each other. When the work on the manuscript of that book was
near its end, the author observed that condition (7) is suf-

*ficient for some proofs, where (7 ) has been used before. In
31the thesis Lukanova [1978], many proofs from the manu-

script have been examined from this point of view, and it
turned out that the essential results of the theory remain
valid after such an weakening of the requirements of the
definition. Roughly speaking, the present notion of combina-
tory space coincides with the notion of semicombinatory
space from the papers Skordev [1980 a, 1984] (the only dif-
ference is that the definition from that papers again admits
degenerate spaces). The change in the terminology (to re-
place the adjective "semicombinatory" by "combinatory") was
proposed by L. Ivanov, who used the new terminology in the
book Ivanov [1986] and in subsequent publications.

Remark 3. From the condition (1), it follows immediately
that

� x � � x �� x � ��������
for all ����� in

� � Together with (8)-(10), this implies
the impossibility of a situation where all elements of �
are equal each other (in particular - the impossibility of
the equality � � � ).

Remark 4. From conditions (6), (7), (15) and (16), one
easily deduces the following more general properties:

� ����� x �
��� � ������� x � �
�
x ���	�
��� � x �����	� �

� ������� x ��� x �
��� � ��������� x ��� x � �
� ��� ��� � ����� � ����� � � ���������	� � � � ���������	���

The proof of the first three of these more general proper-

�������������������������������������������������������������
29 The last restriction is not very essential, as it can

be seen from Corollary 1 below in combination with Proposi-
tion 2.

30 The fact that this difference is really unessential
can be seen from Exercise 3 after this section.

31 An account of the main results from this thesis is
given in Lukanova [1986].
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ties is straight-forward. For example, the third one can be
proved as follows:
� ������� x ��� x �
��� � I ����� x ��� x �
����� � ��������� x ��� x ���

For proving the fourth one (the monotonicity of � ), suppose
that � ��� ��� � ����� � � � Then, for all x in � � we have

� � ���������	� x � � � x ����� x ��� x �"� � I ����� x ��� x � � x ��
I ����� x ��� x � � x � � � x ����� x ��� x �"� � � ���������	� x �

and we can use the condition (1).

Remark 5. If the considered combinatory space is a sym-
metric one then also the equality

� � x ���	�
��� � � x �����	�
holds.

The considerations from the previous chapter provide us
with some examples of combinatory spaces. Suppose

� ���� � J �
L � R � T � F � H � is a computational structure. Then the fol-
lowing examples of combinatory spaces correspond to situa-
tions studied in the previous chapter.

Example 1. Let
� ��� �"�� � � � � � I ��� � � � L � R � ��� T � F � �m m M

where the denotations from Section I.5 (including Exercise
I.5.5) are used, and

� �
� � is supplied with the composi-m

tion and the partial ordering by inclusion. Then
� ��� � ism

a symmetric combinatory space (by Exercises 2 - 7 after that
section).

Example 2. Let
� ��� �"�� � � � � � I ��� � � � L � R � ��� T � F � �p p M

where the denotations from Section I.2 are used,
� �

� � isp
supplied with the composition and the partial ordering by
inclusion, and � is the same as in the previous example.
Then

� ��� � is also a symmetric combinatory space (by thep
previous example and by the fact that composition,

� � �
and the partial ordering predicate on

� �
� � are restric-p

tions of composition,
� � � and the partial ordering predi-

cate on
� �

� � � respectively).m
Example 3. Let

� ���
� E �"�� � � � � E � � I ��� � � � L � R �m m M

��� T � F � � where the denotations from Section I.8 are used,� �
� � E � is supplied with the composition and the partialm

ordering by inclusion, and � is the same as in the previous
examples. Then

� ���
� E � is a combinatory space, and thism

combinatory space is not symmetric, barring the case when
E � � (cf. Exercise 2 after the mentioned section). Note
that an equivalent version of this example can be obtained
by using the constructions from Exercise I.8.3.
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Example 4. Let
� ���

� E �"�� � � � � E � � I ��� � � � L � R �p p M
��� T � F � � where again the denotations from Section I.8 are
used,

� �
� � E � is supplied with the composition and thep

partial ordering by inclusion, and � is the same as in the
previous examples. Then

� ���
� E � is also a combinatoryp

space, and this combinatory space is not symmetric, barring
the case when E � � �

Remark 6. Some modifications of Examples 1 and 3 and of
the further examples in this book can be obtained using the
following fact: if � � � I ��� � � � L � R � ��� T � F � is a combina-
tory space, D is an element of

�
satisfying the condi-

tions D T � T � D F � F � and the ternary operation � in
��

is defined by

�
� ���������	�"� � � D ���������	� ��

then � � � I ��� � � � L � R � � � T � F � is also a combinatory space.�
The proof of this statement is immediate, after the state-
ment in Remark 4 is proved.

In the case of Example 2, the application of the above
remark does not give anything new, since we could obtain � �
by simply replacing H by � u � H � D � u � � � which will be also a

partial predicate on � � In the case of Examples 1 and 3,

however, if rng T � rng F is a proper subset of � (for ex-
ample, if T and F are constant functions) � then it is pos-
sible to choose D in such a way that both true and false
belong to H

�
D
�
u � � for some u in � � In such a case the

corresponding � cannot be obtained by a new choice of the�
partial predicate H (in the case of Example 3, this will be
the situation about � also every time when D

�
u ��� E � ��

for some u in � ).

In the case when rng J is a proper subset of � � some
other modifications of Examples 1 and 3 can be given. Name-
ly, we could replace L and R by some elements L and R� �
of the corresponding

�
such that

L
�
J
�
s � t � �"��� s � � R

�
J
�
s � t � �"��� t �� �

for all s � t in � � but � L � R �	� � �
� ���� � p

A number of essentially different examples of combina-
tory spaces will be given further in the book.

In order to prove some elementary general properties of
combinatory spaces, let us assume from now on (until the end
of the present section) that a combinatory space � � � I ��� �� � L � R � ��� T � F � is given.
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Proposition 1. The operation
�

is monotonically in-
creasing, i. e.

� � ����� � ����� � �����	� � � �����	�
for all ������������� in

� �
Proof. Suppose � � ����� � � � Let x be an arbitrary

element of � � In order to apply (1), we shall prove that� �����	� x � � �����	� x � Since (5) and (6) imply the equalities
� �����	� x � � I ��� x �
� x � � �����	� x � � I ��� x �
� x �

it is sufficient to prove that
�
I ��� x � � � I ��� x ��� The proof

of this inequality is carried out by noting that, for all y
in � � the conditions (6) and (7) imply

�
I ��� x � y � � y � I �
� x � � y � I �
� x � � I ��� x � y �

and then applying (1). �
Proposition 2. For all x and y in � � the equality

x y � x holds.

Proof. By (3), the first equality in Remark 4, (5), (7)
and again (3), we have

x y � L
�
x � y � y � L

�
x � I y � y � L

�
x y � I y �"�

L
�
x � I � y � L

�
x � y �"� x � �

Proposition 3. For all x in � and all ����� in
� �

the equalities
�
T x ���������	�"���� � F x ���������	�"�� hold.

Proof. The first equality follows from the fact that,
for all y in � � condition (14), Proposition 2, again (14),
then (11) and again Proposition 2 imply
�
T x ���������	� y � � T x � ����� y ��� y �"� � T x ����� y x ��� y x �"��

T ����� y ��� y � x ��� y x �� y �
The validity of the second equality is seen in a similar
way, using (12) instead of (11). �

Corollary 1. For all a � b in � � the 9-tuple � � � I ��� �� � L � R � ��� T a � F b � is a combinatory space �
In order to formulate easier some more properties of

combinatory space, the term "normal element" will be intro-
duced.

Definition 2. An element � of
�

will be called normal
32iff � x !�� for all x in � �

�������������������������������������������������������������
32 In our previous publications, we used the term "per-

fect" for the same notion. We consider this term too preten-
tious now, and therefore we turn back to the term used many



1. THE NOTION OF COMBINATORY SPACE 51

Proposition 2 and conditions (9), (10) show that all
elements of � and the elements T and F are normal. As
an example of a normal element which surely does not belong
to � � the element I can be indicated (if we suppose that
I !�� � then, using Proposition 2, we get x � I x � I for ar-
bitrary x in � � and this contradicts Remark 3). It is seen
immediately that composition of any two normal elements of�

is a normal element again. In the examples of combina-
tory spaces considered in this section, the normal elements
of the corresponding semigroups

�
are just the total map-

pings of � into itself.

Proposition 4. Let � and � be normal elements of
� �

Then
� �����	� is also a normal element, and the equalities

L
� �����	�"���� R

� �����	�"�� hold.

Proof. For all x in � � we have the equalities� �����	� x � � � x ��� x � � L
� �����	� x �� x � R

� �����	� x �� x � �
Corollary 2. Let � be an arbitrary element of

� � and
let � be a normal element. Then L

� ��� � �"� R
� � ���	�"�� �

Proof. For all x in � � we have

L
� ��� � � x � L

� � x � � x �"� L
�
I � � x �
� x � I � x �� x �

R
� � ���	� x � R

� � x ��� x �"� R
� � x � I �
� x � I � x �� x � �

Proposition 5. For all ��������� in
�

and all normal
elements � of

� � the equalities
� �����	� �"� � � � ��� � � �� �����������	� �"� � � �"����� � ��� � � hold.

Proof. A straight-forward application of the definition
of the notion of normal element, conditions (5), (14) and
Remark 3. �

Remark 7. If � is a normal element of
�

then the
equality

� � x ���	�
��� � � x �����	� holds for all ����� in�
and all x in � (without the assumption made in

Remark 5 about symmetry of
�
). This is easily seen by

application of Definition 2, condition (5), Proposition 2
and Remark 3.

The following two propositions generalize Propositions 2
and 3.

Proposition 6. For all x in � and all normal elements
� of

� � the equality x �"� x holds.

Proof. By the definition of the notion of normal element
and Proposition 2, x � y � x � x y for all y in � � �

Proposition 7. For all ����� in
�

and all normal
elements � of

� � the equalities
�
T �"���������	�"����

�������������������������������������������������������������
years ago in our lectures on combinatory spaces.
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�
F �"���������	�"�� hold.

Proof. Application of condition (14), the definition of
the notion of normal element, Proposition 3 and Remark 3. �

Proposition 8. For all ������������� in
�

and each nor-
mal element � of

� � the equality
� � L ����� R ��� R � � ��� � �"� � ��������� � ��� � �

holds.

Proof. For all x in � � we have
� � L ����� R ��� R � � ��� � � x � � � L ����� R ��� R � � � x � � x �"�
� � L ����� R ��� R � � I � � x �
� x � � ������� � x ��� � x �
� x �

� ��� x ����� � x ��� � x �"� � ��������� � ��� � � x � �
For each subset

�
of � � a binary relation

�
in

�
�

will be introduced. Also a notion of invariance of
�

with
respect to a given element of

�
will be defined.

Definition 3. Let
�

be some subset of � � If ����� are
elements of

�
then the inequality � � � means that

�

� z � � z for all z in
� � For a given � in

� � the set
�

is called invariant with respect to � iff for all ����� in�
the implication � � ������� � � � � holds.

� �

In the combinatory spaces from Examples 1, 2, 3 and 4
above, the meaning of

�
is quite clear. For the meaning of

�

invariance in those combinatory spaces, cf. Exercise 37 af-
ter this section.

Proposition 9. The inequality � � � is equivalent to
�

the inequality � � � � The set � is invariant with respect
to each element of

� �
Proof. The first statement is an obvious consequence of

condition (1) and the monotonicity of the multiplication in� � The second statement follows from the first one and the
mentioned monotonicity. �

Proposition 10. Let
��� � , and � be an element of

�

such that � x ! � for all x in
� � Then

�
is invariant

with respect to � �
Proof. Immediate. �
Corollary 3. Each subset of � is invariant with respect

to its elements and with respect to the element I �
In the examples of combinatory spaces mentioned until

now, it was always so that the partially ordered set
�

had
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a least element. However, it is quite easy to give an ex-
ample, where such a least element does not exist. To obtain
such an example, it is sufficient to take an arbitrary com-
binatory space � � � I ��� � � � L � R � ��� T � F � and to replace the
original partial ordering in

�
by the equality relation.

Since this partial ordering looks not natural in the general
case, we give also an example, where the equality relation
can be regarded as the natural partial ordering.

Example 5. Let
� ���� � J � L � R � T � F � H � be a computa-

tional structure with total L � R � H (i. e. dom L � dom R �
dom H � � ). Let

� ��� �"�� � � � � � I ��� � � � L � R � ��� T � F � �t t M
where

� �
� � is the set of all total mappings of � intot

� with the usual composition and with the equality rela-
tion taken as partial ordering. Let � be the same as in the
combinatory space

� �
� � � and

�
and � be the restrictionsp

to
� �

� � of the corresponding operations in
� �

� ��� Thent p� ��� � is a symmetric combinatory space, and obviouslyt
there is no least element in

� �
� ���t

In case there is a least element in
� � the properties

of this element are of interest, and we shall prove one such
property now.

Proposition 11. Let � be the least element of
� � Then

the equality � �"� � holds for all normal elements � of
� �

Proof. Let � be a normal element of
� � To prove the

equality � �"� � � it is sufficient to establish the inequal-
ity � � � ��� Its validity follows from the fact that, by
Proposition 2, for all x in � we have x � x � x and hence

� x � � x � x � � � x � �
Remark 8. In the general case, it can happen that there

is a least element � in
�

and the equality � � � � is vi-
olated for some

�
in

�
(see Remark 1 in Section 3). We do

not know whether it is possible the equality
� � � � to be

violated if � is the least element of
� � A least element

� of
�

surely exists, and the last equality turns out to
be always true in the case which will be of main interest in
the further exposition, namely the case of iterative combi-
natory spaces (see Proposition 3.2).

A lot of additional information about combinatory spaces
can be found in the exercises which follow this section. In
particular, many specific properties of symmetric combina-
tory spaces are listed there.

Exercises

1. Let � � � I ��� � � � L � R � ��� T � F � be a combinatory
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space. Let � , � and � be the ternary operations in
�

� � �
defined by

�
� ���������	�"� � � ���������	��

�
� ���������	�"� � � L ���������	� � �

� ���������	�"� � � R ���������	���� �

Then � � � I ��� � � � L � R � � � F � T � ��� � � I ��� � � � L � R � � �� �
�
T � I � � � F � I � � and � � � I ��� � � � L � R � � �

�
I � T � � � I � F � ��

are also combinatory spaces.

2. If � � � I ��� � � � L � R � ��� T � F � is a symmetric com-
binatory space, and

�
is the ternary operation in

�
de�

fined by
� � �����	�"� � � � � �	� ��

then � � � I ��� � � � R � L � ��� T � F � is also a symmetric�
combinatory space.

3. Let
�

be a quasi-ordered semigroup in the following
sense:

�
is a set supplied with a reflexive and transitive

relation (denoted as inequality) and a binary operation (de-
noted as multiplication) such that

� ���	�
����� � ���	� and
� � ��������� � ����� ��� � ��� for all ��������� in

� � where �
is the equivalence relation in

�
defined as follows: �����

iff � � ����� � � � Let I be an element of
�

such that
I ����� for all � in

� � Let � � � � L � R � ��� T � F satisfy
the same conditions as in the definition of the notion of
combinatory space, but with � instead of � (hence with the
negation of � instead of � ). Let

�
be the set of all�

equivalence classes in
�

with respect to ��� supplied with
the multiplication operation corresponding to multiplication
in

� � Let I � L � R � T � F be the elements of
�

con-� � � � � �
taining I � L � R � T � F � respectively, and � be the set of�
all elements of

�
which meet � � Prove that � is a con-�

gruence relation with respect to
�

and ��� and if
� � �� �

are the operations in
�

which correspond them, then�
� � � I ��� � � � L � R � � � T � F �� � � � � � � � �

is a combinatory space �
Hint. Use � x � � x ��� x � ��������� to prove that � I ���

for all � in
� � Prove the monotonicity of � and

�
in

the same way as in Remark 4 and in the proof of Proposition
1, respectively (with � instead of � ).

4. (Cf. Ivanov [1986, Propositions 27.11 and 27.12]) Let
� � � I ��� � � � L � R � ��� T � F � be an arbitrary combinatory
space, and let x � y be arbitrary elements of � � Prove the
equalities
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� �
x � y � � I �"� K

�
x � I � � y � I � � � x � I � � y � I �"� K

� �
x � y � � I � �� �

� �
where K � � � L � L R � � R � � K � � L �

�
R L � R � ���� �

5. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, let � be a normal element of

� � and let
����� be arbitrary elements of

� � Prove the equalities
�
L ����� R ��� R � � T ��� I �"���� � L ����� R ��� R � � F ��� I �"�� �

6. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, let ����������� � be arbitrary elements
of

� � and let � be a normal element of
� � Prove the

equalities
� � L ��� R � � � � � �"� � � R ��� L � � � � � �"� � � � ��� � � �
�
L ��� R � � � � � �"� � R ��� L � � � � � �"� � � ��� � ���

7. (Ivanov [1986, Chapters 27 and 10]) Let � � � I ��� � � �
L � R � ��� T � F � be an arbitrary combinatory space, and let
the unary operation St in

�
(called storing operation) be

defined by means of the equality

St
� �	�"� � L ��� R ���

For arbitrary ��������� in
�

and all x in � � prove the
equalities

��� R St
� �	� � I � I � � St

� �	� � x � I �"� � x � I �
���
St
� ���	�"� St

� �	� St � �	� �
� �����	�"� St

� �	� � R � L � St � �	� � I � I ���

8. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ��������� be arbitrary elements
of

� � Prove the equality

St
� �	� � �����	�"� � �������	� �

where the operation St is defined as in the previous exer-
cise.

9. (Ivanov [1986, Proposition 27.8]) Let � � � I ��� � � � L �
R � ��� T � F � be an arbitrary combinatory space, and let �������
� � � be elements of

�
satisfying the inequality

� � x � I � ��� � � x � I �
�
for all x in � � Prove the inequality

� St
� � � � � St � �	� �

where the operation St is defined as in Exercise 7.

10. (Cf. Ivanov [1986, Proposition 10.16]) Let � � � I ��� �� � L � R � ��� T � F � be an arbitrary combinatory space � Let
the operation St be defined as in Exercise 7, and let K ��
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K be such as in Exercise 4. Prove that�

St
�
St
� �	� �"� K St

� �	� K St
�
St
�
I � �� �

for all � in
� �

Hint. Using the previous exercise, reduce the problem to
proving the equality

�
x � I � St � �	�"� K St

� �	� K � x � I � St � I �� �
for arbitrary x in � � and reduce this new problem to
proving the equality

�
x � I � � y � I �
��� K St

� �	� K � x � I � � y � I � I� �
for arbitrary x � y in � �

11. (Compare with Proposition 10.13 of Ivanov [1986])
Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary combinatory
space, and let ��������� be arbitrary elements of

� � Prove
the equality

St
� � �����������	� �"� � � R ��� St � �	� � St � �	� � St � I � �

where the operation St is defined as in Exercise 7.

12. (Compare with Proposition 27.14 of Ivanov [1986])
Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary combinatory
space. Let the operation St be defined as in Exercise 7,
and let K � K be such as in Exercise 4. Let

�
be a fixed� �

subset of
�
. For an arbitrary element � of

� � prove the
equivalence of the following two conditions, where St

� � �
denotes the set of all elements of the form St

� �	� with �
belonging to

�
:

(i) � can be generated from elements of the set � I � L �
R � T � F � � �

by means of multiplication and the operations� � � �
(ii) � can be generated from elements of the set

� � I � I � � R � K � K � St
� �
I � I � � � St � � R � L � � � St � St � I � � �� �

St
�
L � � St � R � � St � T � � St � F � � � St � � � by means of multiplica-

tion and the operation � �
Hint. To establish the implication (i) ��� (ii), prove

that St
� �	� can be generated in the way described in condi-

tion (ii), whenever � satisfies condition (i).

13. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
combinatory space, and let ����������������� be arbitrary el-
ements of

� � Prove the equalities
� � L ��� R � � �����	�"� � ���������	� �

� � L ����� R ��� R � � �����	�"� � �����������������	� �
� � R ��� L � � �����	�"� � ���������	� �
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� � R ����� L ��� L � � �����	�"� � �����������������	���
Hint. Use Exercise 6 and Proposition 8.

14. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ������������� be arbitrary elements
of

� � Let � be a normal element of
� � Prove the equal-

ities
� ����� R � � ��� � �"� � � � ��� � � ��� � � �

� ������� R ��� R � � ��� � �"� � � � ��� � �"����� � ��� � � �
�
R ���	� � ��� � �"� � � ��� � ��� � � � �

� ����� L � � � ���	�"� � � � � ���	� ��� � � �
� ������� L ��� L � � � ���	�"� � � � � ���	�"����� � ��� � � �

�
L ���	� � � ���	�"� � � ��� � � ���	� ���

15. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and � be an element of

�
such that the

*equality (7 ) holds for all � in
�

and all x in � � Let
� be a normal element of

� � Prove the equalities
� � R ���	� � ��� � �"� � � � ��� � ��� � � � �
� � L ���	� � � ���	�"� � � � ��� � � ���	� �

for all ����� in
� �

16. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ������������� be arbitrary elements
of

� � Prove the equality
� � �����������	� ���	�"� � ����� � �����	� � � �����	� �

Hint. Use the equality
� � �����������	� ���	� x � � I ��� x � � � x ����� x ��� x �

and condition (13).

17. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
combinatory space, and let ������������� be arbitrary elements
of

� � Prove the equality
� ��� � �����������	� �"� � ����� � �����	� � � �����	� ���

Hint. Use the previous exercise and Exercise 2.

18. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, let x be an element of � � and let �������
����� be arbitrary elements of

� � Let � be an element of
33�

satisfying the conditions � � T x � I �"���� � � F x � I �"�� �
Prove the equality

�������������������������������������������������������������
33 To see the existence of such a � � cf. Exercise 5.
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� � � ����� T � F � x ���	�"� � � x �������������	���
Hint. Use Exercise 16.

19. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary com-
binatory space, and � be an element of

�
such that the

*equality (7 ) holds for all � in
�

and all x in � �
Prove the equalities

� � x ���	�
��� � � x �����	� � � � x ���������	�
��� � � x �������������	�
for arbitrary ��������� in

�
and all x in � �

Hint. For the proof of the first equality, use Exercise
8. For the proof of the second one, take � as in the pre-
vious exercise and represent

� � x �������������	� in the form
� � � ����� T � F � x � I �
� � Then note that, again by the previous
exercise, the equality

� � � ����� T � F � x � I �"� � � x ���������	�
holds.

20. Let � � � I ��� � � � L � R � ��� T � F � and � be as in
the previous exercise. Let � be a normal element of

� �
Prove the equalities

� � R ���������	� � ��� � �"� � � �"����� � ��� � � ��� � ��� � � � �
� � L ���������	� � � ���	�"� � � �"����� � � ���	� ��� � � ���	� �

for arbitrary ��������� in
� �

21. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ����������� � � � be arbitrary el-
ements of

� � Prove the equality
� � ����� � � � �"���������	�"� � ����� � � ���������	� � � � ���������	� �

(compare with Mc Carthy [1963]).

Hint. For an arbitrary x in � � transform the
expression

� � ����� � � � �"���������	� x into the expression� ����� � � ���������	� � � � ���������	� � x by means of consecutive
application of conditions (14), (14), (15), (13), (15),
(15), (14), (14).

22. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ����� be arbitrary elements of� � Prove the equalities

� � ����� T � T �"���������	�"� � �����������	� �
� � ����� T � F �"���������	�"� � �����������	� �
� � ����� F � T �"���������	�"� � �����������	� �
� � ����� F � F �"���������	�"� � �����������	���

23. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
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combinatory space, and let ����������� � ����� � be arbitrary
elements of

� � Prove the equality
� ����� � � ���������	� � � � ������� � � �"� � � ��� � �����������	� � � ��������� � � �
(compare with Mc Carthy [1963]).

Hint. Take an arbitrary x in � � Making use of the sec-
ond equality from the previous exercise and of Exercise 19,
transform the product

� ����� � � ���������	� � � � ������� � � � x into� � �
x ��� T � F � � where

� � � � x ��� � I ����� x ��� x � � � I ����� x � � x � ���
Then use the equalities

� � �
x ��� T � F �"� � � x ��� � T � � F � ��

T � � �����������	� x � �
F � � ��������� � � x �

24. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space, and let ����� be such elements of

�

that � � x � y � � � � x � y � for all x � y in � � Prove that
� � �����	� � � � �����	� for all ����� in

� �
25. (Generalization of Exercise 24). Let � � � I ��� � � �

L � R � ��� T � F � be an arbitrary combinatory space. For each
npositive integer n � define a set � of mappings of
�

n
into

�
by means of the following inductive definition: � �

consists of the identity mapping �
� ��� and of all constant
mappings �
� ����� where ��! � � and if n > 1 then � consists

nof all mappings of the form

(17) � � � � � � � � � � � � � �
��� � � � � � � ��� � � � � � � � � � ��� � � ��

k
�

l
� �

k
� �

l
where k and l are positive integers satisfying the condi-
tion k + l � n � �

is some element of
� �

�
is a mapping�

belonging to � , and
�

is a mapping belonging to � �
k

�
l

Let
�

be a mapping from � � Prove that whenever ����� are
nsuch elements of

�
that

� � � z � � � � � z � � � � � z � � � � � z ��
n

�
n

for all z � � � � � z in � � then�
n

� � � � � � � � ��� � � � � � � � � � � ��� ��
n

�
n

for all � � � � � ��� in
� ��

n
Hint. Suppose

�
is the mapping (17), where

�
and

�� �
have the above property. Suppose

� � � x � � � � � x � y � � � � � y � � � � � x � � � � � x � y � � � � � y ��
k

�
l

�
k

�
l

for all x � � � � � x � y � � � � � y in � � Write the above in-�
k

�
l

equality in the form
� �� � � y � � � � � y � � � � � y � � � � � y � �� �

l
� �

l
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where
� �� �� � � ��� � x � � � � � � � � I � � � �� � � ��� � x � � � � � � � � I � �� �

k
� �

k
and conclude that

� �� � � � � � � � ��� � � � � � � � � � � ��� � �� �
l

� �
l

for arbitrary � � � � � ��� in
� � Multiply both sides of�

l
this inequality from the right by an arbitrary element z
of � � and write the obtained inequality in the form

� � � �
x � � � � � x � � � � � �

x � � � � � x � �� �
k

� �
k

where

� � �� � � � I � � � � � � � � ��� � z � � � � �� � � � I � � � � � � � � ��� � z ���� �
l

� �
l

From here conclude that

� � � � � � � � � ��� � � � � � � � � � � � ��� � �� �
k

� �
k

for all � � � � � ��� in
� ��

k
26. Let

� �� � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space. An element � of

�
will be called con-

stant iff � x �� y for all x � y in � �
(a) Show that all element of � are constant, and the

element I is not constant.

(b) Find all constant elements of
�

in any of the
cases when

�
is some of the spaces from Examples 1-4.

(c) Show that, whenever � is a constant element of� � then ��� is also a constant element for all � in
� �

Prove that the set of all constant elements of
�

is closed
under the operations

�
and � �

(d) Prove the mutual equivalence of the following nine
conditions, where � is an arbitrary element of

�
:

(i) � is a constant element of
�
;

(ii) � z �� for all z in � ;
(iii) � z � � for all z in � ;
(iv) � � � z for all z in � ;
(v) � x � � y for all x � y in � ;
(vi) � z �� for some z in � ;
(vii) ���� z for some � in

�
and some z in � ;

(viii)
�
I ���	�
��� � �����	� for all � in

�
;

(ix)
�
I ���	� z � � z ���	� for all z in � �

27. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space. Prove that for all z in � and all �
in

�
the equalities

L
�
I ���	� z � R

� ��� I � z � z � z �
L
�
I ���	�"� R

� ��� I � �
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z L
�
I ���	�"� z R

� ��� I �"� z �
hold.

28. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
combinatory space, and let ����� be arbitrary elements of� � Prove that for all z in � the equality

z � z � z � z � z � z
holds. Prove also the equalities

L
�
I ���	� L � I ���	�"� L

�
I ���	� L � I ���	� �

L
� �����	�"� R

� �����	���
Hint. Use the previous exercise.

29. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
combinatory space. Define a set

�
of mappings of

�
into�

by means of the following inductive definition:

(i) �
� ����! � ;
(ii) if

� ! � and ��! � then �
� ��� � � �	�
! � ;
�
� � ��� � �	� � �	� and �
� � � ��� � � �	� � also belong to

�
;

(iii) if
� ! � and � � � ! � then �
� � ��� � �	�"��� � � � �

also belongs to
�
;

(iv) if
�
����! � and ��! � then �
� � � ����� � � �	� ��� � �	� �

also belongs to
�
�

Assuming
�
����! � and

� �
z � � � � z � for all z in � �

prove that
� � �	� � � � �	� for all � in

� �
Hint. Use the corollary from Proposition 4, as well as

Exercises 14, 15, 20, to prove that each mapping from
�

is
representable in the form �
� � � � ��� I � with some fixed �

from
� �

30. Let
� �� � � I ��� � � � L � R � ��� T � F � be a symmetric

combinatory space. Apply the previous exercise to give an-
other proof of the equality

L
� �����	�"� R

� �����	�
from Exercise 28 and to prove the equalities

� � z ����� � z ��� � z �	�"� � � z ����� � z ��� � z �	� �
(18)

�
I � I � � �����	�"� � � � I � I �
��� � I � I �
�	� �

(19)
� � �����	� � � �����	� �"� � � � �����	� � � �����	� � �

where z !�� � ������� � ����������������! � and
� �

��� � � L � L R � � � R L � R � ���
By an appropriate direct proof, show that (18) remains valid
without the assumption about symmetry of

�
�

31. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric
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combinatory space. Define a set
�

of mappings of
�

into�
by means of the definition from Exercise 29 with the

clause (ii) modified in the following way:

(ii) if
� ! � and ��! � then �
� ��� � � �	� and

�
� � � � �	� � also belong to
�
�

Assuming
�
����! � and

� �
z � � � � z � for all z in � �

prove that
� � � z � � � � � z � for all � in

�
and all z

in � �
Hint. Prove that for each mapping

�
from

�
the equal-

ity
� � � z �"� � � � z � I � holds with some fixed � from

� � To
do this, use the statements mentioned in the hint to Exer-
cise 29, as well as the equality

� � z � I � ��� � L � � R � � � z � I ���
32. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric

combinatory space. Apply the previous exercise to give an-
other proof of the equality

z � z � z � z � z � z
from Exercise 28.

33. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary
combinatory space. Define a set

�
of mappings of � into�

by means of the following inductive definition:

(i) � z � z and all constant mappings � z ����� where
��! � � are elements of

�
;

(ii) whenever
�
������� are elements of

�
� then

� z � � � z � � � z � � � z � ��� � z � ��� � z � � � � z � � � � z �"��� � � z � ��� � z � �
also belong to

�
�

Prove that each mapping from
�

is representable in the
form � z � � � z � I � with some fixed � from

� �
34. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric

combinatory space. Define a set
�

of mappings of
�

into�
by means of the definition from Exercise 29 with the

clause (i) modified in the following way:

(i) for all � � � ! � � the mapping �
� � � ����� � � � � be-
longs to

�
�

Assuming
�
����! � � � �

T � � � � T � and
� �
F � � � � F � � prove

that
� � �	� � � � �	� for all � in

� �
Hint. Making use of Condition (13) and Exercises 16, 17,

21, 23, prove that each mapping from
�

is representable in
the form �
� � � ����� � � � � with some fixed � � � from

� �
35. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric

combinatory space. For all ��������� in
� � define elements
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� � ��������� and - � of
�

in the following way:

� � ��� � ����� � ����� T � F � � � ����� F � F � � �
������� � ����� � ����� T � T � � � ����� T � F � � �

- ��� � ����� F � T ���
Prove that

� � ���� � ������������������
� � � �	� � ���� � � � � �	� � � �����	���������� � �����	� �
-
� � � �	�"� � - �	��� � - �	� � -

� �����	�"� � - �	� � � - �	� �
- -
� � � �	�"�� � ��� - -

� �����	�"�������� - - - ��� - �
for all ��������� in

� �
36. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary

combinatory space, and let
�

be an arbitrary subset of � �
Prove the reflexivity and the transitivity of the relation� � For arbitrary ��������������� � � � in

� � prove:
�

� � ������� � ����� � ����� � ��������� � �����
� � �

� � ����� � ����� � �����	� � � �����	� �
� � �

� ��� ��� � ����� � ����� � � ���������	� � � � ���������	���
� � � �

37. Let
� �� � � I ��� � � � L � R � ��� T � F � be the combina-

tory space from some of the examples 1 - 4. Let
�

be a
subset of � � and let � be an element of

� � Let K be the
set of the values of the elements of

� � In the case when
�

is the combinatory space from Example 1 or Example 2, prove
that

�
is invariant with respect to � iff the following

implication holds for all u � v in � :

u ! K ��� u � v ��! � ��� v ! K �
Otherwise prove the same, but with the implication

u ! K ��� u � v ��! � ��� v ! K � E �
38. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary

combinatory space. Let
�

be a subset of � invariant with
respect to each one of the elements � and

�
of

� � Prove
that

�
is invariant also with respect to the element � �

and with respect to all elements of the form
� ����� � � � � �

where ��! � �
39. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary

combinatory space. Let
�

be the set of all elements of �
having the form

�
x � y � � where x � y !�� � Prove that

�
is

invariant with respect to each element belonging to the
range of

� �
40. Suppose K is an arbitrary non-empty set, and
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� ���� � I ��� � � � L � R � ��� T � F �
is an arbitrary combinatory space. Let

� �

be the set of all
mappings of K into

� � considered with the partial order-
ing and the multiplication induced by the partial ordering
and the multiplication in

�
in the natural pointwise way,

i. e � � � � in
� �

iff � � k � � � � k � in
�

for all k in K �
and the equality ����� � k ��� � k �
� � k � holds. Let I

� � L � � R � �
T

� � F �

be the constant mappings of K into
�

having the
values I � L � R � T � F � respectively. Let � �

be the set of all
constant mappings of K into � � Set

K� ���� � � I � ��� � � � � � L � � R � � � � � T � � F � � �
where

� �

and � �

are the operations in
� �

defined by the
equalities

� � � �����	�"� � k � � � � � k � ��� � k � � �
� � � ���������	�"� � k � � � � � k � ��� � k � ��� � k � ���
KProve that
�

is also a combinatory space.

41. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric combi-
natory space. An element � of

�
will be called distribu-

tive iff the equality
�
I � I �
��� � �����	� holds. Prove that

� �����	�
��� � ���������	� � � �����������	�
��� � �����������������	�
for all ��������� in

�
and all distributive elements �

of
� �
Hint. Use Exercise 13.

42. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric combi-
natory space, and let ����� be distributive elements of

�

(in the sense of the previous exercise) � Prove that ��� and� �����	� are also distributive.

Hint. To prove that
� �����	� is distributive, use the

equalities (18) and (19) from Exercise 30.

43. Let � � � I ��� � � � L � R � ��� T � F � be an arbitrary com-
binatory space. An element � of

�
will be called regular

iff the equality x ��� x holds for all x in � � Prove the
following statements:

(a) if � is an element of
�

such that x ��� x holds
for some x in � � then � is regular;

(b) if � and � are regular elements of
� � then so

are ��� and
� �����	� ;

(c) if � and � are regular elements of
� � then the

element
� �����������	� is regular exactly for those elements

� of
�

which satisfy the equality
� ����� I � I �"� I ;

(d) if � is a regular element of
� � then the equality

L
� �����	�"�� holds for all � in

�
;
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(e) an element � of
�

is regular iff there is an el-
ement � of

�
such that the equalities

� � ��� I �"� � � �����	�"��
hold for all � in

� �
44. Let � � � I ��� � � � L � R � ��� T � F � be a symmetric combi-

natory space satisfying the condition that T and F belong
to � � An element � of

�
is called Boolean iff the equal-

34ity
� ����� T � F �"�� holds. Prove the following statements:

(a) T and F are Boolean elements;

(b) if � is a Boolean element, then so is ��� for all
� in

�
;

(c) if � is an element of
�

such that � x is a Boo-
lean element for any x in � � then � is also Boolean;

(d) if � and
�

are Boolean elements then so is the
element

� ����� � � � � for all � in
�
;

(e) the operations introduced in Exercise 35 transform
arbitrary elements of

�
into Boolean ones;

(f) for any Boolean element ��� the equality - - ����
holds;

(g) an element � of
�

is Boolean iff the equality�
I ��� T � F �
���� holds;

(h) for any � in
� � the condition that � is a Boolean

element is equivalent to each of the conditions

������� � � T � � T ��� F � � F ������� � ���	� �
������� � � T �� T ��� F �� F ������������	���

45. Give counter-examples using symmetric combinatory
spaces to each of the following equalities (where the vari-

�������������������������������������������������������������
34 This equality corresponds to an equivalence from the

paper Mc Carthy [1963]. In any of the combinatory spaces
indicated in Examples 1-5 there are many elements � viol-
ating the equality in question. This divergence between our
system and Mc Carthy’s one is caused by an obvious reason,
namely our elements � are not necessarily representations
of predicates (even if partial and ambiguous predicates are
admitted). The Boolean elements of a combinatory space are
those among its elements which can be regarded in some sense
as predicate-like. It is proved in Georgieva [1983] that
those Boolean elements ��� which satisfy the additional con-
ditions

� ����� I � I �"� I �
� ����� F ���	�"� F � form a Boolean al-

gebra with respect to the three operations introduced in
Exercise 35.
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35ables range over the semigroup of the space):
���������
	��
����
	

�����������������
	��
��	��
������������
	��
��	
���������
	����������
	��
��������������
	��
��	

�����������������
	��
��	��
����������������������������
	��
��	����������
	��
����	��
��	
���������
	����������
	��
��������������
	������������������
	��
��	����������
	��
�����
�

Hint. For the construction of counter-examples to the
last two equalities, you may use an appropriate combinatory
space of the type considered in Section 6 of the Appendix.

2. The companion operative space of a combinatory space

Combinatory spaces are not the only class of abstract
algebraic structures offering a promising uniform way for
capturing situations like that ones considered in Chapter I.
Another such class of structures, called operative spaces,
is introduced in Ivanov [1980, 1980 a]; these structures are
studied in a number of subsequent publications by the same

36author, culminating in the monograph Ivanov [1986].

�������������������������������������������������������������
35 All these equalities are counter-parts of equivalences

from Mc Carthy [1963]. It is proved in Georgieva [1979] that
these equalities are simultaneously identically satisfied
exactly in those of the combinatory spaces fulfilling the
assumptions of the previous exercise, which satisfy also the
following condition: for all elements

�
of � 	 the equality���������
	��
����

holds, and the element
�������

T
	
F
�

is dis-
tributive and regular in the sense of Exercises 41 and 43
above (as examples of such combinatory spaces, we indicate
the combinatory spaces from Example 5). By the statement (c)
in Exercise 43 above, the regularity of

�������
T
	
F
�

is
equivalent to the equality

�������
I
	
I
��

I
	
and hence, by con-

dition (13), the equality
���������
	��
����

is a consequence
of this regularity.

36 To be more precise, we must note that not arbitrary
combinatory spaces and not arbitrary operative spaces, but
so-called iterative ones, are the convenient classes for the
mentioned abstract algebraic study. Iterative combinatory
spaces will be the main subject of this book, as iterative
operative spaces are the main subject of the mentioned Ivan-,ov s publications. A larger class of operative spaces than
the iterative ones was independently introduced and studied
in Georgieva [1980], but it turned out that only a small
part of the theory of iterative operative spaces could be
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,Presented in slightly modified notations, Ivanov s defi-
nition of the notion of operative space reads as follows. An
operative space is a 5-tuple � � 	 I 	���� 	 L � 	 R ��� 	 where �
is a partially ordered semigroup, I is an identity of � 	���

is a monotonically increasing binary operation in � 	
L
� 	

R
�

are distinct elements of � 	 and, for all
�
	��
	��

in
� 	 the equalities
����� ���
	��
������ ��� �
	�� �
��		��� ���
	��
�

L
� ��
		��� ���
	��
�

R
� ��

37hold. According to Proposition 27.5 of Ivanov [1986] , to
each combinatory space


  ��� 	
I
	� 	��
	

L
	
R
	��
	

T
	
F
� 	

an operative space

��

is correlated, namely

��  � � 	 I 	�� � � ��� L ����� R 	�� R ��	�� T 	 I ��	�� F 	 I ���

(the straight-forward proof that

��

is really an operative
space can be based on condition (13), Remark 4 and Proposi-
tions 4, 5 of the previous section). The operative space
��

is called the companion operative space of � � As shown
in Proposition 27.19 of Ivanov [1986], not every operative
space can be obtained as the companion operative space of
some combinatory space. A characterization of those operat-
ive spaces, which are companion operative spaces of combina-
tory spaces, is given in Ivanov [19??] (cf. also Ivanov
[1990]). Namely, such operative spaces are characterized by
the existence of so-called storing operation in them (for an
example of storing operation, cf. Exercise 1.7).

It is convenient to make the following remark: if ��� 	
I
	� 	��
	

L
	
R
	��
	

T
	
F
�

is a combinatory space, and � � 	
I
	���� 	

L
� 	

R
���

is its companion operative space, then the
operation

���
is obviously injective, whereas the operation��
	

although injective on
 	

is, in general, not necessar-
ily injective on the whole � (e. g., in all examples of
combinatory spaces considered in Section 1, we have the
equality

����� 	��
����
for all

�
in � ).

�������������������������������������������������������������

developed in that larger class. Nevertheless, Georgieva’s
notion will be more convenient for our further exposition
than the notion of iterative operative space, since we shall
not make use of the additional properties possessed by that
kind of spaces. The structures studied by Georgieva are
closely related to the programming spaces introduced by
Skordev in 1978, but have an obvious advantage over them,
since the definition of the latter notion is more compli-
cated (that definition can be found in Skordev [1982]).

37 Cf. also p. 71 of Skordev [1980] (at least for the
case of a symmetric combinatory space).
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In arbitrary operative spaces, the natural numbers are
represented in the following way proposed by L. Ivanov. If
��  � � 	 I 	���� 	 L � 	 R ��� is an operative space, and n is�

na natural number, then the element n

R
�
L
�

of � is re-
38garded as representing n in


�� �
Of course, if


��
is the

companion operative space of the combinatory space ��� 	
I
	

�
n 	��
	

L
	
R
	��
	

T
	
F
�

then the equality n
��

F
	
I
� �

T
	
I
��

holds, and all elements n are normal in the sense of Sec-
tion 1. We note that in Skordev [1980], where the assump-
tions T �  	 F �  are made, the natural numbers are repre-
sented in a different way, namely by certain elements of

�
which are in fact the products n T (the representation of
the natural numbers in Exercise I.2.4 can be regarded as a
special case of this, but with exchanged T

	
F and with the

constant mappings replaced by their values).

In the further exposition, when some combinatory space
is given and denotations from the theory of operative spaces
are used, then we shall always have in mind the companion
operative space of the given combinatory space. In particu-�
lar, this will apply to the denotations n

�

In the sequel, we shall use
���

with arbitrary number
of arguments. By definition,

��� ��� ����
, and, for n > 0

	
� �

��� ��� 	�� 	 ����� 	�� ������ ��� 	���� ��� 	 ����� 	�� ���
�
� �

n
� �

n
Obviously,

����� ��� 	 ����� 	�� ������ ��� � 	 ����� 	�� � �
�

n
�

n
for all

�
	�� 	 ����� 	��
in � ��

n
An useful property of the introduced representation of

natural numbers is given by the following proposition.

Proposition 1 (Proposition 4.11 of Ivanov [1986]). Let� � 	 I 	���� 	 L � 	 R ��� be an arbitrary operative space, let n
be a natural number, and let

� 	�� 	 ����� 	��
be arbitrary� �

n�
elements of � � Then

��� ��� 	 ����� 	�� �
r
��

for all r < n,�
n r

nand
��� ��� 	 ����� 	�� �

R
� �� �

�
n n

Proof. Induction on n
�

�

Corollary 1 (Proposition 4.10 of Ivanov [1986]). Let� � 	 I 	���� 	 L � 	 R ��� be an operative space, and let k
	
m� �

be such natural numbers that the inequality k � m holds in
�������������������������������������������������������������

38 There is an obvious disagreement between the denota-� �
tion n introduced here and the denotation s from Section
I.4 and Exercise I.5.5. We hope that the context will pre-
vent the reader from a misunderstanding.
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�

� � Then k

m
�
(Hence the mapping

�
n
�
n is injective.)

Proof. Suppose k
�
m
	
and take arbitrary elements

�
	���
of � � Then there is an element � of � such that � k ��
	�
� m �� � From here we conclude that

�
�
� �

Since
�

and
�

are arbitrary, this implies the conclusion that all elements
of � are equal each other, contrary to the definition of
the notion of operative space. �

Remark 1. If � � 	 I 	���� 	 L � 	 R ��� is an operative space
then there are elements � and � of � such that� ��� ��� � ��� ��� � �

� k  k + 1
	 � k + 1  k

for all natural numbers k
�
Namely, we could take �  R

�
and, for example, � ���� � I 	 I �
� In the special case, when� � 	 I 	���� 	 L � 	 R ��� is the companion operative space of
the combinatory space ��� 	

I
	� 	��
	

L
	
R
	��
	

T
	
F
� 	

then
��� �

I
	
I
����

L
���

R
	
R
��	

and a simpler � with the above property can be found,
namely �  R

�
For this case, we note also the equalities��� ��� � � �

L k + 1

F k
	

L 0

T
�

In the special case mentioned above we shall define one
more binary operation in � in addition to the operation�����

This new operation will be denoted by � 	 and it will
be introduced by means of the equality� �

� ���
	��
���� L R ����� � L 	 R ��	�� �
L
	
R
���
�

It is easily verified that

� ���
	��
� � x 	 I ������ ��� � x 	 I ��	�� � x 	 I ���
39for all

�
	��
in � and all x in

 �
More generally, we

set

� ��� 	�� 	 ����� 	�� �� � ��� 	 � ��� 	 ����� 	 � ��� 	�� �
����� ���
� �

n
� �

n
� �

n
for all

� 	�� 	 ����� 	��
in � � Then, as an easy induction� �

n
shows, we have the equality

(17) � ��� 	 ����� 	�� � �
x
	
I
������ ��� �

x
	
I
��	 ����� 	�� �

x
	
I
���

�
n

�
n

for all
� 	�� 	 ����� 	��

in � and all x in
 �

� �
n

Proposition 2. Let � � 	 I 	� 	��
	 L 	 R 	��
	 T 	 F � be a
combinatory space, let n be a positive integer, and let
�������������������������������������������������������������

39 Another way to prove the above equality is to consider
the mapping

�
x
� ��� ��� �

x
	
I
��	�� �

x
	
I
���

and to apply the
method from the solution of Exercise 1.33. Note that this is
a natural way to obtain the defining expression for � ���
	��
�
�
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� 	�� 	 ����� 	��
be arbitrary elements of � � Then� �

n �
� ��� 	 ����� 	�� � �

x
	
r
���� �

x
	
I
�

�
n r

for all r < n , and
n� ��� 	 ����� 	�� � �

x
	��

F
	
I
� ���� �

x
	
I
�
�

�
n n �

Proof. Right multiplication of both sides of (17) by r
nand by

�
F
	
I
�
, followed by application of condition (7)

from the definition of the notion of combinatory space and
of Proposition 1. �

Proposition 3. Let � � 	 I 	� 	��
	 L 	 R 	��
	 T 	 F � be a
combinatory space. Then for all

�
	��
	��
	��
	 � 	�� in �
and each normal element � of � 	 the following equalities
hold:

��� ���
	��
� ���
	 � ������������ � 	�� � ��	
��� ���
	��
� �������

L
� � 	 R ���
������������ � 	����
��	� ���� ���
	��
	��
� �������
0 � 	 1 �
������������ � 	����
�
�

Proof. The first equality is a special case of the
equality in Proposition 1.8. The other ones follow immedi-
ately from the properties of

�
and

�����
�

Corollary 2. Under the same assumption, for all
�
	��

in
� 	 we have the equality � �

� ���
	��
������ ��� � L 	 R ��	�� �
L
	
R
��� �

L R
	
I
�
�

Exercises

1. (Ivanov [1986, Exercise 4.2]) Let � be an infinite
set, and let L

� 	
R
�

be injective mappings of � into �
satisfying the condition that rng L

���
rng R

� �� �
For any

�
	
� � � ��

from � � � ��	 set
��� ���
	��
������

L
� �	� ���

R
� �
�

Prove thatm� � � � ��	 I 	���� 	
L
� 	

R
���

is an operative space.m M

2. (Ivanov [1986, Example 4.4]) Let � � 	 J 	 L 	 R 	 T 	 F 	
H
�

be a computational structure in the sense of Chapter I,
Section 1, such that dom L


dom R

 � � Denote by � the set
of all total mappings of � into itself, and introduce a
multiplication and a partial order in � by adopting that� �

denotes
�
u
���������

u
���

and
�

�
�

means
���� �

Let
�

be
the binary operation in � defined by means of the equality

�����
	��
�� �
u
�
J
�����

u
��	����

u
���
�

Prove that � � 	 I 	��
	
L
	
R
�

is an operative space.
M

3. (Ivanov [1986, Proposition 12.1]) Let � � 	 I 	���� 	 L � 	
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R
���

be an arbitrary operative space. Denote by � � the
partially ordered semigroup of all monotonically increasing
mappings of � into itself, where

� � � �  � � ��� � ��� � ���
���
for

all
� � 	�� �

in � � 	 and
� � �

� �
means that

� � ���
� �
� � ���
�

for
all

�
in � � Let I

�  � � ���
	
L
� �  � � ���

L
� 	

R
� �  � � ���

R
� 	

and let the binary operation
��� �

in � � be defined by the
equality

��� � ��� � 	�� � �� � � � ��� ��� � ���
��	�� � ���
���
�
Prove that � � � 	

I
� 	���� � 	

L
� � 	

R
� � �

is also an operative space.

4. (Ivanov [1986, Exercise 4.4]) Show that the require-
ment about monotonic increasing of the binary operation

���
in the definition of the notion of operative space can be
replaced by the condition that

� � � ��� �
I
	��
�

is monotonical-
ly increasing or by the condition that

� � � ��� ���
	
I
�

is mon-
otonically increasing.

Hint. Make use of the equalities
��� ���
	��
������ �

I
	��
����� �

I
	
L
� �
����� �

L
�
R
� 	

R
� �

��� ���
	��
������ ���
	��
����� �
R
� 	

L
� �
�

5. Let � � 	 I 	���� 	 L � 	 R ��� be an arbitrary operative
space. Prove that for all natural numbers n and arbitrary� 	�� 	 ����� 	��

in � the following equalities hold:� �
n

��� ��� 	�� ����� 	�� 	�� 	
I
��

� �
n
� �

n
n
� �

n��� ��� 	
I
����� �

R
� � 	

I
� ����� ��� �

R
� � 	

I
����� �

R
� � 	

I
��	

n n
� � � �� � ���� ��� 	�� ����� 	�� ������ ��� 	�� ����� 	�� 	

I
����� �

0
	
1
	 ����� 	

n
�
�

� �
n

� �
n

6. Let ��� 	
I
	� 	��
	

L
	
R
	��
	

T
	
F
�

be an arbitrary
combinatory space, and let � � 	 I 	���� 	 L � 	 R ��� be its
companion operative space. For all

�
	��
	��
in � 	 prove the

equalities
� � ���
	��
�� � ��� �
	�� �
��	 � ���
	��
������ ���
	��
� � � L � 	 R � �
�

7. Under the same assumptions as in the previous exer-
cise, prove that � � 	 I 	�� � � � � ��� R 	�� R ��	�����	 L � ��	����
	 R � ���
is an operative space, whenever

�
and

�
are normal el-

ements of the given combinatory space.

8. Let ��� 	
I
	� 	��
	

L
	
R
	��
	

T
	
F
�

be an arbitrary
combinatory space, and let � � 	 I 	���� 	 L � 	 R ��� be its com-
panion operative space. Let St be the operation in � de-
fined in Exercise 7 of the previous section. For all

�
	��
in � 	 prove the equality

St
����� ���
	��
���� � � St ���
��	 St ���
��� St � I �
�

Hint. Use Exercise 9 of the previous section.

9. (Compare with Proposition 27.14 of Ivanov [1986]).
Assume the premises of the previous exercise together with
the premises of Exercise 1.12. Prove that conditions (i) and
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(ii) from Exercise 1.12 remain equivalent after replacement
the operation

�
in condition (ii) by the operation

�����

3. Iteration in combinatory spaces

We introduced the notion of a combinatory space for cap-
turing at least some concrete situations considered in Chap-
ter I. However, an essential feature of that situations re-
mains out of the scope of our general considerations until
now. Namely, there is a natural operation of iteration in
each one of the structures of functions or function-like
objects considered in Chapter I, and this operation plays an
essential role in the description of the corresponding no-
tion of computability. So it is desirable to have an ab-
stract algebraic treatment also of iteration. We shall give
now such a treatment using least fixed points of some monot-
onic mappings. In the case of ordinary and multiple-valued
functions, the least-fixed-point characterization of itera-
tion is well-known, and also some ways for more general con-
siderations have been noted by several authors (let us note,
for example, the papers Blikle [1971], Mazurkiewicz [1971],
Scott [1971]). We shall proceed in the way of generalizing
the least-fixed-point characterizations given in Chapter I
of this book, Sections 2, 5 and 8.

From now on, we suppose that a combinatory space

  � � 	 I 	� 	��
	 L 	 R 	��
	 T 	 F �

is given. Let � and
�

be some elements of � � Having in
mind the above mentioned characterizations from Chapter I,
it is natural to name iteration of � controlled by

�
and

to denote by
� � 	���� the least solution � of the equation

(1) �
��������

� � 	 I �

if, of course, such a least solution exists. If we adopt
this definition, we may, for example, state that an itera-
tion controlled by F is always equal to I

	
and the itera-

tion of I controlled by T is equal to the least element
of � if such a least element exists (since (1) is equival-
ent to �


I in the case of

��
F
	
and it is equivalent to

�

� in the case of

��
T
	 �  I ). Note also that, whenever� � 	���� is a solution of (1), then, for each

�
in � 	 the el-

ement
� � � 	���� satisfies the equation

(2) �
��������

� � 	��
�
�

It is not difficult to construct



with � having no
least element. For example, if � � 	 J 	 L 	 R 	 T 	 F 	 H � is a
computational structure with total L

	
R
	
H (i. e. dom L


dom R


dom H

 � ) then we could take

  � � 	 I 	� 	�����	

L
	
R
	

M����	
T
	
F
� 	

where � is the subsemigroup of the total el-
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ements of
���������

the set � is the same as in Examples 1.1p
and 1.2, and 	�
 �� 
 are the restrictions to

�
of the

operations 	 �� from that examples. In such a combinatory
space � � the equation (1) would have no least solution in
the case of ��� T

��� � I. Of course, when we are interested
in the algebraic study of iteration in combinatory spaces,
it is natural to consider only such ones in which this equa-
tion has a least solution for every choice of � and

�
(an obvious corollary of such an assumption would be the
existence of a least element in the corresponding

�
). How-

ever, we cannot develop a fruitful theory of iteration on
the basis only of this assumption, and we shall formulate
stronger assumptions.

First of all, it is useful to remember that the least-
fixed-point characterizations of iteration, which were given
in Chapter I, draw attention to a stronger property of� ��� ��� than of simply being the least � satisfying the
equation (1). Namely, we observed that, in the cases consid-
ered there, the solution

� ��� ��� of this equation is also
the least � satisfying the inequality ��� � ������� ��� I ��� Un-

40fortunately, this will be again not enough - a further
strengthening of the above minimality condition will be
needed. Exercise I.2.3 and the propositions from Sections
I.5 and I.8 show that the following condition is also satis-
fied in the considered cases: for all � ����� in

���
each

solution � of the inequality

(3) ��� � ������� ������

satisfies also the inequality ��� � � ��� ��� � It turns out
that, for some purposes, a convenient decision is to define
the notion of iteration in such a style. Namely, we could
define the iteration of

�
controlled by � as an element of

�
satisfying the equality  � � �����  ��� I � and

fulfilling the condition that, for all � ����� in
���

the
inequality (3) implies the inequality ��� �  � Of course,
if such an  exists, it must be unique, since the condi-
tions imposed on  entail that  must be the least �
satisfying (1).

The above conditions concerning iteration are not the
strongest ones needed for the exposition in this book. The
proof of some essential results will make use of somewhat
more stronger conditions to be satisfied by iteration. Exer-
cises I.2.8, I.5.9 and I.8.8 can be used for illustrating
the spirit of this strengthening before giving the precise
formulation. Exercise 1.37 can serve as a bridge from the

�������������������������������������������������������������
40 For example, it seems to be not sufficient for proving

that
� � ��� ��� is the least solution � of the equation (2).
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special cases considered in Chapter I to the general one.
And now, let us give finally the precise formulation.

Definition 1. Let
�

and � be some given elements of� �
An element  of

�
is said to be the iteration of

�
controlled by � iff the equality  � � �����  ��� I � holds
and, for all � �� in

�
and each subset

�
of � � whenever

�
is invariant with respect to

���
the inequality

��� � ������� ������ implies the inequality ��� �  � In the case
� �

when such an element  exists, it will be denoted by� ��� ��� �

The above definition really imposes not weaker condi-
tions on  than in the case when � is used instead of
� � This can be easily seen by means of Proposition 1.9.
�

Therefore the iteration of
�

controlled by � is unique
if it exists at all, and so the clause concerning its deno-
tation is justified. The terminology and the denotation in-
troduced by the above definition are in concordance with the
terminology and the denotations in Chapter I. This follows
from the above mentioned Exercises I.2.8, I.5.9 and I.8.8.

Example 1. Let � be an arbitrary combinatory space,
and let

�
be an arbitrary element of

� �
Then the itera-

tion of
�

controlled by F exists, and the equality� ���
F ��� I holds. Indeed, we have I � � F ��� I

���
I
���

and, for
all � �� in

�
and each subset

�
of � � the inequality

��� � F ����� ������ is equivalent to the inequality ��� � I �
� �

The combinatory spaces in Examples 1.1, 1.2, 1.3 and 1.4
(corresponding to the situations considered in Chapter I)
are such that

� ��� ��� exists for all
�

and � in the
corresponding

� �
In the sequel, we will be interested main-

ly in combinatory spaces having this property, and such spa-
ces will be called iterative.

Definition 2. The combinatory space � is called itera-
tive iff the iteration of

�
controlled by � exists for

all
�

and � in
� �

From now on, until the end of this section, let us sup-
pose the given combinatory space � is iterative. Some
statements mentioned above before the ultimate definition of
iteration (i. e. Definition 1) will be formulated now (pos-
sibly enlarged) as explicit propositions.

Proposition 1. For all
��� � �� in

���
the element� � ��� ��� of

�
is the least solution � of the equation (2)

and the least � in
�

satisfying the inequality (3).

Proof. Let  � � ��� ��� � Then  � � �����  ��� I ��� and,
consequently,

�  � � � �����  ��� I � � � ����� �  ������ . So ��� �  
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satisfies (2), and hence (3) is also satisfied if we choose
� in this way. On the other hand, if � is an arbitrary
element of

�
satisfying (3) (in particular, if � is an

arbitrary solution of (2) )then, taking
� � � in the con-

dition from Definition 1
�
we conclude that ��� �  � �

Definition 3. The element
�
I
�
T � of

�
will be denoted

by � and will be called the zero of � �

Proposition 2. The zero of � is the least element of���
and, for all

�
in

���
the equality

� ����� holds. For
all normal elements � of

���
also the equality ��� ���

41holds .

Proof. Let
�

be an arbitrary element of
� �

By
Proposition 1, the element

� � is the least � in
�

satisfying the equation ��� � T ����� I ���� . But this equation
is equivalent to ��� � � hence

� � is the least element of� �
Since, in particular, we could take

� � I
�
the first

part of the proposition is thus proven. Let now x be some
fixed element of � � The second part follows immediately
from Proposition 1.11. �

Remark 1. In the general case, it is not possible to
prove that � � ��� for all

�
in

� �
To have a counter-

example, let us consider the special case of Example 1.3
corresponding to Theorem I.8.1, i. e. the case of

� ��� �
E �����
	 . Then, using the denotations from the mentioned. .theorem, we see that � P � 0 � ��� � and hence � P ��� �

Remark 2. If the given iterative combinatory space is
symmetric, then � � ��� and ��� � ��� T � for all

�
in

� �
The

first equality can be proven by noting that, for all x in
� � we have (using Proposition 2 twice)

� � x ��� x � x � L
� � x � I � � x � L

� � x �� x � � L
�
I
��

x
� � x ��� x �

For proving the second equality, we apply the first one to
get the equality ��� � T ���� ��� I ��� and then we use the
minimal property of iteration to conclude that ��� � ��� T � �

Two more propositions about iteration will be given.

Proposition 3. The operation of iteration is monotonic-
ally increasing, i. e.

� � � � ��� � � � � � � whenever� � � �� � � � � ��� .� � � �

Proof. Let
� � � � � ��� . For k � 1

�
2
�
set� � � �

 � � � � ��� � Then  � � �����  � � I � � � �����  � �
I
���

k k k
� ��� ���

�������������������������������������������������������������
41 In particular, � x ��� for all x in � � and hence �

is a constant element in the sense of Exercise 1.26.
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hence  is an element � satisfying the inequality�
��� � ����� � � � �

I
���

On the other hand,  is the least� �
� which satisfies the same inequality. Therefore  �  .� � �

Proposition 4. Let � and � be normal elements of
���

and
��� � be arbitrary elements of

� �
Then the following

implications hold:

��� � T � ��� � ��� ��� � � � ��� ��� � � �

��� � F � ��� � ��� ��� � � � �

Proof. Using the equality
� ��� ����� � ����� � ��� ��� ��� I � and

application of Propositions 1.5 and 1.7. �

Remark 3. In the proofs of the above propositions, the
second condition from the definition of iteration, when used
at all, was used only for the case of

� � � � Application of
this condition at other choices of

�
is needed, for ex-

ample, for the solution of Exercises 4, 5, 6, 7, 10 after
this section.

Before going further on, we should like to discuss the
interrelation between the notion of iteration introduced in
this section and the notion of iteration used in the book
Skordev [1980]. There is an obviously unessential difference
between the two notions (up to this difference, the present
notion is the same as in Skordev [1980 a, 1984]). The dif-
ference can be expressed by saying that we consider now a
"while" � iteration, and a "while not" � iteration has been
considered in the previous author’s publications. Namely,
the iteration denoted by

� ��� ��� in them is an element �
satisfying the equation ��� � ����� I

� � ����� and the same deno-
tation is used now for an element � which satisfies the
equation ��� � ������� ��� I ��� Both kinds of iteration (if there
are no other differences) can be reduced one to the other by
replacing the given combinatory space � by the space� ���

I
� � � 	 � L � R �� �

F
�
T � from Exercise 1.1 (in con-�

nection with this, cf. also Exercise I.2.6 for the case of
the combinatory space from Example 1.2 and Exercise 3 after
this section for the general case). However, there is a more
essential difference between the two compared notions, and
the situation is such that, roughly speaking, the present
notion of iteration is weaker than the notion from Skordev
[1980] (hence combinatory spaces, which are iterative in the
sense of that book, will be iterative also in the present

42sense, but not necessarily conversely). For explaining

�������������������������������������������������������������
42 The meaning of "weaker" here does not exclude a pos-

sible equivalence of the two notions.
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this, we shall now recall the former definition of iter-
ation, but with exchanged content of the second and the
third argument of

���
To avoid any confusion, we shall name

that other iteration strong. After this change of the name
and the above-mentioned exchange, the definition from Skor-
dev [1980] can be formulated as follows:

Definition 4. Let
�

and � be some given elements of� �
An element  of

�
is said to be a strong iteration of�

controlled by � iff the equality  � � �����  ��� I � holds
and  belongs to each set which is closed under the map-
ping

� � ��� ������� ��� I � and can be represented as the inter-
43section of sets of the form � ��������� � z 	 �

We shall prove now the formulated statement about the
connection between both iterations.

Proposition 5. Let
�

and � be some given elements of���
and let  be a strong iteration of

�
controlled by

� � Then  is the iteration of
�

controlled by � �

Proof. The equality is one and the same in Definitions 1
and 4, so we have only to show that the second condition
from Definition 1 is fulfilled. Let

�
be a subset of �

invariant with respect to
���

and let � and
�

be el-� �
ements of

�
satisfying the inequality

� � � ������� ���� ���� � �
�

We must prove the inequality � � �  � i. e. prove that� �
�

 ��
	 � where 	 ��� ��� � � � �
	 � Obviously, 	 is the inter-� �
�

section of all sets of the form � ��� � z � � � z 	 � where� �
z � � �

Therefore it is sufficient to prove that 	 is
closed under

� � ��� ������� ��� I ��� Let � be an arbitrary el-
ement of 	 � Since

�
is invariant with respect to

���
we

may conclude that � � � � � ��� Then, for all x in
���

we� �
�

shall have

� x � � ������� ���� � x � � � x ����� � x �� x
� �� � � � �

� � x ��� � � � x �� x
� � � � ������� ��� I � x �� � �

Hence � � � � ������� ��� I ��� i. e.
� ������� ��� I � �
	 � Thus 	 is� �

�

closed indeed under the considered mapping, and the proof is

�������������������������������������������������������������
43 This is a definition which enables reasoning about

iteration in the spirit of D. Scott’s � � induction rule
(cf., for example, de Bakker and Scott [1969], de Bakker
[1971] or Hitchcock and Park [1973]).
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completed. �
It would be natural to compare the present notion of

iteration also with the notion used in author’s papers be-
fore 1980 (for example, in Skordev [1976 b]). However, we
shall not give now any details in this direction. We shall
mention only that the notion from those papers is stronger

44than the notion in Skordev [1980] , and hence it is strong-
er than the notion used now. We note also that in most ex-
amples considered in the present book iteration satisfies
the stronger requirements from the definitions previously
used.

In Chapter III, Section 4.4 of the book Skordev [1980]
several equalities concerning iteration are proved in a way
which is not usable under the definition adopted in the
present book. We shall discuss these equalities now.

The first of them is given in Proposition 4.4.5 there
and looks as follows:

� ��� ����� R
� � � � I � � R � L � � � � I ���

This equality will be proved further (see Corollary 5.2).

The next of the equalities in question is asserted under
some assumptions in Proposition 4.4.6 of the mentioned chap-

45ter, and then six other equalities are obtained as easy
corollaries. Unfortunately, we do not know whether this
proposition is always true for the iteration considered now,
but still we shall prove the same equality under a certain
additional assumption (the condition (*) below), and this
will be sufficient for obtaining the above-mentioned corol-
laries.

Proposition 6. Let � be a normal element of
�

satis-
fying the following condition: (*) there is an element

�
of�

such that
� � � I holds

�
Let

��� � be elements of
�

satisfying the condition
� � � � � � Then

� ��� ��� � � � � � � �����
for all � in

� �

Proof. Let  � � ��� ��� �  � � � � ����� � Then we have to� �
prove the equality  � � �  �

This equality will be estab-� �

�������������������������������������������������������������
44 Cf. pp. 252-253 of that book. The meaning of "strong-

er" here does not exclude equivalence of the compared no-
tions.

45 A strengthened version of the statement of that prop-
osition is indicated in Exercise 10 after this section.
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lished by proving inequalities in both directions. We note
first that

 � � � �����  ��� I � � � � ��� ���  � � � � � � � ��� ���  � � � � ���� � � �
Hence (by Proposition 1) the inequality  � � �  holds. For� �
the proof of the converse inequality, we set

� � �  ��� Then�
�  � � � � and the problem is reduced to proving the in-�
equality

� � �  � � The last inequality is equivalent to the�
inequality

� �  � where
�

is the set of all elements of�
�

� having the form � z with z � � � The set
�

is invariant
with respect to

���
due to the equality

� � � � � � On the
other hand,

� � � �  � � ��� ��� �  � � � � � � ��� ��� � � � � � � �� �
� ��� ��� � � � � � � � � ����� � ���

I
� � �

and clearly this implies the inequality
� � � ����� � ���

I
���

�

Now an application of the definition of iteration leads to
the needed conclusion. �

Corollary 1. For all � � � in
�

and all x in � � the
following equalities hold:

� �
L
� � ��� ��� � x � I � � � x � � � � x � I ��� � � x � I � � ���

� � � � R ��� ��� � I � x � � � � � � I � x ��� � � I � x � � � x ���

R
� �
L
� � ��� ��� � x � I � � � � � x � I ��� � � x � I � � �

L
� � � � R ��� ��� � I � x � � � � � I � x ��� � � I � x � � �

Proof. To obtain the first equality, we set � � � x � I ���� � � L � � ��� � � � � x � I ��� and then we use the equalities

R � � I
��� � � � L � � ��� � � � x � � � � � � �

� � � � ������� � x � � � � ����� ���

The second equality can be obtained in a similar way by set-
ting � � � I � x ����� � � � � R ��� � � � � I � x ��� The third and the
fourth equality follow from the first and the second one,
respectively, by Corollary 1.2. �

Corollary 2. For all
��� � in

�
and all x in � � the

following equalities hold:
� �
L
��

R
��� ��� � x � I � � � x � � ��� � � x � I � � ���

� ���
L
�
R
��� ��� � I � x � � � � ��� � � I � x � � � x ���

Proof. Substitution of
�
R for � in the first equality

of Corollary 1, and substitution of
�
L for � in the sec-

ond one. �
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Remark 4. We do not insist on using always the iteration
introduced by Definition 1 and avoiding the use of strong
iteration. We do not know concrete iterative combinatory
spaces in which some iteration is not a strong one. On the
other hand, it happens sometimes that a statement is prov-
able for the strong iteration, but no proof of it is known
for the other one (cf., for example, Exercise 10). In our
opinion, one must have no prejudices against using the
strong iteration (and even stronger ones) in the cases when
this is appropriate.

Exercises

1. If the equality  � � �����  ��� I � in the definition
of iteration is replaced by the inequality  � � �����  ��� I ���
prove that the new definition is equivalent to the original
one.

Hint. If  satisfies the conditions of the new defini-
tion then set  � � �����  ��� I ��� Using the inequality  �  ,� �
conclude that  � � �����  ��� I ���� �

2. Let � � � ��� I � � � 	 � L � R ���� T � F � be an iterative
combinatory space. Prove that, for all

� � � � � in
���

the
equalities
� � � � � � � ����� � � � � ��� ��� � � � � ��� � � � � � � ��� � � � �������

hold. In the case when � is symmetric, prove also that
� � � � � � � ������ � � � ���

for all
� � � in

�
(the equalities concerning 	 are from

Ivanov [1977]).

3. Let � � � ��� I � � � 	 � L � R ���� T � F � be an iterative
combinatory space, and let � � � ��� I � � � 	 � L � R �� �

F
�
T �� �

be the corresponding space from Exercise 1.1 (i. e.
� � � � � � � � � ��� � � � � � ��

for all � � � � � in
�
). Prove that � is also iterative.�

Hint. Use Exercise 1.22.

4. Let � � � ��� I � � � 	 � L � R ���� T � F � be an iterative
combinatory space, and let � � ��� 	���� L � R 	 � Prove that

� � � ������� T � � x � y � ���
for all x

�
y in � (of course, the interesting case is that

one when � is not symmetric, since otherwise we could make
an immediate application of Remark 2).

Hint. Use Proposition 1.10 and the fact that
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� � x � y � � � T ���� � � ������� I � � x � y �

for all x
�
y in � �

5. Let � ���
I
� � � 	 � L � R ���� T � F � be an iterative combi-

natory space, and let
� � � be some elements of

� �
Let the

operation St in
�

be defined in the same way as in Exer-
cise 1.7. Prove that

St
� � � � ��� � � � St � � ��� � R � St � I ���

Hint. Prove the equalities
� ����� � St � � ��� � R � � x � I � � ��

x
�
I
��� � � St � � ��� � R � � x � I ���

St
� � � � ��� � � x � y � � � � R ��� St

� � � � ��� � St � � ���
I
� �

x
�
y
���

From them (using also Exercise 1.39) conclude that
�
x
�
I
� � � � ����� � St � � ��� � R � � x � I �

for all x in � � Then apply Exercise 1.9.

6. Let � ���
I
� � � 	 � L � R ���� T � F � be an iterative combi-

natory space,
�

and � be elements of
��� �

be a subset
of � invariant with respect to

���
Prove that

�
is invari-

ant also with respect to
� ��� ��� �

Hint. If ����� then the inequality ��� � ������� ��� � � is
� �

satisfied by ��� � � ��� ��� �

7. Let � ���
I
� � � 	 � L � R ���� T � F � be an iterative combi-

natory space,
���� � � � � � � be elements of

��� �
be a sub-

set of � invariant with respect to
���

and let the inequal-
ities

� � � ��� � � ��� hold. Prove the inequality
� �

� � � � � � ��� � ��� ��� �
�

8. Let � ���
I
� � � 	 � L � R ���� T � F � be an iterative combi-

natory space
�
and let �� � � R L � R � R ��� ��� R

� ����
L ��� F

�
T
� � � I � I ���

� ��� �Prove that � n � 2 n for all natural numbers n
�
(Compare

with Exercises I.2.4 and I.2.5)

9. To the assumptions of Exercise 1.40, add the assump-
Ktion that � is iterative. Prove that � is also itera-

tive, and the equality
� ��� ����� � k � � ��� k ��� � � k � � holds for

arbitrary
��� � in

� 
 �

10. Prove the statement obtained from Proposition 6 by
omitting the condition (*) and replacing "for all � in

�
"

by "for all � in
�

such that a strong iteration of
�

controlled by � exists".

Hint. To prove the inequality
� ��� ��� � � � � � � ����� �
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apply the second part of the condition in Definition 4 to
the set � � � � � � � � � � � � ����� 	 �

4. On least fixed points in partially ordered sets

If � ���
I
� � � 	 � L � R ���� T � F � is an iterative combina-

tory space,
��� � �� are some elements of

���
and

�
is the

mapping of
�

into
�

defined by
��� � � � � ������� �������� then

(by Proposition 3.1) the element
� � ��� ��� is the least fix-

ed point of
���

as well as the least solution � of the in-
equality ��� ��� � ��� Note also that the mapping

�
is monoton-

ically increasing.

In our further exposition we shall systematically use
least fixed points which are also least solutions of the
corresponding inequalities of the above form, with different
monotonically increasing mappings

���
More generally, we

shall use least solutions � � � ����� � � � of systems of�
mequations of the form

(1) � � � � � � ����� � � ��� i � 1
� ����� �

m
�

i i
�

m
where

� � ����� ���
are monotonically increasing mappings of�

m
m� into

���
and it always will be the situation that the

same � � ����� � � form also the least solution of the cor-�
m

responding system of inequalities

(2) � � � � � � ����� � � ��� i � 1
� ����� �

m
�

i i
�

m
For such situations some statements will be used whose val-
idity do not really depend on the fact that

�
is the par-

tially ordered semigroup of a combinatory space.

From now on in this section, if nothing else is said
about

���
we shall suppose that

�
is some partially order-

med set. Of course, a mapping
�

of
�

into
�

will be
called monotonically increasing iff for all � � ����� � � ��

m
� � ����� � � in

�
satisfying the inequalities � ��� ��

m
� �

����� � � ��� also the inequality
m m

��� � � ����� � � � � ��� � � ����� � � ��
m

�
m

holds. The least solution of some of the systems (1), (2) is
by definition, a solution � � � ����� � � � of this system such�

m
that for each solution � � � ����� � � � of the system the�

m
inequalities � ��� � ����� � � ��� hold (clearly, such a� �

m m
least solution may not exist, and the system may have no
solution at all).

We start with a statement whose special case of m � 1
is implicitly contained in the paper Tarski [1955] (of
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course, the general case considered below can be reduced to
this special one by application of the corresponding result

mto the partially ordered set
�

).

Proposition 1. If �������������	��� are monotonically in-
 �
m

mcreasing mappings of
�

into
� � and the system of in-

equalities (2) has a least solution, then this solution is
also the least solution of the system (1).

Proof. Let �������������	��� be monotonically increasing
 �
m

mmappings of
�

into
� � and ����������	���� be the least


m
solution of (2). We set

������� ��������	������ i
�
1 �������	� m �

i i



m
Then we have the inequalities �� � �������	���� � . These
 


m m
inequalities, together with the monotonicity of the mappings�

and with the definition of the elements
�

, imply the
i i

inequalities
� � ����� �������	� � ��� i

�
1 �������	� m �

i i



m
Hence � � �������	� � � is also a solution of (2). Since


m
����������	���� is the least solution of this system, the


m
inequalities

� ����������	� � �� follow. But, as we have
 

m m

already seen, also inequalities in the opposite direction
hold. Therefore  ��� � i

�
1 �������	� m � i. e. ����������	����

i i



m
is a solution of the system (1). Obviously this is its least
solution, since all solutions of (1) are solutions of (2). �

In view of the above proposition, we shall be mainly
interested in least solutions of systems of the form (2). In
the special case of m

�
1 � the system (2) reduces to an

inequality of the form ��� ��� � ��� where
�

is a monotonically
increasing mapping of

�
into

� � If this inequality has a
least solution  then the element  will be denoted by! �"� ��� � � (denotation taken, up to some orthographic de-
tails, from the paper de Bakker and Scott [1969]). Of
course, the introduced denotation will be used also with
other variables instead of � (for example, the same el-
ement  of

�
can be denoted also by !$# � ��� # � ). We allow

also other expressions instead of
��� � ��� having in mind the

mappings which arise when these expressions are regarded as
functions of the variable after the symbol ! � These other
expressions may depend also on other variables besides the
mentioned one, and these other variables remain free in the
considered !$% expression. For example, Proposition 3.1 can
be expressed by the equality
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����� ����� � ! �"� � � %
	 � � � � � �
Proposition 2. Let ���������	��� be monotonically in-


m
m + ncreasing mappings of
�

into
� � Suppose that, for all

���������	��� in
� � the system of inequalities


n
(3) � � ��� ���������	��� ��� �������	��� ��� i

�
1 �������	� m �

n+i i



n n+



n+m
mhas a least solution ��� �������	��� � in
� � and denote the

n+



n+m
components of this solution by

��� ���������	������� i
�
1 �������	� m �

i



n
nThen the mappings

�
of

�
into

�
are also monotoni-

ically increasing.

Proof. We shall restrict ourselves to the case when
m
�
1 (the general case can be treated in a similar way);

we shall write
� � �

instead of
� � � � respectively.
 


Let ��������	�� � � �������	� � be elements of
�

satis-

n



n

fying the inequalities �� � �������	���� � . Then
 

n n��� ��������	���� � ��� ��������	�� � ��� ��������	������ �


n



n



n
46����� �������	� � � ��� ��������	������ �


n



n
Hence

��� ��������	���� � ����� �������	� � � �

n



n

�

Now the problem will be considered about elimination in
systems of the form (2) (in different settings problems of
this kind are studied, for example, in Beki � [1969], Lesz-
czyłowski [1971], Wand [1973], Blikle [1974]; Section 1 C of
Moschovakis [1974] is also relevant to the subject).

Theorem 1. Let ��������	�� �����������	��� be monotonically

n



m

m + nincreasing mappings of
�

into
� � Suppose that, for all

���������	��� in
� � the system of inequalities (3) has a


n
mleast solution ��� �������	��� � in
� � and denote the com-

n+



n+m
ponents of this solution by

��� ���������	������� i
�
1 �������	� m �

i



n
Then the system of inequalities

���� � ���������	��� ��� �������	��� ��� j
�
1 �������	� n �

j j



n n+



n+m(4) � � ��� ���������	��� ��� �������	��� ��� i
�
1 �������	� m �

n+i i



n n+



n+m

has a least solution iff such a solution exists for the sys-
tem
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

46 In fact, Proposition 1 enables us to replace the first
of the last two inequality signs by an equality sign, but
this is not needed for the proof.



4. ON LEAST FIXED POINTS IN PARTIALLY ORDERED SETS 85

(5) ���� � ���������	��� � � � ���������	�������������	� ��� ���������	���������
j j



n


 

n m



n

j
�
1 �������	� n �

Moreover, the following two statements hold:

(i) if ����������	�� �� �������	�� � is the least

n n+



n+m

solution of (4) then ����������	���� is the least solution

n

of (5);

(ii) if ����������	���� is the least solution of (5) then

n

����������	�� � � � ��������	������������	� ��� ��������	����	� is the

n


 

n m



n

least solution of (4).

Proof. Again, we shall restrict ourselves to the case
when m

�
1; we shall write

�
instead of

� � If

�����������	��� ��� � is a solution of (4) then from the


n n+



last inequality of (4) we conclude that

(6) � � ��� ���������	�������
n+

 


n
and therefore (by the monotonicity of the mappings  ) the

j
other inequalities of (4) imply the inequalities (5). Thus,
whenever �����������	��� ��� � is a solution of (4), then


n n+



�����������	����� is a solution of (5), and the inequality (6)

n

holds. Conversely, if �����������	����� is a solution of (5)

n

then �����������	��� � ��� ���������	�����	� is a solution of (4)

n



n

(the last inequality of (4) is satisfied according to the
definition of

�
).

Now suppose ����������	�� �� � is the least solution

n n+



of (4). Then, by the above reasoning, ����������	���� is a


n
solution of (5). Let �����������	����� be an arbitrary solution


n
of (5). Then, again by the above reasoning, the n + 1 % tuple
�����������	��� � ��� ���������	�����	� is a solution of (4), and


n



n
hence the inequalities ������������	������ hold. Thus
 


n n
����������	���� is the least solution of (5), and statement


n
(i) is proved.

For proving (ii), suppose that ����������	���� is the

n

least solution of (5). Then ����������	�� � ��� ��������	����	�

n



n

is a solution of (4). Let �����������	��� ��� � be an arbit-

n n+



rary solution of (4). Then �����������	����� is a solution of


n
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(5), and therefore the inequalities ������������	������
 

n n

hold. By Proposition 2, these inequalities imply that
��� ���������	����� � ��� ��������	���� �


n



n
Since we have also the inequality (6), we conclude that also
� � ��� ��������	���� � Thus ����������	�� � ��� ��������	����	�
n+

 


n



n



n
is the least solution of (4). �

Corollary 1. Under the premises of the above theorem, if
����������	�� �� �������	�� � is the least solution of (4)


n n+



n+m
then

 � ��� ��������	������ i
�
1 �������	� m �

n+i i



n

Corollary 2 � Let ��������	�� be monotonically increas-

n

m + ning mappings of
�

into
� � and let

� �������	� � be

m

nmonotonically increasing mappings of
�

into
� � Then the

system of inequalities

���� � ���������	��� ��� �������	��� ��� j
�
1 �������	� n �

j j



n n+



n+m(7) � � ��� ���������	������� i
�
1 �������	� m �

n+i i



n

has a least solution iff such a solution exists for the
system (5). Moreover, the following two statements hold:

(i) if ����������	�� �� �������	�� � is the least

n n+



n+m

solution of (7) then ����������	���� is the least solution

n

of (5);

(ii) if ����������	���� is the least solution of (5) then

n

����������	�� � � � ��������	������������	� ��� ��������	����	� is the

n


 

n m



n

least solution of (7).

Corollary 3. Under the premises of Theorem 1, an m + n %
tuple of elements of

�
is the least solution of the system

(4) iff this m + n % tuple is the least solution of the
corresponding system (7).

As an application of Theorem 1, we shall obtain a result
giving the interconnection between !$# �
 ����� # ��� and! �"� ���  � � ��� for monotonically increasing mappings  � � of�

into
� �

Theorem 2 � Let  � � be monotonically increasing
mappings of

�
into

� � and let

(8) !$# �
 ����� # ��� � "�
Then
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(9) ! �"� ���  � � ��� �����  � �

Proof. We consider the system of the two inequalities
# �� � � ���

(10) ��� ��� # � �
Theorem 1 will be applied to this system in two different
ways: the first time eliminating � � and the second time
eliminating # �

The first application of Theorem 1 shows that (10) has a
least solution iff there is such a solution for the inequal-
ity

(11) # �� ����� # ��� �
Moreover, we can assert that if  is the least solution of
(11) then the least solution of (10) is

(12) � �����  ��� # � "�
Since we have the assumption (8), we conclude that (10) has
the least solution (12). Now the second application of The-
orem 1 to the system (10) shows that the � % component of
(12) must be the least solution of the inequality

��� ���  � � �����
and this statement is exactly the statement (9). �

Corollary 4. Let � � � I � � ��� � L � R ��� � T � F � be an itera-
tive combinatory space, and let � � � � � ��� be elements of� � Then the equality

! �"� � � %
	 � � � � ��� � ��� � � �������
holds.

Proof. We apply Theorem 2 to the mappings  and
�

of�
into

� � which are defined as follows:

 � � � ��� � %
	 � � � � ��� ��� # � � # �"� �

In an obvious sense (mentioned in the paragraph preced-
ing Proposition 1), a system of the form (2) in an arbitrary
partially ordered set

�
can always be reduced to a single

equation of the form ��� ��� � � in the partially ordered set
n� � However, a reduction to a single equation of this form

in the initially given partially ordered set
�

turns out
to be also possible in the special case when

�
is the

semigroup of an operative space (in particular, when
�

is
the semigroup of a combinatory space).

Proposition 3. Let � � � I ����� � L � � R � � be an operative
space, and let

� �������	� � be monotonically increasing

m
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mmappings of
�

into
� � Let

�
be the monotonically in-

creasing mapping of
�

into
�

defined by the equality% % % � % � % m % 
��� � � ����� � 0 ��� 1 �������	��� m % 2 ��� R � ����
where

��� ��������� ��� � ��� ��� � ��������� �����������	� ��� ��������� �������� 

m


 

m m



m% % % � % � % m % 
and let !�� � ��� � � � "� Then �� 0 �� 1 �������	�� m % 2 �� R � �

is the least solution of the system (2).
m % 
Proof. Set

���
0 � ���

1 � �����	� � �
m % 2 � ���

R � �
 �
m % 
 m

for short. Then, for i
�
1 �������	� m � we have (using �� ���  �

and Proposition 2.1)

 � � ���  � �������	�� � � �������  � �������	�� � � �
i

� 

m i i



m

Thus �� � �������	�� � � is a solution of (2). Consider now an

m

arbitrary solution �����������	����� of (2), and set

m

� � ��� � ���������	����� �

m

Then, � ��� � � i
�
1 �������	� m � and, using the inequalities

i i
(2), we get

��� ��� ��������� ��� ����� � � �� 

m

From here, by the minimality of  � the inequality ����
follows. Hence ���� � � i

�
1 �������	� m �

i i
�

In the above proposition, the existence of a least sol-
ution of the inequality ��� ��� � � has been assumed, and the
existence of a least solution of the system (2) has been
established as a consequence. An implication in the opposite
direction can also be proven, namely: if ����������	���� is


m
the least solution of (2) then !�� � ��� � � � ��� � ��������	���� �


m
This statement, as well as the statement of Proposition 3,
can be regarded as a special case of a much more general
statement (see Exercises 7 and 8 below).

In the preceding considerations in this section, we usu-
ally assumed the existence of some least fixed points and
carried certain reasonings on the base of this assumption.
Sometimes this existence follows easily from certain well-
known sufficient conditions of a quite general nature. We
shall recall now two such results. Some relevant references
concerning these results are Knaster [1928], Birkhoff [1948,
pp. 44, 54], Bourbaki [1949-50], Kleene [1952, � 66],Tarski
[1955], Abian and Brown [1961], Platek [1966], Markowsky
[1976] (the list is surely not complete, and we do not at-
tribute the results only to those people whose names occur
below).
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Theorem 3 (Knaster - Tarski - Kleene Theorem). Let
�

be a partially ordered set having a least element � � let
each monotonically increasing infinite sequence of elements
of

�
has a least upper bound, and let

�
be a monotonic-

ally increasing mapping of
�

into itself such that
�

is
continuous with respect to least upper bounds of monotonic-

47ally increasing infinite sequences � Then the sequence
k ���� ��� � ��� is monotonically increasing and the equality

k=
�

k ���sup
� ��� � ��� � ! �"� ��� � �

k=
�

holds.
k k+



Proof. One proves by induction that

��� � ��� � � � �
k ���for each natural number k � Thus the sequence

� ��� � ���
k=
�

k ���is monotonically increasing. Let  � sup
� ��� � ��� � Then

k=
�

k+

 ������  � � sup

� � � � ��� � "�
k=
�

On the other hand, if � is an arbitrary solution of the
inequality ��� ��� � � then, again by induction, one proves

kthat ��� ��� � � for each natural number k � and from here
the inequality ���� follows. �

Theorem 4 (Knaster - Tarski - Platek Theorem). Let
�

be a partially ordered set such that each chain in
�

48(including the empty one) has a least upper bound , and let�
be an arbitrary monotonically increasing mapping of

�
into itself. Then an element  of

�
can be defined for�

each ordinal number � so that the equality

(13)  �
sup

� ���  ���� � � < �
holds for all � � the transfinite sequence

� 	� is monoton-�
ically increasing, and there is some ordinal number 
 such
that

 � ! �"� ��� � � �

Proof. Let � be the set of all elements # of

�
which satisfy the inequality # � ��� # � � Making use of the
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

47 This means the following: whenever a monotonically
���increasing sequence

� # � of elements of
�

has a least
k k=

�
��� ���upper bound, then

���
sup

� # �  � sup
� ��� # ��� �

k k=
�

k k=
�

48 Of course, the least upper bound of the empty chain
will be the least element of

�
.
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monotonic increasing of
� � it is easy to see that � is

closed under
�

and under least upper bounds of chains.
These properties of � enable the definition (by transfinite
recursion) of a monotonically increasing transfinite se-
quence

� 	� of elements of � with the property (13). The�
members of this sequence remain stationary from some place
on, and hence there is an ordinal number 
 such that
 �  � � i. e.  �����  � � On the other hand, if � is
 
 + 
 
 

an arbitrary solution of the inequality ��� ��� � � then, by
transfinite induction, one proves that ���� for each�
ordinal number � ; in particular, ���� �
 �

We shall apply now Theorems 3 and 4 for obtaining some
conditions sufficient for the existence of iteration in a
given combinatory space.

Proposition 4 (Level Omega Iteration Lemma). Let
� � � � � I � � ��� � L � R ��� � T � F �

be a combinatory space, and let the following conditions be
satisfied:

(i) there is a least element � in
� � and � � � � for

all � in
�
;

(ii) each monotonically increasing infinite sequence of
elements of

�
has a least upper bound;

(iii) for every fixed � in
� � the mappings � �"���$� �

� �"� ��� and � �"� � � %
	 � � I � are continuous with respect
to least upper bounds of monotonically increasing infinite
sequences.

Then:

(a) the combinatory space
�

is iterative, and, for all� ��� from
� � the equality

k ���(14) ��� ����� � sup
� ��� � ���

k=
�

holds, where
���

� �"� � � %
	 � � � I � ;
(b)

�
turns into an iterative combinatory space with

the same iteration after any replacement of the original
partial ordering � in

�
by some partial ordering ��� not

violating the requirements of the definition of the notion
of combinatory space and such that whenever an infinite se-
quence of elements of

�
is monotonically increasing with

respect to � � then the least upper bound of this sequence
with respect to � is also its least upper bound with re-
spect to ��� �

Proof. Let � and � be arbitrary elements of
� � Then

the monotonically increasing mapping
���

� �"� � � %
	 � � � I � is
continuous with respect to least upper bounds of monotonic-
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ally increasing infinite sequences (as a composition of two
monotonically increasing mappings with this sort of continu-
ity). By the Knaster - Tarski - Kleene Theorem, the sequence

k ���� ��� � ��� is monotonically increasing and for the element
k=
�
k ���� � sup

� ��� � ��� the equality � ���
� %
	�� � � I � holds. Sup-

k=
�

pose now that
�
� is an arbitrary combinatory space obtained

from
�

by replacing the original partial ordering � in
�

by some partial ordering ��� with the property formulated in
(b) (in particular,

�
� may be

�
itself). We shall show

that � is the iteration of � controlled by � in the com-
binatory space

�
� � By Proposition 3.5 and Definition 3.4, it

is sufficient to show that � belongs to each set closed un-
der

�
and representable as the intersection of sets of the

form
� ��� � ��� $� z � � Let

�
be a set with these properties.

From Proposition 1.11, it follows that � z � � for each z
in

� � Hence  � z � � for all  in
�

and all z in
� � On

the other hand,
� � � � for all

�
in

�
(since

�
is the

least upper bound of the sequence � � � � � � � ������� with re-
kspect to � ). Therefore ��� � � and hence
��� � � � � for each

natural number k � For any  in
�

and any z in
� � the

element  � z is the least upper bound of the sequence
k ����  ��� � � z � with respect to � � and consequently  � z is

k=
�

the least upper bound of this sequence also with respect to
��� � Therefore, if

� ��� $� z for all � in
� � then� ���  � z. Making use of this, we conclude that ��� � � �

Proposition 5 (Unrestricted Iteration Lemma). Let
� � � � � I � � ��� � L � R ��� � T � F �

be a combinatory space, and let the following conditions be
satisfied:

(i) each chain in
�

(including the empty one) has a
least upper bound;

(ii) the mappings � �"� $� � with fixed  in
� � and the

mappings � �"� � z � with fixed z in
� � are continuous with

respect to least upper bounds of arbitrary chains (including
49the empty one).

Then:

(a) the combinatory space
�

is iterative;
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

49 I. e., whenever � is a chain in
� � and 	 � sup � �

then �	 � sup
� $��� � � � � �
	 z � sup

� � z � � � � � for all 
in

�
and all z in

� � Taking � ��� � we conclude that
 � � � z � � � where � is the least element of

� �
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(b)
�

turns into an iterative combinatory space with
the same iteration after any replacement of the original
partial ordering � in

�
by some partial ordering ��� not

violating the requirements of the definition of the notion
of combinatory space and such that whenever a subset of

�
is a chain with respect to � � then the least upper bound of
this subset with respect to � is also its least upper bound
with respect to ��� �

Proof. Let � and � be arbitrary elements of
� � The

mapping
���

� �"� � � %
	 � � � I � is again monotonically increas-
ing (although it is possibly not continuous). Making use of
the Knaster - Tarski - Platek Theorem, we take a transfinite
sequence

� 	� and an ordinal number 
 with the properties�
listed there (hence the equality  �����  � holds). Let

�
�
 


be a combinatory space obtained from
�

by changing the
partial ordering in

�
in such a way, as described in (b)

(in particular,
�
� may be

�
itself). We shall show that �

is the iteration of � controlled by � in the combinatory
space

�
� � For that purpose, it is sufficient to show that

 belongs to each set closed under
�

and representable

as the intersection of sets of the form

� ��� � ��� $� z � � Let�
be a set with these properties. Making use of the assump-

tion (ii) and of the assumption about ����� we see that, when-
ever a subset of

�
is a chain with respect to � � then the

least upper bound of this subset with respect to � belongs
to

� � This enables a transfinite recursion showing that all
 belong to

� �� �
Remark 1. In almost all applications of the above two

propositions, only part (a) of their conclusions will be
used. Part (b) is needed for Remark 8.9 in the Appendix.

Remark 2. As seen from the proofs of these propositions,
an iteration, whose existence is established on the basis of
some of them, is surely a strong one.

Until now, we gave only such examples of iterative com-
binatory spaces (namely, Examples 1.1 - 1.4) which satisfy
the assumptions of both the Level Omega and the Unrestricted
Iteration Lemma. Exercise 10 after this section gives an
example of iterative combinatory space which satisfies the
assumptions of none of these propositions. Exercise 12 gives
an example of combinatory space satisfying the assumptions
of the Level Omega Iteration Lemma, but not satisfying the
assumptions of the Unrestricted Iteration Lemma, and Exer-
cise 14 shows that the latter assumptions imply neither the
assumptions of the Level Omega Iteration Lemma nor the
equality (14) in its conclusion.

The Level Omega Iteration Lemma enables not only proving
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that certain combinatory spaces are iterative, but also,
thanks to the equality (14) in it, making some conclusions
about the explicit form of the iteration (the proof of the
Unrestricted Iteration Lemma also enables making conclusions
of this sort). Some additional considerations can be added
to this, which facilitate in many cases the making of the
mentioned conclusions. We note that most examples of combi-
natory spaces exposed until now in this book have the fol-
lowing features. The elements of the semigroup

�
in them

are sets, the empty set belongs to
� � and, for any choice

of � ��� in
� � the mapping

���
� �"� � � %
	 � � � I � occurring

in (14) is representable in the form
��� � � ����� � � ��� � � ���

where � is a mapping of
�

into itself such that � � � � ���
and � � � � � � � � � ��� ��� � � ��� whenever ��� � and � � �
 � 
 � 
 � 
 �
belong to

� � In the simpler cases, we have

� � � � � � � � ��� � � � � � � � � � � � � � ���
� � � � � � � � � � � ��� � � � � � ���
 � 
 �

and in the more complicated Examples 1.3 and 1.4 we have
� � � � � � � u � w � � � u � true ��� H ����� v � � u � v ��� � ��� v � w ��� � ��� �

where H � does not depend on �"� Now we shall show that a
representation of

�
in the above form leads to a useful

krepresentation of the elements
��� � � � Generalizing the role

of the set-theoretical operation of union in the above situ-
ation, we shall consider the situation when a certain par-
tial binary operation playing this role is given.

Proposition 6. Suppose � is an element of
� � and a

partial (possibly total) binary operation of addition is
defined in

�
such that # + � � # for all # in

� � Let� be a mapping of
�

into itself such that � � � � � � and� � � + � � � � � ��� + � � � ��� whenever ����� belong to
�

and
 � 
 � 
 �
� + � is defined. Let

�
be a mapping of

�
into itself
 �

having the form
��� � � � � + � � � ���

where � is a fixed element of
� � Then for each natural

number k the following equality holds
k

�
k-



(15)
��� � � � � + � � � � + � � � � + ����� + � � � ���

where associativity to the right is adopted, i. e.
# + # + ����� + # � # +

� # + ����� + # ���� 

n def

� 

n

as well the natural conventions that a sum having only one
term is equal to it, and a sum without terms is equal to � �
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Proof. An easy induction shows that
� � # + ����� + # � � � � # � + ����� � � # ���


m



m
whenever # + ����� + # is defined. Now the validity of (15)


m
can be shown by induction on k � The case k

�
0 is triv-

ial. Suppose now k is a natural number such that (15) is
true. Then

k+



k k� � � � �"������� � ��� � � + � ����� � ��� ��
3 k� + � � � � � + � � � � + � � � � + ����� + � � � ��� ��
3 k� + � � � � + � � � � + � � � � + ����� + � � � � � �

Remark 3. The partial ordering in
�

is obviously not
used in the above proof.

As an illustration, we shall apply Proposition 6 to the
case of the combinatory space from Example 1.2, and thus we
shall indicate another way to see that the iteration intro-
duced in Section I.2 coincides with the iteration in this
combinatory space. In this case � is the empty function,
+ is the partial operation of union of functions, � is
the restriction of I to the set

�
u � � � H � � � u ��� � false � �

M
and � � � � is the restriction of the function � � to the set�
u � � � H � � � u ��� � true � � Then an induction shows that, for

each natural number m and each u and w in
� � the

mequality � � � � � u � � w is equivalent to the existence of el-
ements v � v �������	� v of

�
such that� 
 m

v
�
u � v

�
w ��� j � H � � � v ��� � true � v

� � � v ��� �� m j j +



j
j < m H

� � � v ��� � false �
m

kThe equality (15) shows that
��� � � is the union of all

m k ���functions � � � � with m < k � and therefore sup
� ��� � ���

k=
�

is the union of all these functions. Hence ��� ����� � u � � w
(where ��� ����� denotes the iteration in the combinatory
space) is equivalent to the existence of a natural number m
for which elements v � v �������	� v of

�
with the above� 
 m

property can be found.

Example 1.1 can be treated in essentially the same way,
and the application of Proposition 6 to the combinatory
spaces from Examples 1.3 and 1.4 is left as an exercise for
the reader (Exercise 15 after this section). Of course,
Proposition 6 can be useful in this respect only in connec-
tion with the Level Omega Iteration Lemma, and therefore one
has to use other ways of reasoning for the explicit charac-
terization of iteration in the cases when this lemma is not
applicable (see, for example, Exercise 17 after this sec-
tion).
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Exercises

1. For each natural number t � let � � t � denote the
number of the primes which are less than or equal to t � Let
a and b be arbitrary natural numbers. Prove that there is
a natural number t satisfying the equation

t
�
a � � t � + b � � � t �Hint. Use the known fact that lim � % % % % � 0 �tt %
	 ���

2. Let a � b � c � d � e � f be arbitrary natural numbers.
Prove the existence of natural numbers t � u satisfying the
system of equations � �� %

t
�
a u + b

���
t � + c �� � � �� % %

u
�
d
���
t � + e ��� u � + f �

where � A � denotes the greatest integer which is less than
or equal to A �

3. Give a direct proof of Corollary 4.

Hint. To show that ��� � � ������� satisfies the equation
� ��� � %
	 � � � � ��� � simply substitute in the equation. To
prove that the inequality ��� � � %
	 � � � � ��� implies
��� ��� � � ������� � set # ��� � %
	 � � � � � and prove that# � ��� � � ����� is implied by the first inequality.

4. Let � � � I � � ��� � L � R ��� � T � F � be the combinatory
space from Example 1.1. Find elements � � � and � of

�
such that

! �"� � � %
	 � � � � ���	� ! �"� � � � %
	 � � � � � � � �
5. Let � � � I � � ��� � L � R ��� � T � F � be an iterative

combinatory space, and let � ��� be arbitrary elements of�
. Prove that

! �"� ��� � %
	 L � � I ��� I � � ��� ��� �����	� I � � �
6. Let � � � I � � ��� � L � R ��� � T � F � be an iterative combi-

natory space, let � �����������	��� � � � � �������	� � ��� �� 
 l � 
 l �
���������	��� be elements of

� � and let the mappings
� �
 l ��� �������	� � of

�
into

�
and the elements 	 � 	��������	�
 l � 


	 of
�

be defined by the equalitiesl ��� � � # � � # �
	 �
I �� �

� � � � # � ����� � � � � %
	 � � � # �������
k +



k k k k

	 � � � 	 � ��� ��� 	
k +



k k k k k k

( k
�
0 � 1 �������	� l % 1 ). Prove that
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! �"� ��� � � # � � # 	 � k
�
0 � 1 �������	� l �

k k

7. Let
�

and
�
� be some partially ordered sets, � be

a monotonically increasing mapping of
�
� into

� � and ���
be a monotonically increasing mapping of

�
into

�
� such

that

��� � � � ������� � ���
for all ��� into

�
� � Let

�
� be a monotonically increasing

mapping of
�
� into itself, and

�
be the monotonically in-

creasing mapping of
�

into itself defined by the equality
��� � � � � ��� � � ��� � � ����� �

Prove that !�� � ��� � � �  implies !�� � � � � � ����� � ��� �  � � Show that
this is a generalization of Proposition 3.

Hint. To obtain Proposition 3 as a special case, take
n�

� to be
� � and � to be ��� .

8. Under the same premises as in the previous exercise,
prove that !�� � � � � � ����� � �� implies !�� � ��� � � � � � ���� �

Hint. To show that ��� ��� � � implies ��� � � ������ make use
of the equality �� � � � ���� �

9. Let
�

be a partially ordered set, and
�

be a mon-
otonically increasing mapping of

�
into

� � Suppose
n � ! �"� ��� � ���

where n is some positive integer. Prove that

 � ! �"� ��� � � �
nHint. Use the equality

���  � ���������  ��� to conclude that
n���  � �� and hence  �����  � � ���  � � Use also the fact that

n��� ��� � � implies ��� ��� � � �
10. Let

� � ��� � J � L � R � T � F � H � be a standard computa-
tional structure on the national numbers (in the sense of
Section I.3). Let

�
be the sub-semigroup of

��� � � con-p
sisting of all one-argument partial recursive functions, and�

be the set of all constant functions from � into ���
Let � and � be the binary operations in

��� � � corre-p
sponding to

�
in the way described in Section I.2). Let� � � � � I � � ��� � L � R ��� � T � F � � where � and � are� � � � ��

3the restrictions of � and � to
�

and to
� � respect-

ively. Prove that
�

is an iterative combinatory space, but
assumption (ii) of the Level Omega Iteration Lemma is not
satisfied for

�
(hence assumption (i) of the Unrestricted

Iteration Lemma is also not satisfied).
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11. (Cf. Skordev [1980, Section II.5.7 and Example 17 in
Section III.3.2) Let � � � J � L � R � T � F � H � be an arbitrary
computational structure (cf. Section I.1), let

�
be a lat-

tice having a greatest element � and a least element � �
where �	��� � and let the range of each mapping ! of

�
into�

have a least upper bound in
�

with the property that

l � sup rng ! � sup
�
l � ! � u � � u � � �

for all l in
� � Denote by

�
the set of all

� % fuzzy
binary relations in

�
(cf. Goguen [1967]), i. e. all map-�

50pings of
�

into
� � The set

�
is considered with the

composition operation defined by means of the equality

 ��� � u w � sup � ��� u � v ���� � v � w � � v � � �
and with the partial ordering defined by means of the equiv-
alence

�� ���$�	� � u v �  � u � v � � ��� u � v ��� ��
For each subset f of

� � let f 
 be the element of
�

defined by �
� if � u � v � � f,f 
 � u � v � �� � if � u � v ��� f.�

Let
�

be the set of all elements of
�

having the form� ��� �
s � ��
 � where s � � � Let � and � be the binary and

the ternary operation in
�

defined in the following way:�
 � u � L � v ����� ��� u � R

�
v ��� if v � rng J �� �  � � � � u � v � �� � if v � rng J ��

� � � �� � � � � u � v � �����
H � � � u � true ���� � u � v ��������

H � � � u � false ��� ��� u � v �����
where

-1�
H � � � u � p � � sup

� � � u � s � � s � H �
p ��� �

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
50 Here is an idea about a possible use of

� % fuzzy
relations with suitable lattices

� � Suppose a set � of
formal systems is given for proving statements in a language
expressing properties of elements of

� � Let
�

be the set
of all subsets of � with the partial ordering by inclu-
sion. Suppose a binary relation between elements of

�
is

given, and for any fixed pair � u � v � of elements of
�

some formula � of the mentioned language expresses that
u,v

� u � v � is in this relation. Then it is natural to consider
an

� % fuzzy relation  such that, for all u � v in
� �

 � u � v � is the set of those systems from � which have
� among their theorems.
u,v
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Prove that � � � I 
 � � ��� � L 
 � R 
 ��� � T 
 � F 
 � is a symmetric
M

and iterative combinatory space satisfying the assumptions
of the Level Omega Iteration Lemma.

12. Show that the set
�

and the lattice
�

in the
previous exercise can be chosen so that the corresponding
combinatory space does not satisfy the assumption (i) of the
Unrestricted Iteration Lemma.

Hint. Take
� � � � and choose

�
to be a suitable lin-

early ordered set.

13. (For some relevant references, cf. Exercise 19 below
and the first footnote to Exercise I.8.3). Let

� � � � � J � L �
R � T � F � H � be a computational structure, the predicate H
being assumed total. Let

�
be the set of all pairs � f � A � �

where f � ��� � ��� A
� �

(i. e. the set
�

from Exercisem
51I.8.3). The set

�
is considered with the same composition

operation as in Exercise I.8.3 and with a different partial
ordering which is defined by means of the following conven-
tion:

� f � A � ��� g � B � �$�	�
f � g � A � B �

� u � B � v � � u � v � � f �	� � u � v � � g � �
For each f in

��� � ��� let f 
 � � f � dom f � � and let
�

bem
the set of all elements of

�
having the form

� ��� �
s � ��
 �

where s � � � Let � and � be the binary and the ternary
operation in

�
defined in the same way as in Exercise

I.8.3. Prove that � � � I 
 � � ��� � L 
 � R 
 ��� � T 
 � F 
 � is an
M

iterative combinatory space satisfying the assumptions of
the Unrestricted Iteration Lemma.

14. For the combinatory space from the previous exer-
cise, show that the requirement from the Level Omega Iter-
ation Lemma is violated about the continuity of the mappings
� �"� ��� with respect to least upper bounds of monotonical-
ly increasing infinite sequences. Show also that the equal-
ity (14) is violated for some elements � ��� of this combi-
natory space.
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

51 The intuitive idea about the pairs � f � A � belonging
to

�
is now the following one. We consider f to be the

input-output relation of some non-deterministic computation-
al procedure, and A to be the set of those input data for
which all possible variants of execution of the procedure
terminate. Using the terminology from Manna [1971], we could
say that A consists of those input data for which the giv-
en computational procedure is � % defined. For an equipol-
lent mathematical model, cf. Egli [1975], Chen [1984].
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Hint. Take elements s � s � s ������� and s of
�� 
 � �

such that s � s � whenever i � j � Let � � � f � A � � s � � �
i j

�
� � � h � A � � where A is the set of all elements s � f

i
consists of all pairs � s � s � with i > j (the inequality

i j
� > j is adopted to be true for all j in � ), h is a
function such that dom h

�
A � H

�
h
�
u ��� � true for all u in

A
� �

s � and H
�
h
�
s ��� � false � Let � be the least upper� �

bound on the right-hand side of (14) for these � ���"� Show
that s belongs to the second component of

��� � � without�

belonging to the second component of � �
15. Apply Propositions 4 and 6 to obtain the explicit

characterization of iteration for the combinatory spaces
from Examples 1.3 and 1.4.

16. Apply Propositions 4 and 6 to obtain the following
characterization of iteration in the combinatory space from
Exercise 11:

��� ����� � u � w � � sup
� � �

u � w � � m � � � �
m

where
m-



� �
u � w � � sup

��� � �
H � � � v � true ��� � � v � v �� �

m j=
�

j j j+



�
H � � � v � false � � v � v �������	� v � � � v

�
u � v

�
w � �

m
� 
 m � m

17. Let
� � � � � I 
 � � ��� � L 
 � R 
 ��� � T 
 � F 
 � be the

M
combinatory space from Exercise 13, and let � � � f � A � �
� � � h � C � be elements of

� � An element u of
�

will be
called � ��� % regular iff the following condition is satis-
fied:

u � C � � � u � true � � H h �	�
u � A �

(compare with the definition of � ). An element w of
�

will be called a � ��� % successor of the element u iff

� u � true � � H h ��� u � w � � f �
Let D be the intersection of all subsets Q of

�
having

the following property: whenever an element u of
�

is� ��� % regular and all � ��� % successors of u belong to Q �
then u � Q � Prove the equality

��� ����� � � � f � h �	� D � �
where ��� ����� and � f � h � is understood in the sense of the
combinatory spaces

�
and

� � � ��� respectively.m
Hint. Prove that � � f � h �	� D � � ! �"� � � %
	 � � � I 
 � �

M
18. In the conditions of the previous exercise, a se-
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quence
�
w � (finite or infinite) of elements of

�
will be

j
called a � ��� % path iff, whenever w and w are two con-

j j+



secutive members of this sequence, then w is a � ��� %
j+



successor of w (if the sequence has only one term then
j

this sequence is also considered a � ��� % path). A � ��� % path
is called to begin at a given element u of

�
iff u is

the initial member of this � ��� % path. Prove the following
characterization of the set D defined in that exercise: an
element u of

�
belongs to D iff all � ��� % paths begin-

ning at u consist only of � ��� % regular elements, and among
52these � ��� % paths there is no infinite one.

19. (Skordev [1980, Section II.5.1, Example 11 in Sec-
tion III.3.2 and Example 9 in Section IV.1.2]). Show that
the statements of Exercises 13, 14, 17 and 18 remain valid
if the smaller set

�
is considered which is obtained by

replacing the requirement A
� �

in Exercise 13 by the
stronger requirement A

�
dom f � Show that the combinatory

space � � � I 
 � � ��� � L 
 � R 
 ��� � T 
 � F 
 � is symmetric in this
Mcase.

20. Do the same as in the previous exercise, except for
proving symmetry, in the case when, in addition to the re-
quirement A

� � � the requirement is imposed that the set�
v � � u � v � � f � is finite for all u in A � Prove that

the combinatory space � � � I 
 � � ��� � L 
 � R 
 ��� � T 
 � F 
 �
M

satisfies the assumptions of the Level Omega Iteration Lemma
in this case. Show also that the condition from Exercise 18
about non-existence of infinite � ��� % paths beginning at
u can be replaced in this case by the condition that there
is a finite upper bound for the lengths of the � ��� % paths
beginning at u.

21. Let
� � � � � J � L � R � T � F � H � be a computational

structure, where
�

is a topological space, the sets dom L �
-



-



dom R � H �
true ��� H �

false � are open, and the mappings J �
53L � R � T � F are continuous. Let

�
be the set of those el-

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
52 A comparison of this characterization with the defini-

tion of S. Nikolova’s iteration considered in Exercise I.8.3
is appropriate at this moment. The difference is that actu-
ally only the first of the two conditions about the � ��� %
paths beginning at u is present in the definition of Niko-
lova’s iteration.

53 Cf., e. g., Kelley [1975] for the necessary informa-
tion about the topological notions. As to examples satis-
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ements of
��� � � which are continuous and have open do-p

mains. Show that
�

is closed under composition,
� % combi-

nation and
� % branching. If

�
is obtained from

� � � � byp
replacing

��� � � by
�

(taking the induced partial orderingp
and multiplication) and replacing � and � by their re-�

3strictions to
�

and
� � respectively, show that

�
is an

iterative combinatory space, and the
� % iteration is the�

restriction of the
� � � � % iteration to

� �p
22. Let

�
be a topological space � and

�
be the set of

the elements # of
��� � � such that the corresponding set-m

valued mapping � u � � v � � u � v � �$# � is lower semicontinu-
54ous. Let the following assumptions be satisfied: the set��
is infinite, J is a continuous injection of

�
into� � L and R are such elements of

�
that

� J � s � t ��� v � � L � � v
�
s � � J � s � t ��� v � � R � � v

�
t

for all s � t � v in
� � T and F are continuous mappings of

t f�
into

� � and two open subsets
�

and
�

of
�

are giv-
t f f ten such that T

�
u � � � � � � F

�
u � � � � � for all u in

55� � Let
� � � � � I � � ��� � L � R ��� � T � F � �

M
where

�
is considered with the composition and the partial

ordering inherited from
��� � ��� �

is the set of all con-m
stant total mappings of

�
into itself, and the operations�

3� and � with domains
�

and
� � respectively, are de-

fined by means of the equalities

� �  � � � � � � u � w � � � s � t � � u � s ��� ���� u � t ��� � �
J
�
s � t � � w ��� �

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

fying the assumptions of this exercise, cf. the second foot-
note to Theorem 5.2 in the Appendix of the present book.

54 If
�

is a topological space, and f is a mapping of�
into the set of the subsets of

� � then f is called
lower semicontinuous iff the set

�
u � � � f � u � � V � � � is

open for any open subset V of
�

(cf., e. g., Berge [1966,
Chapter VI, � 1]).

55 These assumptions will be satisfied, for instance, if
� � � J � L � R � T � F � H � is a computational structure satis-
fying the assumptions of the previous exercise, and we set

t -



f -

� �

H
�
true ��� � �

H
�
false � �
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� � � �� � � � � � � u � w � � � s � � u � s � � ���
t f�

s � � ��� u � w ���  �
s � � ��� u � w ��� � ����� �

Prove that
�

is an iterative combinatory space, and, for
all elements � ��� of

�
and all u � w in

� � the condition
� u � w ��� ��� ����� is equivalent to the existence of a finite
sequence v � v � �����	� v of elements of

�
such that� 


m
tv

�
u � v

�
w ��� j � � s � � � � v � s ��� � � ��

m j
j < m

f� v � v ��� � � ��� s � � � � v � s ��� � � �
j j +



m

5. The companion operative space
of an iterative combinatory space

In Section 2, we defined the notion of iteration in a
combinatory space. Now we are going to define a similar no-
tion for the case of an operative space.

Definition 1. Let � � � I ����� � L � � R � � be an operative
space, and let � be an element of

� � An element � of
�

will be called the iteration of � iff for each � in
�

the equality
! �"����� � � � � � � � � �

holds. If � is the iteration of � then � will be denoted
56by ��� ���

Remark 1. It is reasonable to compare the introduced
notion of iteration with that one used in Ivanov [1986] (cf.
condition ($$) in Chapter 5 of that book). Given an arbit-
rary operative space � � � I ����� � L � � R � � and an element �
of

� � then, according to Ivanov’s definition, ��� � as an
element � of

�
satisfying the condition that

! �"����� � � ��� � � � � �

for all � in
� � So we see an exchange of the contents of

the arguments of the operation ��� , and, of course, the dif-
ference between the two notions caused by this exchange must
be considered unessential (cf. also Exercise 4 after this
section in connection with this).

One more notion concerning iteration in operative spaces
will be used in our further exposition. By introducing it,
we shall in fact describe the class of the operative spaces
studied in Georgieva [1980] (up to the above-mentioned ex-
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

56 The last clause in the given definition is justified
by the fact that if � is the iteration of � then the
equality � � ! �"����� � � � � I � holds.
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57change between the arguments of
���

).

Definition 2. We shall call a G � space any operative
space ����� I � ��� � L � � R �
	 satisfying the condition that ����
exists for each � in ���

Remark 2. It would be natural to call the operative spa-
ces satisfying the above condition iterative. However, this
would be not convenient due to the fact that Ivanov’s defi-
nition of the notion of an iterative operative space re-
quires not only existence of iteration, but also existence
of so-called translation. Leaving aside more subtle condi-
tions which are imposed on translation, we shall mention
only that the translation of ��� where � is some given el-
ement of ��� must be equal to ����� ���
� L � ��� R � �����

The using of G � spaces in our study of iterative combi-
natory spaces is based on the following fact.

Proposition 1. (Cf. Proposition 27.15 of Ivanov [1986]).
Let ��������� I ����� � � L � R ����� T � F 	 be an iterative combina-
tory space. Then its companion operative space � � ������� I ���� � L � � R �
	 is a G � space, and for all � in � the equal-
ity ������ R �� R � L � holds.

Proof. For all �������� in ��� we have the equality
���
� ������ ���� � L �"!#��� R �� R ���

hence

����� ���
� ������ ����� R �� R � L ���%$
When an iterative combinatory space � is considered,

and � is an element of its semigroup ��� then the element
���� of � will be called the � � � iteration of ��� to make
more easy the distinction between the two iteration opera-
tions present in � in this case (for the same reason, the
iteration operation in � will be called �&� iteration).

Remark 3. The existence of ����� ���
� L � ��� R � ��� also can be
proved in the case considered in the above proposition, but
this is not easy. The mentioned existence will be estab-
lished by application of the First Recursion Theorem for
iterative combinatory spaces (to be proven later in this
book).

Now we shall note some general properties of iteration
in G � spaces.
�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�

57 Instead of such operative spaces, another kind of
structures, called spaces of Böhm-Jacopini type, have been
used in the book Skordev [1980]. The so-called programming
spaces, mentioned in the first footnote to Section 2, also
could be used for the same purposes.
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Proposition 2. Let ����� I � ��� � L � � R �
	 be a G � space.
Then, for all � in ��� the equalities

������ ���
� ����"��� I ��� ���� L � � ����"��� ���� R � � I �
� R � ����� ���
� ��� I �

58hold.

Proof. The first equality follows immediately from the
definition of ���� (taking  � I in this definition) � The
second and the third equality are consequences of the first
one and of the definition of the notion of operative space.
To prove the last equality, we make an use of the first and
the third one in the following way:

� R � ����� ���
� � R � ��� R � ��� I ��� ���
� I ��� I ��� ���
� ��� I ���%$
Proposition 3. (Cf. Proposition 6.10 of Ivanov [1986]).

Let ����� I � ��� � L � � R �
	 be a G � space. Then, for all ���� �� �
in ��� the equality

����� ���
� ������ �� � �� � � ��� �
59holds.

Proof. Application of Theorem 4.2 to the mappings
�

and � of � into � defined as follows:��� ����� ���
� ������ ������ ��� ��� � � �%$
Now we shall show how the operation � and the iteration

in an iterative combinatory space � can be expressed by
means of the � � � iteration, composition,

�
and some fixed

elements of ���
Proposition 4. Let ����� I ����� � � L � R ����� T � F 	 be an

iterative combinatory space. Then for all ��������	 in ���
the equality 


� � �"!�����	���� � R � 	�� � R � � R � � ��� L � �
60holds.

Proof. By application of Proposition 2 and Proposition
2.3, we get

�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�
58 Compare the second and the third equalities with the

equalities in Lemma 1 of Georgieva [1980] and in Proposition
5.12 of Ivanov [1986].

59 Compare with Corollary 4.4.
60 Compare with the expression for � � ��������	�� in Exer-

cise I.2.2. Another representation of ��� not using
�

and� �not making an explicit use of L � R � but using � � ��� 0 � 1 ���
will be given in Exercise 1 after this section.
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� R � 	�� � R � � R � � ��� L � ��� � R � 	�� ���
� R � � R � I � � ��� L � ���
� R � 	�� � � �"! R

� � R L � � L � ��� � R � 	�� � � �"! R
� ��� L � ���

� � �"! � R � 	�� R � ��� � R � 	�� L � ��� � � �"! I ��� ���
� 	�� I � L � ���
� � �"!�����	����%$

Corollary 1. If ����� I ����� � � L � R ����� T � F 	 is an itera-
tive combinatory space, then for all ����	 in � the equal-
ity 
 


���
� ����	���� � R � 	 R � � R � � R � � L � L � �
holds.

Remark 4. Since
�
L � L � � is a fixed element of ��� the

above equality gives a representation of
���

by means of
� � � iteration, composition and some fixed elements of �
(in the considered case when � � is the companion operative
space of an iterative combinatory space). Another represen-
tation of

���
(due to N. Georgieva) which is valid in all

G � spaces (and consequently makes no use of
� � L � R )

will be given in Exercise 2 after this section.

Proposition 5. Let ����� I ����� � � L � R ����� T � F 	 be an
iterative combinatory space. Then for all ����� in ��� the
equality

���������� � � ��� I � ��� � ��� I �
holds.

Proof. By Proposition 1.8, Corollary 4.4 and Proposition
1, we have

���������������� � � �"!#����� I ���
����� � L �"!#��� R � R � � ��� I ��� R � � ��� I � � R � L � � ��� I ���

� � ��� I � ��� � ��� I ���%$
Corollary 2. If ����� I ����� � � L � R ����� T � F 	 is an iter-

ative combinatory space then, for all ����� in ��� the
equality

���������� R � � ��� I � � R � L � � ��� I �
holds. $

Besides the representation of �������� from Proposition
5, some other ones will be given which again make use of
composition, � � � iteration and some fixed elements of ���
but the operation � is used in them instead of

� � These
representations will be obtained in the next section by ap-
plication of a theorem about least solutions of a certain
kind of inequalities in G � spaces.
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Exercises

1. Let ��������� I ����� � � L � R ����� T � F 	 be an iterative
combinatory space. Prove that, for all ��������	 in ��� the
equality 


� �� � �"!�����	���� � R � 	�� � R � ��� � � �"! 0 � 1 �
holds.

2. Let ����� I � ��� � L � � R �
	 be an arbitrary G � space.
Prove that for all natural numbers n and arbitrary � ��� �� �

61�������� in � the following equality holds:
n���
� � ��� �������� ��� ���� �

n � � n



n n +
� � � �� R � � � � R � � ������� � R � � � � R � � � ���
� 0 � 1 �������� n ���

n n � � � �

Hint. Use Exercise 2.5.

3. Let ����� I � ��� � L � � R �
	 be an arbitrary G � space.
Prove that a least element � in � exists, and the equal-
ity

�
� ��� holds for all

�
in ��� Write an explicit ex-

pression for the element ���
4. Let ����� I � ��� � L � � R �
	 be an arbitrary G � space, and

let
�����

be the binary operation in � defined by
����� � ����	���� ���
� 	��������

Prove that ����� I � ����� � R � � L �
	 is also a G � space.

6. Left-homogeneous mappings
and least fixed points connected with them

For the time being, we shall suppose that a semigroup �
is given. Two definitions will be formulated under this as-
sumption.

Definition 1. Let m be a positive integer, and � be a
mmapping of � into ��� The mapping � is called left �

homogeneous iff

� ��� � �������� � � ��� � � � � ���������� ��
m

�
m

for all
� ��� ���������� in ����

m
For example, if � is the semigroup of an operative

space ����� I � ��� � L � � R �
	 then the operation
���

(in its
initial form - with only two arguments) is a left-homogene-

�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�
61 The case of n � 1 corresponds to Lemma 3 in the pa-

per Georgieva [1980].
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�
ous mapping of

�
into

�
(and ��� with m arguments is

ma left-homogeneous mapping of
�

into
�
).

Definition 2. Let m be a positive integer. An m � ary
join mechanism in

�
is a m + 1 � tuple

(1) ���
	��	�������	�����	�
m

mwhere � is a mapping of
�

into
� 	 �	�������	�� are�

melements of
� 	 and

������	�������	�����������	 i � 1 	�������	 m 	�
m i i

for all ��	�������	�� in
� ��

m
For example, if again

�
is the semigroup of an oper-

ative space � � 	 I 	�����	 L ��	 R ����	 and � is ����	 considered
� � �! �! � m-

�
as an m � ary operation, then ���
	 0 	 1, ������	 m � 2, R � �
is an m � ary join mechanism.

Here is a statement which connects the notions intro-
duced by the above definitions.

Proposition 1. Let m be a positive integer, " be a
mleft-homogeneous mapping of
�

into
�
, and ���
	��	�������	�

��� be an m � ary join mechanism in #$��� Then for all ��	
m

�
������	�� in

�
the equality

m
"�����	�������	����%��������	�������	����$"��
�	�������	��&��

m
�

m
�

m
holds.

Proof. Let ��	�������	�� be arbitrary elements of
� 	�

m
and let '(��������	�������	����
� Then�

m
"�����	�������	����%��"���')�	�������	�')�&�%��'�"��
�	�������	��&�
��

m
�

m
�

m *
Corollary 1. In an operative space, each left-homogene-

ous mapping is monotonically increasing.

Proof. We can use the operation ��� as �
	 and ��� is
monotonically increasing. *

From now on in this section, a G � space
#$����� � 	 I 	�����	 L ��	 R ����	

(in the sense of Definition 5.2) is supposed to be given.

Theorem 1. Let n be a positive integer, let " be a
n+
�

left-homogeneous mapping of
�

into
� 	 and let

� � �(1) +(��"�� 1, ������	 n, 0 �
�
Then, for all ,�	�������	�,�	�- in

� 	/.��0�!"���,�	�������	�,�	���-
��
n

�
n

exists, and the following equality holds
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.��0�!"���,�	�������	�,�	���-
� ��������,�	�������	�,�� � +�-��!+0��
n

�
n

In particular,

(2) .��0�!"���,�	�������	�,�	��
�%��������,�	�������	�,�� � +��!+0��
n

�
n

Proof. One easily checks the equality

"���,�	�������	�,�	���-
�%����������- , ������,�	�������	�,����$+0��
n

�
n

Using this equality and Proposition 5.3, we get the needed
conclusion. *

Corollary 2. If n is a positive integer and " is a
n+
�

left-homogeneous mapping of
�

into
� 	 then the mapping

n�
of

�
into

� 	 defined by
� ��,�	�������	�,��%��.��0�!"���,�	�������	�,�	��
��	�

n
�

n
is also left-homogeneous.

Corollary 3. Let � � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an iter-
ative combinatory space. Then, for all -
	�� in

� 	 the
equalities

� -
	���� � � +-��!+ � � +��!+� � � �
� � � �hold, where + ���	�(��
 0 	 1 ��	/+ ���	�(��
 0 -
	 1 �
�� �

Proof. We apply Theorem 1 to the mappings " and "� �
defined by " ��,
	��
�%���	�(��
 �
	�,
��	/" ��,
	��
�%���	�(��
 ��-
	�,
��	� �
and we set ,(� I in the obtained equalities. *

In the proof of the above corollary, we applied Theorem
1 to a left-homogeneous mapping " such that it was clear
how to find the corresponding least solution without appli-
cation of this theorem (the theorem was used only for ob-
taining a new expression for the solution). Now we shall
give an example, where the situation is different.

Example 1. Let again � � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an
iterative combinatory space, and let " be the mapping of��

into
�

defined by the equality

"���,�	�, 	��
�%���	� ��
 �	� ��
 ��-�	�, ��	��	� ��
 ��- 	�, ����	� �  � � � � � �
where ��	���	�� 	�-�	�- are some given elements of

� � � � � �
Then the application of Theorem 1 gives the equality

.��0�!"���,�	�, 	��
�%��������,�	�, � � +��!+
	� � � �
where

� � � � � � �+(��"�� 1 	 2, 0 �%���	� ��
 �	� ��
 0 -�	 1 ��	��	� ��
 0 - 	 2 ���
� � � � �
However, it is not seen, say, how .��0�!"���,�	�, 	��
� could be� �
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expressed by means of composition, branching and iteration
using only ��	���	�� 	�-�	�- 	�,�	�, and possibly L 	 � � � � � �

� � �R 	 T 	 F (the definition of 0 	 1 	 2 makes use of combi-
nation).

Theorem 1 and Corollary 2, together with Theorem 4.1,
allow to find by successive elimination the least solution
����	�������	��&� of an arbitrary system of the form�

m
(3) � � "&��,�	�������	�,�	���	�������	�����	 i � 1 	�������	 m 	

i i
�

n
�

m
m+nwhere "�	�������	�" are left-homogeneous mappings of
��

m
into

� � The application of Theorem 4.1 shows that such a
least solution exists, and the obtained expressions for ��	�
������	�� are left-homogeneous with respect to ,�	�������	�, .

m
�

m
However, there is a shorter way to reach a similar result,
and with simpler (in some respect) expressions for ��	�������	�
� .
m

Theorem 2 (Generalization of equality (2)). Let m and
n be positive integers, and let "�	�������	�" be left-�

m
m+nhomogeneous mappings of
�

into
� � Let

� � � � � �! �! � � m-
�

+ ��" � 1, ������	 n 	 0 0 	�������	 0 m � 2 	 0 R � ��	
i i � 1 	�������	 m 	

+(� ������+�	�������	�+��
��
m

Then, for every choice of ,�	�������	�, in
� 	 the system of�

n
inequalities (3) has a least solution with respect to ��	�
������	�� , and this least solution is given by the expres-

msions
�! �! �� ��������,�	�������	�,�� � +��!+ i � 1 	 i � 1 	�������	 m � 1 	

i
�

n
m-
�

� ��������,�	�������	�,�� � +��!+ R � �
m

�
n

Proof. In order to apply Proposition 4.3 (with ,�	�������	�
n+
�

, as parameters), we define a mapping " of
�

into
�

n
by means of the equality

"���,�	�������	�,�	��
�%��"&��,�	�������	�,�	�
n

 �
n � � �! �! � m-

�
� 0 	�� 1 	�������	�� m � 2 	�� R � ��	

where

"&��,�	�������	�,�	���	������ ���%��������" ��,�	�������	�,�	���	������ ����	 �
n

�
m

� �
n

�
m

������	�"&��,�	�������	�,�	���	������ �����
�
m
�

n
�

m

It is easy to check that equality (1) holds. Since " is
left-homogeneous, Theorem 1 can be applied, and we get the
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equality (2). Now an application of Proposition 4.3 (having
in mind Corollary 1) immediately yields the needed result. *

Corollary 4. Let m and n be positive integers, and
m+nlet "�	�������	�" be left-homogeneous mappings of
�

into�
m� � Then there are left-homogeneous mappings

� 	�������	 ��
m

nof
�

into
�

such that, for every choice of ,�	�������	�,�
n

in
� 	/� � ��,�	�������	�,���	�������	 � ��,�	�������	�,���� is the least� �

n m
�

n
solution of the system of inequalities (3).

Example 2. Suppose again that � � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F �
is an iterative combinatory space. Consider the system of
the two inequalities

� � �	� ��
 �-�	�,
��	� � ��
� � �	� ��
 � - 	�� � ��	� � � � �

where ��	�� 	�-�	�- 	 � are some given elements of
� � It� � � �

is not difficult to find the least solution of this system
by the elimination method based on Theorem 4.1. Namely, we
can eliminate � making use of the fact that�

.�� �!�	� ��
 �-�	�,
�%��, � -�	�� ���� � �� � �
Thus we reduce the system to the inequality

� � �	� ��
 � - 	�, � -�	�� � � ��	� � � � � �
and then we can use the fact that

.�� �!�	� ��
 � - 	�, � -�	�� � � �%��, � -�	�� � � � - 	������� � � � � � � � � �
Hence the least solution of the given system is

� ��, � -�	�� ��	/� ��, � -�	�� � � � - 	������� � � � � � � �
Note however that the expression for � contains two appli-�
cations of iteration, and, on the other hand, if we find the
least solution by application of Theorem 2, the correspond-
ing expression will contain only one application of iter-
ation. Indeed, the least solution according to Theorem 2 is

�� ��, � +��!+ 0 	/� ��, � +��!+ R ��	� �
� � � � � �where +(���������	� ��
 0 -�	 1 ��	��	� ��
 0 R ��- 	 0 ���
� Of course,� � � �

a comparison of the two expressions for � in the case�
,(� I gives the equality

� -�	�� � � � - 	���� � � +��!+ R ��	� � � �
i. e. the equality

� -�	�� � � � - 	���� � R
� + R 	 L �!+ R ���� � � �
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There is a connection of some of the considered systems
with goto � programs. Suppose

�
is the partially ordered

semigroup
� � � � of all partial mappings of a given set

�
p

into itself, and, of course, I � I holds. Suppose a vari-
M

able V for elements of
�

and a finite set L of labels are
chosen, L having more than one element, and a label e from
L is chosen to be the terminal one (we do not suppose a
choice of initial label to be made, since this is unessen-
tial for our purpose). We shall consider any program whose
instructions are of the forms

(i) l : V: ����� V � ; goto l �
(ii) l : if P � V � then goto l � else goto l �
(iii) e : end

with l 	 l ��	 l ��� L 	 assuming that, for each label, there is
exactly one instruction beginning with this label, and all
� and P occurring in the instructions are elements of

�
and partial predicates on

� 	 respectively. For transforming
the above description of the considered program into de-
scription of a mathematical object, we shall denote by �
the set of all partial predicates om

� 	 and we shall repre-
sent the program by a function A whose domain is the set
L ��	 e 
 and whose values belong to the union of the sets����

L and � � L 	 assuming that A � l �%����
	 l ��� iff instruc-
tion (i) occurs in the program, A � l �%��� P 	 l ��	 l ��� iff in-
struction (ii) occurs in the program � For defining the se-
mantics of such a program, we consider the partial mapping
S of the set L

� �
into itself defined as follows:� � l ��	 t � if A � l �%����
	 l ����	 �
� s � � t 	

S ��� l 	 s ���%���%� l ��	 s � if A � l �%��� P 	 l � 	 l ����	 P � s � � true,�
� l ��	 s � if A � l �%��� P 	 l � 	 l ����	 P � s � � false

( S ��� l 	 s ��� is considered to be not defined if l � e 	 or
A � l �%����
	 l ��� s � dom �
	 or A � l �%��� P 	 l ��	 l ��� and
s � dom P ). Suppose u 	 v are elements of

� 	 and l � L ��	 e 
 �
Then v is called the result of execution of the program
starting with initial state � l 	 u � iff there is a finite
sequence of elements of L

� �
beginning with � l 	 u � and

ending with � e 	 v � such that each term in this sequence
after the initial one is equal to the value of S at the
previous one.

Now suppose that L ��	 l 	 l 	�������	 l 
 	 where l 	 l 	 �
m

 �
������	 l are distinct, and l � e. For each i in the set

m


	 1 	�������	 m 
 	 let � be the partial function in
�

de-
i

fined in the following way: ��� u �%� v iff v is the re-
i

sult of execution of the program starting with initial state



112 II. COMBINATORY SPACES

� l 	 u ��� The functions �	�������	�� are called the tail
i

�
m

functions of the given program (cf. the papers Mazurkiewicz
[1971], Blikle [1972, 1972a, 1973]). They form the least
solution of a system of inequalities in

� 	 namely

(4) � � "&� I 	���	�������	�����	 i � 1 	�������	 m 	
i i

�
m

m+
�

where the mappings "�	�������	�" of
�

into
�

are de-�
m

fined in the following way:

a) if A � l �%����
	 l � then
i j

"&����	���	�������	����%��� � ;
i

 �
m j

b) if A � l �%��� P 	 l 	 l � then
i j k
"&����	���	�������	����%��� P ��
 ��	�����	
i

 �
m j k

assumed the arrow here has the usual meaning as denotation
of branching controlled by a predicate. We shall call (4)
the characteristic system of the given program.

It is clear that the mappings " defined in the above
i

way are left-homogeneous. Hence the results proven in this
section are applicable to them. In particular, Theorem 2 can
be applied to the system (4). It is seen thus that the tail
functions can be expressed by means of composition, ��� and
iteration using only some relatively simple elements of

� 	
which are constructed correspondingly to the instructions of
the program. Therefore it is justified to regard Theorem 2
as a generalization of a result from the paper Böhm and
Jacopini [1966] (cf. also Cooper [1967]) about the equival-
ence of goto � programs to structured ones.

Example 3. Suppose #$� is the companion operative space
of a combinatory space #�� � � of the kind considered inp
Example 1.2.Let us set ,(� I in the system of two inequal-
ities from Example 2, and let us introduce additional un-
knowns � 	���	�� for the expressions �-�	�� - 	�� � 	�

4 5
�� � � �

respectively, together with corresponding inequalities
(written below). Then we obtain the following system of five
inequalities (equivalent to the initial system in the sense
of the elimination from Section 4):

� � �	� ��
 � 	 I ��	� � �
� � �	� ��
 ��	�����	� �

4 5
� � �-�	� ��
� � � - 	
4

� �
� � � � �
5

�
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This new system is the characteristic system of the follow-
ing program:

l : if H �	� � V ��� then goto l else goto l� � �
6

l : if H �	� � V ��� then goto l else goto l� �
4 5

l : V: � - � V � ; goto l� � �
l : V: � - � V � ; goto l
4

� �
l : V: � � � V � ; goto l
5

�
e : end

62The flow diagram of this program is shown on Figure 1.
This diagram makes intuitively visible the fact that

� � � -�	�� ��	 � � � -�	�� � � � - 	����� � � � � � � �
for the considered program.

Remark 1. In our treatment of goto � programs, we re-
stricted ourselves only to instructions of the forms (i),
(ii), (iii). If more complicated instructions were allowed,
it would be possible to write a program whose characteristic
system is the system of inequalities from Example 2 itself
(without additional unknowns introduced). Here is such a
program (we omit the general exposition of the syntax and
semantics of the larger class of programs to which this pro-
gram belongs):

l : if H �	� � V ��� then V: � - � V � ; goto l else end� � � �
l : if H �	� � V ��� then V: � - � V � ; goto l else� � � �

V: � � � V � ; goto l �
The discussed connection of the considered systems of

inequalities with the algebraic study of goto � programs sup-
ports a point of view that such systems can be in some sense
regarded as goto � programs in the G � spaces in question. We
note also that the case of Theorem 2 with n > 1 can be re-
garded as corresponding to goto � programs with more than one
exit point.

We shall prove one more result which, in the case of
iterative combinatory spaces, enables obtaining for the
least solutions of systems of the form (3) certain expres-
sions different from the expressions given by Theorem 2. For
the sake of simplicity, we shall restrict ourselves to the

�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�
62 No starting point for the execution of the program is

indicated on the diagram, since none of the labels of the
program is chosen to be the initial one; of course, it would
be convenient to start execution from the uppermost if �
statement, and thus to choose l to be the initial label.�
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������������������������������������������������������ ���� ���	�
 ���	 � � ���	 � � �������������������������������	 � �	 � if ���� ���
��� ��� ������������������� � := � ���
� �� � � ��	 then �� � ��	 � ���������������������������� � ��	� ����	�����
else��

������������������������������ � := �����
� �
� ������������������������������

���������������������������������������������������� ���� ���	�
 ���	 � � ���	 � � �������������������������������	 � �	 � if ���� ���
��� ��� ������������������� � := � ���
� �� � � ��	 then �� � ��	 � ���������������������������� � ��	� ����	�����
else�

����������
end ����������

Figure 1. Flow diagram of the program in Example 3

case of n � 1 �
Theorem 3. Let #���� � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an iter-

ative combinatory space, m be a positive integer, "�	�������	�
m+
�

" be left-homogeneous mappings of
�

into
� 	/���
	�� 	

m


�	�������	���� be an m + 1 � ary join mechanism in
� 	 the el-�

m
ements � 	��	�������	�� being normal. Let � , � and � be �

m
elements of

�
which satisfy the following conditions:

(i) �)��� � and 
�)����"&�
� 	��	�������	��&��	 i � 1 	�������	 m;

i i
 �

m
(ii) there are normal elements ��	�������	�� such that

m
�)��� F � and �)��� T ��	 i � 1 	�������	 m; 

i i
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63(iii) �)��� I �
Then the elements

� � � � �
	����$�&	 i � 1 	�������	 m 	
i i

form the least solution ����	�������	��&� of the system of in-�
mequalities

(5) � � "&� I 	���	�������	�����	 i � 1 	�������	 m �
i i

�
m

Proof. Let �%� � �
	������ Then, by Proposition 3.4, we have
the equalities

����� � 	 
������� �)� 	 i � 1 	�������	 m �

i i
From here, we get

� � � � �)��� � �$"&�
� 	��	�������	��&�%�
i i i

 �
m

"&��� ��� 	�� ���	�������	�� ���&�%�
i

 �
m

"&� I 	 ��	�������	 ���
i

�
m

for i � 1 	�������	 m � Thus ���	�������	 �&� is a solution of�
m

the system (5). Suppose now � � 	�������	 � � is an arbitrary�
m

solution of this system, i. e.
� � "&� I 	 � 	�������	 � ��	 i � 1 	�������	 m �
i i

�
m

We have to prove that
� � ��	 i � 1 	�������	 m � In order to
i ido this, we set

� ����� I 	 � 	�������	 � ��
m

and denote by � the set of all elements of � having the
form � x 	 where i � 	 0 	 1 	�������	 m 
 	 x � � � We shall prove the

i
inequality

� � �	�(��
 � �
	��
��	
�

and the fact will be established that � is invariant with
respect to �0� The validity of the above inequality is seen
from the following equalities and inequalities:

� � x � x ���	�(��
 � �
	��
��� x 	 
� � x � �

x
� "&� I 	 � 	�������	 � � x �

i i i
�

m� "&�
� 	��	�������	��&� x � � �)� x �
i

 �
m i

�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�
63 The existence of such elements �
	��
	�� follows from

the assumption that ���
	�� 	��	�������	���� is a join mechan- �
mism in

� �
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�	�(��
 � �
	��
��� x 	 i � 1 	�������	 m �
i

To prove the other statement concerning �!	 let us suppose
that

�
and

�
are elements of

�
satisfying the inequal-� �

ity
� � � � Then the inequality

� � � � � holds, as seen� � � �
� �

from the inequalities
� � � � � 	 i � 0 	 1 	�������	 m 	�

i
�

i
using the monotonic increasing of the mappings "�	�������	�"�

m
and the following equalities which are valid for t � 1 	 2 �

� �)� x � � � x 	
t


t


� �)� x � � "&�
� 	��	�������	��&� x �
t i t i

 �
m

"&� � � 	 � �	�������	 � �&� x 	 i � 1 	�������	 m �
i t


t
�

t m
Now we are in a position to apply the definition of iter-
ation, and its application shows that

� � � �
�
�

From here, we get
� � � � � � ��������	 i � 1 	�������	 m �
i i i i *

Corollary 5. Let #���� � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an iter-
ative combinatory space, and ���
	�� 	��	���� be a ternary � �
join mechanism in

� 	 the elements � 	��	�� being normal. � �
Let � 	�� , ��	���	��
	��
	�� be elements of

�
satisfying   

the following conditions:

(i) �)��� � 	 
�)� � � � 	� � 
�)� ���	� ��
 � ��	�� ��� ;�  �  �

(ii) there are normal elements ��	���	�� such that � �
�)��� F � and �)��� T ��	 i � 1 	 2 ; 

i i
(iii) �)��� I �

Then the equalities

(6) � � ��	�� � � � � � �
	����$�	    �
(7) � � ��	�� � � � � �
	����$�   �
hold.

Proof. Using the elimination method, it is easy to see
that � � � ��	�� � � 	�� � ��	�� � � is the least solution      
����	�� � of the system� �
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� � � � 	� � 
� � �	� ��
 � ��	����
��  �  

This system can be written in the form

� � " � I 	���	�� ��	� � � �
� � " � I 	���	�� ��	� � � �

where

" � � ,��� �!� � 	 " � � ,��� �!�	� ��
 � ��	�, ���
�� �� �  � ��  �  
But conditions (i)-(iii) in the corollary are exactly the
conditions (i)-(iii) of Theorem 3 for the case of m � 2 and
for the above "�	�" � An application of the theorem for� �
this case yields the equalities (6), (7). *

Example 4. Let #���� � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an
iterative combinatory space, and let

����� F 	 I ��	 � ��� T 	�� T 	 I ����	 � ��� T 	�� F 	 I ���
� � �
3It is easy to construct a mapping � of
�

into
�

such
that ���
	�� 	��	���� is a join mechanism, namely the map- � �
ping � defined by � �
(8) ������	���	�� �%��� L ��
 � L R ��
 � R 	�� R ��	�� R �
� � � � � 
Conditions (ii) and (iii) in the above corollary are obvi-
ously satisfied if we set �(� L 	 �(� R � Suppose now some
elements � 	�� , ��	�� of

�
are given. Then, by the co-   

rollary, the equalities

� � ��	�� � � � R
� �
	 L �!� T 	�� T 	 I ����	   

� � ��	�� � � R
� �
	 L �!� T 	�� F 	 I ���  

hold with

�(�����
� 	�� � 	��	� ��
 � ��	�� �����
� �   �  �
We shall not write explicitly the result of the actual
substitution in the right-hand expression in (8), but we
note that the following slightly different � also
satisfies the conditions (1):� � � ��(��� L ��
 � L R ��
 � � R 	��	� R ��
 � + R 	�� � R ����	�� R ��   �  � 
(this � is equal to the other one in the cases when R is
a normal element).

Of course, infinitely many other examples of a similar
nature are possible. For some of them, see Exercise 5.
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Exercises

1. Construct a G � space with a binary join mechanism
whose first component is not monotonically increasing (hence
not left-homogeneous).

Hint. In an appropriate operative space of the kind con-
sidered in Exercise 2.1, set

��� �
	 � �%������� �
	 � � ��� � �
	 � ��	
where � is a suitable mapping of

� � � � into itself.m
2. Let #$����� � 	 I 	�����	 L ��	 R ��� be the companion oper-

ative space of an iterative combinatory space #�� � � 	 I 	�� 	
�
	 L 	 R 	��
	 T 	 F ��� For any �
	 �

in
� 	 set�

��� �
	 � �%� � R � � � � R � � R �
(compare with Proposition 5.4). Prove that ���
	 L � R ��	 R � L ���
is a binary join mechanism in #$��	 the mapping � is mon-
otonically increasing, but it is not left-homogeneous.

Hint. For proving that � is not left-homogeneous, con-�
sider ��� �
	 � � R � �

3. Let #���� � 	 I 	�� 	��
	 L 	 R 	��
	 T 	 F � be an iterative
combinatory space, m be a positive integer, and ���
	��	�
������	���� be an m � ary join mechanism in

� 	 the elements
m

�	�������	�� being normal. Show that elements ��	�������	���
m

�
m-
�

and � of
�

can be generated from I 	 T 	 F by means of �
so that ��� ��	�� 	�������	 � � is also an m � ary join mechan-

mism in
�

if � � is the mapping of
�

into
�

defined by

� ������	�������	����%���	� ��
 � �
	��	� ��
 � �
	������$	�
m

� � � �
�	� ��
 � �
	��	� ��
 � �
	�� �
���)�����$���
�

m-
�

m-
�

m-
�

m-
�

m

4. Write a goto � program corresponding to the inequality

� � �	� ��
 �	� ��
 ��-�	 � ��	��	� ��
 ��- 	 � ��� � � � � � �
in the case when #$� is such as in Example 3. Draw also the
corresponding flow diagram.

5. To obtain other examples of the sort of Example 4,
apply Corollary 4 to the following cases:�

(a) ����� F 	 I ��	 � ��� T 	 I � 	 � ��� T 	 I �$� F 	 I � ; � �
(b) ������� F 	 I ��	 I ��	 � ����� T 	 T ��	 I ��	 � � ��� T 	 F ��	 I � ; � �

� � �(c) ��� 0 	 � � 1 	 � � 2 � � �
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7. Some formal systems for the theory
of iterative combinatory spaces

The definition of the notion of a combinatory space giv-
en in Section 1 can be formalized in a certain first-order
language with variables for the elements of the set

�
and

variables for the elements of the set � from the combina-
tory space � ��� I � � ����� L � R ����� T � F 	�
 Unfortunately, the
definition of iteration (Definition 3.1) uses a quantifier
on arbitrary subsets of ��
 In order to obtain a first-order
formalization comprising also iteration we shall add to the
above-mentioned language also variables for such subsets.
The formalization which will be exposed below is essentially
one which is used in the papers Skordev [1984 a, 1989].

Let f
�

f
�

f
� 
�
�
 � c

�
c
�

c
� 
�
�
 and s

��  � �  � �
s
�

s
� 
�
�
 be the variables for the elements of

���
for �

the elements of � and for the subsets of � � respectively.
The alphabet of the formal system contains also the letters
L
�

R
�

T
�

F
�
the sign � � round and square brackets, the

comma sign, the equality sign, the inequality sign � � the
sign � � the propositional connectives � ���������������� �

and the quantifiers � and ��
 The notion of a func-
tional expression is defined by means of the following in-
ductive definition:

(i) the empty string � is a functional expression;

(ii) whenever  ��!"��#���$
are functional expressions,

then the strings  f �  c (for i
�
0
�

1
�

2
� 
�
�
 ),  L �

i i R �  T �  F �  ( ! , # ) �  ( ! � # , $ ) and  [ ! , # ] are
also functional expressions.

The equalities and the inequalities between functional ex-
pressions, as well as the strings c % s �

i
�
j
�
0
�
1
�
2
�

i j
�
�
 � are the atomic formulas of the system, and arbitrary
formulas are constructed from the atomic ones by using the
propositional connectives and the quantifiers (quantifica-
tion is permitted with respect to each of the three sorts of
variables).

Let & � � ��� I � � ����� L � R ����� T � F 	 be an iterative com-
binatory space. A valuation (of the variables) in & is an
arbitrary mapping v having the set of all variables as its
domain and transforming, for all i in ' , the variables f

�
i

c and s into elements of
���

elements of � and subsets
i i

of � � respectively. The value () �( of an arbitrary function-
al expression  at a given valuation v in & is an el-
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ement of
�

defined recursively by means of the equalities

()� ( � I
� () f ( � () �( v � f � � () c ( � () �( v � c � �

i i i i() L ( � () �( L � () R ( � () �( R � () T ( � () �( T � () F ( � () �( F �
() ( ! , # ) ( � () �( � � ( ! ( � ( # (�� �

() ( ! � # , $ ) ( � () �( � � ( ! ( � ( # ( � ( $ (�� �
() [ ! , # ] ( � () �(���( ! ( � ( # (�� 


An easy induction shows that, for any two functional
expressions � and � � the result �	� of their concatena-
tion is also a functional expression, and the equality(
�	��( � (
��(�(
��( holds.

The truth definition for atomic formulas is obvious: the
formulas

! � #���! � # and c % s are regarded to be true at
i j

the valuation v iff ( ! ( � ( # ( in & � ( ! (�� ( # ( in & and
v
�
c � % v � s � � respectively. Starting from the truth notion
i j

for atomic formulas, we expand it on arbitrary formulas in
the usual way.

The axioms of the considered formal system are divided
to logical and special ones. The logical axioms have the
traditional forms for a Hilbert-style formalization of the
predicate calculus. Namely, we take as logical axioms all
formulas of the following kinds, where � �����

are ar-
bitrary formulas of the considered system, � is a variable,
and  is a expression of the same type as � (i. e.  is
a functional expression in the case when � is a variable of
the form f

�
and  is a variable of the form c or of the

i i
form s in the case when � is a variable of the same

i
form):

� ��� � � ��� ��� � � � ����� � ��� ��� � ��� � � ����� ��� ��� � � ����� � �
� ��� ��� � � � ��� ������� � ��� � ������ ��� � �����

� ��� � � ��� � ��� � � � � ����� � ��� ��� � ����� � ��� � � ��� ����� ��� �
� � ����� � ��� ��� � ��� � � � ��� ����� � � ��� ��� � �
� � � ��� � ��� � � ����� � � � � � ��� � ��� � � ��� ��� �

� � ����� � ��� ��� � ��� ��� ��� � � � ��� ��� �
����� ��� � �  ������ � � �  ������ ��� �	����


The special axioms are a finite number of formulas, expres-
sing in some sense the definition of the notion of an itera-
tive combinatory space, and an infinite variety of formulas
obtained from a suitable comprehension scheme. The special
axioms of the first sort are the following ones, where, for
the last of them, the convention is adopted that
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! � #
s �

is an abbreviation for the formula

� c
�
c % s ��� !

c � # c � �� � � � �
whenever

!
and

#
are functional expressions not contain-

ing c (note that (1) - (16) correspond to 1.(1) - 1.(16) ):�
(0 ) f � f �� � �
(0 ) f � f �

f � f ���
f � f � �   � � 

(0 ) f
�
f

� �
f � f �

f � f ��  �  � � 
(0 ) f � f �

f � f ���
f f � f f

�
3

�  �
3

� � 
3

(1) � c
�
f c � f c � ��� f � f ��  � � �  �

(2) � c �
(c , c )

�
c � ��  � �

(3) L (c , c )
�
c
� � 

(4) R (c , c )
�
c
� � �

(5) (f , f ) c
�
(f c , f c )

� � �  � � �
(6) ( , f c ) f

�
(f , f c )

�� � � � � �
(7) (c , ) f

�
(c , f )

�� � � �
(8) � � T � F � �
(9) � c �

T c
�
c � ��  �

(10) � c �
F c

�
c � ��  �

(11) (T � f , f )
�
f
� � 

(12) (F � f , f )
�
f
� � �

(13) f (f � f , f )
�
(f � f f , f f )

�
3

�  � �
3


3
�

(14) (f � f , f ) c
�
(f c � f c , f c )

��  � � � �  � � �
(15) ( � f c , f c ) f

�
(f � f c , f c )

� � � �
3 3

 � � �
(16) f � f �

f � f ���
( � f , f ) � ( � f , f )

��  �
3

� � 
3

(17) [f , f ]
�
(f � [f , f ] f , )

� � �  � 
(18) � f � f

�
f � f

���
f f � f f � �

4 5 4 5 4


5


s s� �
f � (f � f f , f )

���
f � f [f , f ] 
� � � 

3
�

3
 �

s s� �
The special axioms of the second sort are all formulas of
the form

(19) � s � c
�
c % s � � ��� �� � � �

where � is any formula without free occurrences of the
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variable s 
�
The rules of inference of the considered formal system

are the usual rules for a Hilbert-style formalization of the
predicate calculus, namely modus ponens and the rules

� ��� � � ��� �
������������������������� �������������������������� ��� ����� �	��� ��� �

where � can be an arbitrary formula, � can be an arbit-
rary variable, and

�
can be an arbitrary formula without

free occurrences of ��

The formal system described above will be denoted by A 


Since all axioms of this system are identically true in any
iterative combinatory space, the same holds for every for-
mula deducible in A

�
i. e. the system is correct. We claim

this system is sufficient for the formalization of most
proofs in this book which concern iterative combinatory

64spaces. First of all we shall note some properties of the
equality which are deducible in A 


Proposition 1. The following formulas (expressing re-
flexivity, symmetry and transitivity of equality and certain
special instances of the the replacement property) are de-
ducible in A :

f
�
f
�

f
�
f

���
f
�
f
�

f
�
f

�
f
�
f

���
f
�
f
�� � �   � �   � � �

f
�
f

�
f
�
f

��� �
f � f

���
f � f � ��  �

3
� � 

3
f
�
f

�
f
�
f

���
f f

�
f f 
�  �

3
� � 

3

Proof. The first three of the above formulas can be eas-
ily derived by using the special axioms (0 ) - (0 ). The� �
forth one can be derived by using (0 ) and (0 ).�

3
�

Proposition 2 (formalization of the statements of Re-
marks 1.3 and 1.4). The following five formulas are deduc-
ible in A :
�������������������������������������������������������������

64 A problem arises in connection with the fact that some
results about iterative combinatory spaces are obtained by
using results about G � spaces (operative spaces with an
iteration), since the language of the G-spaces is not a part
of the language of the iterative combinatory spaces. The
problem can be solved by restriction only to the companion
operative spaces of the considered combinatory spaces. Also
when results concerning more or less arbitrary mappings in�

are used, one can restrict himself to mappings definable
by means of functional expressions.
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� c
�
f c

�
f c � ��� f

�
f
��  � � �  �

(f , f c ) f
�
(f f , f c )

� � � �  � � �
(c , f ) f

�
(c , f f )

�� � � � � �
(f � f c , f c ) f

�
(f f � f c , f c )

��  � � �
3

�
3

 � � �
f � f �

f � f �
f � f ���

(f � f , f ) � (f � f , f ) 
�  �
3 4 5

� �
4


3 5

Proof. The deducibility of the first of the above formu-
las follows from the presence of axioms (0 ) and (1). The�
deducibility of the next three ones follows from Proposition
1 and the presence of the axioms (6), (7) and (15). The de-
ducibility of the last formula can be seen by means of for-
malization of the proof of the corresponding implication in
Remark 1.4 (Proposition 1 and the presence of axioms (0 ),�
(0 ) and (14) - (16) are used).

3
�

Corollary 1. The formula

f
�
f

�
f
�
f

�
f
�
f

���
(f � f , f )

�
(f � f , f )�  �

3 4 5
� �

4


3 5
is deducible in A 


Proposition 3 (monotonicity of combination). The formula

f � f �
f � f ���

(f , f ) � (f , f )
��  �

3
� � 

3
is deducible in A 


Proof. Formalization of the proof of Proposition 1.1. �

Corollary 2. The formula

f
�
f

�
f
�
f

���
(f , f )

�
(f , f )�  �

3
� � 

3
is deducible in A 


A formalization of the proofs of Propositions 1.2 and
1.3 becomes now also possible, and we conclude that the for-
mulas

c c
�
c
�

(T c � f , f )
�
f
�

(F c � f , f )
�
f�  � �  �  �  � �

are also deducible in A 

Proposition 4 (minimality of iteration). The formula

f � (f � f f , f )
���

f � f [f , f ]� � � 
3

�
3

 �
is deducible in A 


Proof. Using a suitable axiom of the form (19), we see
the deducibility of the formula

(20) � s � c
�
c % s ��
� � � �

The following formula (expressing the statement of Proposi-
tion 1.9) is also deducible in A :
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(21) � c
�
c % s � ��� �

f � f
� �

f � f �� � � �  � 
s �

(this can be seen using the presence of the axioms (0 ),�
(0 ) and (1) ). From the deducibility of (21), using again

3
the presence of the axioms (0 ) and (0 ), we infer the de-�

3
ducibility of the formula

� c
�
c % s � ��� � f � f

�
f � f

���
f f � f f ��
� � �

4 5 4 5 4


5


s s� �
From here, taking into account the axiom (18), we see the
deducibility of the formula

� c
�
c % s � ��� �

f � (f � f f , f )
���

f � f [f , f ] ��
� � � � � � 
3

�
3

 �
s s� �

Now the proof can be completed by using the deducibility of
(20) and (21). �

Proposition 5 (monotonicity of iteration). The formula

f � f �
f � f ���

[f , f ] � [f , f ]
��  �

3
� � 

3
is deducible in A 


Proof. Formalization of the proof of Proposition 3.3. �

Corollary 3. The formula

f
�
f

�
f
�
f

���
[f , f ]

�
[f , f ]�  �

3
� � 

3
is deducible in A 


It is desirable to have also the formula

(22) c
�
c

��� �
c % s ���

c % s � �  � � �
at our disposal. Unfortunately this formula is not deducible
in the system A (cf. Exercise 2). This fact is no serious
obstacle for the formalization of the proofs we are inter-
ested in, but anyway it makes a certain additional degree of
carefulness necessary when treating problems of formaliz-
ability of proofs in A 
 Therefore the non-deducibility of
the formula (22) can be regarded as a defect of the system
A 


From the point of view of convenience for the formaliza-
tion, the system A has also another defect. Suppose, for
example, we have to express a statement of the form � x %�� �
where � is some element of

���
x is some element of � �

and � is some subset of � (an iterative combinatory space� ��� I � � ����� L � R ����� T � F 	 being given). Suppose also that� � x and � are the values assigned to the variables
f
�

c and s
�
respectively. Then it would be natural� � �
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to write f c % s for expressing the above statement.� � �
However, such an way of writing is not admissible in the
system A

�
since f c % s is not a formula of that system.� � �

Therefore we would be forced to use a more complicated way
of writing in the considered situation (for example, the
formula � c �

f c
�
c
�
c % s � could be used). � �   �

Now an extension A
�

of A will be indicated, such that
both mentioned defects will be removed, and the extension
will be shown to be conservative with respect to formulas
not containing the sign %�
 For obtaining A

� �
the syntax of

A is extended by adopting atomic formulas of the form �% s �
where  is an arbitrary functional expression,

j
instead of the atomic formulas c % s 
 The logical axioms

i j
and the rule of inference of the system A

�

have the same
form as the logical axioms and the rules of inference of A

�
with the difference that arbitrary formulas of A

�

can be
used in them instead of formulas of A 
 As to the special
axioms of A

� �
they comprise the formulas (0 � 18), all�

formulas of the form (19), where � is any formula of A
�

without free occurrences of s
�
and, in addition, the fol-�

lowing two formulas:

f
�
f

��� �
f % s ���

f % s � � �  � � �
f % s ��� � c �

f
�
c ��
� � � � �

Since the formula (22) is deducible in the system A
� �

this system is not a conservative extension of A 
 However,
the following weaker conservativeness property (mentioned
above) is present:

Theorem 1 
 Whenever a formula of A
�

not containing the
sign % is deducible in A

� �
this formula is deducible in A 


Proof. Using induction on the construction of the formu-
las of the system A

� �
to each such formula the notion of a

translation in A is defined. The definition consists of
the following clauses:

1) Each atomic formula having the form of an equality or
an inequality is its own translation.

2) If c does not enter in the functional expression
i then � c �  � c

�
c % s � is a translation of the

i i i j
atomic formula  �% s 


j

3) If � and
�

are translations of the formulas � �

and
� � �

respectively, then the formulas � � � � ����� � �����
� ������� � � ����� ����� and �	��� are translations of the
formulas � � � � � � ��� � � � � ��� � � � � ����� � � � � � ��� � � ����� �
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and �	��� � �
respectively.

Obviously, each formula of the system A
�

has at least
one translation in A

�
all translations of one and the same

formula are congruent each other and each formula of A
�

not containing the sign % is its only translation. Note
also that the translation of a formula has the same free
variables as the formula itself. The proof of the theorem
will be done by proving that each formula deducible in A

�

has a translation deducible in A (consequently, all its
translations are deducible in A ). The reasoning will be by
induction.

First of all, we prove that all logical axioms of A
�

have translations which are logical axioms of A 
 Obviously,
each propositional logical axiom of A

�

has a translation
which is a propositional logical axiom of A 
 Consider now a
logical axiom of A

�

having the form ����� � ��� � � �  ������ �
where � is a variable, and  is a expression of the same
type as ��
 It is easy to observe the existence of a trans-
lation � of � �

such that  is free for � in � and
� �  ������ is a translation of � � �  �������
 Taking such a �
and considering the formula ����� ��� � �  ������ � we find again
a translation which is a logical axiom of A 
 The case of a
logical axiom of the form � � �  ������ ��� �	��� �

is similar.

The special axioms (0 � 17) do not contain the symbol�
% � and hence they are translations of themselves. Hence
these axioms of A

�

again have translations which are ax-
ioms of A 
 As to the special axiom (18) of A

�

, we shall
show the deducibility in A of the equivalence between this
axiom and one of its translations; since (18) is an axiom of
A too, the mentioned translation will turn out to be also
deducible in A 
 To show the deducibility in A of such an
equivalence, it is sufficient to apply the following remark
to each subformula of (18) having the form

! � # : if
!

s �
and

#
are functional expressions not containing c then�

the formula
! � # of A

�

has a translation
�

in A
s �

such that
! � # � ��� is deducible in A 
 And to see the
s �

correctness of this remark, we take
�

to be the formula

� c
� � c �

c
�
c
�
c % s � ��� !

c � # c � ��
i

�
i i

� � �
where c is different from c and c occurs neither in

i
�

i!
nor in

# 
 Then the deducibility of
! � # � ��� in A is
s �

seen on the ground of the deducibility in A of the equival-
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ences

(23) c % s ��� � c �
c
�
c
�
c % s � �� �

i
�

i i
�

� c
�
c % s ��� !

c � # c � ��� �
c % s ��� !

c � # c � �� � � � �
i

�
i i

c
�
c
� !

c � # c ��� !
c � # c 
�

i i i
� �

The last kind of axioms of A
�

which have to be consid-
ered are the formulas of the form

(24) � s � c
�
c % s � � � � � �� � � �

where � �

is a formula of A
�

without free occurrences of
s 
 Given such an axiom, we construct a translation of it�
deducible in A in the following way. We take a translation
� of � �

and a variable c different from c and not
i

�
occurring in ��
 From the fact that � is the translation
of a formula and c is free for c in � � the conclusion

i
�

can be made that the implication

(25) c
�
c

��� � � � � � � c � c ����
i i

�
is deducible in A (this property of translations can be
proved by induction on the construction of � � �

after prov-
ing the deducibility in A of each implication of the form

c
�
c

���  �  � c � c � ��
i i

�
where  is a functional expression). Consider now the fol-
lowing translation of (24):

� s � c
� � c �

c
�
c
�
c % s � � � ����
� �

i
�

i i
�

Using the deducibility of (23) and (25) in A and the fact
that (19) is an axiom of A

�
it is easy to show the deduc-

ibility in A of the above translation (one uses also the
fact that

� c
�
c % s � � ��� ��� �

c % s � � � � c � c ���� � �
i

�
i

�
is deducible in A ).

To complete the proof of the theorem, it remains to
check that the inference rules of A

�

, whenever applied to
formulas having translations deducible in A

�
always yield

formulas with the same property. And no difficulties arise
in checking this. �

A denotation for the set � is also a thing which one
could feel to be missing in the described systems, and es-
pecially in the system A

� 
 The axioms (2), (9) and (10) of
these systems illustrate a way for overcoming the lack of
such a denotation. Namely, we can write � c �  � c � � with

i i
c not occurring in  � for expressing the statement that
i
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the value of  belongs to ��
 In particular, the notion of
a normal element (cf. Definition II.1.2) can be formalized
by using this way. Of course, there is no difficulty to en-
rich the system A

�

by introducing a denotation for �
together with a corresponding axiom (cf. Exercise 4).

For the sequel, a suitable notion of normal functional
expression will be more usable then a straight-forward for-
malization of the notion of normal element. The definition
is by induction:

(i) the empty string � is a normal functional expres-
sion;

(ii) whenever  ��!"��#
are normal functional expres-

sions, then the strings  c (for i
�
0
�

1
�

2
� 
�
�
 ),

i T �  F and  ( ! , # ) � are also normal functional expres-
sions.

It is easy to see that the normal functional expressions
are exactly those functional expressions which contain nei-
ther variables f nor L

�
R
� � or [ 
 Clearly, the re-

i
sult of the concatenation of two normal functional expres-
sions is again a normal functional expression. The next sev-
eral propositions list the most useful properties of the
normal expressions.

Proposition 6. If  is a normal functional expression,
and the variable c does not occur in  then each formula

i
of the kind � c �  c �

c � is deducible in the system A 

i j i

Proof. Induction on the construction of  
 �
Corollary 4. If  is a normal functional expression,

and & is an iterative combinatory space, then the value of in & is a normal element for each valuation of the
variables.

Of course, a direct proof of the above corollary is
straight-forward.

Proposition 7. If
!

and
#

are normal functional ex-
pressions then (

!
,
#
) is also a normal functional expres-

sion, and the formulas L (
!
,
#
)
� !��

R(
!
,
#
)
� #

are
deducible in the system A 


Proof. Formalization of the proof of Proposition 1.4,
using Proposition 6 in the places where the definition of
the notion of a normal element was used. �

Corollary 5. If  is a normal functional expression
then the formulas L (f ,  ) � f

�
R (  , f )

�
f are� � � �

deducible in the system A.
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Proof. Formalization of the proof of Corollary 1.2. �

Proposition 8. If  is a normal functional expression
then the formulas

(f , f )  � (f  , f  ) � �  �
(f � f , f )  � (f  �� f  , f  ) ��  � �  �

all formulas of the kind c  � c and the formulas
i i

(T  �� f , f )
�
f
�

(F  �� f , f )
�
f �   � �

are deducible in the system A.

Proof. Formalization of the proofs of Propositions 1.5,
1.6 and 1.7. �

Proposition 9. If  and � are normal functional
expressions then the formulas

f  � T � ��� [f , f ]  � [f , f ] f  ��  �  � 
f  � F � ��� [f , f ]  �  �  �

are deducible in the system A.

Proof. Formalization of the proof of Proposition 3.4. �

We recommend to the reader to consider from the point of
view of formalization of the proofs some more statements
from the preceding sections (as an example for this, see
Exercise 1 where the statement of Proposition 5.4 is written
in the language of the system A ).

Exercises

1. Show the deducibility in A of the formula

(f � f , f )
�
R [R � f R, L] R [R � R � f R R, L] (f , L � )

��  � � � �
where L � and R � denote (T, ) and (F, )

�
respectively.

2. Let & � � ��� I � � ����� L � R ����� T � F 	 be an iterative
combinatory space,

�
be a set and � be a surjection of�

onto ��
 Let an
� �

� � valuation in & be an arbitrary
mapping v having the set of all variables as its domain
and transforming, for all i in ' , the variables f

�
i

c and s into elements of
���

elements of
�

and sub-
i i

sets of
� �

respectively. Let the value () �( of an arbit-
rary functional expression  at a given

� �
� � valuation

v in & be an element of
�

defined recursively by means
of the same equalities as in the definition of the ordinary
valuations, except that the equality () c ( � () �( v � c � is

i i
replaced by () c ( � () �(�� � v � c ����
 Let the truth definition

i i
for formulas be obtained from this definition in the same
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way as in the case of ordinary valuations (of course, taking
into account which are the admissible values of the vari-
ables c and s now). Show the correctness of the system

i i
A with respect to this semantic. Use this correctness to
show the non-deducibility of the formula (22) in A 


3. Let the notion of translation of formulas of the sys-
tem A

�

into formulas of the system A be defined in the
same way as in the proof of Theorem 1. Show that, for each
formula � �

of A
�

and each translation � of this formu-
la in A

�
the formula � � � � � is deducible in A

� �
and

� �

is deducible in A
�

iff � is deducible in A 

4. Let A

�

be the system obtained from A
�

by means of
C

the following modifications. We add to the alphabet of the
system the letter C

�
and, for each functional expression � using an atomic formula  �% C is allowed (with the

truth condition (  ( %�� ). The additional axiom is c % C ��
and in the axioms ����� ��� � �  ������ � � �  ������ ��� �	��� we
allow  to be C in case � is a variable of the form s 


i
Show that A

�

is a conservative extension of A
� �

i.e. de-
C

ducibility in A
�

is equivalent to deducibility in A
�

for
C

formulas not containing C 




CHAPTER III

COMPUTABILITY IN ITERATIVE COMBINATORY SPACES

1. Explicit and fixed-point definability
in partially ordered algebras

The notion of iterative combinatory space introduced in
Chapter II encompasses as special cases some partially or-
dered semigroups of functions or function-like objects stu-
died in Chapter I. In each of these semigroups, there was a
corresponding notion of relative computability of an element
of the semigroup in some set of its elements. All of these
notions had similar definitions using the operations compo-
sition, combination and iteration in the considered semi-
groups. Since we have these operations in each iterative
combinatory space, it is possible to give in the same spirit
a general definition of relative computability in such a
space, and this will be done in the next section. However,
the corresponding general notion can be regarded as a spe-
cial case of a certain other one, which is still more gener-
al and will be considered now. This will be done with the
purpose of making the further exposition better motivated.

Some drill examples to the definitions in this section
can be found in Exercises 1, 2, 3 after it.

We shall make use of the notion of partially ordered
algebra. The term will mean any ordered pair ���������	� where� is some partially ordered non-empty set, and � is some
set of monotonically increasing operations in ��
 The notion
of operation in � will be understood in the usual way,
namely: each operation has a given arity which is a natural

nnumber, the n � ary operations are mappings of � into �

when n > 0
� and the 0 � ary operations will be identified

with elements of ��
 For n � ary operations with n > 0
�

the monotonic increasing will be understood as in Section
II.4, and all 0 � ary operations will be considered monot-
onically increasing. If ��������� is a partially ordered al-
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gebra then the set of the n � ary operations belonging to
(n)� will be denoted by � 


Remark 1. Ordinary (non-ordered) algebras can be regard-
ed as partially ordered algebras whose partial ordering re-
duces to the equality relation.

Definition 1. Let ��������� be a partially ordered al-
gebra. The set of the explicitly definable elements of �

is introduced by means of the following two inductive
clauses:

(0)(i) all elements of � are considered explicitly
definable;

(n)(ii) whenever
��� � �

n > 0
� and � � 
 
 
 � � are�

n
explicitly definable elements of ��� then

��� � � 
 
 
 � ����
nis also considered explicitly definable.

Of course, the partial ordering in � plays no role in
the above definition, but, however, Remark 1 shows the harm-
lessness of our choice to study partially ordered algebras
instead of ordinary ones.

The explicitly definable elements of � will be called
also explicitly definable operations of arity 0


 The notion
of a explicitly definable operation of non-zero arity will
be introduced in a similar way.

Definition 2. Let ��������� be a partially ordered al-
gebra, and l be a positive integer. The set of the l � ary
explicitly definable operations in � is introduced by
means of the following two inductive clauses:

(i) the operations 	�
����
 
 
 �
i � 1

� 
 
 
 �
l
� and the�

l ioperations

(1) 	�
����
 
�� ��
l

(0)where � � � � are considered explicitly definable;
(n)(ii) whenever

��� � �
n > 0

� and � � 
 
 
 � � are�
n

l � ary explicitly definable operations in ��� the operation

(2) 	�
����
 
 ��� � � 
 � 
 
 
 � 
�� � 
 
 
 � � � 
 � 
 
 
 � 
�����
l

� �
l n

�
l

is also considered explicitly definable.

Remark 2. An immediate corollary of the given defini-
tions is that all operations belonging to � are explicitly
definable. An easy induction shows that, for each explicitly
definable element � of ��� the corresponding operation (1)
is also explicitly definable, and, for each n � ary expli-
citly definable operation

�
with n > 0 and each n � tuple

� � 
 
 
 � � of l � ary explicitly definable operations, the�
n

corresponding operation (2) is explicitly definable too.
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Another statement easily provable by induction is that all
explicitly definable operations in � are monotonically in-
creasing.

A partially ordered algebra ��������� can be extended by
adding some explicitly definable operations to ��
 Remark 2
shows that such an extension preserves the set of the expli-
citly definable operations.

Remark 3. The notion introduced by means of Definition 2
can be reduced to the one introduced by means of Definition
1. To show this, suppose a partially ordered algebra ���������

and a positive integer l are given. Let � �
consist of all

monotonically increasing l � ary operations in ��� and let� �
be supplied with the natural partial ordering in it. For

(0)each � belonging to � � let � �
be the corresponding el-

ement (1) of � � 
 For each positive integer n and each
�

(n)belonging to � � let
� �

be the n � ary operation in � �
such that, for any n � tuple � � 
 
 
 � � of elements of � � ��

n� � � � � 
 
 
 � � � is the corresponding element (2) of � � 
�
n

Consider now the partially ordered algebra ��� � ��� � �	� where� �
consists of the elements 	�
����
 
 
 of � � �

i � 1
� 
 
 
 �

l
��

l i
and of all elements � �

and operations
� �

corresponding to
elements of ��
 Then the l � ary explicitly definable oper-
ations in the algebra ��������� are exactly the explicitly
definable elements of the algebra ��� � ��� � ��


Among the explicitly definable operations certain very
special ones will be singled out by means of the following
definition.

Definition 3. Let ��������� be a partially ordered al-
gebra, and let l be a positive integer. An l � ary operation
in � will be called simple iff this operation has some of
the two forms described in clause (i) of Definition 2 or the
form

(3) 	�
����
 
 ��� 
 � 
 
 
 � 
 � ��
l i i

1 n
(n)where n is some positive integer,

�
belongs to �

and i
� 
 
 
 �

i belong to
�
1
� 
 
 
 �

l � 
�
n

The above definition will be used a bit later in the
formulation of the next definition. The following property
can be easily verified.

Proposition 1. Let ��������� be a partially ordered al-
gebra, l and m be a positive integers, � be an l � ary

simple operation in � and let j
� 
 
 
 �

j be natural�
l

numbers from the set
�
1
� 
 
 
 �

m � 
 Then the operation



134 III. COMPUTABILITY IN ITERATIVE COMBINATORY SPACES

	 � ��� � 
 � � � � 
 
 
 � � � is also simple.�
m j j

1 l
In many cases, much more operations than the explicitly

definable ones can be defined by using least fixed points.
Some operations defined in such a way will be called fixed-
point definable (the more precise term should be "least-
fixed-point definable", but it is somewhat long). Here is
the rigorous definition of the notion of fixed-point defin-
able operation of arity 0 (fixed-point definable element)
in a partially ordered algebra.

Definition 4. Let ��������� be a partially ordered al-
gebra, and � be an element of ��
 The element � is called
fixed-point definable iff, for some positive integer l

�

there is a l � tuple � � 
 
 
 � � of simple l � ary operations�
l

in � such that the system of inequalities

(3) 
���� � 
 � 
 
 
 � 
�� � i � 1
� 
 
 
 �

l
�

i i
�

l
lhas a least solution � 
 � 
 
 
 � 
 � in � � and the component�

l
65
 of this solution is equal to � 
�

A parameterization of the above definition leads to the
definition of a fixed-point definable operation in a par-
tially ordered algebra.

Definition 5. Let ��������� be a partially ordered al-
gebra, n be a positive integer, and � be an n � ary oper-
ation in ��
 The operation � is called fixed-point defin-
able iff, for some positive integer l

� there is a l � tuple
� � 
 
 
 � � of simple l + n � ary operations in � such that,�

l
for each choice of

� � 
 
 
 � � in ��� the system of inequal-�
nities

(4) 
���� � � � 
 
 
 � � � 
 � 
 
 
 � 
�� � i � 1
� 
 
 
 �

l
�

i i
�

n
�

l
lhas a least solution � 
 � 
 
 
 � 
 � in � � and the component�

l

 of this solution is equal to � � � � 
 
 
 � � � 
� �

n
Proposition 2. If ��������� is a partially ordered al-

gebra then all operations from � and all operations of the

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
65 For the definition of the notion of least solution of

such a system, cf. Section II.4. Note that, by Proposition
II.4.1, if the system of inequalities (1) has a least solu-
tion, then it is the least solution also of the correspond-
ing system of equations


 ��� � 
 � 
 
 
 � 
�� � i � 1
� 
 
 
 �

l



i i
�

l
Instead of "the component 
 " one could equivalently write�
"some component" (due to the property from Proposition 1).
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form 	 � ��� � 
 � �
j � 1

� 
 
 
 �
n
� are fixed-point definable.�

n i
(n)Proof. If

� � � and n >0
� then, for each choice of� � 
 
 
 � � in ��� ��� � � 
 
 
 � � � is the least solution 
�

n
�

n
of the inequality 
�� ��� � � 
 
 
 � � � 
 The fixed-point defin-�

n
(0)ability of the elements of � and of the operations of

the form 	 � ��� � 
 � is seen in a similar way.�
n i

�

Proposition 3. Let ��������� be a partially ordered al-
gebra. If � is a fixed-point definable element of � then,
for each positive integer m

� the operation 	 � ��� � 
 � is�
m

also fixed-point definable. If � is a fixed-point defin-
able n � ary operation in � with n >0 then, for each
choice of the positive integer m and of the natural numbers
i
� 
 
 
 �

i belonging to
�
1
� 
 
 
 �

m � � the operation�
n

	 � ��� � 
 � � � � 
 
 
 � � ��
m i i

is also fixed-point definable.

Proof. Application of Definitions 4, 5 and Proposition
1. �

Corollary 1

 In any partially ordered algebra, all

simple operations are fixed-point definable.

Remark 4. Somewhat later, the much stronger statement
will be proved that all explicitly definable operations are
fixed-point definable (there is no difficulty to prove it
immediately, but we shall obtain it as a corollary from
another result).

Proposition 4. In any partially ordered algebra, all
fixed-point definable operations are monotonically increas-
ing.

Proof. Application of Proposition II.4.2. �

By Propositions 2 and 4, if we replace the set � of a
partially ordered algebra ��������� by the set of all fixed-
point definable operations in this algebra then we shall get
another partially ordered algebra which is an enrichment of
the given one.

Definition 6. Let ��������� be a partially ordered al-�gebra, and let � be the set of all fixed-point definable�operations in � . Then the partially ordered algebra ������� �

will be called the fixed-point enrichment of ����������


A natural question arising in connection with the above
definition is what will happen when one applies formation of
fixed-point enrichment twice. We shall show that the second
application will produce nothing new. First we shall prove a
slightly more precise result.
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Theorem 1. Let ��������� be a partially ordered algebra,�and let ����� � � be its fixed-point enrichment. Let l be a
positive integer, n be a non-negative integer, and � ��

� (l+n)
 
 
 � � belong to � 
 Then there are a natural number m
l

and a l + m � tuple � � � 
 
 
 � � �
of l + m + n � ary simple oper-�

l+m
ations in ��������� such that, for all

� � 
 
 
 � � in ��� the�
n

system of inequalities (4) has a least solution
l� 
 � 
 
 
 � 
 � in � iff the system�

l
(5) 
���� � � � � 
 
 
 � � � 
 � 
 
 
 � 
 � � i � 1

� 
 
 
 �
l + m

�
i i

�
n

�
l+m

l+mhas a least solution � 
 � 
 
 
 � 
 � in � � and, if�
l+m

l+m� � � 
 
 
 � � � is the least solution of (5) in � � then�
l+m

l� � � 
 
 
 � � � is the least solution of (4) in � 
�
l

Proof. By Definitions 5 and 6, for each i from the set�
1
� 
 
 
 �

l � a system of inequalities

(6)
� ��� � � � 
 
 
 � � � 
 � 
 
 
 � 
 � � � 
 
 
 � � � �
i,j i,j

�
n

�
l i,1 i,k

i
j � 1

� 
 
 
 �
k
�

i

can be chosen, with � � 
 
 
 � � simple in ���������	� such
i,1 i,k

i
that, for every fixed

� � 
 
 
 � � � 
 � 
 
 
 � 
 in ��� the�
n

�
l

k
isystem (6) has a least solution � � � 
 
 
 � � � in � �

i,1 i,k
i

the component
�

of this solution being equal to
i,1

� � � � 
 
 
 � � � 
 � 
 
 
 � 
�� 
 We assume that the systems (6)
i

�
n

�
l

corresponding to different numbers i have disjoint lists of
unknowns

� 
 Let 
 � 
 
 
 � 
 be all these unknowns,
i,j l+1 l+m

taken in the following order:
� � 
 
 
 � � � 
 
 
 � � � 
 
 
 � ��
,
� �

,k l,
�

l,k�
l

(hence m � k +

 
 


+ k ). We take (5) to be the system con-�
l

sisting of the inequalities


�� � �
i � 1

� 
 
 
 �
l
�

i i,
�

and of all inequalities of all systems (6), written consecu-
tively. Now we have to show that (4) is consentient with (5)
with respect to least solutions in the sense described in
the theorem. This can be done by applicating Theorem II.4.1
l times. Namely, we start by eliminating the unknowns

� �
l,j

j � 1
� 
 
 
 �

k
� making use of the inequalities (6) with i � l



l
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The new system obtained through this elimination does not
contain more the inequalities just mentioned, and the only
change in the other inequalities is that


�� �
l l,

�
becomes


���� � � � 
 
 
 � � � 
 � 
 
 
 � 
�� 

l l

�
n

�
l

By Theorem II.4.1, this new system has a least solution iff
the system (5) has a least solution, and if � � � 
 
 
 � � ��

l+m
is the least solution of (5) then the least solution of the
new system can be obtained by deleting the last k members

l
of � � � 
 
 
 � � ��
 The next step is the elimination of the�

l+m
unknowns

� �
j � 1

� 
 
 
 �
k

� making use of the inequal-
l-
�
,j l-

�
ities (6) with i � l � 1


 Then these inequalities drop out of
the system and the inequality


 � �
l-
�

l-
�
,
�

becomes


 ��� � 
 � 
 
 
 � 
 � � � 
 
 
 � � � 

l-
�

l-
� �

l
�

n
The new system of inequalities obtained thus is again con-
sentient with (5) with respect to least solutions. Going on
in the same manner, we consecutively eliminate the unknowns
� � the unknowns

�
and so on, and finally obtain the

l-2,j l-3,j
needed conclusion about the system (4). �

Corollary 2. Let ��������� be a partially ordered al-�gebra, and let ����� � � be its fixed-point enrichment. Then�the partially ordered algebras ��������� and ����� � � have
one and the same set of fixed-point definable operations 


Proof. Since all fixed-point definable operations of� ���������� belong to ��� by Proposition 2 (applied to ����� � � ),
� 66all these operations are fixed-point definable in ����� � ��


Suppose now an arbitrary fixed-point definable operation in������ � � is given. Then this operation can be defined by
means of a system of the form (3) or (4), with operations�� simple in ����� � ��
 By Proposition 3, all these � be-
i i�long to ��� and therefore Theorem 1 can be applied. The new

system of inequalities obtained according the theorem de-
fines the same operation, and this shows the fixed-point
definability of the operation in the partially ordered al-

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
66 The same conclusion can be obtained also directly from�Definitions 3, 5 and the inclusion � � � asserted in Prop-

osition 2.
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gebra ����������

�

Corollary 3. Let ��������� be a partially ordered al-�gebra, and let ����� � � be its fixed-point enrichment. Then�the set � is closed under substitution.
� (m)Proof. Let � belongs to � � and � � 
 
 
 � � belong� �

m� (n)to � 
 We shall prove the fixed-point definability of the
n � ary operation � in � defined by the equality

� � � � 
 
 
 � � � � � � � � � � 
 
 
 � � � � 
 
 
 � � � � � 
 
 
 � � ��� ��
n

� � �
n m

�
n

(we neglect the small changes needed for the case of m � 0
or n � 0 ). For that purpose, consider the system of inequal-
ities


�� � � 
 � 
 
 
 � 
�� �� � �
m


�� � � � � 
 
 
 � � � � i � 1
� 
 
 
 �

n



i i
�

n
Since its least solution � 
 � 
 � 
 
 
 � 
 � has first compo-� �

m
nent � � � � 
 
 
 � � � � the operation � turns out to be�

n � �fixed-point definable in ����� � �	� and hence � � �	
 �

Corollary 4. In any partially ordered algebra, all ex-
plicitly definable operations are fixed-point definable.

Proof. Application of Definitions 1,2, Proposition 2 and
the above corollary. �

The introduced notions and the proved results can be
used in arbitrary partially ordered algebras, including such
ones where not every system of inequalities of the form con-
sidered in the definition of fixed-point definability has a
least solution. However, a special attention is deserved by
the partially ordered algebras where all such systems have
least solutions.

Definition 7. Let ��������� be a partially ordered al-
gebra 
 This algebra will be called fixed-point precomplete
iff for each positive integer l

� each natural number n
�

each l � tuple � � 
 
 
 � � of simple l + n � ary operations in�
l� and each choice of
� � 
 
 
 � � in ��� the corresponding�

n
system of inequalities (4) has a least solution

l� 
 � 
 
 
 � 
 � in � 
�
l

Definition 8. A partially ordered algebra will be called
fixed-point complete iff it is fixed-point precomplete and
all fixed-point definable operations in this algebra are
explicitly definable.

The condition from the definition of precompleteness is
equivalent to certain stronger conditions.
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Proposition 5. If the word "simple" in the condition
from Definition 7 is replaced by "explicitly definable" or
by "fixed-point definable" then equivalent conditions arise.

Proof. Application of Theorem 1 and Corollary 4. �

An obvious necessary condition for the fixed-point pre-
completeness of a partially ordered algebra is the existence
of a least element in this algebra (the inequality 
�� 

must have a least solution in a fixed-point precomplete par-
tially ordered algebra). Of course, this condition is far
from being sufficient. Certain sufficient conditions will be
given in the next two propositions.

Proposition 6. Let ��������� be a partially ordered al-
gebra having the following three properties:

(i) there is a least element in � ;

(ii) each monotonically increasing infinite sequence of
elements of � has a least upper bound;

(iii) the operations of � are continuous with respect
to least upper bounds of monotonically increasing infinite

67sequences .

Then ��������� is fixed-point precomplete.

Proof. If a system of the form (4) is given with all �
i

simple in the partially ordered algebra ��������� then, for
any fixed

� � 
 
 
 � � in ��� the Knaster � Tarski � Kleene�
n

Theorem (Theorem II.4.3) can be applied to the mapping � of

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
67 In the case of operations with more than one argument,

this can be understood in the sense of continuity with
respect to each one of the arguments. It is easy to prove
that such a continuity implies continuity with respect to
all arguments taken together. For example, if � is a bi-
nary operation which is continuous with respect to each one

��� ���
of its both arguments,

� � � � ��� � are monotonically
k k=

�
k k=

� ���
increasing sequences of elements of ��� and � � sup

� � � �
k k=

���� ���� � sup
��� � � then � � � sup

� � � � � � � � � since � �
k k=

�
k k k=

�

is obviously an upper bound of the last sequence, and when-
ever � is an arbitrary upper bound of it, then

� � � � � �����
i j

for all i
�
j
�
	 � and hence

��� ��� ���
� � � � � � � sup

� � � � � � � � � sup
�
sup

� � � � � � � � � ��� 

j j= �

i j i=
� j= �
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l� into itself defined by

� � � 
 � 
 
 
 � 
 � � � � 
 � � 
 
 
 � 
 � �	��
l

�
l

where


 � ��� � � � 
 
 
 � � � 
 � 
 
 
 � 
�� � i � 1
� 
 
 
 �

l



i i
�

n
�

l
�

Proposition 7. Let ��������� be a partially ordered al-
gebra, and let each chain in � (including the empty one)
has a least upper bound. Then ��������� is fixed-point pre-
complete.

Proof. The same as the proof of Proposition 6, but using
the Knaster � Tarski � Platek Theorem (Theorem II.4.4) in-
stead of the Knaster � Tarski � Kleene one. �

An way for obtaining fixed-point complete partially
ordered algebras is the following one.

Proposition 8. The fixed-point enrichment of any fixed-
point precomplete partially ordered algebra is fixed-point
complete.

Proof. Application of Definition 6, Corollary 2 and
Remark 2. �

Of course, the fixed-point complete partially ordered
algebras obtained according to Proposition 7 have infinitely
many primitive operations. Fixed-point complete partially
ordered algebras with finitely many primitive operations
must be considered more interesting. One of the main results
in this book will be to show the fixed-point completeness of
certain partially ordered algebras corresponding naturally
to iterative combinatory spaces and having finitely many
primitive operations. This result will be formulated and
proved further in this chapter.

It is appropriate to mention here also two very inter-
esting other classes of fixed-point complete partially or-
dered algebras, which, too, are closely connected with the
theory of computability. The first of these classes consists
of the already mentioned L. Ivanov’s iterative operative
spaces (cf. Ivanov [1980, 1980 a, 1980 b, 1983, 1984, 1984 a,
1990], and especially Ivanov [1986]). Ivanov’s theory can be
successfully applied to the study of the iterative combina-
tory spaces and to other subjects in the theory of comput-
ability, in particular to the recursive functions with fi-
nite type arguments (Kleene [1959]). The other class has
been introduced and studied by J. Zashev (cf. Zashev [1983,
1984, 1984 a, 1985, 1986, 1987, 1990]). In the structures
from this class, the main role is played by an operation,
which corresponds not to composition, but to application.
The lack of an assumption about associativity of this oper-
ation creates considerable technical complications and re-
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quires a rather different approach, but the scope of the
theory becomes large enough to encompass in a natural way
also such structures as, for example, the Plotkin-Scott mod-
el of the 	 � calculus (cf. Scott [1975]).

If there are no operations of arity 0 in � then the
partially ordered algebra ��������� cannot be fixed-point
complete, since no explicitly definable elements of � will
exist in this case, and it would be not possible a least
element of � to exist and to be explicitly definable. Here
is a necessary and sufficient condition for a given partial-
ly ordered algebra to be fixed-point complete.

Proposition 9. Let ��������� be a partially ordered al-
gebra 
 Then the following two conditions are equivalent:

(i) ��������� is fixed-point complete;

(ii) for each natural number n (including n � 0 ) and
each explicitly definable n + 1 � ary operation � in ���������	�

there is an explicitly definable n � ary operation
�

such
that

��� � � 
 
 
 � � � ����
 
 � � � � 
 
 
 � � � 
 ��
n

�
n

for all
� � 
 
 
 � � in ��
�

n
Proof. The implication from (i) to (ii) follows from

Definition 7 and Proposition 5. To prove the converse impli-
cation, one assumes (ii) and proves by induction on l that,
for each n and each l � tuple � � 
 
 
 � � of explicitly de-�

l
finable l + n � ary operations in ��� there are explicitly
definable n � ary operations

� � 
 
 
 � � in � such that, for�
l

any choice of
� � 
 
 
 � � in ��� the l � tuple�

n� � � � � 
 
 
 � � � � 
 
 
 � � � � � 
 
 
 � � � �� �
n l

�
n

is the least solution of the system (4) corresponding to the
given � � 
 
 
 � � 
 The induction step is by elimination�

l
based on Theorem II.4.1. �

Exercises

1. Let � be a distributive lattice with a greatest
element � and a least element � 
 Let � consist of the
constants � � � and of the binary operations � ��� of the
lattice ��
 Give a description of the explicitly definable
operations in ��������� and show that ��������� is fixed-point
complete. Show also that ��������� will be no more fixed-
point complete if we remove the constant � from the set ��


2. Let � be the set of the real numbers, partially
ordered by the equality relation. Let � consist of the
constant 1 and the binary operation of subtraction. Show
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that the partially ordered algebra ��������� has the integers
as its explicitly definable elements and all rational
numbers as its fixed-point definable elements. Give descrip-
tions of all explicitly definable operations and of all
fixed-point definable ones in ����������


3. Let � be the set of the real numbers, linearly or-
dered in the usual way. Let � consist of the constant 1

�


the binary operation of addition and all operations 	�
 
 � �n
n � 2

�
3
�
4,


 
 
 Give a description of the explicitly defin-
able operations in ��������� and show that all fixed-point
definable operations are explicitly definable in this case.
Show that the set of the fixed-point definable operations


remains the same if we take 	�
 
 � only with n � 2



n
4. Let ��������� be such a partially ordered algebra that

either � has no least element or the range of some oper-
ation belonging to � contains the least element of ��


Prove that in this case the operations � in Definitions 4
i

and 5 can be supposed to be only of the forms (1) and (3)
from Definitions 2 and 3.

2. Computable elements and mappings
in iterative combinatory spaces

From now on, until the end of this section it will be
supposed that an iterative combinatory space

� � ����� I ��� �� �
L
�
R
��� �

T
�
F
� is given.

Definition 1. Let � be a subset of ��
 An element of �

is called
�
� computable in � iff this element can be gen-

erated from elements of the set
�
L
�
R
�
T
�
F ����� by means of

the operations composition, combination and iteration in
�

(sometimes we shall simply say "computable" instead of "
�
�

computable", since the space
�

will be fixed or the con-
68text will make clear which it is). The set of all elements

of ��� which are
�
� computable in � � will be denoted by

COMP
� � � 
�

By its definition, the introduced relative computability
is transitive: if �
	 COMP

� � � � (in particular, if �
	�� �
)�

then COMP
� � ��	 COMP

� � � � 
 By Example II.3.1 and by Defini-� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
68 In our previous publications on iterative combinatory

spaces, we used the term "recursive" instead of "comput-
able".
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tion II.3.3, the element I and the zero of
�

are comput-
able in each subset of ��� Propositions II.5.1 and II.5.4
show that the operation � preserves the computability in�

(hence including � as an additional generating opera-
tion in the above definition would not enlarge the set
COMP � ��� ) � Proposition II.5.5 shows that the iteration in�
the above definition can be replaced by

�
	��
iteration af-

ter enlarging � L  R  T  F � to � I  L  R  T  F ���
We define also the notion of computability in

�
for a

nmapping of � into ���
nDefinition 2. Let

��� �� and let � be a mapping of �
into �� where n is some positive integer. Then � is cal-
led

���
computable in

�
(computable in

�  for short) iff,
for arbitrary ����������� in �� there is an explicit ex-�

n
pression for ��������������� � through L  R  T  F �������������

n
�

n
and elements of

�
by means of composition, combination and

iteration in
�  the form of the expression not depending on

the concrete choice of ��������������
n

Of course, a precise formulation of this definition can
be given by using induction. Again including � as an addi-
tional operation does not enlarge the scope of the intro-
duced notion.

The above notions of computability generalize the no-
tions of � � computability introduced in Chapter I and thus
enable reformulating some results from Chapter I as state-
ments about computability in the corresponding combinatory
spaces. In particular, such basic notions from the theory of
computability as partial recursiveness and recursive enumer-
ability turn out to be special cases of the general notion
introduced in this section. Programmability in a FP

�
system

(in the sense of Backus [1978]) is also a special case of
this notion. The same will be shown further also for the no-
tions of prime and search computability (the easier part of
the proof is already carried out in Section I.7). Without
giving such reformulations explicitly in the present moment,
we shall have them in mind when developing the general the-
ory. Some other computability notions from the literature
also can be shown to be special cases of the introduced no-
tion. This has been proved, for example, for the Friedman-
Shepherdson computability by means of recursively enumerable
definitional schemes (Friedman [1971], Shepherdson [1975]).
Namely, as shown in Soskov [1987], this kind of computabil-
ity can be characterized in the same way as search comput-
ability is characterized in Proposition I.7.2 and its con-



144 III. COMPUTABILITY IN ITERATIVE COMBINATORY SPACES

� �
69version in Section 5, but with

�
instead of � B � � �

Also the Kleene-recursiveness of functions with finite type
arguments (Kleene [1959]) can be studied by means of suit-
able combinatory spaces. Namely, the algebraic approach to
this notion in Ivanov [1984, 1986] by means of operative
spaces can be modified in a way allowing certain non-
symmetric combinatory spaces to be used instead of operative
spaces (cf. Ivanov [1984, p. 50], as well as some of the
exercises to Chapters 27 and 28 in Ivanov [1986]). To finish
with this review of notions captured by our general defini-
tion, let us point also at some more exotic computability
notions, such as the notions considered in Section I.8 (cf.
also Exercises 8, 13, 16, 17, 18 after the present section,
as well as the study of computable random functions present-
ed in Section 4 of the Appendix).

Now we shall give an example generalizing Example I.2.1.�
Example 1. The mapping � of � into � is

���
comput-

able in � (by Propositions II.5.1 and II.5.4).

In order to become able to apply the considerations from
Section 1, we note that the elements of COMP � ��� are ex-�
actly the explicitly definable elements of the partially
ordered algebra which arises when we consider the partially
ordered semigroup � enriched by the operations combination
and iteration of

�
and the constants from the set� L  R  T  F ��� � (the fact that both mentioned operations

are monotonically increasing is known from Chapter II). Of
ncourse, the mappings of � in � ���

computable in
�

are the n
�
ary operations explicitly definable in the same

algebra. We shall denote this algebra by � � �  ��� �
Remark 1.2 immediately implies the following important

property of the computable mappings:

Proposition 1. For each subset
�

of �� all mappings���
computable in

�
are monotonically increasing.

In the ordinary theory of computability (i. e. in the
theory of recursive functions on

�
), a certain role is

played by such subclasses of the class of all computable
functions as, for example, the class of the primitive recur-
sive functions or the class of functions elementary in Kal-
már’s or Skolem’s sense. A subset of COMP � ��� with a simi-�
lar role will be introduced also in the theory of the itera-� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

69 Cf. Subsection (IV) of Section 5. The set
�

is con-
sidered a subset of B � in virtue of the identification of
the natural numbers with certain elements of B �	� B (cf.
Subsection (I) of Section I.7).
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tive combinatory spaces.

Definition 3. Let
� � ��� An element of � is called���

elementary in
�

(elementary in
�  for short) iff this

element can be generated from elements of the set � I  L  R 
T  F ��� � by means of the operations composition, combina-
tion and branching in

� � The set of all elements of ��
which are

���
elementary in

�  will be denoted by ELEM � ��� ��
Example 2. The elements L

	
and R

	
of � are

���
ele-�

mentary in � � Consequently, so is the element m of � for
each natural number m �

Of course, the inclusion ELEM � ��� �
COMP � ��� is seen� �

on the basis of Example 1.

Remark 1. Exercise II.1.12 shows (in the notation used
there) that ELEM � ��� consists of those elements of ��
which can be generated from elements of the set � � I  I �  R 
K  K  St ��� I  I ���  St ��� R  L ���  St � St � I ���  St � L �  St � R �  St � T � � �
St � F � ��� St � ��� by means of multiplication and branching. As
seen from Exercise II.2.9, branching can be replaced by the
operation � 	 in the above statement.

nFor the case of mappings of � into �� the definition
corresponding to Definition 3 looks as follows.

nDefinition 4. Let
��� �� and let � be a mapping of �

into �� where n is some positive integer. Then � is cal-
led

���
elementary in

�
(elementary in

�  for short) iff,
for arbitrary ����������� in �� there is an explicit ex-�

n
pression for ��������������� � through I  L  R  T  F �����������

n
�

� and elements of
�

by means of composition, combination
n

and branching in
�  the form of the expression not depend-

ing on the concrete choice of ��������������
n

Example 3. For each positive integer n  the mapping �
	

nof � into � is
���

elementary in � �
The mappings

���
elementary in

�
are

���
computable,

again on the basis of Example 1.

Application of results from Section 1 is again possible
after introducing another partially ordered algebra. This
time we have to consider � enriched by the operations com-
bination and branching of

�
and the constants from the set� I  L  R  T  F ��� � � This partially ordered algebra will be

denoted by � � �  ��� � The elements of ELEM � ��� can be char-�
acterized as the explicitly definable elements of � � �  ��� 

nand the mappings of � into � elementary in
�

as the
n
�
ary operations explicitly definable in this algebra.
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Now an important point is that the operation of iter-
ation is fixed-point definable in the partially ordered al-
gebra � � �  ��� (this is clear from the equality

��� ������
	�� � �� ��� � �  I � 
since the operation 	 � ��� � �� ��� � �  I � is explicitly
definable in � � �  ��� ). Thus all primitive operations of
� � �  ��� are fixed-point definable in � � �  ���  and hence,
by Corollaries 1.4 and 1.2, all operations explicitly defin-
able in the first of these two algebras are fixed-point de-
finable in the second one. Hence the following holds:

Proposition 2. For each subset
�

of �� all elements
of COMP � ��� and all mappings

���
computable in

�
are�

fixed-point definable in the partially ordered algebra
� � �  ��� �

An important problem which naturally arises at this mo-
ment is whether the converse is true, i. e. whether all
fixed-point definable operations in � � �  ��� are

���
computable in

� � An affirmative answer to this question
will be given further in this chapter.

According to the definitions given in Section 1, the
fixed-point definability in the partially ordered algebra

� � �  ��� means, roughly speaking, definability via the
least solution of a system of the form 1.(3) or 1.(4) with
mappings ����������� which are simple with respect to�

l
� � �  ��� . Taking into account the list of the primitive
operations of this partially ordered algebra, we see that
the simple operations in it are the ones having some of the
following forms:

��������� � � �
m i��������� ��� �
m��������� � ��� �

m j i��������� � � �  � � �
m i j��������� � � � ��� �  � � �

m i j k
where i  j  k are fixed numbers from the set � 1 ������� m � 
and � is some fixed element of � I  L  R  T  F � � � � So we

in a system of the form 1.(3) each inequality has some of
the forms

����� 
r

������� 
r j i

��� �� �� � 
r i j

see   how   the systems 1.(3) and 1.(4) look. For example,
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��� �� ��� � �� � 
r i j k

����� �
r i

In a system of the form 1.(4), the inequalities are of the
same forms, except that parameters � can occur in some

s
places in the right-hand sides instead of some unknowns. A
certain kind of canonization of such systems can be useful
in some cases (for example, the systems can be assumed to
contain no inequalities of the form ����� ). For the time

r i
being, we shall not touch this subject in more detail.�

Example 4. Let � be the mapping of � into � de-
fined by

�������� � � � ���� L ��� F  T � ������ � � �
Then, for each ���� in �� �������� � is the component� � � �
� of the least solution � � �� �� �� �� �� �� �����

1 2 3 4 5 6 7 8
of the system of inequalities

� � ��� ��� � �� � � �
3 4

� ��� � �
5
�

����� ��
3

� �
��� I 
4

��� ��� ��� � �� � 
5 6 7 8

��� L 
6
��� F 
7
��� T �
8

The
���

computability can be characterized by using func-
tional expressions of the formal system A introduced in
Section II.6.

Definition 5. Let
��� ����
	 ���� be a functional

expression of the system A  and let a valuation of the
variables of A in

�
be given. It will be said that �

expresses � through
�

at the given valuation iff all
variables occurring in � have values belonging to

�
at

this valuation, and the value of � at the same valuation
is equal to � �

The truth of the following two propositions is obvious.

Proposition 3. If some functional expression of A ex-
presses an element � of � through a subset

�
of � at

some valuation then �
	 COMP � ��� ��
Proposition 4. Let

�
be a subset of ���� be an el-

ement of COMP � ���  and let a valuation of the variables of�
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A in
�

be given such that each element of
�

is the
value of some variable f at the given valuation. Then

i
there is a functional expression � of A such that �
expresses � through

�
at the given valuation, and no

variables c occur in �
�
i

A similar definition can be given for expressibility of
nmappings of � into � can be given, and similar proposi-

tions will be valid.

Another obvious proposition will be formulated, namely
the following one.

Proposition 5. Let
�

be a subset of �� and let ���
������ � be some elements of ��� Then the following state-

n
ments hold:

(i) an element of � is
���

computable in
� � � ���

������ � � iff this element can be represented in the form
n

n������������� � �  where � is some mapping of � into ��
n���

computable in
�
;

l(ii) a mapping of � into � is
���

computable in� � � �� ������ � � iff this mapping can be represented in�
n

the form
� � ������� � ������������� � ������������ �  where ��

l
�

n
�

l
n+lis some mapping of � into � ���

computable in
� �

Proposition 6. Let
�

be a subset of ��� Then each el-
lement of � or mapping of � into � ���

computable in�
is also

���
computable in some finite subset of

� �
Exercises

1. Let
�

be an iterative combinatory space. Using Ex-
ercise II.3.8, show the existence of an element � of� � � �
COMP � � � such that � n � 2 n for all n in

� � Write�
the corresponding system of inequalities of the form 1.(3).

2. Let
� � � �� I  �  �  L  R ��  T  F � be an iterative

lcombinatory space, l be a positive integer, and K � ���
Using the denotations from Exercise II.1.40 and the result
from Exercise II.3.9, consider the iterative combinatory
space

K� � � ���� I �� � �� ���� L �� R ������� T �� F � ���
Generalizing the denotation

�
�� let us adopt that, for each

subset
�

of �� �
� denotes the set of all constant map-
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pings of K into
� � Let

� ������� � be the projection map-�
l

pings from K into �� i. e.
� � � ������� � � � �  i � 1 ������� l 
i

� l i
for all

� ������� � in ��� Let � be an arbitrary mapping�
l

lof � into ��� Prove that � is
���

computable in
�

in the
Ksense of Definition 2 iff � is an element of ��� � �

com-
putable in

�
� � � � ������� � �  and � is

���
elementary in

��
l

in the sense of Definition 4 iff � is an element of ���
K� �

elementary in
�
� � � � ������� � ����

l
3. (The First Recursion Theorem for left-linear map-

pings) Let
� � � �� I  �  �  L  R ��  T  F � be an iterative

combinatory space, l be a positive integer, and ������������
l

l +
�

be left-homogeneous mappings of � into � which are���
computable in a given subset

�
of ��� Let the map-

lpings ����������� of � into � be defined by means of�
l

the equalities

� ������������ � ��� � I ������������ �  i � 1 ������� l �
i

�
l i

�
l

70Prove the following statements :

(i) the system of inequalities

��� � ������������ �  i � 1 ������� l 
i i

�
l

lhas a least solution � ������������� in � ;�
l

(ii) the components ����������� of the mentioned least�
l

solution are
���

recursive in
�
;

(iii) the least solution of the above system of inequal-
ities is also the least solution of the system of equations

��� � ������������ �  i � 1 ������� l �
i i

�
l

Hint. Use Theorem II.6.2 and Proposition II.4.1.

4. (Compare with Remark 1) Let
� � � �� I  �  �  L  R �  T  F � be an iterative combinatory space. In the nota-

tion used in Exercise 1.12, prove that COMP � ��� consists�
of those elements of � which can be generated from el-� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

70 The statements in this exercise are true for arbitrary
lmappings ����������� of � into � which are

���
computable�

l
in

�  but such a generalization is much more difficult to
be proved, and it will be the central result in the present
book.
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ements of the set � � I  I �  R  K  K  St ��� I  I ���  St ��� R  L ��� � �
St � St � I ���  St � L �  St � R �  St � T �  St � F � ��� St � ��� by means of
multiplication and iteration. Show that iteration can be
replaced by

�
	��
iteration in this statement. Prove that a
nmapping � of � into � is

���
computable in

�
iff

this mapping is representable in the form

��������������� � � ����� St ��� � ������� St ��� ��� �
n

�
n

where ��� is explicitly definable in the algebra obtained
from the semigroup � through its enrichment by iteration
or

�
	��
iteration and by the constants from the above set.

Hint. Use Exercises II.1.7, II.1.10, II.3.5 and Proposi-
tions II.5.1, II.5.5.

5. Let
� � � �� I �  �  �  L �  R � ��  T �  F � � be the combi-

M
natory space from Exercise II.4.11 (the combinatory space of
the

� �
fuzzy relations corresponding to a given computa-

tional structure), but under the extra assumption that���  J  L  R  T  F  H � is a standard computational structure
on the natural numbers in the sense of Section I.3 (hence� � � ). Prove that  for each unary partial recursive func-
tion f  the corresponding f

�
is

���
computable in the set� S �  P � �  where S � � u � u + 1  P � � u � u � 1 �

Hint. Use Theorem I.3.1.

6. Let
�

and S be such as in the previous exercise.�
Show that � � � �

is
���

computable in � S � �� ��� � 0  1 � � � ���
Hint. See the exercise to Section I.6.

7. Let
�

be such as in Exercise 5, and let, in addi-
tion, the lattice

�
be a linearly ordered set. Let � be

the set of all � from � such that for any fixed l in�� ���	� � the set � � u  v � 	 � 

��� u  v � > l � is recursively

enumerable. Prove that, for each recursively enumerable sub-�
set f of

�  the corresponding f
�

belongs to �
 and,

whenever
� � �� then COMP � ��� � � ��

8. In the situation from Exercises 5 and 7, suppose fur-
thermore that the lattice

�
has finitely many elements.

For each l in
�  let � be the element of � defined in

lthe following way: �
l if u � v � � u  v � ��

l � if u � v ��
�

Let
�

be the subset of � consisting of S
�  P

� �� � � �
and all elements � of � with � < l < � � Prove the

l
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equality COMP � ��� � � ��
Hint. To prove the inclusion � �

COMP � ���  suppose ��
is an arbitrary element of � � Let the elements of

�
be

l  l ������� l  where ��� l > l > ����� > l � � � For� �
k

� �
k

i � 1  2 ������� k � �  choose some three-argument primitive re-
cursive function h such that

i
��� u  v � > l � ����� w 	 � � h � u  v  w � � 0

�
i+
�

i
for all natural numbers u and v  and set�

����� � t � h � L � t �  LR � t �  R � t ����� � 
i i	 � � � L R � � �

i l
i � �

Prove the equality ��� � ��� I �
, ����� � � � �� � � � ���  where�

� � ���������� ����������� ����� � �
k-
�

k-
�

� �  	 �  	 � ������ 	 �  	 � �
k-
�

k-
� � �

9. Let
� � � �� I �  �  �  L �  R � ��  T �  F � � be the

M
combinatory space from Exercise II.4.13 (a combinatory space
relevant to 
 � definedness), but under the extra assumption
that ���  J  L  R  T  F  H � is a standard computational
structure on the natural numbers. Let S � � u � u + 1 
P � � u � u � 1 � Prove that  for each unary partial recursive
function f  the corresponding f

�
is

���
computable in

the set � S �  P � ���
10. Let

�  S and P be such as in the previous exer-
cise. Prove that, for each recursively enumerable subset f�
of

�  the corresponding f
�

is
���

computable in the set�� S �  P � �� � � � ���
Hint. Take a three-argument primitive recursive function

g such that
�
u  v � 	 f � ����� w 	 � � g � u  v  w � � 0

�
for all natural numbers u  v � Take also an one-argument
partial recursive function f such that f

�
f  and the� �

first components of all pairs from f belong to dom f ���
Set h � � t � g � L � t �  L R � t �  R � t ��� and prove the equality� �

f
� � ��� h �  f � L � �� L R � � � ��� I �  ����� � � � �� � � � ����� ��

11. Let
�  S and P be such as in Exercise 9, and let�

A be a subset of
�

belonging to the class � of the ana-�
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71lytical hierarchy . Prove that the element �
I  A � of ���

is
���

computable in � S �  P � �� � � � ���
Hint. Take two-argument primitive recursive functions

g and g with the following properties:� �
(i) a natural number u belongs to A iff each infinite

sequence of natural numbers has some finite initial segment
with a sequence number s satisfying the condition

72g � s  u � � 0 ;�
(ii) whenever s is the sequence number of a finite

sequence �
s  s ������� s � of natural numbers, and t� �

n-
�

is an arbitrary natural number, then g � s  t � is the se-�
quence number of the sequence �

s  s ������� s  t ���� �
n-
�

Then set
h � � t � g � L � t �  R � t ���  i � 1  2 
i i �

� � � ��� h � ��� L � �� � � � �  R � �  h � �� �
and prove the equality ��

I  A � � ����� � � �  I �  R � � ��� F �  I � ��� �� �

12. Let
�

be such as in Exercise 9. Let � be the set�
of all elements �

f  A � of � such that f is recursively�
enumerable, A is a � �

set, and A
�
dom f. Prove that,�

whenever
� � �  then COMP � ��� � � �� � �

Hint. Use Exercises II.4.17 and II.4.18 to show that � �
is closed under iteration.

13. (Non-deterministic computability with unbounded non-
determinism; cf. Skordev [1980, Chapter IV, Section 1.2,
Example 9], and also Skordev [1987]) In the situation from
Exercises 9 and 12, let

�
be the subset of � consisting�

of S
�  P

�
and � � � � � Prove the equality COMP � ��� � � �� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
71 For the definition of this class, cf. for example

Rogers [1967,
�
16.1].

72 Here and in the next condition (ii) a sufficiently
good effective enumeration of the set of all finite se-
quences of natural numbers is supposed to be fixed, the se-
quence number of the empty sequence being equal to 0 � The
existence of a primitive recursive function g with the� �
property (i) follows from the assumption that A is a � ��
set (cf. Rogers [1967,

�
16.1, Corollary V]).
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Hint. To prove the inclusion � �
COMP � ���  use the� �

validity of �
f  A � � f

� �
I  A � for all �

f  A � in � �� �

14. Let
�

and P be such as in Exercise 9. Let�
��� � e  � �  where e � � � u  v � 	 � 


u � v ��� Prove that �
is

���
computable in the set � P � �� ��� � 0  1 � � � ���

Hint. Prove the equality

��� � P � ���� I � �� ��� � 0  1 � � �  F � � ����
b15. Let

�  S  P be such as in Exercise 9. Let � be�
the set of all elements �

f  A � of � which have the fol-
lowing properties: (i) both f and A are recursively enu-
merable, and A

�
dom f ; (ii) for each u in A  the set� v 
 � u  v � 	 f � is finite, and (iii) there is a partial re-

cursive function which transforms each u from A into the
bcardinality of � v 
 � u  v � 	 f ��� Prove that, whenever

� � � �
b

�
then COMP � ��� � � � Use this result to conclude that � � � �� �
is not

���
computable in � S �  P � �� ��� � 0  1 � � � � (compare

with Exercise 6).

Hint. Use the fact that condition (iii) can be replaced
by the requirement to exist an algorithm producing a list of
the elements of � v 
 � u  v � 	 f � for any given u in A �

16. (Non-deterministic computability with bounded non-
determinism; Pazova [1978], cf. also Skordev [1987]). In the
situation from Exercises 9 and 15, let

�
be the subset of� consisting of S

�  P
�

and � ��� � 0  1 � � � � Prove the equal-
bity COMP � ��� � � �� �

bHint. To prove the inclusion � �
COMP � ���  suppose� �

b��� � f  A � is an arbitrary element of � � Take two-argu-�
ment primitive recursive functions g  g and one-argument� �
primitive recursive function h such that the following
equivalences hold for all natural numbers u  v  w 


�
u  v � 	 f � ����� s 	 � � g � u  s � � 0

�
h � s � � v

� �
u 	 A

�
card � v 
 � u  v � 	 f ��� t

� ���
� s 	 � � g � u  s � � 0

�
h � s � � t

� ��
Take also a two-argument partial recursive function g such

3that

� v 
 � u  v � 	 f ��� � g � u  i � 
 i < t � 
3

whenever u 	 A
�

card � v 
 � u  v � 	 f ��� t � Consider one-argu-
ment functions h  h  h corresponding to g  g  g as� �

3
� �

3
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in the hints to Exercises 10 and 11. Set
� � � ��� L � �� S R � � � ���� h � ������ ��� � 0  1 � � �  T �  h � �  F � �� �

and prove the equality

��� ��� h �  h �  h � ��� L �  � � P h � � ��� � ��� I �  F � � �
3

�

where � is the element of � defined in Exercise 14.

17. (Non-deterministic computability with unbounded non-
determinism and possible unproductive termination) Let

� 
S  P be such as in Exercise 9. Let � be the set of all
elements � of � such that the first component of � is�
recursively enumerable, and the second one is a � �

set. Let���
be the subset of � consisting of S

�  P
�  � � � �

and� �  � ��� Prove the equality COMP � ��� � � ��
Hint. Prove that �

f  � � 	 COMP � ��� for each recursively�
enumerable binary relation f  and use the validity of�
f  A � � � f  � � � I  A � for all �

f  A � in � ��

18. (Non-deterministic computability with bounded non-
determinism and possible unproductive termination) Let

� 
bS  P be such as in Exercise 9. Let � be the set of all

elements �
f  A � of � such that both f and A are recur-

sively enumerable and the conditions (ii) and (iii) from
Exercise 15 are satisfied. Let

�
be the subset of � con-

sisting of S
�  P

�  � ��� � 0  1 � � � and � �  � ��� Prove the
bequality COMP � ��� � � �� �

Hint. Prove that � � � u  v � 	 � 

u > v �  � � 	 COMP � ��� ��

19. Let
� � � �� I  �  �  L  R ��  T  F � be an iterative

combinatory space,
�

be subset of �� and � be a map-
lping of � into � ���

computable in
� � Prove that a

lmapping ��� of � into � exists, also
���

computable
in

�  such that, for all ����������� in � and all z in�
l�  the equality

����� � z  I � ��������� � z  I ��� � ������� ��������� � � z  I ��
l

�
l

holds. Prove a similar result for mappings
���

elementary
in

� �
Hint. Use induction on the construction of � � For the

case of iteration, apply Corollary II.3.1.
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3. Representation of the partial recursive functions
in iterative combinatory spaces

We first recall the representation of the natural
numbers from Section II.2. Namely, if

���������
I
�
	��
��

L
�
R
�

� �
T
�
F � is an iterative combinatory space then an arbit-

rary natural number n is represented by the element� nn
�
R � L � of

���
where L � ��� T � I � � R � ��� F � I �� In order to

introduce a representation of k � tuples of natural numbers
by means of elements of

���
we first define an extension of

the operation
�

allowing its application to an arbitrary
non-zero number of elements of

� � Namely, an element����� ����� �
� � is defined for each k � tuple�
k����� ����� �
� � of elements of

���
where k � 1 � by setting�

k��� � ����������
��� ����� �
� � ���������
����� ����� �
� ���� �
k

� �
k

(the denotation
����
� � used until now is obviously a par-

ticular case of the denotation just introduced). The repre-
sentation of a k � tuple �

n
� ����� � n � of natural numbers�

k ��� ���
will be accomplished by means of the element

�
n
� ����� � n ��

k
of

� � Note that this element is normal (in the sense of
Definition II.1.2) for every choice of the natural numbers
n
� ����� � n ��

k
Remark 1. Another way to represent

�
n
�
n
� ����� � n � is�  

k
used in Ivanov [1986]. Following that way, we ought to re-��� ���!���
present the above k � tuple by the element n ����� n n

k
 �

of
� �
Now we shall fix the representation of the natural

numbers and of k � tuples of natural numbers by means of
corresponding functional expressions of the formal system
A from Section II.7.

Definition 1. For each natural number n
�
a functional

expression n " is defined in the following way: 0 " is (T, )
and

�
n + 1 �#" is (F, ) n " for each natural number n �

Obviously, for each natural number n the expression
n " does not contain variables, and, if some iterative com-
binatory space

�
is given, then the value of n " in

�
�

is equal to n (independently from the choice of the valu-
ation of the variables). We note also that all expressions
n " are normal in the sense of Section II.7, and the follow-
ing formulas are deducible in the system A :

L 0 " � T
�

R 0 " ��$�
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L
�
n + 1 �#" � F n " � R

�
n + 1 �#" � n "

(by Propositions II.7.6 and II.7.1).

To fix the representation of k � tuples of natural
numbers, it is natural to define the formal counterpart of
the extension of

�
defined above. We adopt the convention

that
� � � denotes

� �
and

� � � � � ����� � � � denotes� �
k

(
� �
� � � ����� � � � ) � whatever the functional expressions� �

k� � � � � � ����� � �
are. Obviously,

� � � ����� � � � is a nor-� �
k

�
k

mal functional expression, whenever
� � ����� � �

are normal�
k

functional expressions. Having this denotations at our dis-
posal, we agree to use the functional expression�
n " � ����� � n " � as a representation of the k � tuple�

k�
n
� ����� � n � of natural numbers. This is again a normal�

k
functional expression not containing variables.

Now a notion of representation will be introduced for
(possibly partial) functions of one or more arguments in �
(in the sequel, such functions will be called "functions in

� " or simply "functions") �
Definition 2. Let f be a function of k arguments in

�
� A functional expression
�

will be called to represent
f iff

�
contains no variables and, whenever the equality

(1) f
�
n
� ����� � n � � m�

k
holds, then the formula

(2)
� �

n " � ����� � n " � � m "�
k

is deducible in the system A.

Remark 2. A possible defect of Definition 3 is connected
with the fact that there is a function with not uniquely
determined number of arguments, namely the empty function.
Fortunately, the defect is not actually present, since each
functional expression without variables turns out to repre-
sent the empty function independently of the choice of the
value of k for the application of Definition 3.

Remark 3. Obviously, whenever a functional expression�
represents a function f

�
then

�
represents also all

restrictions of f � This can be considered also a defect,
but it is not a logical one, and it is compensated to some
extent by certain advantages of the definition. In any case,
there is no problem to impose additional requirements when
it proves to be useful.

Here are several simple examples to the definition.

Example 1 � The empty expression
$

represents the func-
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tion I (by Proposition II.7.1; the using of this proposi-�
tion will be no more explicitly mentioned).

Example 2. The functional expression (F, ) represents
the function

�
u � u + 1 � and the functional expression R

represents the partial function
�
u � u � 1 (not defined at

0 ).

Example 3. The functional expression (L � , R) repre-
sents the total function

�
u � u � 1 (by Proposition II.7.7

and Corollary II.7.1; the using of the last corollary will
be no more explicitly mentioned).

Example 4 � The functional expression [ , T] represents
no function whose domain is non-empty. This can be seen by
using the correctness of A �

A necessary condition for the representability of a
function by some functional expression is the existence of a
partial recursive extension of this function. It is so
since, for every functional expression

�
and any positive

integer k
�
the set of those k + 1 � tuples �

n
� ����� � n �

m ��
k

of natural numbers, for which the formula (2) is deducible,
can be shown to be the graph of some partial recursive func-
tion (this follows from the correctness of the system A
and the fact that its notion of deduction is decidable). The
main result in this section will be that the converse state-
ment is also true.

We first introduce an abbreviation. For each functional
expression

�
and each positive integer k

�
we shall denote

kby
�

the functional expression
� � ����� � �

with k repeti-�
tions of

� � By
� �

the empty string will be denoted. Thus
nn " can be written as (F, ) (T, ) for each natural

number n �
Proposition 1. Whenever

� � ����� � �
are normal func-�

k
tional expressions, and 0 � i < k

�
then the formula

iR
� � � ����� � � � ��� � � ����� � � ��

k i+
�

k
is deducible in the system A �

Proof. Induction on i using Proposition II.7.6. �

Corollary 1. Whenever
� � ����� � �

are normal function-�
k

al expressions, and k � 1 � then the formula
k-
�

R
� � � ����� � � � � ��

k k

is deducible in the system A �
Proposition 2. Whenever

� � ����� � �
are normal func-�

k
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tional expressions, and 1 � i < k
�
then the formula

i-
�

L R
� � � ����� � � � � ��

k i
is deducible in the system A �

Proof. Application of Propositions 1 and II.7.6. �

Proposition 3. The functional expression [R, (L � F, T)]
represents the function

�
n � 0 �

Proof. Let us denote the mentioned functional expression
by

� � By Proposition II.7.7, the formula

(L � F, T) n " � (L n " � F n " , T n " )
is deducible in A for each natural number n

�
and hence the

formula (L � F, T) 0 " � F 0 " and all formulas

(L � F, T)
�
n + 1 �#" � T

�
n + 1 �#"

are deducible. Therefore, by Proposition II.7.8, the formula�
0 " � 0 " and all formulas

� �
n + 1 �#" � �

R
�
n + 1 �#" are deduc-

ible in A � We conclude that
�
0 " � 0 " and all formulas� �

n + 1 �#" � �
n " are deducible, and this enables proving by

induction that
�
n " � 0 " is deducible for each natural

number n � �

Proposition 4. Whenever
� � ����� � � � � � ����� � � ( l � 1 )�

l
�

l
are functional expressions, � is a normal functional ex-
pression, and the formulas

� �
� � �

j
�
1
� ����� � l �

j j
are deducible in the system A

�
then so is also the formula

� � � ����� � � ��� ��� � � ����� � � ���
l

�
l

Proof. Induction on l using Propositions II.7.1, II.7.7
and Corollary II.7.2. �

Proposition 5. Let f be a function of l arguments in�
�
�
and f

� ����� � f be functions of k arguments in �
� Let�
l

the functional expressions
� � � � ����� � �

represent the� �
l

functions f
�
f
� ����� � f �

respectively. Then the functional� �
l

expression
� � � � ����� � � � represents the function� �

l�
n ����� n � f � f � n � ����� � n � � ����� � f � n � ����� � n �����

k
� � �

k l
�

k
Proof. Denote by f the last function. Suppose n

� ����� ��
n
�
m are natural numbers satisfying the condition (1).

k
Then there are natural numbers m

� ����� � m such that the�
lfollowing equalities hold:

f
�
n
� ����� � n � � m

�
j
�
1
� ����� � l �

j
�

k j
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f
�
m
� ����� � m � � m �� �

l
It follows from this equalities that the following formulas
are deducible in the system A �

� �
n " � ����� � n " � � m " � j

�
1
� ����� � l �

j
�

k j
(3)

� �
m " � ����� � m " � � m "��� �

l
By Proposition 4, the deducibility of the first l of them
implies the deducibility of the formula

� � � ����� � � � � n " � ����� � n " � ��� m " � ����� � m " � ��
l

�
k

�
l

and from here, taking into account the deducibility of (3),
we conclude that

� � � � ����� � � � � n " � ����� � n " � � m "� �
l

�
k

is also deducible. �

Proposition 6. Let f
�
g
�
h be total functions of k

�
k + 2

�
k + 1 arguments, respectively, in �

�
and let, for all

i and n
� ����� � n in � the following equalities hold:�

k
h
�
0
�
n
� ����� � n � � f

�
n
� ����� � n � ��

k
�

k
h
�
i + 1

�
n
� ����� � n � � g

�
h
�
i
�
n
� ����� � n � � i � n � ����� � n ���

k
�

k
�

k
Let the functional expressions

�
and

�
represent f and

g
�
respectively, and let

�
be the functional expression

L R [(R L, � R), (L � F, T) L] (L,
�
R, � L, R)

�

where � is a functional expression representing the func-
tion

�
i � 0 � and � is the functional expression 

(
�
, (F, ) L R, R ) �

Then
�

represents h �
Proof. Let n

� ����� � n be some given natural numbers,�
k

and let, for each natural number i
�

m
�
h
�
i
�
n
� ����� � n ��

i
�

k
The statement to be proved is that all formulas

� �
i " � n " � ����� � n " � � m "�

k i
are deducible in the system A � Let i be some fixed natu-�
ral number. We shall prove the deducibility of the above
formula for i

�
i ��

First of all, we note the deducibility in A of the
formula

(L,
�
R, � L, R)

�
i " � n " � ����� � n " � ��� i " � m " � 0 " � n " � ����� � n " �� �

k
� � �

k
and of all formulas

�
�
m " � i " � n " � ����� � n " � ��� m " �
� i + 1 �#" � n " � ����� � n " ��
i

�
k i+

� �
k
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The deducibility of the mentioned formulas follows from
Propositions 1, 2, 4 and the equalities

f
�
n
� ����� � n � � m

��
k

�
g
�
m
�
i
�
n
� ����� � n � � m �

i
�

k i+
�

Let
�

be the functional expression

[(R L, � R), (L � F, T) L]

occurring in
� � Now we shall prove that, for i

�
0
�
1, ����� �

i
�
the following formula is deducible in A ��

� ���
i � i �#" � m " � i " � n " � ����� � n " � ��� 0 " � m " � i " � n " � ����� � n " ���

i
�

k i
� �

k
0

This will be done by means of induction going downwards from
i to 0 � The induction makes use of the deducibility of the�
formula

(L � F, T) L
�
0 " � m " � i " � n " � ����� � n " � � F 0 "

i
� �

k
0and of the formulas

(L � F, T) L
���
i � i �#" � m " � i " � n " � ����� � n " � � T

�
i � i �#" ��

i
�

k
�

where i < i � Using their deducibility and Proposition�
II.7.8, we observe the deducibility of the formula

� �
0 " � m " � i " � n " � ����� � n " � ��� 0 " � m " � i " � n " � ����� � n " �

i
� �

k i
� �

k
0 0

and of the formulas
� ���

i � i �#" � m " � i " � n " � ����� � n " � ��
i

�
k�

(R L, � R)
���
i � i �#" � m " � i " � n " � ����� � n " � ��

i
�

k
where i < i � The deducibility of the first formula gives the�
induction base. By the property of � indicated at the be-
ginning, the deducibility of the other ones implies the
deducibility of the formulas

� ���
i � i �#" � m " � i " � n " � ����� � n " � ��

i
�

k� ���
i � � i + 1 ���#" � m " �
� i + 1 �#" � n �

� ����� � n " � ��
i+
� �

k
where i < i

�
and this makes the induction step possible.�

Applying the proved statement for i
�
0
�
we get the

deducibility of the formula
� �

i " � m " � 0 " � n " � ����� � n " � ��� 0 " � m " � i " � n " � ����� � n " ��� � �
k i

� �
k

0
It follows from here that the formula

L R
� �

i " � m " � 0 " � n " � ����� � n " � � m "� � �
k i

0
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is also deducible. Combining this with the property of
(L,

�
R, � L, R) indicated at the beginning, we get the

needed deducibility of the formula
� �

i " � n " � ����� � n " � � m "��� �
k i

�
0

Proposition 7. Each primitive recursive function can be
represented by some functional expression.

Proof. Application of Example 2, Corollary 1 and Prop-
ositions 2, 3, 5 and 6. �

In the case of partial functions, the notion of repre-
sentation used above has a certain drawback mentioned in
Remark 3. In connection with this one more definition will
be given.

Definition 3. Let f be a function of k arguments in
�
� A functional expression

�
will be called to represent

f strongly iff
�

represents f and, whenever n
� ����� � n�

k
are such natural numbers that

�
n
� ����� � n � � dom f � then,�

k
for each choice of an iterative combinatory space

���������
I
�

	��
��
L
�
R
� � �

T
�
F � � the value of

� �
n
� ����� � n ��" in

��
kis the least element of

� �
A remark similar to Remark 2 can be made in connection

of this definition, and unfortunately this time the arising
problem is more unpleasant. In order to obviate the diffi-
culty, we shall further assume that functions are given to-
gether with the information about the number of their argu-
ments.

Of course, if the function f in the above definition
is a total one then the additional requirement is trivially
fulfilled. Here is an example with a non-total function f �

Example 5. The functional expression [ , T] represents
strongly the empty function (does not matter of how many
arguments).

Proposition 8. Let f be a total function of k + 1 argu-
ments in �

�
and let h be the function of k arguments de-

fined by means of the equality

h
�
n
� ����� � n ����� i � f � i � n � ����� � n � � 0 ����

k
�

k
Let the functional expression

�
represents f

�
and let

�

be the functional expression

L [((F, ) L, R), (L � F, T)
�
] ( � L, )

�

where � is a functional expression representing the func-
tion

�
n � 0 � Then

�
represents h strongly.

Proof. We first observe the deducibility of the formulas
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(4) ( � L, )
�
n " � ����� � n " � ��� 0 " � n " � ����� � n " � ��

k
�

k
(5) ((F, ) L, R)

�
i " � n " � ����� � n " � ����� i + 1 �#" � n " � ����� � n " ��

k
�

k
for every choice of the natural numbers n

� ����� � n �
i ��

k
Suppose now that natural numbers n

� ����� � n and l are�
k

given such that h
�
n
� ����� � n � � l � We have to prove the�

k
deducibility of the formula

� �
n " � ����� � n " � � l "�� To do this,�

kwe set

m
�
f
�
i
�
n
� ����� � n � � i

�
0
�
1
� ����� � l �

i
�

k
and note that m > 0 for i

�
0
�
1
� ����� � l � 1 � but m

�
0 � Since

i l�
represents f

�
all formulas

� �
i " � n " � ����� � n " � � m " � i

�
0
�
1
� ����� � l ��

k i
are deducible. Using this, we observe the deducibility of
the formulas

(L � F, T)
� �

i " � n " � ����� � n " � � T m " � i
�
0
�
1
� ����� � l � 1 ��

k i
and of the formula

(L � F, T)
� �

l " � n " � ����� � n " � � F 0 "���
k

Let
�

be the functional expression

[((F, ) L, R), (L � F, T)
�
]

occurring in
� � From Proposition II.7.8 and the deducibil-

ity of the above mentioned formulas, we conclude that fol-
lowing formulas are also deducible:

(6)
� �

i " � n " � ����� � n " � � �
((F, ) L, R)

�
i " � n " � ����� � n " � ��

k
�

k
i
�
0
�
1
� ����� � l � 1 �

� �
l " � n " � ����� � n " � ��� l " � n " � ����� � n " ���

k
�

k
Making use of the deducibility of the formulas (5) and (6),
we see the deducibility of the formulas

� �
i " � n " � ����� � n " � � � ���

i + 1 �#" � n " � ����� � n " � ��
k

�
k

i
�
0
�
1
� ����� � l � 1 �

Now an induction going downwards from l to 0 proves that
� �

i " � n " � ����� � n " � ��� l " � n " � ����� � n " ��
k

�
k

is a deducible formula for each natural number not greater
than l � In particular, the formula

� �
0 " � n " � ����� � n " � ��� l " � n " � ����� � n " ��

k
�

k
is deducible. Taking into account the deducibility of the
formula (4) and the formula

L
�
l " � n " � ����� � n " � � l " ��

k
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we finally get the needed conclusion that the formula
� �

n " � ����� � n " � � l "�
k

is deducible.

Now suppose that natural numbers n
� ����� � n are given�

k
such that

�
n
� ����� � n � � dom h � Let

���������
I
�
	��
��

L
�
R
� � ��

k
T
�
F � be an arbitrary iterative combinatory space, and let� be its least element. We have to prove that the value of

the functional expression
� �

n " � ����� � n " � in
�

is equal�
k

to � � In other words, the element ��� ���� �
L �

�
((F, ) L, R)

� �
�
L ��� F

�
T � � � �

�
�
( � L, )

� �
n
� ����� � n ��

k
of

�
has to be shown equal to � � By the deducibility of

the formulas (4), (5) and the correctness of the system A
�

the equalities ��� ��� � ��� ����
( � L, )

� �
n
� ����� � n � ��� 0 � n � ����� � n ��

k
�

k� ��� ��� ����� ��� ����
((F, ) L, R)

� �
i
�
n
� ����� � n � ��� i+1 � n � ����� � n ��

k
�

k
hold. Let x be an arbitrary fixed element of

	��
and let �

be the subset of
	

consisting of all elements of the form� ��� ����
i
�
n
� ����� � n � x � where i � �
� The second of the above�

k
equalities shows that � is invariant with respect to the
element �

� �
((F, ) L, R)

�
of

� � Let � be the element�
L ��� F

�
T � � � �

of
� � We shall check now the inequality

(7) � � � � ��� � �
�
L ��

�
Let y be an arbitrary element of �

�
i. e.� ��� ���

y
���

i
�
n
� ����� � n � x�

k
for some natural number i � Then

�
� ��� � �

�
L � y ��� � y ��� � � y

�
L y ��

We have � ��� ���
� y
���

L ��� F
�
T � � � � �

i
�
n
� ����� � n � x ��

k
and for some positive integer m the formula

� �
i " � n " � ����� � n " � � m "�

k
is deducible since f

�
i
�
n
� ����� � n � > 0 � For this m

�
making�

k
use of the correctness of the system A

�
we get� �

� y
���

L ��� F
�
T � m x � T m

�

and from here we conclude that��
� ��� � �

�
L � y ��� T m ��� � � y

�
L y � � � � y �

But � y is a normal element of the given combinatory space,
since
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����� ��� ���
� y
���

i+1
�
n
� ����� � n � x ��

k
Therefore, the equality � � y

� � holds, and, consequently,
� y
���

� ��� � �
�
L � y �

Thus the validity of (7) is established, and, using the
definition of iteration and the fact that � is invariant
with respect to �

�
we conclude that

� � L � � � � � �
�

i. e. � � L � �
�
� � y for all y in � � In particular,� ��� ���� � L � �

�
� �
�
0
�
n
� ����� � n � x ��� x ��

k
Since this is true for all x in

	��
we see that

� � � � �

We have now everything needed for the proof of a repre-
sentation theorem for all partial recursive functions.

Theorem 1. For each partial recursive function, there is
some functional expression which represents this function
strongly.

Proof. Let h be a partial recursive function of k
arguments. By the Kleene Normal Form Theorem (Kleene [1952,

�
63]), there are a k + 1 � argument primitive recursive func-

tion f and a one-argument primitive recursive function g
�

such that for all natural numbers n
� ����� � n the equality�

k
h
�
n
� ����� � n ��� g

�
� i � f

�
i
�
n
� ����� � n � � 0 �#��

k
�

k
holds. Define the k � argument partial recursive function
h by means of the equality�

h
�
n
� ����� � n ����� i � f � i � n � ����� � n � � 0 ���� �

k
�

k
By Propositions 7 and 8, there are some functional expres-
sion

�
strongly representing h and some functional ex-� �

pression
�

representing g � Let
�

be the functional ex-
pression

� � � Since�
h
�
n
� ����� � n ��� g

�
h
�
n
� ����� � n ����

k
� �

k
for all n

� ����� � n �
an application of Proposition 5 shows�

k
that

�
represents h � It remains only to show that the re-

presentation is a strong one.

Suppose that natural numbers n
� ����� � n are given such�

k
that

�
n
� ����� � n � � dom h � Let

���������
I
�
	��
��

L
�
R
� � �

T
�
F ��

k
be an arbitrary iterative combinatory space, and let � be
its least element. We have to prove that the value of the
functional expression

� �
n
� ����� � n ��" in

�
is equal to�

k� � But this is clear, since
�
n
� ����� � n � � dom h �

and�
k

�
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therefore��� ��� ��� ���� � � �
n
� ����� � n � � � � � � � � � �

n
� ����� � n � � � � � � � � � ��

k
� �

k
�

Corollary 2. Let
���������

I
�
	��
��

L
�
R
� � �

T
�
F � be an

iterative combinatory space, and let f be a partial recur-
sive function of k arguments. Then there is an element

�
of COMP

� � � such that, for all natural numbers n
� ����� �� �

n
�
m �

k ��� ��� �
(i) if the equality (1) holds, then

� �
n
� ����� � n � � m�

kin
�
; ��� ���

(ii) if
�
n
� ����� � n � � dom f � then

� �
n
� ����� � n � is�

k
�

k
the least element of

� �
Note that a direct proof (without using functional ex-

pressions) of this corollary can be obtained by an appropri-
ate modification of the proof of Theorem 1.

The representability of the partial recursive functions
in the system A can be used to obtain certain negative re-
sults concerning this system and, more generally, the prob-
lems of decidability and axiomatizability of the theory of
iterative combinatory spaces. Here are some results of this
kind. The sign ��� in their formulations and proofs means
deducibility in the system A (with an exception in Remark
5 below).

Theorem 2. A functional expression
�

of the system A
with the following properties can be found:

(i)
�

does not contain variables;

(ii) the set � n � � � ��� �
n " � 0 "�� is not recursive

(hence the recursive unsolvability of the problem of decid-
ing whether a given formula is deducible in A );

(iii) there is a natural number n such that neither of
the formulas

�
n " � 0 " and � � �

n " � 0 " � is deducible in A
�

but the second of them is true in all iterative combinatory
spaces (hence the syntactic and the semantic incompleteness
of the system A );

(iv) whenever an iterative combinatory spaces is given,
the non-recursive set from (ii) coincides with the set of
the natural numbers n such that

�
n " � 0 " is true in the

given combinatory space (hence the recursive unsolvability
of the problem of deciding whether a given formula is true
in all combinatory spaces from a given non-empty class of
iterative combinatory spaces).

Proof. Let E be a recursively enumerable subset of �
such that �	� E is not recursively enumerable. Take f to
be the restriction of the constant function

�
n � 0 to the

set E
�
and take

�
to be a functional expression which re-
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presents f strongly. Then the formula
�
n " � 0 " will be

deducible for all n in E
�
and this formula will be non-

deducible for all n in �	� E (by the correctness of A and
the fact that the value of 0 " in an iterative combinatory
space is different from the least element of the space).
Hence the complement of the set � n � � � ��� �

n " � 0 "�� is not
recursively enumerable. Since the system A is consistent,
the set � n � � � ��� � � �

n " � 0 " � � is a subset of this comple-
ment. But this subset is recursively enumerable due to the
fact that A has a decidable notion of deduction. Hence
there is some natural number n belonging to the difference
of these two sets, and for such an n no one of the formulas�

n " � 0 " and � � �
n " � 0 " � could be deducible. It will be

shown now that the second of these two formulas is true in
all iterative combinatory spaces. To show this, we note than
the concerned n does not belong to dom f

�
since otherwise

the first one of the formulas would be deducible. Therefore,
if

���������
I
�
	��
��

L
�
R
� � �

T
�
F � is an iterative combina-

tory space, then the value of
�
n " in

�
will be the least

element of
���

and hence the second of the formulas will be
true in

� � By the correctness of the system A
�
the proof of

(iv) can be reduced to showing that if for some natural
number n the formula

�
n " � 0 " is true in some iterative

combinatory space then, for the same n
�
this formula is de-

ducible in A � And it is really so, since such a natural
number n is obliged to be in dom f (otherwise the value of�

n " would be the least element of the space) �

Remark 4. The functional expression
�

used in the
above proof can be (in principle) effectively found. As to
the natural number n with the property (iii), to assure
such a possibility also for its construction, it is suffi-
cient to choose E to be a creative set.

Remark 5. One could try to replace the system A with
some other formal system in order to avoid the negative re-
sults in paragraphs (i) and (ii) of Theorem 2. Unfortunate-
ly, there are no reasons to be optimistic in this respect,
since very few properties of A have been used in the proof
of Theorem 2, namely: the strong representability of the
partial recursive functions, the correctness of the system,
its consistency (which follows from the correctness) and the
fact that the system has a decidable notion of deduction.
These properties will be preserved at least in the case when
A is replaced by some correct extension of it having a
decidable notion of deduction (in particular, the properties
are preserved if we replace A by the system A

�

from Sec-
tion II.7). But even if these conditions are weakened to
some extent, the unpleasant situation remains. For example,
the recursive unsolvability from (ii) remains if the formu-
las of the kind

� � �
of A are among the formulas of the

considered system, simple (not necessarily strong) represen-
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tability of the partial recursive functions is present, the
notion of deduction of the system is decidable, and instead
of correctness and consistency the following weaker assump-
tion is fulfilled: there is no functional expression

�

such that both formulas
� �

0 " and
� �

1 " are deducible.
Indeed, suppose that a system S with these properties is
given. Then take an one-argument partial recursive function
f which has no recursive extension and no values different
from 0 and 1 � Let

�
be a functional expression repre-

senting this function. We assert that � n � � � ��� �
n " � 0 "��

is a non-recursive set again (the sign ��� meaning deducib-
ility in S this time). Otherwise, we could obtain a recur-
sive extension g of f by setting g

�
n � � 0 in the case

when
�
n " � 0 " is deducible, and g

�
n � � 1 in the opposite

case.

The formulation of the next theorem does not concern the
deductive machinery of the system A and uses only a small
part of its syntax and semantics (however, the proof of the
theorem makes use of the information in Theorem 1 about the
deductive machinery of A ).

Theorem 3. There are functional expressions
�

and
�

with the following properties:

(i)
�

and
�

do not contain variables;

(ii) for every choice of an iterative combinatory space,
the set � n � � � � �

n " � � � � � � is not recursively enumerable,
and this set does not depend on the choice of the combina-
tory space.

Proof. Let
�

be chosen in the same way, as in the
proof of Theorem 2, and let

�
be the functional expression

[ , T] � Then the set described in (ii) always coincides with
the set �	� E from the same proof. �

Theorem 3 can be used for showing the non-axiomatizabil-
ity of any given non-empty class of iterative combinatory
spaces. Let

�
be such a class of combinatory spaces. We

shall show that no formal system S is possible with the
following properties: the system S has a decidable notion
of deduction, the equalities between functional expressions
are among the formulas of S

�
and an equality between func-

tional expressions without variables is deducible in S iff
this equality is true in each combinatory spaces of the
class

� � Suppose S is a formal system with this proper-
ties. Then, taking functional expressions

�
and

�
with

the properties from Theorem 3, we can form the set of all
natural numbers n such that the formula

�
n " � � is deduc-

ible in S � This set must be recursively enumerable due to
the assumption that S has a decidable notion of deduction.
On the other hand, according to the last assumption about
S
�
this set must coincide with the set from paragraph (ii)



168 III. COMPUTABILITY IN ITERATIVE COMBINATORY SPACES

of Theorem 3, and this is a contradiction.

We should like to end this section by mentioning that
some other representations of number theoretic functions in
an iterative combinatory space can be obtained by applica-
tion of the representation theorems from Georgieva [1984]
and Ivanov [1980, 1986] to the companion operative space of
the given combinatory space.

Exercises

1. Let A be the formal system defined in the following�
way. The language of A is contained in the language of A�
and consists again of functional expressions and formulas.
Functional expressions of A are those functional expres-�
sions of A which contain neither variables nor the symbol

� � Formulas of A are those formulas of A which have the�
form

� � � � where
� � � are functional expressions of A

��
and � is normal (in the sense of Section II.7). The system
has the following axioms and rules of inference, where

� �
� �

�
�

�
� �

are functional expressions of A
�
and �

�
�
� ��

are normal:

�
�
� L ( � , � )

�
� R ( � , � )

�
�

� �
� � �

�
� � �

�
� � �

� �

��������������������������� �������������������������������
� � �

� (
�
,
�
) �
�
( � ,

�
)

� �
�
T

�
[

�
,
�
]

� �
�

� � �
�
F

�

��������������������������������������� �����������������������

[
�
,
�
] �
�

� [
�
,
�
] �
�
�

Show that all formulas deducible in A are deducible also�
in A � Adopting the same definitions for the notions of re-
presentation and strong representation of a function as in
the case of the system A, but with A replaced by A

��
prove that all partial recursive functions are strongly re-
presentable in A ��

Hint. Make use of the deducibility in A of the formu-�
las

�
n + 1 �#" � (F n " , n " ) � Use the functional expression

R [(F, F), L] (L, T R) instead of (L � F, T) �
2. (Soskov [1979, p. 40]) Let

�
be the set B � from
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73Moschovakis [1969] in the special case of B
�

� (of

course, the identification of some elements of B � � B with
natural numbers must be declined in this case). Let

�
be

the corresponding computational structure � �
P be the

B
mapping

�
u � u � 1 of � into �

�
and Z be the mapping of �

into
�

defined as follows: Z
�
u � ��� O � O � for all u in

�	� � 0 � � Z
�
0 � � O (pay attention to the difference between

"0" and "O "!). Let
� ��� � � � � k be a positive inte-p

kger, and f be a partial mapping of � into �
� Prove that
the following two conditions are equivalent:

(i) there is an element
�

of
�

such that
�

is
� �

computable in � P � Z � and, for all natural numbers n
� ����� ��

n
�
the equality

k
f
�
n
� ����� � n ��� ����� n �
�

n
� ����� �
� n �

n ������������� ��
k

�  
k-
�

k
holds;

(ii) f is partial recursive, and, for all n
� ����� � n�

k
satisfying the condition

�
n
� ����� � n � � dom f � the inequal-�

k
ity f

�
n
� ����� � n � � max � n � ����� � n � holds.�

k
�

k

Hint. To prove the implication from (ii) to (i), apply
Corollary 2 to represent f in the iterative combinatory
space

����� � and, in addition, construct
� � computable inp

� P � Z � elements � ������ of
� � � � such that, for allpn

� ����� � n �
m
�
n in �

��
k ��� ���

� ��� n �
�
n
� ����� �
� n �

n ������������� � ��� n � ����� � n � � n � ��  
k-
�

k
�

k
�

�����
n
�
�

n
� ����� �
� n �

n ������������� � � max � n � ����� � n � ��  
k-
�

k
�

k������
m
�
n � � n � � � min � m � n ���

(where i is the element of
�

representing i in
����� � ).p

3. Prove the existence of a combinatory space
�����

I
�
	��

��
L
�
R
� � �

T
�
F � which is not iterative, but, however, for

all �
�
�
���

in
���

the element �	� � � � ��� � � ��� � exists,
and the equality

�	� � � � ��� � � ��� � �
� �	� � � � ��� � � � I �
holds.

Hint. Use the completeness theorem for the predicate
calculus and the semantic incompleteness of the system A
with respect to the class of the iterative combinatory
�������������������������������������������������������������

73 Cf. also Section I.7 of the present book.
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spaces.

4. The First Recursion Theorem
for iterative combinatory spaces

In the whole section (including the exercises), an iter-
ative combinatory space

���������
I
�
	��
��

L
�
R
� � �

T
�
F �

and a subset
�

of
�

will be supposed to be given. In
Proposition 2.2, the fact was established that all elements
of

�
and all mappings in

� � � computable in
�

are
fixed-point definable in the corresponding partially ordered
algebra � ��� � � �� The problem was noted whether the converse
is true, and giving an affirmative answer was promised. In
the present section a theorem will be proved giving this
answer. The theorem will be called "First Recursion The-
orem", since it is similar to the First Recursion Theorem
from the ordinary recursion theory dealing with partial re-
cursive functions in �
� The logical relationship between
the two theorems will be discussed in the next section on
the basis of the considerations from Chapter I.

The simplest case of the First Recursion Theorem can be
formulated as follows: whenever � is a mapping of

�
into�

, and � is
� � computable in

� �
then the element �	� ��� � ��

exists and this element is also
� � computable in

� � This
is a particular case of the following more general formula-
tion:

Theorem 1 (Non-parameterized version of the First Recur-
sion Theorem). Let l be a positive integer, and � � ����� � ��

l
lbe mappings of
�

into
�

which are
� � computable in

� �
Then the system of inequalities

(1) � ��� � � � ����� � � � � r
�
1
� ����� � l �

r r
�

l
has a least solution

� � � ����� � � � � and the components of�
l

this solution are
� � computable in

� �
If we allow the right-hand sides of the inequalities in

(1) to contain parameters, then we obtain a stronger version
of the theorem.

Theorem 2 (Parameterized version of the First Recursion
Theorem). Let l and n be positive integers, and � � ����� ��

l+n� be mappings of
�

into
�

which are
� � computable in

l
n� � Then mappings � � ����� � � of
�

into
�

exist such�
l

that, for any choice of � � ����� � � in
���

the l � tuple�
n
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���������
	�	�	�������
	�	�	����������
	�	�	�������� �
n l

�
n

is the least solution �����
	�	�	������ of the system of in-�
l

equalities

(2) �����������
	�	�	����������
	�	�	�������
r � 1 �
	�	�	�� l �

r r
�

n
�

l
and ���
	�	�	���� are ��� computable in � 	�

l
Remark 1. Theorem 2 is stronger than Theorem 1, since

there is a simple way to obtain Theorem 1 from it (namely
by introducing fictitious parameters and replacing them by
suitable elements of � ), and no simple way is seen for the
converse reduction. We shall restrict ourselves to proving
Theorem 2.

Remark 2. The case of arbitrary positive integer l is
in a sense not essentially more general than the case of
l � 1 � since there is an easy way to reduce the first case
to the second one (see Proposition II.4.3) 	 Such a reduction

74has been used in Skordev [1980]. However, the proof which
will be given here (following the papers Skordev [1984,
1989]) will not use a reduction of this sort.

Remark 3. The case of arbitrary positive integer n in
Theorem 2 can be reduced to the case of n � 1 by consider-

l+
�

ing the mappings �����
	�	�	�� ��� of � into � defined by�
l

means of the equalities
�������������
	�	�	����� �
r

�
l� � �!�!� n-

������
0
���

1
�
	�	�	����#" � 2 ��� R $ �����
	�	�	������� r � 1 �
	�	�	�� l 	

r
�

l
Indeed, suppose that �%���
	�	�	������ are mappings of � into ��

l
��� computable in � and such that, for every fixed � in
� � the l � tuple ������������
	�	�	������������� is the least solution�

l�����
	�	�	������ of the system of inequalities�
l �����������������
	�	�	�������

r � 1 �
	�	�	�� l 	
r r

�
l

Since the system of inequalities (2) is equivalent to the
system

����������& $ �����
	�	�	�����������
	�	�	������� r � 1 �
	�	�	�� l �
r r

�
n
�

l
we can obtain the needed ���
	�	�	���� by setting�

l�������
	�	�	����� � ������& $ �����
	�	�	�������� i � 1 �
	�	�	�� l 	
i
�

n i
�

n

�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�
74 The proof given there is based on a previously proved

normal form theorem for the considered mappings, and there-
fore the case of a single inequality turned out to be easier
then.
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This reduction will be used in the proof of Theorem 2 for
reducing the amount of writing.

Proof of Theorem 2. Making use of the above remark, we
shall restrict ourselves to the case of n � 1 	 Thus we sup-

n+
�

pose that ���
	�	�	���� are mappings of � into � which�
l

are ��� computable in � � and we shall prove the existence
of mappings ���
	�	�	���� of � into � , also ��� computable�

l
in � � such that, for any fixed � in � � the l � tuple����������
	�	�	����������� is the least solution �����
	�	�	������ of�

l
�

l
the system of inequalities

(3) ���������������
	�	�	�������
r � 1 �
	�	�	�� l 	

r r
�

l
Without loss of generality, we can suppose that ���
	�	�	�����

l
are simple operations of the partially ordered algebra� � � � � �	 In fact, by Proposition 2.2, the mappings ���
	�	�	���
� are fixed-point definable in the partially ordered al-
l

gebra
� � � � � �� and this enables applying Theorem 1.1 to the

system (3). According to that theorem, there are a natural
number m and an l + m � tuple ���#�
	�	�	������ of l + m + 1 � ary�

l+m
simple operations of

� � � � �  such that, for each fixed �
in � � if �����
	�	�	���� � is the least solution�

l+m�����
	�	�	���� � of the system�
l+m

(4) �����������������
	�	�	���� ��
r � 1 �
	�	�	�� l + m �

r r
�

l+m
then �����
	�	�	������ is the least solution �����
	�	�	������ of�

l
�

l
the system (3). Thus the system (3) can be replaced by the
system (4) for the purpose of the present proof, and so the
theorem is reduced to its particular case when the given ����
	�	�	���� are simple operations of the partially ordered al-

l
gebra

� � � � � �	 From now on, they will be assumed to be such
operations, i. e. each � will be assumed to have one of the

rfollowing forms: �����	��
�� 	 � � �
l i�����	��
�� 	���� �
l�����	��
�� 	 ��� � �

l j i�����	��
�� 	!� � � � #� �
l i j�����	��
�� 	!� � ��� � � � �� �

l i j k
where i

�
j
�
k are fixed numbers from the set � 0 � 1 �
	�	�	�� l � �

and � is some fixed element of � I � L � R � T � F ����� 	
One more reduction of the problem will be done, namely

to consider only the case when the only mapping of the first
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form among ���
	�	�	���� is
�����	��
�� 	 � � and all numbers�

l
 �

l


i
�
j
�
k belong to the set � 1 �
	�	�	�� l � � i. e. the case when

each inequality of the system (3) has one of the following
forms:

(5) �������
r

(6) ��� ���
r

(7) ����� ���
r j i

(8) ������������#�
r i j

(9) ������� ��� ��������
r i j k

where i
�
j
�
k are fixed numbers from the set � 1 �
	�	�	�� l � � and� is some fixed element of � I � L � R � T � F ����� 	 In fact, if

it is not this case then, making use of Theorem II.4.1 (on
elimination), we could replace the system (3) by another one
obtained in the following way: we add the inequalities� �

I
� � ����� replace each inequality of the form �����

l+
�

l+
�

r i
by the inequality ����� � and replace by � each occur-

r i l+
�

l+
�

rence of � in some inequality not of the form ����� 	 We
r

shall further assume that each inequality of (3) has one of
the forms (5) - (9).

The next steps in the proof have an intuitive explana-
tion as the arrangement of some coding. Its purpose is to
enable imitation of a sort of stack-implementation of a sys-

75tem of mutually recursive monadic procedures . The compo-
nents ���
	�	�	���� of the least solution can be regarded as�

l � �such a system of procedures, and the elements 1
�
	�	�	��

l of
� will be used as their "codes" (the elements of � I � L � R � T �
F ����� must be regarded as the basic primitive procedures,
and � as an external procedure which can be chosen arbit-
rarily). Since the operations & and

�
correspond to cer-

tain non-monadic operations on monadic procedures, some ad-
ditional "codes" will be used for certain, so to say, aux-
iliary monadic procedures having one more parameter besides
their argument (such procedures arise from procedures with
two parameters � arguments by means of so-called "curryfica-
tion"). Here is a more concrete description of these other
"codes" and their intuitive meaning:

(i) if 1 � r � l
� and there is an inequality of the form

(8) with this r in the system (3), then, for each x in � ��!�!�the element l+r
�
x
�
I
 will be the "code" for the "proce-

�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�
75 The term "monadic" is used here in the sense of "hav-

ing one parameter-argument".
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dure" � I ��� x
�� which arises at the representation of the

jinequality
�

x
����������

x
r i j

into the form
�

x
���

I
���

x
 �

x ;
r j k

(ii) if 1 � r � l
� and there is an inequality of the form

(9) with this r in the system (3), then, for each x in � ��!�!�the element l+r
�
x
�
I
 will be the "code" for the "proce-

dure" � I ��� � x
���

x
�� which arises at the representation of

j k
the inequality �

x
����� ��� ������ x

r i j k
into the form

�
x
���

I ��� � x
���

x
 �

x ;
r j k i �!�!�!�(iii) for each y in � � the element 2l+1

�
y
�
I
 of �

will be the "code" for the "procedure" � y � I �� which arises
at the representation of elements of the form � I ��� x


y

j
into the form � y � I  � x

	
j

Note that all "codes" listed above are normal elements
of � 	

The "stacks contents" will be represented by means of�products of the form � 	�	�	 � 0 c
� where c is some fixed�

p
element of � � and � �
	�	�	�� � are the "codes" of some�

p
"procedures" subject to execution in this order (the product�0 c representing the contents of an "empty stack"). Of
course, the object domain where the "procedures" act is re-
presented by means of the set � . The task of "application"
of the above sequence of "procedures" to an "object" x
will be represented by means of the element

��
x
� � 	�	�	 � 0 c

���
p �which obviously belongs to � (since � 	�	�	 � 0 c � � ). The�

p
implementation of the given "system of procedures" will con-
sist in a step by step transformation of such "task repre-
sentations" one into another. We are going now to construct
a mapping � of � into � � ��� elementary in � � such that,
for any fixed � in � � the element � ���� of � "performs"
the mentioned transformation.

The conditions which must be satisfied by � ���� are the
following ones:

1) If 1 � r � l, and there is an inequality of the form
(5) or (6) with this r in the system (3), then

�� ���� � x � r z  � ��� x � z 
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or
�� ���� � x � r z  � � � x � z ��

respectively, for all x and z in � 	

2) If 1 � r � l, and there is an inequality of the form
(7) with this r in the system (3), then

� � �� ���� � x � r z  � � x � i j z 

for all x and z in � 	

3) If 1 � r � l, and there is an inequality of the form
(8) or (9) with this r in the system (3), then for all x

�
y
�
z in � �

� � �!�!�� ���� � x � r z  � � x � i l+r � x � I  z 

in both cases,
�!�!� � �!�!�!�� ���� � y � l+r � x � I  z  � � x � j 2l+1 � y � I  z 

if the inequality has the form (8), and
�!�!� � �� ���� � y � l+r � x � I  z  � � y ��� � x � j z ���� x � k z �

in the other case.

4) For all x
�
y
�
z in � � the equalities
�!�!�!�� ���� � x � 2l+1 � y � I  z  � ��� y � x �� z ��

� �� ���� � x � 0 z  � � x � 0 z 

hold.

From the already presented intuitive point of view, all
equalities in 1) � 4) except the second one in 4) correspond
to rules of the mentioned step by step transformation of� �"task representations". The equality � ���� � x � 0 z  � � x � 0 z 
is needed for technical reasons, and it has the intuitive
meaning that "tasks with an empty stack" are transformed
into themselves.

Of course, the existence of such a mapping � must be
proved before going on further. This can be done by using
Proposition II.2.2. We recall that a binary operation � in
� has been defined in Section II.2 by means of the equal-
ity � ���� ��� �  � � L R ��� �#� L � R �� � � L � R ���
and then the definition was extended by setting
��� �������
	�	�	����� � ��� ������� ���
	�	�	������ � �����	�	�	���	 �

n
 �

n � � n

It is clear that, for each natural number n greater than
n1

� the restriction of the operation � to � is a mapping
��� elementary in

� 	 We recall also the equalities
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���� ���
	�	�	����� �
x
�
r
 � � � x � I �� r � 0 � 1 �
	�	�	�� n �

n r
n��� ���
	�	�	����� �

x
���

F
�
I
� � � � x � I ��

n n
which have been proved in Proposition II.2. We note that
these equalities imply immediately the equalities

���� ���
	�	�	����� �
x
�
r y
 � � � x � y �� r � 0 � 1 �
	�	�	�� n �

n r
n��� ���
	�	�	����� �

x
���

F
�
I


y
 � � � x � y �	

n n
Having in mind all this, we see that it is sufficient to
define the mapping � by means of the equality

� ���� � ��� � ������ � ������
	�	�	�� � ������� � �
l+
�

where � � � �
	�	�	�� � are ��� elementary in � and satis- � �
l+
�

fy the following conditions:

1 ) If 1 � r � l, and there is an inequality of the form
(5) or (6) with this r in the system (3), then

� ���� � x � z  � ��� x � z 
r

or

� ���� � x � z  � � � x � z ��
r

respectively, for all x and z in � 	

2 ) If 1 � r � l, and there is an inequality of the form
(7) with this r in the system (3), then

� �� ���� � x � z  � � x � i j z 
r

for all x and z in � 	

3 ) If 1 � r � l, and there is an inequality of the form
(8) or (9) with this r in the system (3), then, for all x

�
y
�
z in � �

� �!�!�� ���� � x � z  � � x � i l+r � x � I  z 
r

in both cases,
� �!�!�!�� ���� �

y
���

x
�
I

z
 � � x � j 2l+1 � y � I  z 

l+r
if the inequality has the form (8), and

� �� ���� �
y
���

x
�
I

z
 � � y ��� � x � j z ���� x � k z �

l+r
in the other case.

4 ) For all x
�
y
�
z in � � the equalities
�� ���� �

x
�
0
�
y
�
I

z
 � ��� y � x �� z ���

l+
�

�� ���� � x � z  � � x � 0 z 
hold.
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The existence of � � � �
	�	�	�� � with the above � �
l+
�

properties is seen by means of their explicit construction.
Namely we can set � ���� � ��� L � R  for the first case of

r
1 ) and � ���� � � � L � R  for the second case. To satisfy

r � �2 ), we can set � ���� � � L � i j R �	 Satisfying 3 ) can be
r


� �!�!�achieved by setting � ���� � � L � i l+r  in both cases,

r � �!�!�!� �
� ���� � � L R � j 2l+1 � L � R �
l+r

if the inequality has the form (8), and
� �� ���� � � L ��� � L � j R  R ��� L � k R  R 

l+r
in the other case. Lastly, it is convenient to set�

3 �� ���� � ��� L R � L �� R �� � ���� � � L � 0 R �	�
l+
� 

Note the possibility that no conditions are imposed on some
� with l < s � 2 l ; in this case we can choose � arbit-
s s

rarily (for example, we can set � ���� � I ).
s

From now on, a mapping � with the listed properties
will be supposed to be fixed. Using this mapping, we shall
construct certain mappings ���
	�	�	���� of � into � ,�

l
which will be ��� computable in � on the basis of their
construction � and it will be proved (by hard work) that, for
any fixed � in � � the l � tuple ����������
	�	�	����������� is�

l
the least solution �����
	�	�	������ of the system of inequal-�

lities (3).

The idea how to construct ������ is straight-forward
r

after the intuitive explanations given until now. If some
"object" x is given, and � � ������ has "to be executed

r r
at x ", then it is natural to form the "task representa-� �tion" � x � r 0 x  (taking x in the role of c ) and then to
start an iteration of the step by step transformation per-
formed by � �����	 The termination condition for this iteration
must obviously be "obtaining a task representation with an
empty stack". The "result of the execution" will be the "ob-�ject" y in such a "terminal task representation" � y � 0 x �	
Writing all this in a formal way, we get the following defi-
nition of the mappings ���
	�	�	���� ��

l �(10) ������ � L � � �������� L ��� F
�
T

R � � I � r 0 �� r � 1 �
	�	�	�� l 	

r
The ��� computability of these mappings in � is evi-

dent, and the rest of the proof is devoted to the other
statement about them.

From now on, the element � of � will be considered
as fixed, and, for the sake of brevity, we set
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� � � ������
� � � � �������� L ��� F

�
T

R � �

(11)
� � �������� r � 1 �
	�	�	�� l 	
r r

For the needs of the proof, we set also, for each c in � �
c �� � L � � �������� L ��� F

�
T

R � � I � r 0 c �� r � 1 �
	�	�	�� l 	

r
c cWe shall prove that � � �
	�	�	�� � � is the least solution�

l�����
	�	�	������ of the system of inequalities (3) (from here,�
l

using the arbitrariness in the choice of c
� it would be

easy to draw the same conclusion about � � �
	�	�	�� � � ).�
l� �The elements 1

�
	�	�	��
l of � and all elements of the�form s

�
z
�
I
�� mentioned in the paragraphs (i) - (iii) of

the intuitive explanations at the beginning of the proof,
will be called coding elements. As already noted, all these
elements are normal.

For any given c in � � let � be the set of all el-
c �ements of � having the form � 	�	�	 � 0 c

� where p is a�
p

natural number (possibly 0 ), and � �
	�	�	�� � are coding�
p

elements 	 Let � (the set of all possible "task represen-
c

tations" corresponding to c ) be the set of all elements of
� having the form � x � y  for some x from � and some
y from � 	 From now on, except for the concluding part

c
of the proof, an element c of � will be supposed to be
fixed.

One more definition will be useful for the further expo-
sition. Let y

�
y
�
z
�
z be some elements of � 	 It will be� � � �

said that y
�
y are proportional to z

�
z iff� � � �

y � � 	�	�	 � z
�

y � � 	�	�	 � z� �
p
� � �

p
�

for some p and some � �
	�	�	�� � such as in the definition�
pof the set � 	

c
In view of the considerable length of the present proof,

some statements in it will be formulated as lemmas accom-
panied with their own proofs.

Lemma 1. Let z
�
z be given elements of � � � � � be� � � �

given elements of � 	 Whenever x
�
y
�
y are elements of � �� �

y
�
y being proportional to z

�
z
� let the inequality� � � �� �

x
�
y
 � � �

x
�
y
� � � �

hold. Then, for any choice of the coding element � � the
inequality
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(12)
� � � x � � y

 � � � � x � � y
� � � �

holds under the same conditions on x
�
y
�
y
	� �

Proof. Since the inequality
� �

x
�
y
 � � �

x
�
y
 can be� � � �

written in the form
� �

I
�
y

x
� � �

I
�
y

x
� it follows that� � � �� �

I
�
y
 � � �

I
�
y
 whenever y

�
y are elements of �� � � � � �

proportional to z
�
z
	 Let � be an arbitrary coding el-� �

ement, x
�
y
�
y be element of � � y

�
y being proportion-� � � �

al to z
�
z
	 There are several possibilities for � � and� �

they will be scrutinized separately.
�At first, let us consider the case when � � r for some

r from the set � 1 �
	�	�	�� l � 	 If the corresponding inequality
in (3) is ����� then, by the condition 1) on � � the equal-

rities � � � x � � y
 � � ��� x � y  � � � I � y  � x � t � 1 � 2 �

t t t t t t
hold, and the validity of (12) follows. The case,when the
inequality in (3) concerning � is of the form (6), can be

rtreated in the same way.

Consider now the case, when this inequality has the form����� � 	 Then, by the condition 2) on � � the equalities
r j i � �� � � x � � y

 � � � x � i j y �� t � 1 � 2 �
t t t t� � � �hold. Since i j y
�
i j y are again proportional to z

�
z
�� � � �

the inequality (12) turns out to be valid also in this case.

Suppose now the inequality is of the form ������������
r i j

or of the form ������� ��� �������	 Then, by the first clause
r i j k

of condition 3) on � � the equalities
� �!�!�� � � x � � y

 � � � x � i l+r � x � I  y �� t � 1 � 2 �
t t t t� �!�!� � �!�!�hold, and since i l+r

�
x
�
I

y
�
i l+r

�
x
�
I

y are propor-� �

tional to z
�
z
� the validity of (12) is sure again. So we� �

�finished with the case when � � r for some r from the set
� 1 �
	�	�	�� l � 	

�!�!�Another possibility is that � � l+r � z � I  for some z
in � and some r from the set � 1 �
	�	�	�� l � 	 Two cases are
possible now: the case, when an inequality of the form������������ is present, and the case, when there is an
r i j

inequality of the form ������� ��� �������	 In both cases,
r i j k

the second clause of condition 3) is applied. In the first
of the cases, we get the equalities
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� �!�!�!�� � � x � � y
 � � � z � j 2l+1 � x � I  y �� t � 1 � 2 �

t t t t� �!�!�!�and we use the fact that the elements j 2l+1
�
x
�
I

y are
t

proportional to the elements z
	 In the second case, we

thave the equalities
� �� � � x � � y

 � � � x ��� � z � j y ���� z � k y � �
t t t t t� ��

x ��� � � z � j y �� � � z � k y ��� t � 1 � 2 �
t t t t� � � �and we use the fact that both j y

�
j y and k y

�
k y are� � � �

proportional to z
�
z
	� �

�!�!�!�The last possibility is that � � 2l+1 � z � I  for some
z in � 	 Then the first equality in condition 4) is appli-
cable, and we get the equalities� � � x � � y

 � � ��� z � x �� y �� t � 1 � 2 �
t t t t

which immediately imply the validity of (12) in this case. �
Lemma 2. The set � is invariant with respect to � 	

c
Proof. Let

�
and

�
be arbitrary elements of �� �

satisfying the inequality
� � � 	 We have to prove the� �

�
c

inequality
� � � � � 	 Consider an arbitrary element of� �

�
c

� 	 By the definition of the set � � this element has the
c c

form � x � y �� where x � � and y � � 	 There are two possibil-
c�ities: y � 0 c or y � � y

� where � is some coding element,
and y is again an element of � 	 In the first case, mak-

c
ing use of the second equality in condition 4) on � � we
observe that � � � x � y  � � � x � y �� t � 1 � 2 �

t t
and hence � � � x � y  � � � � x � y �	� �

The same inequality is true also in the second case, by�Lemma 1, applied to z � z � 0 c 	� � �
Lemma 3. There is an element � of � such that

� � x � � z
 � � � x

�
z


for each coding element � and all x
�
z in � 	

Proof. We set ��� ��� � � � �
	�	�	�� � �� where � is � �
l+
�

the operation from Section II.2, and � � � �
	�	�	�� � � �
l+
�

are elements of � satisfying the following conditions:
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�� � x � z  � � s x � z �� s � 1 �
	�	�	�� l �
s �� � x ��� y � I  z  � � s � y � I  x � z �� s � l + 1 �
	�	�	�� 2 l + 1 	

s
�

Remark 4. From the proof of the above lemma, it is seen
that the element � can be chosen to be ��� elementary in

� � but we shall not make use of this fact.

Lemma 4. For each z in � � there is an element � of
�� such that, whenever y

�
z are proportional to 0 c

�
z
�

then � y � z 	

Proof. Let � be an element of � having the property
from Lemma 3, and let

� � L � � ��� L ��� F
�
T

R � 	

It is easy to see that, for all x
�
z in � and all coding

elements � � the following equalities hold:
�� � x � 0 z  � x � � � x � � z

 � � � � x
�
z
�	

Therefore
�� � x � � 	�	�	 � 0 c
 � � 	�	�	 � x

p
� �

p
for all x in � and each finite sequence � �
	�	�	�� � of�

p
coding elements. Making use of this, we check that, for each
z in � � the corresponding element

�� � � � z � � � 0 c � I �
has the needed property. �

Lemma 5. Whenever x
�
y
�
z
�
z belong to � � and y

�
z

�are proportional to 0 c
�
z
� then

� � x � z  � � � I � z  L � � x � y �	
Proof. Let z be an arbitrary element of � 	 We take an

element � with the property from Lemma 4 and note that,
whenever x

�
y
�
z belong to � � and y

�
z are proportional�to 0 c

�
z
� then

� � x � z  � � � x � � y  ��� � x � y ��

where ��� � � L � � R �	 Making use of Lemma 1, we conclude
that, for any choice of the coding element � � the equality

� � � x � � z
 ��� � � x � � y



holds under the same conditions on x
�
y
�
z
	 Since

� � � x � � z
 � � � x � � z

 ��� � x � � y


under the above conditions on � � x � y � z � we see that

�
�
x
� � y
 ��� � � x � � y
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whenever x � � � y � � and � is a coding element. On
c �the other hand, if we take merely 0 c and z as y and z

�
respectively, in the equality �

�
x
�
y
 � � � x � z �� we get

� �
�
�
x
�
0 c
 � � � x � z  � � � I � z  L � x � 0 c �	 

Thus, for any y in � and all x in � � the following
cequality holds:

�
�
x
�
y
 � ��� L ��� F

�
T

R ��� � � � � � I � z  L � � x � y �	

Hence we have the inequality

�
�����

L ��� F
�
T

R ��� � � � � � I � z  L ��	

�
c

From this inequality, Lemma 2 and the definition of iter-
ation, the inequality

�
� � � I � z  L �
�
c

follows, i. e.

�
�
x
�
y
 � � � I � z  L � � x � y 

for all x in � and all y in � holds. Since
c

�
�
x
�
y
 � � � x � z 

�whenever y
�
z are proportional to 0 c

�
z
� the proof of

the lemma is thus completed. �
Lemma 6. For all x and z in � � the inequalities

� c� � x � r z  � � � I � z  �
x
�

r � 1 �
	�	�	�� l � 
r

hold.
� � �Proof. Application of Lemma 5 to y � r 0 c � z � r z 	 �

Lemma 7. For all x in � � the inequalities
� � � c� � x � r 0 c  ��� I � 0 c  �

x
�

r � 1 �
	�	�	�� l �
r

hold.
�Proof. We apply Lemma 6 to z � 0 c and use the fact� � 

that � � I � 0 c  � � I � 0 c �	 �
Lemma 8. For all y in � � the equality

�!�!�!� �L � � I � 2l+1 � y � I  0 c  � � y � I 

holds.

Proof. For all x in � � we have
�!�!�!� � �!�!�!� �L � � I � 2l+1 � y � I  0 c  x � L � � � x � 2l+1 � y � I  0 c  �

� �L � ��� y � x �� 0 c  � L ��� y � x �� 0 c  � � y � x  � � y � I  x 	 �
c cLemma 9. The l � tuple � � �
	�	�	�� � � is a solution of�

l
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the system of inequalities (3).

Proof. Let r be some of the numbers 1
�
	�	�	��

l
	 We

shall prove the inequality
c c c� ��������� � �
	�	�	�� � �	
r r

�
l

For all x in � � we have
c � � � ��
x � L � � I � r 0 c  x � L � � � x � r 0 c ��

r
and therefore it is sufficient to prove that

� � c cL � � � x � r 0 c  ��������� � �
	�	�	�� � 
x

r
�

l
for all x in � 	 The various possibilities concerning the
form of the inequality

���������������
	�	�	�����
r r

�
l

will be considered separately.

If the inequality is ����� then we have
r� � � �L � � � x � r 0 c  � L � ��� x � 0 c  � L � � I � 0 c  � x � � x �

c c������� � �
	�	�	�� � 
x
	

r
�

l
The case of ��� � is quite the same - one has only to re-

r
place � by � 	

Let the inequality be ����� � 	 Then, applying Lemma
r j i6, we get

� � � � � � � cL � � � x � r 0 c  � L � � x � i j 0 c  � L � � I � �
0 c
 �

x �
i

c c c c� �
x � ������� � �
	�	�	�� � 

x
	

j i r
�

l
Now suppose the inequality is ������������ or it is

r i j������� ��� �������	 Then, again by application of Lemma 6,
r i j k

we get
� � � �!�!� �L � � � x � r 0 c  � L � � x � i l+r � x � I  0 c  �

�!�!� � cL � � I � l+r � x � I  0 c  �
x
	

i
We note also that, for all y in � � we have

�!�!� � �!�!� �L � � I � l+r � x � I  0 c  y � L � � � y � l+r � x � I  0 c �	

At this point, the reasoning branches.

Let us consider first the case when the inequality is�������������	 Then, for all y in � � we have
r i j �!�!� � � �!�!�!� �L � � � y � l+r � x � I  0 c  � L � � x � j 2l+1 � y � I  0 c  �

�!�!�!� � c c cL � � I � 2l+1 � y � I  0 c  �
x � � y � I  �

x � � I � �
x

y

j j j
(Lemmas 6 and 8 have been applied). Taking advantage of the
arbitrariness in the choice of y

� we conclude that
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�!�!� � cL � � I � l+r � x � I  0 c  ��� I � �
x
��

j
and hence

� � c c c cL � � � x � r 0 c  ��� I � �
x
 �

x � � � � � 
x �

j i i j
c c������� � �
	�	�	�� � 

x
	

r
�

l
Now we go to the case when the inequality has the form������� ��� �������	 Then we have, for all y in � �

r i j k
�!�!� � � � � �L � � � y � l+r � x � I  0 c  � L � � y ��� � x � j 0 c ���� x � k 0 c � �

c c c c�
y ��� �

x
� �

x
 � � I ��� �

x
� �

x

y
	

j k j k
Therefore

�!�!� � c cL � � I � l+r � x � I  0 c  ��� I ��� �
x
� �

x
��

j k
and hence

� � c c c c c cL � � � x � r 0 c  ��� I ��� �
x
� �

x
 �

x � � � ��� � � � 
x �

j k i i j k
c c������� � �
	�	�	�� � 

x
	

r
�

l
�

c cWe are going now to prove that � � �
	�	�	�� � � is the�
lleast solution of the system (3).

Lemma 10. Let �����
	�	�	������ be an arbitrary solution�
l
cof the system (3). Then ��� � �

r � 1 �
	�	�	�� l 	
r r

Proof. We define an element � of � such that
�� � x � r z  � � � x

�
z
��

r � 1 �
	�	�	�� l �
r� �� � x � s z  � � � x � s z �� s � l + 1 �
	�	�	�� 2 l + 1 �

for all x and z in � 	

Such an element can be constructed with the help of
Proposition II.2.2 in a similar way as � ���� was. An intu-
itive interpretation can be given to the element � in the
same spirit as in the case of � �����	 This interpretation is
the same as the one of � ������ except that now the elements� �1
�
	�	�	��

l of � play the role of "codes" of ���
	�	�	�������
l

respectively, and ���
	�	�	���� are treated as primitive�
l

procedures. In other words, we give a new intuitive inter-
pretation of a part of the "procedure denotations", and the
element � "performs" the step by step transformation of
"task representations" corresponding to this new interpreta-
tion. The formal treatment of the corresponding concept of
"result of carrying out the tasks" can be done by using the
element

� � L � � ��� L ��� F
�
T

R � �

which can be regarded as "transforming the task representa-
tions into the results of carrying out the tasks".
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We shall prove now that

(13) � � x � � z
 � � � � x � � z



for all x
�
z in � and all coding elements � 	 To do this,

we first show that
� �(14) � � x � r z  � � � I � z �� x

� � � I � r z  � � � I � z ��
r r

for r � 1 �
	�	�	�� l and all x, z in � 	 In fact, we have
� � �� � I � r z  x � � � x � r z  � � � � x � r z  �

� � � x
�
z
 � � � I � z �� x

	
r r�Now we go to the proof of (13) in the case of � � r � where

1 � r � l
	 In this case,

� � x � � z
 � � � I � z �� x

� � � I � z  �����������
	�	�	����� x 	
r r

�
l

We shall prove the equality

(15) � � � x � � z
 � � � I � z  �����������
	�	�	����� x 	

r
�

l
The proof will be by consideration of the various cases
concerning the form of the inequality

���������������
	�	�	������	
r r

�
l

If this inequality is ����� then
r

� � � x � � z
 � � ��� x � z  � � � I � z  � x �

� � I � z  �����������
	�	�	����� x 	
r

�
l

The situation is completely similar also in the case of in-
equality of the form ��� � 	 If the inequality is ����� �

r r j ithen
� � �� � � x � � z

 � � � x � i j z  � � � I � j z �� x �
i

� � I � z ����
x � � � I � z  �����������
	�	�	����� x 	

j i r
�

l
Let the inequality has the form ������������ or the

r i j
form ������� ��� �������	 Then

r i j k
� �!�!� �!�!�� � � x � � z

 � � � x � i l+r � x � I  z  � � � I � l+r � x � I  z �� x
	

i
We note also that for all y in � �

�!�!� �!�!�� � I � l+r � x � I  z  y � � � y � l+r � x � I  z  �
�!�!� �!�!�� � � y � l+r � x � I  z  � � � � y � l+r � x � I  z �	

Suppose first the inequality has the form �������������	
r i jThen

�!�!� � �!�!�!�� � � y � l+r � x � I  z  � � � x � j 2l+1 � y � I  z  �
�!�!�!�� � I � 2l+1 � y � I  z �� x

	
j

But
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�!�!�!� �!�!�!�� � I � 2l+1 � y � I  z  w � � � w � 2l+1 � y � I  z  �
�!�!�!� �!�!�!�� � � w � 2l+1 � y � I  z  � � � � w � 2l+1 � y � I  z  �

� ��� y � w  , z  � � � I � z  � y � I  w 	

Therefore
�!�!�!�� � I � 2l+1 � y � I  z  � � � I � z  � y � I ��

and hence
�!�!�� � I � l+r � x � I  z  y � � � I � z  � y � I �� x � � � I � z  � I ��� x


y
	

j j
Thus

�!�!�� � I � l+r � x � I  z  � � � I � z  � I ��� x
��

j
and, consequently,

� � � x � � z
 � � � I � z  � I ��� x

��
x � � � I � z  � ������ x �

j i i j
� � I � z  �����������
	�	�	����� x 	

r
�

l
Now suppose the inequality is ������� ��� �������	 Then

r i j k�!�!� � �� � � y � l+r � x � I  z  � � � y ��� � x � j z ���� x � k z � �
� ��

y ��� � � x � j z �� � � x � k z � �
�
y ��� � � I � z �� x

� � � I � z �� x
 �

j k
� � I � z  � I ��� � x

���
x

y
	

j k
Hence

�!�!�� � I � l+r � x � I  z  � � � I � z  � I ��� � x
���

x
��

j k
and therefore

� � � x � � z
 � � � I � z  � I ��� � x

���
x
��

x �
j k i

� � I � z  � � ��� ������ x � � � I � z  �����������
	�	�	����� x 	
i j k r

�
l

Thus the equality (15) is established in all possible
cases, and so the inequality (13) is proved under the as-�sumption that � � r for some r from the set � 1 �
	�	�	�� l � 	

�!�!�It remains to prove (13) for � � l+r � y � I �� where y � � �
1 � r � l + 1

	 Then
�!�!� �!�!�� � x � � z

 � � � x � l+r � y � I  z  � � � � x � l+r � y � I  z  �
�!�!�� � � x � l+r � y � I  z  � � � � x � � z

��

and hence (13) is valid again.

Making use of (13) we shall prove now the inequality

(16) � ����� L ��� F
�
T

R ��� � � � � �	

�
c

Let x be an arbitrary element of � � and y be an arbit-
rary element of � 	 We have to prove the inequality

c
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(17) � � x � y  ����� L ��� F
�
T

R ��� � � � �  � x � y �	
�There are two possibilities: y � 0 c or y � � y

� where
� is some coding element, and y again belongs to � 	

cIn the first case
���
L ��� F

�
T

R ��� � � � �  � x � y  � � � x � y ��

and in the second one
���
L ��� F

�
T

R ��� � � � �  � x � y  � � � � x � y  � � � x � y ��

hence (17) holds in both cases, and thus (16) is estab-
lished.

By Lemma 2 and the definition of iteration, the inequal-
ity (16) implies the inequality

� � � � 	
�
c

Let r be some of the numbers 1
�
	�	�	��

l
� and let x � � 	� �Then � x � r 0 c  � � � and therefore, by the above inequal-

city, we have
� � � �� � x � r 0 c  � � � � x � r 0 c �	

Making use of (14) and of the definition of � � we get
� � � �� � x � r 0 c  � � � I � 0 c �� x � L � I � 0 c �� x � � x

	
r r r

On the other hand,
� � � c c� � � x � r 0 c  � � � I � 0 c  �

x � �
x
	

r r
Thus

c�
x
� �

x
�

r � 1 �
	�	�	�� l �
r r

for all x in � � and therefore
c��� � �

r � 1 �
	�	�	�� l 	
r r

�
c cLemmas 9 and 10 show that � � �
	�	�	�� � � is the least�

l
solution of the system (3), independently of the choice of

c cc in � 	 Hence � � �
	�	�	�� � � does not depend on this�
l

choice. Making use of this, we shall now show that
c� � � �

r � 1 �
	�	�	�� l �
r r

where
�

are the elements defined by (10)-(11). In fact, if
r

r � � 1 �
	�	�	�� l � then
c x � � � ��
x � �

x � L � � I � r 0 x  x � L � � I � r 0  x � �
x

r r r
for all x in � 	

The proof of the First Recursion Theorem (in its param-
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eterized version) is thus completed. �
Some applications of the First Recursion Theorem will be

given in the next sections. We finish this section by men-
tioning explicitly a useful thing from the proof of the the-
orem. Namely, the components ������ of the least solution

r
of the system of inequalities (3) are defined by means of
the equalities (10), where the mapping � is ��� elementary
in � 	 This is a certain kind of normal form, and applica-
tions of this fact also will be given in the sequel.

Exercises

1. Show that, after a small modification of the proof of
Theorem 2, the mapping � used there can be chosen to be of
the form

m+
�

� ���� � � � ��� � ����� L � R ���

where � � � are elements of � � ��� elementary in
� � and

m is some positive integer.

Hint. Without loss of generality, it can be assumed that
there is only one inequality of the form ����� in the sys-

r
tem (3) 	 Take m to be the corresponding r, and choose �
so that �� F if i � m and i � 2 l + 1

�
� � x � i  ��� T if i = m

	�
2. Give a modified proof of the First Recursion Theorem

avoiding the use of coding elements with the intuitive mean-
ing described in (i) and (ii).

Hint. Show that inequalities of the form ����� ������
r j

with � � � I � R � and of the form ����� R ��� ������ can
r j k

be used instead of using inequalities of the forms (8), (9).

3. (Cf. the translation operation in Ivanov [1986])
Prove the existence of a mapping � of � into � with
the following properties:

(i) � is ��� computable in
�
;

(ii) for all � in � and all natural numbers n
� the

equalities

� ���� L $#� L $ ��� � ���� R $#� R $�� ������
� �� ���� n � n �

hold.
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5. Application of the First Recursion Theorem
to some concrete iterative combinatory spaces

(I) The relationship to the First Recursion Theorem in
the ordinary recursion theory. In this subsection, the rela-
tionship will be discussed of Theorem 4.1 and 4.2 to the
Kleene First Recursion Theorem (Kleene [1952,

�
66, Theorem

XXVI]) in the ordinary recursion theory.

There are two kinds of iterative combinatory spaces
closely related to ordinary recursion theory, namely the
spaces ������� and ������� (from Examples II.1.2 and II.2.1,p m
respectively) corresponding to any standard computational
structure �	��
��� J � L � R � T � F � H � on the natural numbers.
If � is some subset of the semigroup � of the combinatory
space, i. e. a subset of ������� or of ��������� respectively,p m
then ��� computability in � is equivalent to computabil-
ity in � in the considered combinatory space. Therefore,
having in mind the results from Sections I.3 and I.6, it is
natural to take ����� S � P � in the case of ������� andp�
����� S � P ����� in the case of ��������� where S � P are them
functions � u � u + 1 and � u � u � 1 � respectively. In the
first case, the elements of the combinatory space, which are
computable in �� are the unary partial recursive functions,
and the mappings computable in � are the ��� recursive
operators which transform unary functions into unary ones.
In the second case, the mappings computable in � are the
enumeration operators transforming binary relations into
binary ones. We shall apply now Theorems 4.1 and 4.2 to
these two cases, restricting ourselves to the case of l � 1 �
In the statements obtained in this way, we shall consider
unessential the restriction only to unary functions and bi-
nary relations, because of the effective one-to-one corre-

kspondence between � and � with k > 1 � For the sake a
brevity, we shall consider only Theorem 4.2 regarding
Theorem 4.1 as a particular case of it.

Let us consider first � ��������� with ����� S � P �!� Thenp
we get the statement that, whenever " is a ��� recursive

n+ #mapping of � into �$� then, for all %��&�����'��% in# n
�$� the element ��()�*"���%��&�����'��%+��(,� of � exists, and# n
this element is uniformly ��� recursive in %��&�����'��% (in# n
the case of n � 0 � this means that ��()�*"���(,� exists and
it is a partial recursive function). A comparison with the
statement of the Kleene First Recursion Theorem shows that
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neither of both compared statements covers the other one.
The main differences between these statements are the fol-
lowing ones: (i) the statement formulated above concerns
��� recursive operators, whereas the Kleene Recursion The-
orem deals with arbitrary recursive operators, and (ii) in
the conclusion of the above statement, ��� recursiveness in
%��&�����'��% is asserted, whereas in the conclusion of the# n
Kleene Recursion Theorem only partial recursiveness in %��#
�����'��% is claimed. Thus the above statement has a strong-

n
er assumption and a stronger conclusion than the Kleene
First Recursion Theorem, and hence this statement is a re-
sult different from the Kleene Theorem. Moreover, the state-
ment is not directly obtainable by the usual proofs of the
Kleene First Recursion Theorem (such as the proof in Kleene

76[1952,
�
66] or Rogers [1967,

�
11.5]). The situation be-

comes simpler when n � 0, since the conclusions of the com-
pared statements are equivalent in this case. Therefore the
Kleene First Recursion Theorem is stronger in the case of
n � 0 � �

Now consider � ��������� with ����� S � P �����!� Then wem
get the statement that, whenever " is an enumeration oper-

n+ #ator acting from � into �$� then, for all %��&�����'��%# n
in �$� the element ��()�*"���%��&�����'��%+��(,� of � exists,# n
and this element is uniformly enumeration reducible in %��#
�����'��% (in the case of n � 0 � this means that ��()�*"���(,�

n
77exists and it is a recursively enumerable relation ). The

Kleene First Recursion Theorem follows easily from the above
statement (cf. Rogers [1967, Theorem 11-XII]). In this sense
our First Recursion Theorem is a generalization of the
Kleene First Recursion Theorem.

We note also that some steps toward a more direct cover-
ing of the Kleene First Recursion Theorem by the abstract
theory are undertaken in the paper Ivanov [1981], where some
supplements to the theory in this direction are made.

Anyway, we hope that no serious objections could arise

�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�
76 Unfortunately, we are not able to give a bibliographi-

cal reference concerning this statement. A direct proof of
its validity is known to the author since 1968 or 1969, and
then he presented the result in a seminar talk at Moscow
University.

77 This is a well-known fact (see, e. g. Rogers [1967,
Theorem 11-XI])



5. APPLICATION TO CONCRETE COMBINATORY SPACES 191

against the name given by us to the considered result from
the previous section.

(II) Elimination of recursion in FP � systems. In Sec-
tion I.4, the programmability in a FP � system (in the sense
of Backus [1978]) has been shown to be equivalent to ���
computability in a certain subset � of ��� � � , wherep
�	��
 � � J � L � R � T � F � H � is the computational structure cor-
responding to the given FP � system (cf. Example I.1.3), and
� consists of all primitive functions of the system and of
the constant functions corresponding to the various elements
of

� � However, this result was obtained under a strong re-
striction on the use of the FP � system, namely only program-
mability without recursion has been considered. The restric-
tion is quite unpleasant, since recursion in the form of
so-called definitions is allowed in the original FP �
systems, and almost all interesting examples of programs in
such a system use recursive definitions. Now we are able to
show that using the mentioned form of recursion does not
enlarge the class of the programmable functions.

A definition of the mentioned kind is an equality whose
left-hand side is some non-primitive functional symbol, and
whose right-hand side is some functional form, possibly con-
taining the functional symbol from the left-hand side (in
this case, the definition will be called to be recursive).
To use a series of definitions is also allowed, and thus
right-hand sides of equalities may contain several non-
primitive symbols. Clearly, a functional form containing
non-primitive functional symbols represents an operation in
��� � � ; an inspection of the proofs of Lemmas I.1.2-I.1.7p
shows that this operation is ��� computable in ��� Backus
is not completely explicit about the semantics of the recur-
sive definitions, but his exposition does not contradict to
the traditional least-fixed-point semantics, and we shall
adopt it in the further considerations. So a series of defi-
nitions can be considered as defining the least solution of
the corresponding system of equations.

But ��� computability in � is equivalent to ��� � � �p
computability in ��� Therefore an application of the First
Recursion Theorem from Section 4 shows that the functions
defined by a series of definitions of the FP � system are
always ��� � � � computable in � , and therefore, by Theoremp
I.4.1, they are programmable without using definitions. Thus
the use of definitions and, in particular, of recursive ones
in the programs of an FP � system can be eliminated.

An analysis of the proof of the First Recursion Theorem
given in Section 4 shows its constructive character in the
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sense that an algorithm exists which transforms any l �
tuple of expressions for "��&�����'��" into some l � tuple# l
of expressions for the components of the corresponding least
solution. As a consequence, the existence of an algorithm
follows which transforms arbitrary programs in an FP � system
into such ones which do not contain definitions. Of course,
the algorithm will be quite bad from a practical point of
view (complicated programs produced by the algorithm, much
longer execution time of these programs in comparison with
the execution time of the source ones). There are some par-
ticular cases when better results can be obtained by means
of specific methods (certain such cases are indicated by
Backus himself).

It is worth mentioning that also a result about the
elimination of the essential recursions in the programming
language LISP can be established in a similar way.

(III) Equivalence of prime and search computability on

B
�

with
� � computability in corresponding subsets of
B

��� B � �,� In this subsection, the same assumptions will bem
adopted and the same denotations will be used as in Section
I.7, where we started to study a possibility to characterize
prime and search computability in the sense of Moschovakis
(1969) in the terms of

� � computability. We recall that
B

the following results (Propositions I.7.1 and I.7.2) have

been established for each subset A of B
�

and each choice

of ���&�����'��� in ��� B � � ( � denoting the set of all# l m A
constant single-valued functions whose domain is B

�
and

whose values belong to A � and
�

being the computational
Bstructure from Example I.1.2):�

All elements of ��� B ��� which are
� � computable inm B

���������&�����'��� � � belong to PC � A �����&�����'��� � ; all
A # l # l

�
elements of ��� B ��� which are

� � computable in ���������m B A #� �
�����'���+��� B � � � belong to SC � A �����&�����'��� �,�

l # l
It was mentioned there that also the converse statements

are also true if only one-argument functions from the clas-
ses PC � A �����&�����'��� � and SC � A �����&�����'��� � are con-# l # l
sidered, but the proofs will be given further in the book.
Now the time has arrived to prove these converse statements,
and thus to obtain the following result:

Theorem 1. Let A be a subset of B
�

and ���&�����'���+�# l
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� be elements of ��� B � �,� Thenm
(i) ��� PC � A �����&�����'��� � iff � is

� � computable# l B
in ���������&�����'��� � ;

A # l
(ii) ��� SC � A �����&�����'��� � iff � is

� � computable# l B
� �

in ���������&�����'���+��� B � �!�
A # l

Proof. Of course, we have to prove only the implications
from left to right. To do this, we firstly recall that the
sets PC � A �����&�����'��� � and SC � A �����&�����'��� � are defined# l # l
on the basis of two partial multiple-valued operations
� e � � q ����� � q � and � e ��� q ����� � q � from elements e � q �# n � # n #� �
��� � q of B into B � and these operations are introduced

n
by means of somewhat complicated recursive definitions. We
have, roughly speaking, to show that these recursive defini-
tion cannot take us out of the scope of the

� � computabil-
B

ity, and this will be done by a suitable application of the
First Recursion Theorem to the combinatory space

�&����� � �,�m B
�

Let � ����� B ��� � � B
� � I � I � We define two elementsm M� and � of � in the following way: 
 p � r � ��� iff there�

are a natural number n and elements e � q �&�����'� q of
�

# n
such that p ��
 e ��	 q �&�����'� q 
�� and r is a value of# n
� e � � q �&�����'� q ��� and similarly for � with the only dif-# n �
ference that � e � occurs instead of � e �!� The most import-�
ant part of the proof consists in proving that

(1) ��� COMP �������&�����'��� � ���� # l
� �

(2) ��� COMP �������&�����'���+��� B � � �,�� � # l
This will be done in several steps.

First of all, we note that, according to the definition
of the operation � e � � q ����� � q ��� the relation � is the# n
least element ( of � which satisfies the following con-
ditions for all e � g � h � q � r � s � t in

�
and all natural

numbers j � k � m � n �
0) if 1  j  l then

(���
�	 0 � 1 + m � j 
,��	��!� t ����� � t 
������ � ���!� ;# m j
1) (���
�	 1 � n � r 
,��	 q ����� � q 
������ r ;# n
2) (���
�	 2 � m + 1 
,��	 s � t ����� � t 
������ s ;# m
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3) (���
�	 3 � m + 2 
,��	 s � s � t ����� � t 
�������
 s � s � ;# � # m # �
4 ) (���
�	 4 � m + 1 � 0 
,��	 s � t ����� � t 
������ L � s � ;� # m
4 ) (���
�	 4 � m + 1 � 1 
,��	 s � t ����� � t 
������ R � s � ;# # m
5) (���
�	 5 � m � g � h 
,��	 t ����� � t 
������# m

(���
 g ��	�(���
 h ��	 t ����� � t 
������ t ����� � t 
���� ;# m # m
o6 ) if s � B then�

(���
�	 6 � m + 1 � g � h 
,��	 s � t ����� � t 
������# m
(���
 g ��	 s � t ����� � t 
���� ;# m

6 ) (���
�	 6 � m + 1 � g � h 
,��	�
���� s ��� t ����� � t 
������# # � # m
(���
 h ��	�(���
�	 6 � m + 1 � g � h 
,��	 s � t ����� � t 
������# # m

(���
�	 6 � m + 1 � g � h 
,��	 s � t ����� � t 
������� # m
s � s � t ����� � t 
���� ;# � # m

7) whenever k < n � then

(���
�	 7 � n � k � g 
,��	 q � ��� � q � q � q ����� � q 
������# k k + # k +
�

n
(���
 g ��	 q � q � ��� � q � q ����� � q 
���� ;

k + # # k k +
�

n
8) (���
�	 8 � k + m + 1 � k 
,��	 e ��������� ����� t ����� � t 
������# k # m

(���
 e ��	 s ����� � s 
����,�# k
As to the relation � � it is the least element ( of�

� which, for all e � g � h � q � r � s � t in
�

and all natural
numbers j � k � m � n � satisfies the above conditions and the
following additional condition:

9) (���
�	 9 � n � g 
,��	 q � ��� � q 
������# n
� r � (���
 g ��	 r � q � ��� � q 
������ 0 �!�# n

The formulated characterizations of � and � as least�
elements of � satisfying certain conditions remain valid
if the following condition is added to the other ones:

*) each element of dom ( has some of the forms indi-
cated as arguments of ( in the left-hand sides of the
equalities in the other conditions.

We shall show that each of the systems of conditions
1)-8), *) and 1)-9), *) is equivalent to a certain equality
of the form ( ��"���(,��� where " is a mapping of � into it-
self, ��� computable in �����&�����'��� � in the case of the# l
first system of conditions, and ��� computable in �����&�����'�#�
�+� � � in the case of the second one. When this will be
l

done, then an application of the First Recursion Theorem
will immediately yield the validity of (1) and (2). We shall
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give the construction of " for the case of the second sys-
tem of conditions, and the construction for the other case
will be obtainable by means of an obvious simplification.

In order to construct the mapping " with the needed
properties, we shall first define some elements of � re-
presenting certain subsets of

� � and, in particular, cer-
tain subsets connected with the natural numbers (by saying
"natural numbers", we mean the elements of

�
representing

natural numbers). If K is a subset of
�

then the repre-
senting function of K is the total function on

�
having

the value 1 at all points of K and the value 0 at all
other points of

�
( 1 and 0 considered as elements of

�
) �

For each natural number j � let � be the function
j

representing the one-element set � j �!� All functions �
j

are ��� computable in � � as it is seen from the equalities
� ��� I ��� F ��� L ��� F � T ������

� ��� I ��� � � L � � R ��� F �,�
j+ # j

�

Let � be the function representing the set of all
N

natural numbers, and � be the function representing the
<

set of all elements of
�

having the form 
 k � n ��� where k
and n are natural numbers, and k < n � We shall prove that� and � belong to COMP ��� �,� This can be done directly,
N < �

but we prefer to use the First Recursion Theorem and the
fact that � and � are the only solutions of the equa-

N <tions

( ��� � ��� T ��� I ��� � � R ��� ( L � F ��� F ���� �

and

( ��� I ��� � � L ��� � � R ���
N N �
� L ��� � R ��� (�� L � L R ��� F ��� R ��� F ��� F ��� F ���

respectively.

Let � be the function representing the set of all el-
=

ements of
�

having the form 
 k � n ��� where k and n are
natural numbers, and k � n � This function also belongs to
COMP ��� � due to the equality� � ��� I ��� � � L ��� � � R ���

= N N
� � ��� F ��� � � R � L ����� F � T ����� F ��� F ��� F �,�

< <
The next element of � which will be considered is the

function � representing the set of all elements of
�

	�

having the form 	 u �&�����'� u 
)� The function � is the# i 	�

only solution of the equality
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� �
( ��� I ��� � � L ���� L ��� � R ��� (�� L � R ��� F ��� � R ��� F ��� F ���

N
�

hence � � COMP ��� � too.	�
 �
Now the existence of an element � of COMP ��� � with# �

the following property will be proved: whenever k is a
natural number, and an element 	 q �&�����'� q 
 with n

�
k# n

is given, then

(3) � ��
 k ��	 q �&�����'� q 
������ 	 q �&�����'� q 
)�# # n # k
In fact, by the First Recursion Theorem, the following equa-
tion has a solution ( belonging to COMP ��� ��� � � �

( ��� L ��� � L ��� L R � R (�� L ��� L � R � R ��������� F � F ���,�
If we denote by � such a solution ( then an induction on#
k shows the validity of the equality (3).

Also the existence of an element � of COMP ��� � with� �
the following property will be proved: whenever k is a
natural number, and an element 	 q �&�����'� q 
 with n > k is# ngiven, then
� ��
 k ��	 q �&�����'� q 
������ 	 q � q �&�����'� q � q �&�����'� q 
)�� # n k+ # # k k+

�
n

In fact, it is sufficient to take as � an ��� computable�
in � solution ( of the equation� � � � �

( ��� L ��� � L R ��� L R ��� L � R ��� � L R ��(�� L ��� L � R � R ������� R �,�
Now we shall note the following common feature of the

elements of
�

appearing as arguments in the left-hand
sides of the equalities in conditions 0)-9): all these el-
ements are ordered pairs of the form

(4) 
�	 u �&�����'� u 
,��	 v �&�����'� v 
��# i # j
with i

�
2 and u � j � Let D be the set of all such�

elements of
� � The elements of D are exactly those el-

ements of
�

for which none of the functions I � � L �	�

3

�
o� R � L � � � L R L � L R � has a value in B � The elements	�
 =

( of � with domains contained in D are exactly those
which are representable in the form

3
�

( ��� I ��� � � L ��� � � R ��� � L ��� � � � L R L � L R �������,�	�
 	�
 =
� ��� � ��� � ��� � ��� � �,�

Therefore we shall try to express the system of conditions
1)-9), *) by an equality of the form

3
�

(5) ( ��� I ��� � � L ��� � � R ��� � L ��� � � � L R L � L R ����������(,���	�
 	�
 =
� ��� � ��� � ��� � ��� � ���
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�

where � is ��� computable in �����&�����'� �+� � �!� Of# l
course, we have to bother about the behaviour of ����(,� only

on the elements of the set D � If p is the element (4) of
D then u � L R L � p � and therefore we shall look for a#
mapping � of the form

����(,����� � L R L ����� ��(,����� � L R L �����	��(,����� � L R L ����� ��(,���� � # # � �
� � L R L ����� ��(,����� � L R L ����� ��(,����� � L R L ����� ��(,���

3 3 4 4 5 5
� � L R L ����� ��(,����� � L R L ����� ��(,����� � L R L ����� ��(,���

6 6 7 7 8 8
� � L R L ����� ��(,��� � �������������������

9 9 �
with �+�&�����'� � ��� computable in �����&�����'� �+� � �!� It�

9 # l
is not difficult to check that the equation (5) will be
surely equivalent to the system of conditions 1)-9), *) if

78we define � ��(,���&�����'� � ��(,� in the following way:�
9�

3
�

� ��(,����� � L ��� � L R ��� � � L R L ��� � L R ��
3 # #

3
�

3
�

� � L R L ��� � L R �&�����'��� � L R L ��� � L R �� �
l- # l- #

3
�

� � L R L ��� � L R � � ��� ����� ����� � ��� � ���
l l�

3�	��(,����� � L ��� L R L � � ���# 3 � �
� ��(,����� � L ��� � L R ��� L R � � ��� � ���� � � � �

3� ��(,����� � L ��� � L R ��� � L R � L R ��� � ��� � ���
3

� �
3

� �
� ��(,����� � L ��� � L R ��� � � L R L ��� L R �
4 3

�

3
�

� � L R L ��� R L R � � ����� � ��� � ���#�
3 4

�
� ��(,����� � L ��� (�� L R L ��� I � F � L R ��(�� L R L � R ��� R ��� � ���
5 4 � �

4 3� ��(,����� � L ��� � L R ��� � L R ��� (�� L R L ��� I � F � L R �
6 4 � �

3
�

3(�� L � L R � L R � R ����(�� L � L R � R L R � R ���� � �
3 3L R � R L R � R ��� (�� L R L � R ����� � ��� � ����

3
�

� ��(,����� � L ��� � � � L R L � L R L �����
7 4 <

4 3(�� L R L � � � L R L � R ����� � ��� � �����
3

�
� ��(,����� � L ��� � � � L R L � L R L �����
8 3 <

3
�

3(�� L R � � � L R L � L R � R ����� � ��� � ���#
�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�

78 In some of the right-hand expressions, application of
the operation

�
to more than two arguments occurs. The

meaning of such abbreviations has been defined at the begin-
ning of Section 3.
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�

� ��(,����� � L ���
9 3

3
� �

� � (�� L R L ��� I � F � L R L � R � R L ����� R � � � � I � � ��� � �,�� �
Thus the ��� computability of � in �����&�����'���+� � �� # l

is established. For proving the ��� computability of � in
�����&�����'��� � , we can use the same construction, but with �# l
instead of � � L R L ����� ��(,��� � � in the expression for

9 9�
����(,� (note that

�
does not occur in the expressions for

� ��(,���&�����'� � ��(,� ).�
8

Suppose now that the element � of � belongs to
PC � A �����&�����'��� �,� Then there is some element e of A

�
# l

such that
� � q ��� � ��
 e ��	 q 
����
�for all q in

� � Let e be the constant function � assign-
ing the value e to all elements of

� � The above equality
can be rewritten into the form

�� � � � e � T � I � F �
(again the extension of the operation

�
to the case of

more than two arguments is used, for short). From the defi-
nition of the set A

� � it easily follows that, for each el-
ement of A

� � the corresponding constant function is ����elementary in � � In particular, so is the function e �
A

and hence � is ��� computable in ���������&�����'��� �!�
A # l

Since ��� computability is equivalent to
� � computability
B

in the considered case, the statement (i) of the theorem is
thus proved. The statement (ii) is treated in a quite simi-
lar way. �

Corollary 1. Under the assumptions of Theorem 1, the
following equivalences hold:

(i) ��� PC � A �����&�����'��� � iff � can be generated from# l
elements of the set ���������&�����'���+� L � R � by means of

A # l
composition,

� � combination and
� � iteration;

B B
(ii) ��� SC � A �����&�����'��� � iff � can be generated# l �

from elements of the set ���������&�����'���+��� B � � � L � R � by
A # l

means of composition,
� � combination and

� � iteration.
B B

Proof. The elements T and F can be generated from
L by means of the above three operations due to the fact

3that L � L � L � � u ��� 0 for all u in B
� � �

We carried out the proof of Theorem 1 with fixed ���#
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�����'��� and used the non-parameterized version of our First
l

Recursion Theorem. The only place, where ���&�����'��� take# l
part in some construction from the proof, is the definition
of the mapping � � We could use the same construction to de-�

l+ #fine � as a mapping of � into �$� including also ���� #
�����'��� into the list of the arguments of � � After doing

l
�

the same for the composite mapping �,� the parameterized
version of the First Recursion Theorem can be applied, and
so we can proof that all operators prime computable with
constants from A are

� � computable in � � and all oper-
B A

ators search computable with constants from A are
� �
B�

computable in � � � � �!� The converse statements are also
A

true, as an analysis of the proof of Propositions I.7.1 and
I.7.2 follows. Thus prime and search computability are
equivalent to

� � computability (and to ��� � � � comput-
B m B

ability) in suitable sets of elements of ��� B � � not onlym
in the case of functions, but also in the case of operators.

The characterizations from Corollary 1 can be useful in
various proofs concerning prime and search computability,
especially in the direction from such a computability to oth-
er properties. They have been used, for instance, in Ditchev
[1981, 1983, 1984, 1987] and Soskov [1983, 1984, 1987].

Since prime and search computability turn out to be par-
ticular cases of computability in combinatory spaces, the
general theorems concerning the last computability are ap-
plicable to prime and search computability. For example, our
First Recursion Theorem from Section 4 implies a First Re-
cursion Theorem for prime computability and one for search
computability. As we mentioned in Section I.7, there is such
a theorem for search computability in Moschovakis [1969],
but only for the case of total single-valued ���&�����'���+�# l
and one for prime computability is briefly mentioned without
complete formulation. The results established until now in
this book show that both theorems are valid without any re-
strictions on ���&�����'��� �# l

We shall note two known facts which are immediate corol-
laries of Theorem 1 (to be more precise, the implication
from the theorem to them is immediate only in the case when
one-argument functions are considered, but this restriction
is not essential, as mentioned in Subsection (II) of Section
I.7).

Corollary 2 (Lemma 31 of Moschovakis [1969]). Prime com-
putability implies search computability.
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Corollary 3. Search computability from A in ���&�����'���# l
is equivalent to prime computability from A in ���&�����'���+�# l�

79� B � � �
The last corollary enables obtaining the First Recursion

Theorem for search computability as a corollary from the
First Recursion Theorem for prime computability.

Remark 1. Besides the characterization of prime comput-
ability from Theorem 1, other characterizations of it as
��� computability are also possible. Two such characteriz-
ations can be found, in essence, in the thesis Soskova
[1979]. In the first of them,

�
is changed by restricting

B
oL and R to B

� �
B � In this case one has to add to the set

���������&�����'��� � also the total function � defined by the
A # l

condition that � � u ��� 0 for all u in B � and � � u ��� 1 for

all other u in B
� � The second characterization concerns

functions in the closure of B under ordered pairs (without
using the element O ). It turns out that the prime comput-
ability for such functions is equivalent to ��� computabil-
ity, where � is the computational structure from Example
I.1.7.

(IV) Application to Friedman-Shepherdson computability.
In this subsection, the assumptions and the denotations of
the previous one remain valid, and a certain additional as-
sumption will be made.

In Section 2, we mentioned the Soskov’s characterization
80(Soskov [1987]) of the Friedman-Shepherdson computability.

Suppose � is a partial algebraic structure with the car-

rier B � ���&�����'��� are elements of ��� B � � representing# l m
the primitive functions and the primitive predicates of �
(the elements 0 and 1 of B

�
used for the representa-

tion of the truth values), and � is an element of ��� B � �m
representing some partial operation in B � Under this addi-

�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�
79 As Professor Y. N. Moschovakis informed us in 1975, the

validity of this statement has been noticed several years
before by some of his students.

80 I. e. computability over an abstract structure by
means of recursively enumerable definitional schemes (Fried-
man [1971], Shepherdson [1975]). As shown by Soskov, the
same notion of computability can be introduced also by using
recursively enumerable determinants in the sense of Ershov
[1981].
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tional assumption, Soskov’s characterization enables supple-
menting Theorem 1 by the following statement, which shows
that Friedman-Shepherdson computability is again a particu-
lar case of computability in iterative combinatory spaces:

(iii) the partial operation represented by � is Fried-
man-Shepherdson computable in � iff � is

� � computable
B�

in �����&�����'���+�����!�# l
As noted in Soskov [1987], a characterization of this

sort of the notions of prime, search and Friedman-Shepherd-
son computability makes clear that absolute prime comput-
ability in ���&�����'��� implies Friedman-Shepherdson comput-# l
ability in �*� which in its turn implies search computabil-
ity in ���&�����'��� � It is so, since �����&�����'��� � is a# l # l� �
subset of �����&�����'���+����� � and � is

� � computable# l B� � �
in � B � � (as seen from the equality � � ��� B � � �,� where
� ��� � ��� I � � ��� and � � I are the same as in the proof

N N
of Theorem 1). Of course, immediately the corollary follows
that Friedman-Shepherdson computability in � is equivalent�
to absolute prime computability in ���&�����'���+��� (by# l
Theorem 18 of Soskov [1987], this is equivalent to a par-
ticular case of Theorem 5 of the same paper). Extending this
equivalence to the case of operators, we see the validity of
a First Recursion Theorem also for the Friedman-Shepherdson
computability.

Exercises

1. Let �	��
 � � J � L � R � T � F � H � be the computational
structure corresponding to a given FP � system, and let � be
some subset of ��� � � containing the functions tl � apndl �p�eq and � (for the denotations, cf. Section I.4). Prove
the ��� computability in � of the functions distl � distr
and trans � determined by the equalities

distl ��
 s � ������� � �
distl ��
 s ��
 t �&�����'� t �������

 s � t ���&�����'��
 s � t ����# k # k

distr ��
 � � s ����� � �
distr ��

 t �&�����'� t ��� s ������

 t � s ���&�����'��
 t � s ����# k # k

trans ��� ��� � � trans ��
 � �&�����'� ������� � �
trans ��

 t �&�����'� t ���&�����'��
 t �&�����'� t ������# # # n m # mn



 t �&�����'� t ���&�����'��
 t �&�����'� t ��# # m # # n mn
and by the condition that distl � distr and trans are
defined only for such types of objects which are indicated
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as arguments in the left-hand sides of the corresponding
equalities.

Hint. Use the First Recursion Theorem, or try a direct
construction. Results from the exercises to Section I.7 also
can be useful. In the case of the function trans � it could
be convenient to start by the construction of a function
which is ��� computable in � and acts on ordered pairs in
the same way as trans �

2. To the assumptions of the previous exercise, add the� �assumption that � � �
and the functions 0 � 1 belong to

�� as well as the function + which is defined only for
ordered pairs of natural numbers and assigns to each such
pair the sum of its components. Prove the ��� computability
in � of the function length which is defined only for
the finite sequences of elements of

�
and assigns to each

such sequence its length.

3. Give a direct construction (not using the First Re-
cursion Theorem) of elements � � � � � and � of

N < # �
COMP ��� � with the properties needed for the proof of The-�
orem 1. �

4. Prove that
� � computability in �����&�����'���+�����
B # l

is equivalent to
� � computability in �����&�����'���+�
B # l

B
��� � 0 � 1 � �!� Prove also the equality�

B
��� � 0 � 1 �)����� B � � ��� T � F �,�

6. Normal Form Theorems for computable elements
and mappings in iterative combinatory spaces

In this section, the same assumptions will be made as in
Section 4. Namely an iterative combinatory space

�&��
�$� I ��� � � � L � R � � � T � F �
and a subset � of � will be supposed to be given.

We start by recalling a fact mentioned in Section 4 af-
ter the end of the proof of the First Recursion Theorem. We
noted that a mapping � of � into � exists such that �
is ��� elementary in �� and, for all % in �$� the compo-
nents �	��%,���&�����'��� ��%,� of the least solution of the con-# l
sidered system of inequalities 4.(3) are expressed by means
of the formulas 4.(10). The system 4.(3) in question had a
special form, namely each inequality in it had some of the
forms 4.(5)-4.(9). However, the above statement remains val-
id also in the general case, i. e. for an arbitrary system
4.(3) with "��&�����'��" ��� computable in ��� It is so, since# l
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the least solution of such a general system consists of the
first l components of a system having a greater number of
unknowns and containing only inequalities of the forms
4.(5)-4.(9).

Let us now apply this to the system consisting of the
single inequality

������������	

where � is an arbitrary mapping 
�� computable in �� Since
the least solution � of this system is equal to ��������	 we
get the following result:

Proposition 1. If � is a mapping of � into � 
��
computable in  	 then a mapping � of � into � exists
such that � is 
�� elementary in  	 and, for all � in � 	
the equality

���(1) ��������� L ��� ������	�� L ��� F 	 T � R � � I 	 1 0 �

holds.

There is no problem in generalizing this proposition to
nmappings � of � into � 	 for arbitrary positive integers

n � The change will be only that � will be then also a
nmapping of � into ��� We shall not give the corresponding

formulation explicitly. However, it is worth giving the for-
mulation, so to say, for n � 0.

Proposition 2. If � is an element of � 
�� computable
in  then an element � of � exists such that � is

�� elementary in  	 and the equality

���(2) � � L ��� 	�� L ��� F 	 T � R � � I 	 1 0 �

holds.

We think no argumentation is needed for the truth of
Proposition 2 after Proposition 1 is established.

The expressions in the right-hand sides of (1) and (2)
can be considered as normal form representations of �������

���and of � 	 respectively. Of course, the elements � I 	 1 0 ��	� L ��� F 	 T � R 	 L occurring in these expressions have their
origin from the coding adopted in the proof of the First
Recursion Theorem. These elements can be replaced by some
other ones by changing the mentioned coding. Of course, mak-
ing changes in the heavy proof in question is not a pleasant
task, and it is not clear enough to what extent modifica-
tions can be made. Fortunately, their is an easier way to
make such modifications, namely by application of Corollary
II.6.5. Here is a result which follows from Propositions 1
and 2 in this way.

Theorem 1. Let ��� 	! "	! #	! %$ be a ternary join mechan-& ' (
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ism in � having the following properties: (a) the mapping
� and the elements  "	! #	! are 
�� elementary in  ;& ' (
(b) the elements  "	! #	! are normal. Let � and � be el-& ' (
ements of � which satisfy the conditions (ii) and (iii) of

81Corollary II.6.5. Then each mapping � of � into �
which is 
�� computable in  can be represented in the form

(3) ��������� � ��� ������	�� �  '
with some mapping � 
�� elementary in  	 and each element
� of COMP �  � can be represented in the form


� � � ��� 	�� �  '
with some element � from ELEM �  � �


Proof. Let � be a mapping of � into � which is 
��
computable in �� By Proposition 1, the mapping � is repre-
sentable in the form

(4) ��������� � ��� ������	�� ��� 	& & & &
where � is a mapping 
�� elementary in  	 and � 	�� 	 �& & & &
belong to ELEM ��� � � Then, by Corollary II.6.5, the equality

(3) holds with

� ������� � �� "	! � 	���� ���  � ������	! � ����	& ( & & ( & &"&
and this � is 
�� elementary in  by the assumption (a)
about the given join mechanism. The case of an element �
of COMP �  � is similar.
 �

Making use of Example II.6.4, we obtain the following
simple looking particular case of the above theorem.

Corollary 1. Each mapping � of � into � which is

�� computable in  can be represented in the form

��������� R ��� ������	 L � � T 	�� T 	 I ���

with some mapping � 
�� elementary in  	 and each element
� of COMP �  � can be represented in the form

�������������������������������������������������������������

81 I. e. �	� � I 	 and �  � F 
 	��  � T 
 	��  � T 
& & & ' ' ( (
for some normal elements 
 	 
 	 
 � We note that these con-& ' (
ditions will be surely satisfied by

� � � � I 	 I 	 I ��	���� � � F 	 T 	 T ��	

and these concrete � 	�� are 
�� elementary in  	 as far as
the mapping � is 
�� elementary in �� In the natural ex-
amples known to us 	 the mapping � is always 
�� elementary
in � 	 and so will be the concrete � 	�� constructed above.
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(5) � � R ��� 	 L � � T 	�� T 	 I ���

with some element � from ELEM �  � �

Many other particular cases can be obtained by using

other ternary join mechanisms in � (for example, that ones
from Exercise II.6.5). Of course, all these results can be

nimmediately generalized to mappings � of � into � 	 for
arbitrary positive integers n �

Remark 1. Some other normal form representations of com-
putable elements and mappings of certain more special kinds
can be obtained by applying the normal form theorems from
Georgieva [1980] and Ivanov [1980, 1986] to the companion
operative space of the given combinatory space.

A comparison is appropriate of the normal form represen-
tations obtained in this section and the Kleene normal form
of the partial recursive functions. The main difference be-
tween them lies in the fact that the Kleene normal form uses� � operation, and our normal form uses iteration instead.
In order that both normal form make sense, let 
 be the
combinatory space 
 ����� corresponding to a standard compu-p
tational structure � � ��� 	 J 	 L 	 R 	 T 	 F 	 H $ over the natural
numbers, assuming that J 	 L 	 R are primitive recursive. Let
 ��� S 	 P � 	 where as usually S �	� u � u + 1 	 P �	� u � u 
 1 �
Then all elements of � � � � 
�� elementary in  are primi-p
tive recursive, and therefore Corollary 1 implies represent-
ability of all unary partial recursive functions � in the
form (5) with primitive recursive � � Obviously, the repre-
sentation (5) is different from the Kleene representation.
However, (5) is sufficient in the considered case to see
that � can be obtained from some primitive recursive func-
tions by means of substitution and a single application of
the � � operation. It is so, since the equality��� u ���� 	 L � � u ��� � � u ��	

holds, where
t��� u ����� t � L � � � u ����� 0 ���

The question is justified, whether a normal form theorem
is possible which directly comprises the Kleene Normal Form
theorem as a particular case. There are examples showing
that one can hardly expect a natural generalization of the
Kleene theorem to the case of arbitrary iterative combina-
tory spaces. Namely an iterative combinatory space 
 and a
set  of its elements can be indicated (see Exercises 2
and 3) such that:

(i) for the elements of the space, there is a natural
notion of � � recursiveness in  ;
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(ii) there are elements of COMP �  � which are not � �
recursive in ��
On the other hand, a natural generalization of the Kleene
theorem to this case must imply that all elements 
��
computable in  are � � recursive in ��

Exercises

1. Show that the statements of Propositions 1 and 2 are
particular cases of the statement of Theorem 1 	 i. e. in any
given iterative combinatory space ��� 	 I 	 � 	���	 L 	 R 	���	 T 	 F $
the assumptions of Theorem 1 can be satisfied by

� � L 	����%� L ��� F 	 T � R
and some appropriate ternary join mechanism ��� 	! "	! #	! %$& ' (
with

��� �%� I 	 1 0 � �'
2. (Cf. Ivanov [1977, 1978]) Let the combinatory space


 � ��� 	 I 	 � 	���	 L 	 R 	���	 T 	 F $ be the space 
 ������	 wherep� � ��� 	 J 	 L 	 R 	 T 	 F 	 H $ is a standard computational struc-
ture on the natural numbers, and the functions J 	 L 	 R are
primitive recursive. Let S �	� u � u + 1 	 P �	� u � u 
 1 � Consid-
er the mappings � and � of � into � defined as fol-' (
lows:

� ������� R � � P L 	�� R ��	 L � 	'
� ������� R � � L 	 S R ��	�� � � I 	 F � �(

Prove the equalities
t� ������� J � t 	 u ����� � � u ��	'

� ������� u ��� � t � ��� u 	 t ��� 0 � 	(
where � ranges over � � � ��	 and t 	 u range over ��� Provep
that, for all � 	 ����� 	 � and � in � � � ��	 the following'

l p
statements hold:

(i) the function � is primitive recursive in � 	 ����� 	'
� iff � can be generated from I 	 F 	 S 	 L, R 	 � 	 ����� 	 �
l

'
l

by means of composition, � and � ;'
(ii) the function � is � � recursive in � 	 ����� 	 � iff'

l
� can be generated from I 	 F 	 S 	 L, R 	 � 	 ����� 	 � by means'

l
of composition, ��	�� and � �' (

3. Let 
 be the combinatory space from Exercises 2.9-
2.18, and let the functions J 	 L 	 R be primitive recursive.
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Consider the mappings � and � of � into � defined' (
in the same way as in the previous exercise, but with I

� 	
�

L
� 	 R � 	 F � 	 S � 	 P � instead of I 	 L 	 R 	 F 	 S 	 P 	 respectively.(

Prove the existence of an element of COMP ��� S � 	 P � 	�� � � � � �
 (
which cannot be generated from I

� 	 F � 	 S � 	 L � , R � 	�� � � � by�
means of composition, ��	�� and � �' (

Hint. Prove that, whenever an element � f 	 A $ can be(
generated from I

� 	 F � 	 S � 	 L � , R � 	�� � � � by means of compo-�
sition, ��	�� and � 	 then A is in the arithmetical hier-' (
archy (cf. Rogers [1967,

�
14.1] for the definition). Then'

use Exercise 2.13 and the existence of � � sets which are'
not in the arithmetical hierarchy (cf. Rogers [1967,�
16.1]).

4. Prove the strengthening of Theorem 1 which arises
after replacing the words "with some mapping � 
��
elementary in  " by the text "with some mapping � of the
form

� �������%��� ����� 	�� ���	��	 I ���

with ��	 � 	���	�� 
�� elementary in  ".
Hint. Use Exercise 4.1 to represent � in the form (4)

with � having the form&
m+
(

� �������%��� ����� 	���� L 	 R ����	& & &
where m is some natural number, and � 	 � are 
��& &
elementary in � � Show that, for each � in � 	 the element
� ����� is the component � of the least solution&

4
� � 	�� 	�� 	�� $ of the system' (

3 4 � ��� � 	' ( &
� ����� ��� � 	 � ��	( &

3
&

� ����� ��� � � 	�� ��	
3

& ( &
4

m+
(� ��� ��� L 	 R � �

4
(

To apply Theorem II.6.3 to this system, use the join mechan-
� � (

ism ����
 	! "	! #	! 0 	! 1 	! R � $�	 where& ' ( ( (
��
 �� 	�� 	�� 	�� 	�� ��� � �� 	�� 	�� � ��� 	�� 	�� ��� �& ' (

3 4
& ' (

3 4
At the application of the theorem, use an appropriate el-
ement � of the form

� m+
(��� ����� 	! 0 ��� L ��
 	 R ��
 ��� �(
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Taking this � as � ������	 apply Exercise II.1.16 to represent
� ����� in the needed form.

7. Universal computable elements
in iterative combinatory spaces

Again an iterative combinatory space


 � ��� 	 I 	 � 	���	 L 	 R 	���	 T 	 F $

and a subset  of � will be supposed to be given. For the
sake of simplicity, we shall suppose that T and F belong
to

� � Our exposition will be close in its spirit to the
content of a manuscript of L. Ivanov written in 1977.

We shall first give a series of definitions.

Definition 1. For each subset
�

of
� 	 the combination

closure of
�

is the least subset of � containing
�

and
closed under the operation � �

Obviously, the combination closure of any subset of
�

is again a subset of
� �

Definition 2. Let � be an element of � 	 and � be a
subset of

� � An element � of � will be called canonical-
ly � � expressible through � if ��� � � z 	 I � for some el-

82ement z of the combination closure of ��� � T 	 F � � The el-
ement � will be called � � universal for a given subset

�

of � if all elements of
�

are canonically � � expressible
through � �

Definition 3. An element of � will be called absolute-
ly normal if this element belongs to the combination closure
of the set � I 	 T 	 F � �

Obviously, all absolutely normal elements of � are
normal and 
�� elementary in � �

Definition 4. An element � of � will be called com-
pletely universal for a given subset

�
of � if � is� � universal for

� � � L 	 R � 	 and absolutely normal elements

�������������������������������������������������������������
82 Note that the condition ��� � � z 	 I � is equivalent to

the condition that � x � � � z 	 x � for all x in
� � The el-

ement z of
�

can be regarded as a code for the element �
of ��� In the book Skordev [1980] only some special elements
of the combination closure of � T 	 F � play the role of such�codes, namely the elements of the form n T 	 used there also
for the representation of the natural numbers (cf. Exercises
8-10 after this section).
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������������� exist such that the following equalities� � �
3

hold for all a � x � y in 	�

���� a � I ��� a ��
����� x � y � � I ��� �� x � I � �� y � I � ��
����� x � y � � I ��� ��� x � I � ���� y � I ��� ��
����� x � y � � I ����� �� x � I � ���� y � I �����

3
The existence of a completely universal element is not

obvious even for the empty subset of ��� Postponing the ex-
istence problem, we shall prove first a proposition showing
the usefulness of the completely universal elements in case
they exist.

Proposition 1. Let � be completely universal for the
subset � of ��� Then, for every subset � of 	 � the el-
ement � is ��� universal for the set COMP  �� ��!���"

Proof. Let � be an arbitrary subset of 	 � and �!# be
the combination closure of �� �$ T � F %&� For any fixed z in
�!# � the set $ ��' �(
 � z ' �!#�% is closed under ) and contains
$ I � T � F %&� Hence � z ' �!# for any z in �!# and any absolute-
ly normal element � of ��� Having this property at our dis-
posal, we can use induction along the generation of the el-
ements of COMP  �� ��!� for proving that any such element is"
canonically ��� representable through � � The only step in
this proof, which needs explicit mentioning, is the verifi-
cation that T and F are canonically ��� representable
through � - the first equality in Definition 4 is used at
this step. *

The main result in this section reads as follows.

Theorem 1 (Existence of computable completely universal
elements). Let the subset � of � be finite. Then there is
an element � of COMP  �+� such that � is completely"
universal for �,�

Proof. We set
�� � i � i � 0 � 1 � 2 � 3 �

i
i+
�

which implies R � � I � We shall construct mappings - �
i

�
- � - which are

" � elementary in . and satisfy the fol-�
3

lowing conditions for all x � y in 	 and all / in �(

-  /�� ��� x � y � � I ���0/  x � I �1/  y � I � ;� �
-  /�� ��� x � y � � I ���  /  x � I � � /  y � I ��� ;� �
-  /�� ��� x � y � � I �����2/  x � I � � /  y � I �����
3 3

i+
�

If 3�� ��� x � y � � I � then I � R 3 �4 x � y ��� R L 3 � hence
i
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i+
�

i+
�

x � L R L 3 � y � R L 3��
Since

/  x � I �1/  y � I ���0/  x � /  y � I ���
for all x � y in 	 � it is clear that we can define - in�
the following way: �

3-  /����0/  L R L � /  R L � R ����
(the right distributivity of the normal elements with re-
spect to ) is used). Even simpler we see that an appropri-
ate definition of - can be the following one:�

3 4-  /����  /  L R L � R � � /  R L � R ������
More problems arise in connection with the definition of
- � since there is no right distributivity of the normal
3

elements with respect to iteration. In this case we shall
use the fact that

�2/  x � I � � /  y � I ��� ��
�2/  L � R � � x � y � � I � � /  R L � R � � x � y � � I ��� ��

R �  L � /  L � R ��� � /  R L � R ��� � x � y � � I � �
by Corollary II.3.1. Hence - can be defined by means of

3the equality �
4-  /���� R �  L � /  L � R ��� � /  R L � R ���  R L � R ���

3
After having the mappings - � - � - � we can write� �

3
the equalities from Definition 4 in the form

(1) ���� a � I ��� R L �� a � I � ;� �
(2) ����� x � y � � I ���0- �� � ��� x � y � � I � � i � 1 � 2 � 3 �

i i i
We shall look for an element ��� which satisfies these
equalities (for all a � x � y in 	 ) and, in addition, the
equalities

�!�!� �!�!�(3) �� 3+k T � I ��� �
R  3+k T � I � � k � 1 � ����� � m �

k
where

� � ����� � � are the elements of �� �$ L � R %&��
m

Taking into account the equalities
j � �!�!�!�!�L R i � F i � j � 1 � j � 0 � ����� � j � 1 �

i �L R i � T �
we see that the equalities (1), (2) and (3) will be surely
satisfied if the following equality holds:�

3� �  L ��� R L �� L R ��� - �� � �� L R ��� - �� � �� L R ��� - �� � �� �
3

4 m+
� L R ��� �

R � ����� �� L R ��� �
R � � R � �����1��������������������

m-
�

m
By the First Recursion Theorem, the above equality is satis-
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fied by some � in COMP  �+� � and the fact of satisfying"
the equality guarantees that � is completely universal for
�,� *

Remark 1. If � is such as in the above theorem then
clearly COMP  �+� is equal to the set of the elements of"
� which are canonically . � representable through � �

For the computable completely universal elements an ana-
logue holds of the s � m � n Theorem from the ordinary recur-
sive function theory. Without aiming at thorough formal ana-
logy, we shall formulate this analogue as follows.

Theorem 2 (s � m � n Theorem for computable completely
universal elements). Let ��' COMP  �+� � and let � be com-"
pletely universal for �,� Then an element � of ELEM  . �"
exists such that �� z � x � belongs to the combination clo-
sure of $ z � x � T � F % � and

�� z �� x � y ����� ����� z � x � � y �
for all x � y � z in 	 �

Proof. By Proposition 1, the element � is . � universal
for COMP  �+��� Therefore the elements I and � are canoni-"
cally . � representable through ��� i. e. I � �� z � I � ��
� � �� z � I � for some element � z � z of the combination� � �
closure of $ T � F %&� We choose such z � z � as well as el-� �
ements ��������� with the properties from Definition 4.� � �
Then we have

�� z �� x � y ����� �� z �� x � I ��� y �
�� z ������� x � I � ���� z � I ����� y �� �

������� z � I � ��������� x � z � � I � y �� � � �
�� z � I � ������� z ������ x � z ��� � I � y �� � � � � �
����� z ������ z ������ x � z ����� � I � y �� � � � � � �
����� z ������ z ������ x � z ����� � y ���� � � � � � �

Thus it is sufficient to choose � so that
�� z � x ��� �� z ������ z ������ x � z ������ � � � � � �

for all z � x in 	 � and this can be achieved by setting
� � �� z ������ L ������ R � z �������� � � � � � � *

Another form of the s � m � n Theorem is given in the ex-
ercises.

One of the most impressive applications of the s � m � n
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Theorem in the ordinary recursive function theory is the
proof of the Second Recursion Theorem. The above s � m � n
Theorem makes possible a similar application.

Theorem 3 (Parameterized Second Recursion Theorem for
computable completely universal elements). Let ��' COMP  �+� �"
and let � be completely universal for �,� Then an element
� of ELEM  . � exists such that � z belongs to the combi-"
nation closure of $ z � T � F % � and

���� z � y ��� ����� z ��� z � � y �
for all y � z in 	 �

Proof. Let � be an element such as in Theorem 2. We
find an element z of the combination closure of $ T � F %�
such that � for all x � y � z in 	 � the equality

�� z �� z �� x � y ������� ����� z � �� x � x ��� � y ��
holds. Such a z exists by Proposition 1 and by the fact�
that, for all x � y � z in 	 � the equality ������ z � �� x � x ��� � y ��� ����� L � �� L R � L R ��� � R �  z �� x � y ����
holds, and ����� L � �� L R � L R ��� � R � ' COMP  �+��� By the prop-"
erties of ��� we have the equalities

�� z �� z �� x � y ������� ����� z � z � �� x � y ������ �
�������� z � z � � x � � y ����

Therefore
�������� z � z � � x � � y ��� ����� z � �� x � x ��� � y ��

for all x � y � z in 	 � and, in particular, this will be
true for arbitrary y � z in 	 and x � �� z � z ��� Thus it is�
sufficient to choose � so that

� z � ����� z � z � � �� z � z ��� �� �
i. e. to set

� � ����� z � I � � �� z � I ������ � *
Some other forms of the Second Recursion Theorem are

given in the exercises.

Exercises

1. (Second form of the s � m � n Theorem for computable
completely universal elements) Let � be an element of
COMP  �+� completely universal for �,� Let � be a subset"
of � � and � belong to COMP  �� ��!��� Then an element

�
of"
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ELEM  �!� exists such that
�
x belongs to the combination"

closure of �� �$ x � T � F % � and

�  x � y ��� �� � x � y �
for all x � y in 	 �

2. (Non-parameterized Second Recursion Theorem for com-
putable completely universal elements). Let � be an el-
ement of COMP  �+� completely universal for �,� Let � be"
a subset of � � and

�
belong to COMP  �� ��!��� Then there is"

an element e of the combination closure of �� �$ T � F % such
that, for all y in 	 � the equality

�� e � y ��� �� �
e � y �

holds.

3. (Second form of the non-parameterized Second Recur-
sion Theorem) Let � be an element of COMP  �+� completely"
universal for �,� Let � be a subset of � � and � belong
to COMP  �� ��!��� Then there is an element e of the combi-"
nation closure of �� �$ T � F % such that, for all y in 	 �
the equality

�� e � y ��� �  e � y �
holds.

4. (Second form of the Parameterized Second Recursion
Theorem). Let � be an element of COMP  �+� completely uni-"
versal for �,� Let � be a subset of � � and � belong to
COMP  �� ��!��� Then an element

�
of ELEM  �!� exists such" "

that
�
x belongs to the combination closure of �� �$ x � T � F % �

and
�� � x � y ����� �  � x �� x � y ���

for all x � y in 	 �
5. (Effectiveness of the computable mappings) Let � be

an element of COMP  �+� completely universal for �,� Let"
� be a subset of � � and - be a mapping of � into �
which is

" � computable in �� ��1� Prove the existence of an
element � of ELEM  �� ��!� such that, for any z in 	 �"

� z belongs to the combination closure of �� �$ x � T � F % � and
the equality

- ��� z � I ����� �� � z � I �
lholds. Generalize the result to mappings of � into � �

where l is an arbitrary positive integer.

Hint. Use Exercise 2.19 and the s � m � n Theorem. In the
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case of l > 1 � start with representing  z � I � � ����� �� � � I ��
l

in the form �  � � I � � ����� � �  � � I � � where z �  z � ����� � z � ��
l

�
l

and � � ����� � � are
" � elementary in . ��

l
6. Let the set � be finite. Prove the existence of an

element � of COMP  �+� such that the set ELEM  �+� is" "
equal to the set of the elements which are canonically . �
expressible through � �

7. Suppose the set � is finite, all elements of
ELEM  �+� are normal, and there is an element / of"
ELEM  �+� such that / x � x for all x in 	 � Prove the"
existence of a normal element of COMP  �+� which is not"
" � elementary in �,�

8. Let the set � be finite. Prove the existence of an
element � of COMP  �+� with the following properties:"

�(i) COMP  �+���0$ � 
 n '�� % � where � � �� n T � I � ;"
n n

(ii) there are two-argument primitive recursive func-
tions h � h � h such that, for all i � j in �,�� �

3� � �����4� � ( ����� ) �4� ��� ����� ���
h (i,j) i j h (i,j) i j h (i,j) i j
1 2 3
9. Let � be an element of COMP  �+� with the proper-"

ties from the previous exercise. Prove the existence of a
two-argument primitive recursive function f with the fol-
lowing property: for each one-argument recursive function
g � there is a natural number k such that

� � �
g(n) f(k,n)

for all n in � �
Hint. Use Corollary 3.2 to show that, for each one-

argument recursive function g � there is a natural number
k such that

�� � ���� n T � I �
g(n) k

for all n in � � Prove the existence of a primitive recur-�sive function f such that n T � � for all n in � ��
f (n)
0

10. Let � be an element of COMP  �+� with the proper-"
ties from Exercise 8. Prove the following Second Recursion
Theorem: for any element � of COMP  �+� � there is a natu-"
ral number m such that

� ��� m T � y ��� �  m T � y �
for all y in 	 (compare with Exercise 3).
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�Hint. Represent �  n T � I � in the form � � where h
h(n)

is some primitive recursive function. Then apply the state-
ment of the previous exercise to the function

g  n ��� h  f  n � n ��� �
where f is the same as there.

8. A notion of search computability
in iterative combinatory spaces

In this section (including the exercises), an iterative
combinatory space" � � � � I � 	 � ) � L � R ����� T � F � �
a subset � of � and an element U of � are supposed to
be given, and the following assumptions concerning U are
made:

(i) for all x in 	 � the inequalities

U � x � x � x U

hold;

(ii) for all � in � and all x in 	 � the inequality
 � x � I � U �  � x � U �

83holds ;

(iii) U � L � U � R �
Example 1. Let

" � " �� � � where � � ��� � J � L � R � T � F �m
H � is a computational structure. Then the above assump-�
tions are satisfied if we set U � � � The same is true also
in the case when

" � " ���� E � � where � is as above, andm
E is some set having no common elements with the set � �

Example 2. If
" � " �� � � where � is the same as in thep

previous example, then no element U in � exists satisfy-
ing the above assumptions.

Intuitively, the element U must be considered as
describing unrestricted search in the data domain, i. e.
choice with unbounded non-determinism.

Remark 1. The element U is not necessarily the great-
est element of ��� This can be seen from the second part of

�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�
83 This assumptions is surely satisfied in the case when

the combinatory space
"

is symmetric.



216 III. COMPUTABILITY IN ITERATIVE COMBINATORY SPACES

Example 1. From the proposition which will be proved below,
it follows that U is always the least upper bound of the
set

���
hence U is unique (if it exists at all).

Proposition 1. Let � and � be elements of � such
that ����� x for all x in

�	�
Then � x ��� for all x

84in
���

and ����� U �
Proof. Let x be an arbitrary element of

�	�
Then, for

all y in
���

we have

� x y 
�� x ��� y x 
�� y �
and from here the inequality � x ��� follows. Now we use
this inequality in the following way: for arbitrary x in���

we have

� x 
�� x x ��� x U x ��� U x �
hence ����� U ��

Definition 1. An element of � will be called search���
computable in � if this element is

���
computable in����� U � �

Remark 2. If
� 
 ������� �

where
�

is the Moschovakism B B
structure based on B (the computational structure from
Example I.1.2), and ��
 � ����� ������� � �!� � then, by The-A " l
orem 5.1, the elements of � search

���
computable in �

85are exactly the unary functions in SC
�
A
� � ������� � � � �

This" l
can be regarded as a justification for the terminology in-
troduced by the above definition. Of course, the general
theory of

���
computability can be applied to the introduced

notion, but nevertheless additional work is needed in order
that the study of this notion becomes motivated enough. We
shall show that an interesting general statement concerning
search

���
computability can be proved. To do this, we shall

first study the properties of the element U in more de-
tail.

Proposition 2. For all x in
�

and all # in � � the
equalities�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�

84 The assumptions concerning U are not needed for the
truth of the first statement in the conclusion.

85 Another example deserving attention can be obtained by
taking

� 
 ����%�� � ��
��'& u � u + 1 � & u � u ( 1 � � where
%

is am
standard computational structure over the natural numbers.
In this case, as we know from Section I.6, the elements of� search

���
computable in � are exactly the recursively

enumerable binary relations.
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x U 
 x
�

U x 
 U
� � # x � I � U 
 � # x � U �

hold.

Proof. For all x in
���

we have

x U � x x 
 x
�

and since we have also the converse inequality, the equality
x U 
 x follows. The proof of the second equality is more
complicated. By application of Proposition 1 to ��
 U

� ��
 I
�

we see that U x � I for all x in
�	�

Therefore (using also
x 
 x U ), we have

U x 
 U x y 
 U x U y � I U y 
 U y

for all x
�
y in

�	�
Hence U x 
 U y for all x

�
y in�	�

Let x be an arbitrary element of
�	�

Then

U x y 
 U x 
 U y

for all y in
���

and consequently U x 
 U
�
For the proof of

the third equality, suppose some # from � and some x
from

�
are given. Then, for all y in

���
we have� # x � U � � � # x � y � 
 � # x � I � y �

and therefore, by Proposition 1, the inequality� # x � U � � � # x � I � U
holds. Since we have also the converse inequality, the proof
is completed.

�
Proposition 3. The equalities L

�
I
�
U
� 
 R

�
U
�
I
� 
 I hold.

Proof. For all x in
���

we have

L
�
I
�
U
�
x 
 L

�
x
�
U x

� 
 L
�
x
�
I
�
U x 
 x U 
 x

�
R
�
U
�
I
�
x 
 R

�
U x

�
x
� 
 R

�
I
�
x
�
U x 
 x U 
 x

��
Proposition 4. Let � � � � # be elements of � � and let

the inequality ����� � # � x � hold for all x in
�	�

Then also
86the inequality ����� � # � U � holds.

Proof. Let y be an arbitrary element of
�	�

Then, for
all x in

���
we have

� y ��� � # � x � y 
�� � # y � I � x �
From here, making use of Propositions 1 and 2, we conclude
that

� y ��� � # y � I � U 
�� � # y � U � 
�� � # � U � y �
�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�

86 The case of #�
 I of this proposition is due to
L. Ivanov.
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Since y is arbitrary, this completes the proof.
�

Proposition 5. For all � in � � the equality��
I
�
U
� � �

I
�
U
� 
 � � �

L
�
L R

� �
R

� �
I
�
U
�

holds.

Proof. For all y
�
z in

���
we have�

I
�
y
� � �

I
�
z
� 
 � � �

I
�
z
� �

y
� 
� �� � �

L
�
L R

� �
R

� �
I
� �

z
�
y
������� � �

L
�
L R

� �
R

� �
I
�
U
� �

From here, by Proposition 4, it follows that, for all y in�
, we have �� � �

L
�
L R

� �
R

� �
I
�
U
� � �

I
�
y
� � �

I
�
U
� 
 � � �

I
�
U
� �

y
� �

Applying Proposition 4 once more, we get�� � �
L
�
L R

� �
R

� �
I
�
U
� � � � �

I
�
U
� �

U
� �

On the other hand, for all x in
���

we have�� � �
L
�
L R

� �
R

� �
I
�
x
� 
 � � �

I
�
L x

� �
R x

����� � �
I
�
U x

� �
U x

� 
� � �
I
�
U
� �

U
� �

hence, again by Proposition 4, the inequality�� � �
L
�
L R

� �
R

� �
I
�
U
����� � �

I
�
U
� �

U
� �

Thus we proved the equality�� � �
L
�
L R

� �
R

� �
I
�
U
� 
 � � �

I
�
U
� �

U
� �

and it remains only to note that, due to the second equality
in Proposition 2, also the equality�

I
�
U
� � �

I
�
U
� 
 � � �

I
�
U
� �

U
�

holds.
�

Proposition 6. For all � and � in � � the following
equality holds: �� � �

I
�
U
� � ���	
 L

� � �
L
�
L R

� �
R

� � � L � � I � U � �
Proof. Let �� 
 � � �

I
�
U
� � ��� � � 
 � � � �

L
�
L R

� �
R

� � � L � �" � �� 
�� �
I
�
U
� � � 
 � � �

L
�
L R

� �
R

� �
" �

Then

L � �
I
�
U
� 
 � � L �
	

L ��� �
L
� �

I
�
U
� �� ���

and, making use of Exercise II.1.20 and Propositions 2, 3,
5, we get

L � �
I
�
U
� 
 � � �
	

L ��� �
I
�
U
� �

L
�
I
�
U
��� 
� ��� � � �
	

L � �
I
�
U
� � �

I
� �� "
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This equality implies the inequality

L � �
I
�
U
� � � �� "

To prove the converse equality, it is sufficient (by Prop-
osition 4) to prove that, for all x in

���
the inequality

� � L � �
I
�
x
�

" �
holds. This is equivalent to proving the inequality

� L � L � �
" ��

where
�

is the set of all elements of the form
�
y
�
x
�

with
y
�
x �

�	�
The set

�
is invariant with respect to � �

by�
Exercises II.1.39. On the other hand, for all y

�
x in

���
we have� � L �
	 � L � �

L
� �

y
�
x
� 
 � � �
	 � L

� � �
I
�
L x

� �
R x

� �
I
�
y
�

" � "� � �
	 � L
� � �

I
�
U x

� �
U x

� �
I
�
y 
 � � �
	 � L

�
I
�
U
� � �

I
�
y 
" " "� � �
	 � � �

I
�
y 
 � L

�
y
�
x
� �

" " "
and this completes the proof.

�
Now the main result about search

���
computability will

be formulated.

Theorem 1 (canonical representation of search
���

com-
putable elements). Each element of � search

���
computable

in � can be represented in the form # �
I
�
U
� �

where # is
some element of � ���

computable in � �
Proof. During the proof, we shall call canonically re-

presentable the elements of � having the form # �
I
�
U
� �

where #�� COMP � � � � The proof will contain several lemmas.�
Lemma 1. All elements of COMP

� � � are canonically re-�
presentable.

Proof. If � belongs to COMP
� � � then � is canonical-�

ly representable, by the equality

��
�� L �
I
�
U
� �

which follows from Proposition 3.
�

Lemma 2. The element U is canonically representable.

Proof. Using the equality

U 
 R
�
I
�
U
� �

which follows from Corollary II.1.2.
�

Lemma 3. The multiplication preserves the canonical re-
presentability.

Proof. If ��
���� �
where � 
�# �

I
�
U
� �

i 
 1
�
2
�

" � i i
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and # � # are
���

computable in � � then, by Proposition" �
5, the equality �

��
�# � # �
L
�
L R

� �
R

� �
I
�
U
�

" � �
holds, and clearly # � # �

L
�
L R

� �
R

�
is also

���
computable" �

in � ��
Lemma 4. If � is canonically representable, and � be-

longs to COMP
� � � � then

� � � � � is also canonically repre-�
sentable.

Proof. If ��
�# �
I
�
U
�

then� � � � � 
 � � L � # � � I � U � �
by Exercise II.1.15 and Proposition 2.

Lemma 5. The operation � preserves the canonical re-
presentability.

Proof. Application of Lemmas 1, 3, 4 and of the equality�
�

�
�

� 
 �
R
�
� L

� �
I
�
�

� �
" � � "

which follows from Exercise II.1.14 and Corollary II.1.2.
�

Lemma 6. If � is canonically representable then the
element

�
�
�
L � is also canonically representable.

Proof. If ��
�# �
I
�
U
� �

and #�� COMP � � � � then, by�
Proposition 6, the equality � �

��
 L
� # �

L
�
L R

� �
R

� �
L � � I � U �� �

holds, and clearly L
� # �

L
�
L R

� �
R

� �
L � � COMP � � � �� �

Lemma 7. The iteration preserves the canonical represen-
tability.

Proof. Application of Lemmas 1, 3, 5 and of the equality
�
�

�
� �	
 R

� �
�

�
I
�
� R

�
L �

�
�

�
I
� �

" � � " �
known from Corollary II.5.2.

�
Having Lemmas 1, 2, 3, 5 and 7 at our disposal, we prove

by induction that all elements of � search
���

computable
in � are canonically representable.

�
In Section I.6, we represented an arbitrary recursively

enumerable binary relation � in the form�
��
�� � � � � � I ��� � �

where �
�
�
�

is some partial recursive function, and I 
 I
��

Of course, the possibility of such a representation is a
particular case of Theorem 1, but this cannot be regarded as
an application of the theorem, since the above representa-
tion has been already used for proving the

���
computability
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�
of � in the set �'& u � u + 1 � & u � u ( 1

��� � � A real applica-
tion can be done in the case mentioned in Remark 2, and the
result obtained in this way easily implies the following
statement:

Corollary 1. Let A be a subset of B
� � � ������� � � be" l

partial multiple-valued functions in B
� �

and � be an n
�

argument function from SC
�
A
� � ������� � � � �

Then there is an" l
n + 1

�
argument function # in PC

�
A
� � ������� � � �

such" l
that, for all q

������� �
q in B

� �
the equality" n

�
�
q

������� �
q

� 
 � ��# � q ������� �
q

�
r
���

r � B
� �" n " n

holds.

No doubt, a direct proof of the above result must be
surely possible. Such a direct proof can be based on the

idea of replacing finitely many arbitrary choices in B
�

by
a single choice of an appropriate more complicated element

of B
� �

However, we note that the Normal Form Theorem in
Moschovakis [1969] (Theorem 1 of the paper) gives directly
the result of Corollary 1 only under the extra assumption
that � ������� � � are single-valued and total." l

Having in mind Exercise 5.4, one could try to give an
abstract treatment of the Friedman-Shepherdson computability
by studying

���
computability in ����� � U �
	

T
�
F
� � � Addition-

al assumptions will be probably needed for the success of
such an attempt.

A certain drawback of the considerations in this section
is that iterative combinatory spaces having an element U
with the properties (i)-(iii) are encountered not too often.
In connection with this, we mention the paper Ivanov [1981],
since another generalization of search computability is
studied there, which covers also some iterative combinatory
spaces without such an element U

�
Exercises
�

1. Prove the equality U 
 U
�

Hint. Use the first two equalities in Proposition 2.

2. Let � � � � # � � be elements of � � and let the in-
equality ����� � # x � � � hold for all x in

�	�
Prove that

also the inequality ����� � # U � � � holds.

3. Let � be the set of all elements � of � which
satisfy the inequality �

�
U
�
and let ����� � �

I
�
	

I
�
I
�
��� �

Prove that all elements of � search
���

computable in �
belong to � �
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4. Prove that each element � of the set ELEM
� ����� U � ��

can be represented in the form ��
�# �
I
�
U
� �

where # is some
element of the set ELEM

� � � ��

9. On the formalization of the proof
of the First Recursion Theorem

In Section II.8, some formal systems have been intro-
duced aiming at a strength sufficient for the formalization
of the theory presented in this book. It would be very tir-
ing to carry out a systematic investigation of all proofs
for making clear their formalizability. Therefore we shall
concentrate our attention on the heaviest of the proofs,
namely the proof of the First Recursion Theorem, presented
in Section 4. We shall discuss the problem of formulating
and proving the statement of the theorem by the means of the
formal system A

�
from Section II.8.

First of all, we note that the First Recursion Theorem
is formulated in Section 4 in a way not directly translat-
able in the language of A

� �
One of the difficulties lies in

lthe using the notion of mapping, say, of � into � � since
the system A

�
has no variables for such mappings. Another

difficulty lies in using the notion of a subset of � � name-
ly a subset � of � is supposed to be given. We must show
first a way for obviating these difficulties. We shall pro-
pose now a metamathematical statement which can be regarded
as a refinement of the mathematical result in question.

Instead of considering mappings, we shall consider func-
tional expressions containing variables for elements of � �
Such variables will be used both for the unknowns and for
the parameters. As to the set � � Propositions 2.5 and 2.6
enable reduction of the general case to the case of ��
 0

�
and in this case the second difficulty disappears. In the
light of this, we think the following statement is accept-
able as a metamathematical counterpart of the First Recur-
sion Theorem from Section 4.

Theorem 1. There is an algorithm which transforms each
non-empty finite sequence

� ������� ���
of functional expres-" l

sions into a sequence of functional expressions � ������� � �" l
containing none of the variables f

������� �
f and such that" l

the following two formulas are deducible in the system A
�

(1) f 
���� ... � f 
�� 
�� f 
 � � ... � f 
 � �
" " l l " " l l

(2) f � � � ... � f � � 
�� f �	� � ... � f �	� �
" " l l " " l l
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Proof. By Theorem II.8.1, it is sufficient to show that
the above formulas are deducible in the system A

� � There-
fore only deducibility in A

�
will be considered throughout

this proof. The way of proceeding will be by showing that
the proof of the First Recursion Theorem from Section 4 can
be formalized in A

� � We shall stress on the places where
the formalization encounters difficulties. To be close to
that proof, we shall restrict ourselves to the case when
there is at the most one variable different from f � ����� ��
f which may occur in some

� � and we shall assume that
l r

this is the variable f (it will appear in the places
l+
�

where � occurs in the original proof, and f � ����� � f will�
l

appear in the places where ��� ����� �	� occur, respectively) ��
l

It is possible to give a formalized counterpart of the
reduction of the general case in the First Recursion Theorem
to the special case when each one of the inequalities has
some of the forms 4.(5)-4.(9). This will be a constructively
described transformation of finite sequences of functional
expressions into other such sequences � and the description
must be a part of the description of the algorithm. More-
over, for each concrete system of functional expressions,
there is a deducible in A

�
formal counterpart of the state-

ment describing the interdependence between the least sol-
ution of the initially given system of inequalities and of
the new one obtained from it. We leave the corresponding
details to the reader.

From now on, we assume that the mentioned reduction is
carried out, and we have a concrete non-empty finite se-
quence

� � ����� � � of functional expressions each of them�
l

either being some of the expressions 
�� L � R � T � F � f or
l+
�

having some of the forms f f � (f , f ) � (f � f , f ) with i �
j i i j i j k

j � k from the set  1 � ����� � l � � Then an explicit construction
can be given of the expressions ��� ����� �	� by simply re-�

l
writing in the language of A

�
the expressions for ����������

����� �	� ������� then the expression for ������� formed from�
l+
�

them, and, at last, the expressions for ��������� ����� �	��������
l

(we recall that functional expressions representing the par-
ticular natural numbers have been introduced in Section 3,
namely an arbitrary natural number n is represented by the

nfunctional expression (F, ) (T, ) � denoted by n � ). The more
difficult thing is to show the deducibility in A

�
of the

corresponding formulas (1) and (2). This will be done by
formalization of the corresponding part of the proof from
Section 4.
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Some portions of the proof can be carried out in A
�

without essential troubles. For example the definition of
the notion of a coding element can be easily formulated in
the language of A

� � The definition of the set
�

is the
c

first place, where the formalization is not obvious, since
it is not clear how to express in the language of A

�
the

property of an element of � to be the product of finitely
many coding elements �

In an informal presentation of the proof, the definition
of

�
can be given in the form of an recursive definition,

c �
namely: y � � iff y � 0 c or y ��� z for some coding el-

c
ement � and some element z of

� � One possible way to
c

transform this in an explicit definition (again in the non-
formal language) is to define

�
as the least subset � of

c��
with the properties that 0 c �	� � and whenever � is some

coding element, and z is an element of � � then � z be-
longs to � too � Of course, before giving such a defini-
tion, one first proves that such a least subset exists, and
after giving the definition, one shows that the equivalence
from the formulated recursive definition is actually true
for the explicitly defined

� � All this can be carried out
c

in the system A
� � due to the existence of variables for

subsets of
� � to the presence of the comprehension scheme

II.6.(19), and to a certain monotonicity of the condition in
the right-hand side of the recursive definition in question.
We shall describe below a general method of using such re-
cursive definitions within the system A

� �
For arbitrary natural numbers j and k � let s 
 s be

j k
an abbreviation for the formula � c (c � s �� c � s ) � Then� �

j
�

kthe following lemma holds.

Lemma 1. Let � � c � s � be a formula of the system A
�� �

such that there are no free occurrences of s in this for-�
mula, and s is free for s in the formula. Let the fol-� �
lowing formula be deducible in the system A

���
(3) s 
 s ������ � c � s ������ � c � s ���� � � � � �
(where � � c � s � means � � c � s � � s � s � � . Then the follow-� � � � � �
ing formula is also deducible in A

���
(4) � s ��� c � c � s �	��� � c � s ������ � � � � �

� s ��� c ��� � c � s ���� c � s ���� s 
 s ��� �� � � � � � � �
Proof. We start with an application of the comprehension

scheme II.6.(19) giving the formula
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(5) � s � c � c � s �	�� � � �
� s ��� c ��� � c � s ���� c � s ���� c � s ���� � � � � � � �

(this formula states the existence of the intersection of
all subsets of

�
which, taken as values of s � satisfy the�

formula � s ��� c ��� � c � s ���� c � s � ). The rest of the� � � � � �
proof is a verification that any set s with the property�
stated in the formula (5) has also the property stated in
the formula (4). Of course, the only problem is to show that
the property of s from (5) implies�

� c � c � s �	��� � c � s ��� �� � � � �
Namely here the assumed deducibility of (3) is used. Making
use of it, one shows that

� c ��� � c � s ���� c � s �� � � � �
is implied by the property of s stated in (5). To show�
that the same property implies also

� c � c � s ���� � c � s ������ � � � �
one uses the above fact, as well as the deducibility of the
formula

� s � c � c � s �	��� � c � s ���� � � � � �
(this formula is obtainable by one more application of the
comprehension scheme II.6.(19)). The deducibility of (3) is
used again in this last part of the proof. �

Clearly the way to consider
�

within the system A
�

on
c

the base of the above lemma is to apply the lemma to a for-
mula � � c � s � expressing the condition that the value of� � �
c is equal to 0 c or to � z � where � is some coding el-�
ement, and z belongs to the value of s � Such a formula�
is, for example,

(6) c � 0 � c � � f � c � c � f c ����� f ��� c � s ���� � � � � ��� � � �
where ��� f � is a formula expressing the statement that the�
value of f is a coding element ( f being the only free� �
variable of ��� f � ), and the variable c is intended to� �
have the value c . It is obvious that, at the above choice
of the formula � � c � s ��� the corresponding formula (3) is� �
deducible in the system A

� �
The considerations made until now enable the formaliz-

ability in A
�

of the reasonings about
�

which use the
c
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following two properties of this set: (a) the equivalence,
formulated as a recursive definition of

� � and (b) the
c

fact that
�

is contained in each subset � of
�

such
c

that c �	� � and whenever � is some coding element, and z
is an element of � � then � z belongs to � too � Further we
shall consider only a non-formalized version of the proof of
the First Recursion Theorem, and we shall use the set

�
c

in this version, but with the restriction to base all our
non-tautological reasonings about

�
c(a) and (b) of this set.

Having the set
�

at our disposal, we can immediately
c

define the set
� � ant its properties can be reduced to
c

the properties of
� �
c

The next place with non-obvious formalization is the
definition of proportionality. We shall reduce also this
definition to the recursive definition of a certain subset
of

� � Given two elements z � z of
� � we can replace the� �

definition of the property of y � y to be proportional to� �
z � z by the definition of the set of all elements of

�� �
having the form � y � y ��� where y � y are proportional to� � � �
z � z � Denoting this set by � � z � z � � we can introduce� � � �
it non-formally by the following recursive definition:
x ��� � z � z � iff x � � z � z � or there are a coding element� � � �
� and elements y � y of

�
such that x � ��� y � � y � and� � � �

� y � y � ��� � z � z � � Lemma 1 enables the formalization of� � � �
such reasonings about � � z � z � which are based on (c) the� �
above equivalence and (d) the fact that � � z � z � is con-� �
tained in each subset � of

�
such that � z � z � �	� � and� �

whenever � y � y � �	� and � is some coding element � then� �
��� y � � y � �	� too � Namely it is appropriate to apply Lemma� �
1 with the following formula in the role of � � c � s � �� �
(7) c � (c , c ) � � f � c � c � c � (f c , f c ) �� � � �

3 4
� �

3
�

4
��� f ��� (c , c ) � s ����

3 4
�

where ��� f � is the same as in the case of the previous re-�
cursive definition, and c � c are intended to have values� �
z and z � respectively).� �

In the sequel, the proportionality of y � y to z � z� � � �

only on the properties
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will be replaced by the condition that � y � y � ��� � z � z ���� � � �
and our non-tautological reasonings about � � z � z � will be� �
based on its properties (c) and (d).

For example, Lemma 4.1 will be formulated so:

Let z � z be given elements of
� � � � � be given el-� � � �

ements of � � Whenever x � y � y are elements of
� � and� �

� y � y � ��� � z � z ��� let the inequality� � � �
� � x � y ��� � � x � y �� � � �

hold. Then, for any choice of the coding element ��� the
inequality

��� � x � � y ��� ��� � x � � y �� � � �
holds under the same conditions on x � y � y �� �

Similar changes must be done in its proof. The first
place in the proof, where properties of the set � � z � z �� �
must be used, is in the investigation of the case when the
considered inequality has the form ��� ��� � In this case

r j i� � � �
one has to make the conclusion � i j y � i j y � ��� � z � z �� � � �
from the assumption � y � y � ��� � z � z ��� and obviously this� � � �
can be done on the basis of the property (c). The situation
is similar in all other places of the proof of this lemma,
where properties of � � z � z � must be used.� �

The formulation of Lemma 4.2 needs no modification. In a
place of the proof, the fact that y � � is used to conclude

c�
that y � 0 c or y ��� y � where � is some coding element,�
and y is again an element of

� � Of course, this can be�
c

done on the base of the property (a) of
� � However, the
c

last sentence in the proof of the lemma needs a more detail-
ed argumentation now. In that sentence the case is consider-
ed of y ��� y � where � and y are as above. It is claimed� �
that the inequality

��� � x � y ��� ��� � x � y �� � �
can be obtained by application of Lemma 1 to z � z � 0 c �� �
To make such an application in the new form of presentation,
we have to verify that, whenever x � y � y are elements of� �� �� � and � y � y � belongs to � � 0 c � 0 c ��� then the inequality� �

� � x � y ��� � � x � y �� � � �
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holds, the inequality
� � � being assumed. To make the� ��

c
verification, it is sufficient to be able to conclude
y � y � � from the fact that y � y are elements of

� �� �
c

� �� �
and � y � y � belongs to � � 0 c � 0 c � � The possibility of such� �
a conclusion needs an argumentation now. But this is not the
only problem. The application of Lemma 1 to the considered
case would give the conclusion that

��� � x � � y ��� ��� � x � � y �� � � �� �
in case we know that � y � y � ��� � 0 c � 0 c ��� and instead of� �
this condition we have y � � � All these problems can be�

c
solved by proving the following three statements:

I. Let z be some element of
� � Whenever y � y are� �

elements of
� � and � y � y � belongs to � � z � z ��� then� �

y � y �� �
II. Let z be some element of

� � Whenever y � y are� ��
elements of

� � and � y � y � belongs to � � 0 c � z ��� then� �
y � � ��

c � �
III. Whenever y � � � then � y � y � ��� � 0 c � 0 c � �

c
The statements I and II follow in an obvious way from

the property (d) of the sets � � z � z � (in the proof of II,� �
also the property (a) of

�
is used). The statement III

c
follows from the property (b) of

�
(the property (c) of

c
the set � � z � z � with z � z � z is also used in the� � � �
proof).

The statement and the proof of Lemma 4.3 can be formal-
ized without any difficulty. As to the Lemma 4.4, there are
more problems connected with its proof, and we shall consid-
er them a little later. Of course, the formulation of the
lemma at the present approach will be the following one:

(#) For each z in
� � there is an element � of ��

such that, whenever y � z are elements of
� � and � y � z ��

belongs to � � 0 c � z ��� then the equality � y � z holds.�
For the time being, we shall show how to present the

rest of the proof of the First Recursion Theorem in the
needed form, possibly using also the above statement.

The new formulation of Lemma 4.5 reads as follows.

Whenever x � y � z � z belong to
� � and � y � z � belongs�
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�

to � � 0 c � z ��� then�
� � x � z ��� � � I � z � L � � x � y � ��

For the proof of this statement one more statement is
needed in addition to the new version (#) of Lemma 4.4 which
still waits to be proved. This other statement is the fol-
lowing one.

IV. Let z be an arbitrary element of
� � Whenever�

y � � � then there is some z in
�

such that � y � z � be-
c �

longs to � � 0 c � z � ��
The proof of this statement can be easily carried out on

the base of the property (b) of
�

(using also the property�
c(c) for the set � � 0 c � z � ).�

Making use of the statement IV and the formulated above
version (#) of Lemma 4.4, we can carry out the proof of the
new version of Lemma 4.5 without necessity of other changes
in the proof from Section 4, except replacing the condition�
that y � z are proportional to 0 c � z by the condition that� �
� y � z � ��� � 0 c � z � ��

The formulation of Lemma 4.6 remains without modifica-
tion, and the modification in the proof is obvious. No
changes are needed in the formulations and in the proofs of
Lemmas 4.7-4.10. No changes are needed also in the conclud-
ing part of the proof.

So the only remaining obstacle is the difficulty in
using the proof of Lemma 4.4 for the purpose of proving the
version (#) of this lemma. We are going now to explain how
to overcome the obstacle in question.

Looking at the proof of Lemma 4.4, we see a strong pres-
ence in that proof of the idea of conversion of a finite
sequence ��� ����� � � of coding elements into the sequence�

p
� � ����� � � � This idea appears in the form of transform-
p

� �
ation of products � ����� � 0 z into products � ����� � x � Un-�

p p
�

fortunately, the language of the system A
�

does not give a
simple means to express the statement that two given el-
ements of

�
can be represented as such two products, with

some given z � x and one and the same finite sequence ����
����� � � of coding elements. To obviate this difficulty, we

p
shall consider, for any given x � y in

� � a subset
� � x � y �

of
�

with the following non-formal definition: this subset
consists of the elements of the form

� z � � ����� � y ���
p

�
where ��� ����� � � are coding elements, and z is an element�

p
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of
�

such that the equality

x ��� � .. � z�
p

holds. So to say,
� � x � y � consists of all elements of

�
which can be obtained from � x � y � by consecutive moving of
coding elements from the left of x to the left of y � The
same set can be introduced, again non-formally, also by the
following recursive definition: w � � � x � y � iff w � � x � y �
or there are a coding element � and elements x

� � y � of
�

such that w � � x � � � y � � and ��� x � � y � � � � � x � y � � Lemma 1 en-
ables the formalizability of this recursive definition.
Therefore reasoning about the sets

� � x � y � is acceptable
from the point of view of formalization in A

�
if such rea-

soning is based on (e) the above equivalence and/or on (f)
the fact that

� � x � y � is contained in each subset � of
�

with the property that � x � y � �	� � and whenever � is a cod-
ing element, and ��� x � � y � � �	� for some elements x

� � y � of� � then � x � � � y � � �	� too.

Some properties of the sets
� � x � y � will be formulated

now as statements V, VI, VII, and these statements will be
proved in a way which can be formalized in the system A

� �
V. Whenever x � y � x � � y � are elements of

� � and � x � � y � �
belongs to

� � x � y ��� then
� � x � � y � ��
 � � x � y � �

Proof. Application of the property (e) of
� � x � y � and

the property (f) of
� � x � � y � � � �

VI. For each z in
�

and for each y in the set
� �
c�

there is an element x of
�

such that � z � y � � � � x � 0 c � �
Proof. Let � be the set of all elements y of

�
such�

that for each z in
�

the condition � z � y � � � � x � 0 c � is�
satisfied for some x in

� � The element 0 c belongs to � �� �
since � z � 0 c � � � � z � 0 c � for each z in

� � by the property
(e). Suppose y �	� � and let � be an arbitrary coding el-
ement. We shall show that � y �	� too. To do this, we take
an arbitrary element z of

�
and choose x in

�
such that� �

��� z � y � � � � x � 0 c � � Then � z � � y � � � � x � 0 c ��� again by the
property (e). So we established that � y �	� � From the proved
properties of � � making use of the property (b) of

� � we
cconclude that

� 
 � �
c

�

VII. Whenever x � y � z � x � z are elements of
�

satis-� �
fying the conditions � �

� x � y � � � � x � 0 c ��� � y � z � ��� � 0 c � z ���� �
then

� z � x � � � � z � x � �� �
Proof. Let x � z be some fixed elements of

� � We shall� �
denote by � be the set of all elements � y � z ��� where y � z
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belong to
� � and, for all x in

� � the implication�
(8) � x � y � � � � x � 0 c ���� � z � x � � � � z � x �� � �
holds. The proof will be carried out by proving that ��
contains the set � � 0 c � z ��� and this will be done by using�
the property (d). �

Let us first show that � 0 c � z � �	� � Suppose x is an� � �
element of

�
satisfying the condition � x � 0 c � � � � x � 0 c � ��

Then, by the property (e), the equality� �
� x � 0 c ��� � x � 0 c ��

holds or there are some coding element � and some element�
y of

�
such that 0 c ��� y � The second case is obviously

impossible and therefore x � x � Hence the condition�
� z � x � � � � z � x � is satisfied. Thus the implication (8)� � ��
holds when 0 c and z are substituted for y and z � re-�
spectively.

Now suppose that � y � z � is some element of � � and �
is some coding element. We shall show that ��� y � � z � also
belongs to � � For that purpose, suppose that x is an el-
ement of

�
satisfying the condition�

� x � � y � � � � x � 0 c � ���
Then, by the property (e), � y � 0 c or there are elements
x
� � y � of

�
and coding element � � such that �

� x � � y ��� � x � � � � y � ��� ��� � x � � y � � � � � x � 0 c � ��
The first case is impossible, and the equality in the second
case implies (as easily seen) the equalities

x � x
� � � ��� � � y � y

� �
Therefore �

��� x � y � � � � x � 0 c � ��
From here, making use of the assumption that � y � z � �	� � we
conclude that

� z � x � � � � z � � x � �� �
By the property (e),

� z � � x � � � ��� z � x ���
and this, together with the statement V, implies the inclu-
sion

� � z � � x ��
 � ��� z � x � �
Therefore

� z � x � � � ��� z � x ���� �
and we see that the implication (8) holds when � y � � z are
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substituted for y � z � respectively. �

We are now ready to give a proof of (#) in the needed
style.

Proof of (#). As in the proof of Lemma 4.4, we construct
an element � of � such that, for all x � z in

�
and all

coding elements ��� the equalities�
� � x � 0 z ��� x � � � x � � z ��� � ��� x � z �

hold. From these properties of � � we make the following�
conclusion: (g) whenever x � � and w � � � x � 0 c ��� then the� �
equality � w � x holds. To make this conclusion, we take a�
fixed element x of

�
and denote by � the set of all el-�

ements w of
�

satisfying the condition � w � x � From the��
properties of � � it follows that � x � 0 c � �	� � and, when-�
ever � is a coding element, x � z are elements of

� � and
��� x � z � �	� � then � x � � z � �	� too. By the property (f), this�
implies the inclusion

� � x � 0 c ��
 � ��
Suppose now an arbitrary element z of

�
is given. As�

in the proof of Lemma 4.4, we set�
� � � � z � � � 0 c � I ��� ��

Let y � z be elements of
�

such that�
(9) � y � z � ��� � 0 c � z � ��
We have to show that � y � z � i. e. to prove the equality�
� � z � � � 0 c � y ����� z ��

By the statement II, y � � � Hence, by the statement VI,
c

there is an element x of
�

such that�� �
(10) � � c � y � � � � x � 0 c � ��
From here, by the property (g) of � � the equality�

� � � c � y ��� x �
follows, and it remains to prove that � � z � x ��� z �� �

We note that (9) and (10) enable an application of the
statement VII, and the conclusion from its application is�

� z � x � � � � z � 0 c � �� �
Using once more the property (g), we get the needed equal-
ity. �

So we kept our promise to prove the statement (#) in a
way which can be formalized in the system A

� � Thus we show-
ed the formalizability in A

�
of the proof of the First

Recursion Theorem from Section 4. �
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By proving Theorem 1, we demonstrated that the formal
systems from Section II.8 are sufficient for the formaliz-
ation of quite complicated proofs from the theory of iter-
ative combinatory spaces. The observant readers will prob-
ably notice that we used the comprehension scheme II.6.(19)
to a very small extent. Its main application was to make
possible some recursively defined subsets of

�
to be used

in a formalized way, and in fact the recursive definitions
in question had a quite special form. Therefore it is natu-
ral to try to weaken the formal systems, and in particular
the mentioned scheme, without losing the validity of a the-
orem of the sort of Theorem 1. A possible weakening of the
used formal systems is indicated in the exercises.

Exercises

1. Show that the formulas (6) and (7) in the proof of
Theorem 1 can be replaced by some formulas having bound
variables only of the type c � Describe a method for a

i
similar modification of other formulas having connection
with the notion of a coding element.

2. Show that the use of the sets
� � x � y � in the proof

of Theorem 1 can be replaced by the use of a set
�

which
is connected with them in the following way:

�
consists of

all elements � w �	� x � y ��� , such that x � y belong to
� � and

w belongs to
� � x � y � � For the set

� � give a recursive
definition which is in the scope of Lemma 1, and trace out
the changes in the proof of the statement (#) due to using

�
instead of the sets

� � x � y � �
3. Show that Theorem 1 remains valid if we make the fol-

lowing changes in the system A
�
(i) on the formula � in

the comprehension scheme II.6.(19), we impose the restric-
tion that bound variables only of the type c can occur in

i
� ; (ii) we add as a new axiom the formula (4) for the case
when � � c � s � is a translation in A of the formula� �

c � s � � c � (c , c ) � s � c � s � �� � � � �
3

� �



APPENDIX

A SURVEY OF EXAMPLES OF COMBINATORY SPACES

1. Introductory remarks

In the preceding chapter, a notion of computability has
been introduced for the case of iterative combinatory spaces
and some general theorems have been proved for this notion.
In this way, a generalization of a certain part of the ordi-
nary theory of computability has been obtained. Of course,
an important thing for a generalization is the variety of
examples covered by it. From the first two chapters of the
book, it is clear that our generalization covers various
examples, and, in particular, some ones connected with no-
tions of principal interest. However, it does not become
clear how large is the class of all possible examples and
whether there are such ones which are essentially different
from the mentioned so far. We cannot give an exhaustive an-
swer to the first of these questions, but we shall show that
the diversity of the examples of iterative combinatory
spaces is considerably greater from what is shown by the
examples presented up to now.

We shall start our review in the next section with a
short recapitulation of the examples mentioned in the pre-
ceding text of the book. We hope this will help the reader
to have a better orientation, all the more that some of
these examples have been given not in the main text, but
only in some exercises, and, in addition, some of the ex-
amples could be accompanied with more detailed intuitive
explanations. In the next several sections some classes of
other examples will be presented. As it is clear from what
has been said above, we shall be interested mainly in iter-
ative combinatory spaces. However, also certain examples
will be given of combinatory spaces which are of some inter-
est without being necessarily iterative.
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2. A recapitulation of the examples presented so far

Almost all examples of iterative combinatory spaces con-
sidered yet are based on computational structures. The defi-
nition of the notion of computational structure has been
introduced in Section I.1. Intuitively, a computational
structure is an infinite set supplied with a pairing mechan-
ism and with a mechanism for coding truth and falsity. A
computational structure

���������
J
�
L
�
R
�
T
�
F
�
H 	

will be supposed to be given in the rest of this section,
except for the last paragraph (the functions J

�
L
�
R form

the pairing mechanism, and the functions T
�
F together

with the predicate H form the mechanism for coding truth
and falsity).

One and the same computational structure can be used as
a base for the construction of different combinatory spaces.
Each of them is characterized by the choice of a partially
ordered semigroup 
 � and the elements of 
 can be intu-
itively regarded as representing the behaviour of devices
which transform elements of

�
into elements of

���
The na-

ture of the devices can be different in different examples,
and the consideration of non-deterministic devices is a
fruitful source for the construction of combinatory spaces.
Computational procedures are considered a particular case of
devices.

The semigroup multiplication in 
 corresponds to se-
87quential composition (piping) of devices. The semigroup 


must have an identity I with the intuitive interpretation
that I represents a device carrying out the identical
transformation of the elements of

�
into themselves. The

functions L
�
R
�
T
�
F must be elements of 
 in the simplest

cases, or, in the more complicated ones, there must be el-
ements of 
 corresponding to L

�
R
�
T
�
F in some natural

way. The function J is used for the definition of the com-
bination operation  in 
 � The operation  corresponds to
combining two devices so that both of them must be consecu-
�������������������������������������������������������������

87 The device obtained by sequential composition of two
devices proceeds as follows: the first of the given devices
must be applied to the input data, and if its work termin-
ates successfully, then the corresponding output data is
used as input data for the second of the given devices. The
output of the second device is considered as the output of
the sequential composition of both.
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tively applied to the given input data, and then the func-
tion J must be applied to the obtained pair of results;
this kind of combining of the devices will be called J �

88combination. The predicate H is used for the definition
of the branching operation

�
in 
 � The operation

�
cor-

responds to if H � combination of three devices, i. e. to
combining them in such a way that the result of the applica-
tion of the first one to the input data determines which of

89the other two devices to be applied to the same data. In
the case of an iterative combinatory space, an operation
called iteration is determined implicitly through the al-
ready listed ones, and it corresponds to an operation of

90while H � combination of two devices.
�������������������������������������������������������������

88 More precisely, the device obtained by such a kind of
combination proceeds as follows. The first of the given de-
vices must be applied to the input data, and if its work
terminates successfully producing some output data s

�
then

the second of the given devices must be applied to the same
input data as the first one. If the work of the second de-
vice also terminates successfully and produces some output
data t

�
then the object J � s � t � is considered as the output

data of the compound device.
89 A more precise description of the action of such a

combination of three devices reads as follows. The first of
the given devices must be applied to the input data. The
work of the composed device may successfully terminate only
in case the work of the first device terminates successfully
and produces an output data r belonging to the domain of
the predicate H

�
In such a case, if the value of H � r � is

true then the second of the given devices must be applied
to the initial input data, and the result of its work is
considered as the result of the compound device, otherwise
the third of the given devices must be used in the same way
instead of the second one.

90 The while H � combination of two devices proceeds as
follows. The processing of the input data starts with an
application of the second device to it, and a successful
termination of the complete process is possible only in the
case when this application produces an output r belonging
to the domain of the predicate H

�
In this case, if the val-

ue of H � r � is false then the complete process terminates
and the initial input data is considered as the output data,
otherwise the first device is applied to the initial input
data, and if this application produces some output v then
v is taken as new initial input data, and everything is
repeated from the beginning.
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The semigroup 
 must contain a subset
�

which con-
sists of the constant mappings of

�
into itself in the

simplest cases, or, in the more complicated ones, of some
elements representing these mappings in some natural sense.

The simplest example of a combinatory space corresponds
to the study of deterministic devices by means of the exten-
sional description of their input-output behaviour. In order
that the combinatory space is an iterative one, we must al-
low some devices producing no output for some (or even for
all) input data. Mathematically, this case is characterized
by choosing 
 to be the partially ordered semigroup 
 � � �p
of all partial mappings of

�
into

�
(cf. Section I.2 for

the definition of 
 � � � ) � The corresponding combinatoryp
space is denoted by � � � � (cf. Example II.1.2). The de-p
scription of the above listed operations in this combinatory
space can be found in Section I.2, and a characterization of
the computable elements and of the computable mappings is
given in Section I.3 for the case when

�
is a standard

computational structure over the natural numbers, and the
functions � u � u + 1 and � u � u � 1 are among the elements of

 taken as primitive ones (we recall the fact that the� � computability defined in any of the cases considered in
Chapter I is equivalent to the computability in the corre-
sponding combinatory space).

A more complicated example corresponds to the study of
non-deterministic devices again by means of the extensional
description of their input-output behaviour (the determinis-
tic devices regarded as a particular case of the non-deter-
ministic ones). In this case one chooses 
 to be the par-
tially ordered semigroup 
 �

�
� of all binary relations inm�

(cf. Section I.5 for the definition of 
 �
�

� ). The cor-m
responding combinatory space is denoted by � �

�
� (cf. Ex-m

ample II.1.1). The description of the operations in this
combinatory space can be found in Section I.5. In Section
I.6, a characterization is given of the computable elements
in this combinatory space for the case when

�
is a stan-

dard computational structure over the natural numbers, and
the functions � u � u + 1 and � u � u � 1 together with the re-�
lation � are among the elements of 
 taken as primitive
ones (the semigroup 
 � � � is considered as a subsemigroupp
of 
 � � � according to identification of the functions withm
their graphs). A characterization of the computable elements
is given also for the case when

�
is the Moschovakis

structure � over a given set B (cf. Example I.1.2 for
B
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the definition of �
�
and Section I.7 and Subsection (III)

B
of Section III.5 for the mentioned characterization).

The next kind of examples correspond to the study of the
data processing devices by means of an enriched extensional
description of their input-output behaviour including also
the error messages arising in some cases of unsuccessful
termination. A set E is supposed to be given such that
E � � ��� (the elements of E represent the possible error
messages). The semigroups 
 �

�
� and 
 �

�
� are extendedp m

to semigroups 
 � ��� E � and 
 � ��� E � � respectively (cf.p m
Section I.8), and the corresponding combinatory spaces are
denoted by � � � � E � and � � � � E � (cf. Examples II.1.4 andp m
II.1.3). A description of the operations in these combina-
tory spaces can be found in Section I.8. For the case when�

is a standard computational over the natural numbers,
characterizations of the computable elements for different
choices of the primitive elements of 
 can be found in
Theorem I.8.1 and Exercises I.8.5-I.8.7.

In the case when E consists of a single element, then
the combinatory space � � � � E � is isomorphic to anotherm
one whose semigroup consists of all ordered pairs

�
f
�
A 	

with f � 
 � � � and A � � (cf. Exercise I.8.5). This combi-m
natory space is due to S. Nikolova and the ordered pairs�
f
�
A 	 mentioned above have the following intuitive inter-

pretation as descriptions of devices: f is the usual exten-
sional description of the input-output behaviour of the de-
vice, and A consists of those input data which are safe
with respect to rise of failures (i. e. no termination with
an error message is possible when starting with them).

In the combinatory space from the above paragraph, the
partial ordering in its semigroup is defined by means of the
following equivalence:

�
f
�
A 	�� � g � B 	�� �
	 f � g � A � B �

A change only in the definition of the partial ordering,
turns this combinatory space in a quite different one. The
new partial ordering is defined by means of a more compli-
cated equivalence, namely

�
f
�
A 	�� � g � B 	�� �
	 f � g � A � B �

u � B  v � � u � v 	�� f �
	 �
u
�
v 	�� g �

(cf. Exercise II.4.13). The change in the partial ordering
leads to a quite different operation of iteration (see Exer-
cises II.4.17 and II.4.18). The characterization of the
iteration in the combinatory space obtained in this way sup-
ports the following intuitive interpretation of the ordered

is a standard computatuonal structure over the natural numbers,
is a 

a standard computational structure over the natural numbers , 
is is 
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pairs
�
f
�
A 	 as an appropriate one for this case: f is

again the usual extensional description of the input-output
behaviour of the device, but A consists now of those input
data for which the work of the device necessarily terminates
(i. e. the work terminates in all possible variants of pro-
ceeding starting with the input data in question). In the
case when

�
is a standard computational structure over the

natural numbers, and a combinatory space of the above type
is considered, the elements of the semigroup are character-
ized which are computable with respect to some naturally
chosen primitive elements (cf. Exercises III.2.9-III.2.18).

In Exercise II.4.19 a modification of this kind of com-
binatory spaces is noted. Namely a change is made in the
definition of the semigroup of the space by including the
additional requirement A

�
dom f imposed on the pairs

91�
f
�
A 	 � Such pairs can be used for the same kind of de-

scription as above in the case of devices with no possibil-
ity of unsuccessful termination (they can be used also for a
description of arbitrary devices, but with a slightly dif-
ferent intuitive interpretation of A � the elements of A
must be those input data for which the work of the device
necessarily terminates successfully).

In Exercise II.4.11 a fuzzy analogue is given of the
combinatory space � � � � � In the combinatory space con-m
structed there, the semigroup consists of all � � fuzzy bi-
nary relations in

���
where � is a lattice satisfying some

not very restrictive assumptions. An explicit characteriz-
ation of the iteration in such a combinatory space is given
in Exercise II.4.16. In Exercise III.2.8, the case is con-
sidered when

�
is a standard computational structure over

the natural numbers, and the lattice � is a finite linear-
ly ordered set. In this case, a characterization is given of
the � � fuzzy binary relations which are computable with
respect to some naturally chosen primitive ones.

From the preceding chapters also some possibilities are
seen how to construct new combinatory spaces starting from
already constructed ones. Remark II.1.6 indicates a way for
modifying the branching operation, and it can be easily seen
that such a modification will produce an iterative combina-
tory space if the given combinatory space is iterative. A
bit later a possibility to modify the elements L and R in
some cases is mentioned. Some exercises also indicate ways
for the construction of new combinatory spaces. For example,

KExercise II.1.40 introduces the power-space � �
where �

�������������������������������������������������������������
91 This is actually the case studied in the earlier pub-

lications of the author.
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is an arbitrary combinatory space, and K is an arbitrary
non-empty set (this construction will be generalized in Sec-

Ktion 10). Exercise II.3.9 shows that � is iterative,
whenever � is iterative. Exercises II.4.10 and II.4.21
illustrate the possibility to consider subspaces of some
combinatory spaces.

Exercise II.4.22 indicates some examples of iterative
combinatory spaces, which are constructed by using, so to
say, generalized computational structures. Namely

���
J
�
T

and F are used, which are as in an ordinary computational
structure, but L and R could be not single-valued on the
elements not belonging to rng J

�
and also the mechanism for

the interpretation of the elements of
�

as truth and fal-
sity could be ambiguous for the elements not belonging to
rng T � rng F � We shall discuss again some situations of a
similar sort in Section 5.

3. Further examples of combinatory spaces
consisting of fuzzy binary relations

In this section, a part of the assumptions and the nota-
tions from Exercise II.4.11 will be adopted, namely the fol-
lowing ones. We suppose that a set

�
and a lattice � are

given. We assume that � has a greatest element
�

and a
least element � � where

��� � � and the range of each mapping� of
�

into � has a least upper bound in � with the
property that

l � sup rng � � sup � l � � � u � � u � �	�
for all l in �

�
We shall denote by 
 the set of all � ��

fuzzy binary relations in
���

i. e. all mappings of
�

into
�
�
The set 
 will be considered with the composition oper-

ation defined by means of the equality
�� � � u w
�
sup � � � u

�
v �� 
 � v

�
w � � v � �	�

and with the partial ordering defined by means of the equiv-
alence 
 � � � �
	  u v � 
 � u � v � � � � u � v � � ��
For each subset f of

� �
we shall denote by f � the el-

ement of 
 defined by � �
if

�
u
�
v 	�� f,f � � u � v � ��� � if

�
u
�
v 	�� f.�

We adopt the following definition: a � � fuzzy partial
ordering on

�
is any element � of 
 which satisfies the

conditions
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��� u � u �����	� ��� u � v ��
 ��� v � w ��� ��� u � w ���
��� u � v ������ ��� v � u �������� u � v

for all u � v � w in ��� Obviously, if f is an ordinary par-
tial ordering in � then f � is a ��� fuzzy partial ordering
in ��� In particular, so is I ���

M
Remark 1. The condition that ��� u � v ��
 ��� v � w ��� ��� u � w �

for all u � v � w in � is obviously equivalent to the in-�
equality � � � �

If � is a ��� fuzzy partial ordering in � then we shall
denote by � the set of all � in � which satisfy the�
conditions

� ����� � �����
Clearly, these conditions are satisfied for all � in � if� � I ��� In the case of an arbitrary ��� fuzzy partial order-

M
ing � in � , the above equalities are equivalent to the in-
equalities

� �����	��� � ���	�
expressible as the conditions that

� � u � v ��
 ��� v � w ����� � u � w ��� ��� u � v ��
�� � v � w ����� � u � w ��
for all u � v � w in ��� Consequently, ��� � (i. e. � � � ),�
whenever � is a ��� fuzzy partial ordering in ��� The equal-� �
ity � � � implies that � f � ��� � for each subset f of ����

For each ��� fuzzy partial ordering � in ��� the subset
� of � is obviously closed under composition, and � is�
an identity of the subsemigroup � of ��� Of course,�
� ��� in the case when � � I ��� We shall consider � as� M �
a partially ordered semigroup, using the partial ordering
induced by the partially ordering in ��� A subset � of�
this semigroup will be defined as follows. For each s in
��� we set

�s ���! #" s $%�
�i. e. s is the constant function assigning the value s� �to all elements of ��� The equality s � � � s � is easily ver-�ified, and therefore � s � � � � We note that�

���� s �#� � u � w ��� ��� s � w �
�for all u � w in ��� The set of all elements � s �#� where

s � ��� will be denoted by � (in the case when � � I � this� M
set coincides with the set � from Exercise II.4.11).
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We shall generalize the construction from Exercise
II.4.11 in the following way. The set � will be supposed
to be the first component of a computational structure

� ��� ��� J � L � R � T � F � H � �
In addition, an ��� fuzzy partial ordering � in � will be
supposed to be given such that the following conditions are
satisfied for all s � t � s ��� t ��� u � v in ���

(i) ��� J � s � t ��� J � s ��� t ������� ��� s � s ����
 ��� t � t ��� ;
(ii) if f is some of the functions L � R then

u � dom f � v � dom f ��� ��� u � v ��� ��� f � u ��� f � v ��� ;
(iii) if f is some of the functions T � F then

��� u � v ��� ��� f � u ��� f � v ��� ;
(iv) u � dom H � v � dom H � H � u �	� H � v � ��� ��� u � v ����
��
Example 1. For an arbitrary choice of the computational

structure
� � the above conditions are obviously satisfied

if � � I ���
M

Example 2. Suppose � is an infinite set, and J is an�
injection of � into ��� Let � be an ��� fuzzy partial or-
dering in � such that 
 � rng � and the condition (i) is
satisfied for all s � t � s ��� t � in ��� In particular, � could
be the image ��� of a partial ordering � in � such that

(1) J � s � t �	� J � s ��� t ������ s � s � � t � t �
for all s � t � s ��� t � in � (besides the trivial case when� � I �#� such is the case also when � is the partially or-

M
dered semigroup of an operative space, and J is the oper-
ation ��� in it). We shall now define L � R � T � F � H so that
� ��� J � L � R � T � F � H � will be a computational structure, and
the conditions (ii)-(iv) will be also satisfied. We define
the functions L and R by the conditions that

dom L � dom R � rng J �
and

L � J � s � t ����� s � R � J � s � t ����� t

for all s � t in ��� For the definition of T � F � H � we con-
struct elements a and b such that

��� a � b ��� ��� b � a ����
��
Namely we set a � J � a � b ��� b � J � b � a ��� where a � b are� � � � � �
elements of � satisfying the condition that ��� a � b ����
��� �
Then we set

� �T � a � F � b � dom H ��" a � b $%� H � a ��� true � H � b ��� false �
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Example 3. Let
� ��� ��� J � L � R � T � F � H � be the Moschov-

akis structure based on an arbitrary set B � and � be an�
arbitrary ��� fuzzy partial ordering in B � Then there is a
unique ��� fuzzy partial ordering � in � satisfying the
conditions (i)-(iv) such that � is an extension of � � and�
��� u � v ����
 whenever u and v are elements of � not be-
longing to one and the same of the three sets B ��" O $ and

o o� �
B (where B � B ��" O $ ).
Proof of the statement of Example 3. The imposed condi-

tions on � determine uniquely its values on the pairs not
o
�

in � � �
B � � and the condition (i) requires that

(2) ��� � s � t � � � s ��� t � � ��� ��� s � s ����
 ��� t � t ���
for all s � t � s ��� t � in � . Therefore an easy induction shows
the uniqueness of � if such an � exists at all.

To prove the existence, we define � by recursion along
othe construction of the elements of � from elements of B �

o
�

Namely we define first � on the pairs not in � � �
B � by

setting ��� u � v ��� � � u � v � in the case when both u and v�
belong to B � ��� O � O �����	� and ��� u � v ����
 when u and v
are elements of � not belonging to one and the same of the

osets B ��" O $ and � �
B � Then we use the equality (2) to

o
�

extend the definition of � to all pairs in � � �
B � �

The ��� fuzzy relation � defined in this way satisfies
the condition (i), and it is an extension of � assigning�
the value 
 to the pairs indicated in the statement of the
example. It remains to prove that � is a ��� fuzzy partial
order in ��� and the conditions (ii)-(iv) are also satis-
fied.

By induction on u we show that ��� u � u ����� for all u
in ��� An induction on v shows the validity of the inequal-
ity ��� u � v ��
 ��� v � w ��� ��� u � w � for all u � v � w in ��� The
implication ��� u � v ������ ��� v � u �������� u � v also can be
proved by induction (for example, on u ). Of course, all
these inductions make use of the corresponding properties
of � ��

To verify the fact that condition (ii) is satisfied, we
consider separately the case when u and v are both in
B � the case when they are both in " O $%� the case when they are

oboth in � �
B � and the case when they are not in one and

the same of these three sets. The validity of the condition
(iii) follows immediately from the fact that T and F are
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constant functions, and the validity of (iv) follows direct-
ly from the definition of � � � �

Now we shall define an operation � from � to �� �
by means of the equality

� ��� ���	� � u � v ��� sup " ��� u � s ��
�� � u � t ��
 ��� J � s � t ��� v � ��
s � ��� t � ��$

(in the case when � � I �#� this operation coincides with the
M

operation � from Exercise II.4.11). We shall prove now
that rng ��� � . Let � ��� be arbitrary elements of � �� � �
and r � u � v � w be arbitrary elements of ��� Then

� ��� ���	� � u � v ��
 ��� v � w ����
sup " ��� u � s ��
�� � u � t ��
 ��� J � s � t ��� v ��
 ��� v � w � � s � ��� t � ��$��

sup " ��� u � s ��
�� � u � t ��
 ��� J � s � t ��� w � � s � ��� t � ��$��
� ��� ���	� � u � w ����

��� r � u ��
 � ��� ���	� � u � v ����
sup " ��� r � u ��
 ��� u � s ��
�� � u � t ��
 ��� J � s � t ��� v � � s � ��� t � ��$��
sup " ����� r � u ��
 ��� u � s ����
 ����� r � u ��
�� � u � t ����
 ��� J � s � t ��� v � �

s � ��� t � ��$��
sup " ��� r � s ��
�� � r � t ��
 ��� J � s � t ��� v � � s � ��� t � ��$��

� ��� ���	� � r � v �	��
Thus � is a binary operation in � �� �

3Let an operation � from � into � be defined by�
means of the same expression as in Exercise II.4.11, namely

� ��	 � � ���	� � u � v ��� ��� H 	 � � u � true ��
 ��� u � v ����
��� H 	 � � u � false ��
�� � u � v �����
where

-1 92� H 	 � � u � p ��� sup " 	�� u � s � � s � H � p ��$ �
Let 	 � � ��� be arbitrary elements of � � We shall show�
that � ��	 � � ���	� belongs to � too. For that purpose, we�
first note that, for all r � u in ��� we have

-1��� r � u ��
 � H 	 � � u � p ��� sup " ��� r � u ��
 	�� u � s � � s � H � p ��$��
-1sup " 	�� r � s � � s � H � p ��$�� � H 	 � � r � p �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
92 Note that the defining equality of � can be written

in the following simple form in the conditions of Example 2:

� ��	 � � ���	� � u � v ��� ��	�� u � a ��
 ��� u � v ����
 ��	�� u � b ��
�� � u � v ���	�
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( p � " true � false $ ). Now it is easy to prove that, for all
r � u � v � w in ��� the inequalities

� ��	 � � ���	� � u � v ��
 ��� v � w ����� ��	 � � ���	� � u � w ���
��� r � u ��
�� ��	 � � ���	� � u � v ����� ��	 � � ���	� � r � v �

hold.

The facts concerning the generalization promised above
are formulated in the following proposition.

Proposition 1. The 9 � tuple
� � � � � ��� � � � L � � � � R � � ���	� � T �#� � F � �� � �

is a symmetric and iterative combinatory space. The iter-
ation in this combinatory space can be characterized in the
same way as in Exercise II.4.16, namely

��� � 	�� � u � w ��� sup "�� � u � w � � m ��� $%�
m

where
m- 	

� � u � w ��� sup "�
� � H 	 � � v � true ��
 � � v � v ��� 

m j=

�
j j j+ 	� H 	 � � v � false � � v � v � ����� � v � ��� v � u � v � w $ �

m
� 	 m � m

We leave the proof to the reader, restricting ourselves
only to giving the following brief instructions:

1. Verify that
�� � � s �#� � u � v ����� � s � v �

for all � in � and all s � u � v in ����
2. Making use of condition (ii), verify that

��� L � � � � J � s � t ��� v ��� ��� s � v ��� ��� R � � � � J � s � t ��� v ��� ��� t � v �
for all s � t � v in ���

3. Making use of condition (i), verify that, for all
s � t in ��� the equality

� � �� ��� s �#� � t �#��� � u ��
holds, where u � J � s � t �	�

4. Verify that
��� T �#� � u � s ��� ��� T � u ��� s ��� ��� F �#� � u � s ��� ��� F � u ��� s �

for all u � s in ���
5. Making use of condition (iv), note that

��� T � u ��� s ����

-1for all s in H � false ��� and

��� F � u ��� s ����

-1for all s in H � true �	�
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6. Verify that, for all � in � and all u in ����
sup " � � u � v ��
 � H � � � v � p � � v � ��$�� � H �	� � u � p �

( p � " true � false $ ).
7. To prove that the combinatory space is iterative and

to obtain the expression for the iteration, use the Level
Omega Iteration Lemma (Proposition II.4.4) and Proposition
II.4.6.

Remark 2. In the combinatory space from Proposition 1,
the elements � L � � and � R � � of � can be replaced, re-�
spectively, by the ��� fuzzy relations L’ and R’ in �
which are defined as follows:

L’ � u � v ��� sup " ��� u � J � v � w ��� � w � ��$%�
R’ � u � v ��� sup " ��� u � J � w � v ��� � w � ��$ �

These ��� fuzzy relations also belong to � � and the state-�
ment of Proposition 1 remains valid after doing the mention-
ed replacement. We leave the verification of this to the
reader, and we restrict ourselves only to the following
hint: prove that

L’ � J � s � t ��� v ��� ��� s � v ��� R’ � J � s � t ��� v ��� ��� t � v �
for all s � t � v in � (compare with instruction 2 for the
proof of Proposition 1).

It is probably worthwhile to reformulate the result from
Proposition 1 for the case when � has only two elements
and hence � is the image ��� of some ordinary partial or-
dering � in ��� We shall give the reformulation in the
terms of ordinary relations and of such an ordinary partial
ordering.

The conditions (i)-(iv) in such a situation require that
for all s � t � s ��� t � in � the equivalence (1) holds, the
functions L � R � T � F are monotonically increasing ( L and R
in their domains), and the inequality u � v is impossible
when

u � dom H � v � dom H � H � u �	� H � v �
The partially ordered semigroup � is actually � � ���m

in this situation, and its subsemigroup � � which will be�
denoted by � now, consists of the elements � of � � ���� m
satisfying the condition that

� u � v � � �� v � w ��� � u � w � � �	�
u � v � � v � w � � ���� � u � w � � �

for all u � v � w in ��� Of course, this subsemigroup will be



3. COMBINATORY SPACES OF FUZZY BINARY RELATIONS 247

considered with the partial ordering by inclusion, which is
the partial ordering induced from � � ���	� If s is an el-m �ement of � then the ��� fuzzy relation � s � is the image of
the relation

� �
s ��" � u � v � � � � s � v $ ��

The last relation is an element of � � and the set of all�
such relations will be denoted by � � Instead of � L � � ��� R � � , � T and � F � the relations�

L ��" � u � v � � � � �
u � �

v � � u � u � � � u ��� v � � � L � v �	� v ��$%�� �
R ��" � u � v � � � � �

u � �
v � � u � u � � � u ��� v � � � R � v �	� v ��$%�� �

T ��" � u � v � � � � T � u �	� v $%�� �
F ��" � u � v � � � � F � u �	� v $�

will be considered. The binary operation � corresponding�to � is defined as follows:� �
� ��� ���	����" � u � v � � � � �

s
�
t � � u � s � � � � � u � t � � ��� J � s � t �	� v ��$ �

The operation � in � is the restriction of the operation�
� from � � ���	� In this denotations, the particular case ofm
Proposition 1 corresponding to the considered situation
yields the following result (which, of course, can be proved
also in a direct way):

Corollary 1. The 9 � tuple
� � � �	� ��� � � L � R ���	� T � F �� � � � � � �

is a symmetric and iterative combinatory space. The iter-
ation in this combinatory space can be characterized in the
same way as in the combinatory space � � ���	�m

Remark 3. In the above situation, it is obvious that,� �for all s � t in ��� the inclusion s � t holds iff the in-� �
equality s � t holds in ��� Therefore the set ��� consider-�
ed as a partially ordered set by using the partial ordering
induced from � � turns out to be isomorphic to the par-�
tially ordered set ��� This, together with Example 2 or
Example 3, gives an affirmative answer to a question of
D. Vakarelov, namely the question whether a combinatory
space � � � I � � � �	� L � R ���	� T � F � is possible such that the
partial ordering in � induced from � is different from
the identity relation in � �

Remark 4. The above remark, together with Example 2 and
the elementary properties of combinatory spaces, shows which
are, up to isomorphism, the possible partial orderings in-
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duced in the sets � from the partially ordered sets � in
combinatory spaces � � � I � � � �	� L � R ���	� T � F � . The charac-
terization (given in Skordev [1976 c]) is the following one:
exactly those partial orderings can be obtained in this way
at which the Cartesian square of the partially ordered set
is isomorphic to some subset of this set (the Cartesian
square considered with the natural partial ordering in it
which corresponds to the partial ordering in the given set).

4. Probabilistic examples
of iterative combinatory spaces

(I) On data processing devices with probabilistic non-
determinism. A computational structure

� ��� ��� J � L � R � T � F � H �
will be supposed to be given throughout the whole section.
We shall construct some combinatory spaces whose elements
could be used as descriptions of probabilistic data proces-
sing devices transforming elements of � into elements of
��� The devices in question are thought about as non-
deterministic ones whose output depends on the input in a
probabilistic manner. To be a little more precise, we must
say that each concrete application of the device to the in-
put data should produce at the most one corresponding out-
put, but different concrete applications to the same input
data could lead to different results (including possibly
productive termination of a concrete application and no out-
put data produced by another one); in general, the result of
the application could be not predictable, but certain state-
ments about the result must have a definite probability.
Such non-deterministic data processing devices and the com-
putability of random functions by them have been studied,
for example, in the papers Santos [1969, 1971].

(II) The case of discrete probability distributions. The
simplest case of probabilistic non-determinism of data pro-
cessing within the given set � is that one when, given any
input data from � , there is a corresponding discrete dis-
tribution function indicating the probabilities of all el-
ements of � to be the output data, as well as the prob-
ability that no output data will be produced (of course, in
the case of an uncountable set � most of its elements must
have a zero probability to be the output data). The informa-
tion about the distribution functions corresponding to all
possible input data can be collected in a function � from�
� to the interval

�
0 � 1 � of the real line

�
so that, for

any fixed u in ��� the function � v � � � u � v � assigns to all
elements of � their probabilities to be the output data
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when the device is applied with input data u � Clearly, for
all u in

���
the inequality�

(1) ��� u � v �
	 1�
v

93must be satisfied, the value of the left-hand side expres-
sion being the probability of a productive termination of
the work at the input data u

�
and the difference between 1

and this value being the probability that no output data
94will be produced by this work.

We shall now construct a combinatory space corresponding
to such a kind of mathematical description of the behaviour
of some non-deterministic devices. To do this, we have to
make clear what mathematical operations on the functions �
correspond to those three ways of combining devices which
have been used until now as an intuitive background for the
definition of composition, combination and branching (see,
for example, the beginning of Section 2).

We shall denote by � the set of all functions � from�
to � 0 � 1] which satisfy the inequality (1) for all u

in
� � This set will be considered as a partially ordered

one by supplying it with the partial ordering defined as
follows: ����� iff ��� u � v �
����� u � v � for all u

�
v in

� �
For any two elements � and � of � � we define a real-
valued function ��� by means of the equality�

������� u w � ��� u � v ����� v � w � ��
v

This is a matrix product known from the theory of Markov
processes, at least for the case when

�
is countable. The

function ��� is easily seen to belong again to � � If �
�������������������������������������������������������������

93 The convention is adopted that, for each each non-�
negative real-valued function � on

���
the symbol ��� v ��

vdenotes the least upper bound of all finite sums

��� v � + ����� + ��� v � ��
n

where v
� ����� � v are distinct elements of

� ��
n

94 We note that, in the case of a countable set
���

the
non-negative real-valued functions � on

�
satisfying,

for all u in
���

the equality�
��� u � v �
� 1�

v
are called stochastic matrices and the numbers ��� u � v � are
named transition probabilities.
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and � describe the behaviour of some devices then, under a
certain independence assumption, the function ��� describes
the behaviour of their sequential composition, where the de-
vice described by � is applied first, and its output data
is taken as the input data for the device described by � �
The multiplication in � � defined in this way, is obviously
monotonically increasing, and it turns out to be associ-
ative. So � becomes a partially ordered semigroup.

Using similar intuitive considerations and the mentioned
independence assumption, we see that the following defini-
tions of a binary operation

�
and a ternary operation �

are in concordance with the other two ways of combining de-
vices: �

��� u � L � v ������� u � R � v ��� if v � rng J �� ��� � � ��� u � v �
��� 0 if v � rng J ��
���	� � � � � ��� u � v �
� ��� H � � � u � true ����� u � v ��� +

��� H � � � u � false ����� u � v ��� �
where �

-
�

� H � ��� u � p �
� ��� u � s ��
 s � H � p ��
 ��
s
��
 denoting 1 if � is true and 0 otherwise. The oper-

ations
�

and � can be shown to transform elements of �
again into elements of � (for the proof of the statement
concerning

� �
it is useful to verify that� � �� ��� � � ��� u � v �
� ��� u � s � ��� u � t �� � �
v s t

for all � � � in � and all u in
�
).

If f is a partial function from
�

to
���

then we
shall represent f by the elements f � of � defined as
follows:

f ��� u � v �
��
� u � v ��� f 
 �
Let � consist of the elements of � representing in this
sense the constant total mappings of

�
into

� � Then the
following proposition holds:

Proposition 1. The 9 � tuple� ��� � � I � � � � � � L � � R � � � � T � � F ���
M

is a symmetric and iterative combinatory space � For arbit-
rary � � � in � and arbitrary u

�
w in

�
the equality� �

��� � ��� � u � w �
� � � u � w ��
m

m= �
holds, where



4. PROBABILISTIC EXAMPLES OF COMBINATORY SPACES 251

� � �
� � u � w �
� ����� 
 v � u

�
v � w 
��

m
� � � � m
v v v
0 1 m

m-
��� H � � � v �

false ����� � H � � � v �
true ���� v �

v ��� �
m j j j+

�
j= �

The verification of the conditions from the definition
of the notion of a symmetric combinatory space will be left
to the reader (an analogy with the proof of Proposition 3.1
can be instructive). When properties of the operation

�
are considered, it is convenient to use the following equal-
ity: ���� ��� � � ��� u � v �
� ��� u � s ����� u � t � I ��� J � s � t � � v � ����

M
s t

The fact that
�

is iterative can be established by using
the Level Omega Iteration Lemma (Proposition II.4.4), and
the expression for the iteration can be obtained by supple-
menting an application of Proposition II.4.6.

In the case when 	 is a standard computational struc-
ture over the natural numbers all sums with summation vari-
ables ranging over

�
can be written as ordinary infinite

series. For example, the condition (1) can be written as
follows: � �

��� u � v �
	 1 ��
v= �

In this case, a characterization will be given for the el-
ements of � computable in the set


 ��� S � � P � ���� �
where S ��� u � u + 1 � P ��� u � u � 1 � and�

1� if v 	 1 � � u � v �
��� 2�
0 if v > 1

(the element


of � characterizes the "data processing by
95tossing a coin"). The characterization reads as follows.

Theorem 1. Let the computational structure 	 be a
standard computational structure over the natural numbers,
and let

�
be the iterative combinatory space from Proposi-

tion 1. Then, for each element � of � � the following two
�������������������������������������������������������������

95 We note that in Tabakov [1977] the set of the elements
of � is studied which are in a certain sense primitive re-
cursive with respect to


(this element is denoted there

by A ).
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conditions are equivalent:

(a) � is
� � computable in



;

(b) the set of all quadruples � k � l � u � v � of natural
numbers satisfying the inequality

k����� < ��� u � v �l+1

is recursively enumerable.

Proof. The implication from (a) to (b) is proved by a
more or less straightforward induction along the construc-
tion of � � Suppose now � satisfies the condition (b). We
shall give an outline of the proof that condition (a) will
be also satisfied.

We first note that, for each one-argument partial recur-
sive function f

�
the corresponding element f � of � is� � computable in � S � � P � � (hence also in



). This fol-

lows from Theorem I.3.1 and the fact that the mapping
� f � f � is a homomorphism with respect to the operations
composition, combination and iteration in the iterative com-
binatory spaces

� ��	
� and
� �

p
The next step is to prove the

� � computability in



of the element
�

of � defined in the following way:
-u u�
2 if v < 2

�
� � u � v �
���

u�
0 if v � 2

(in Tabakov [1977] this element is denoted by eqm ). The
intuitive idea of the proof is based on the fact that a bi-
nary representation of an arbitrary number which is less

uthan 2 can be obtained starting from the empty string by
appending u times a 0 or 1 digit on the right, and if
the choice of this digit is realized by tossing a coin then,

ufor each number less than 2
�
the probability that a repre-

-usentation of this number will be obtained is equal to 2
(the empty string is considered as a representation of the
number 0 ) � We hope the reader will be able to transform
this intuitive idea into an actual proof (we note only that
the mentioned non-deterministic appending of a 0 or 1
digit on the right can be described by the element

� � t � 2 L � t � + R � t ����� � � I � �� ��

of � ).
The following lemma will be needed further, and the idea

of its proof is similar to an idea used in Tabakov [1977].

Lemma 1. Let h be a one-argument recursive function,
and G be such a two-argument recursive function that, for
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all natural numbers u
�
the equality� �

h(u)G � u � v �
� 2�
v= �

96 -h(u)holds. Then the element � u v � G � u � v � 2 of � is� � computable in

 �

Proof. We construct a two-argument recursive function
H such that �

H � u � r �
� max � i : G � u � v �
	 r ��
v<i

h(u)whenever r < 2 � It is easy to see that, for any fixed
u and i

�
the equation H � u � r �
� i has exactly G � u � i �

h(u)solutions r satisfying the inequality r < 2 � Using this
fact, one can verify the equality

-h(u)� u v � G � u � v � 2 � � � t � H � L � t � � R � t ������� � � I � � �
h ��� �� �

Now, leaving the details to the reader, we note that the
following conclusion can be drawn from the assumption that
� satisfies the condition (b):

There are three-argument recursive functions X and Y
such that

X � n � u � v �(2) ��� u � v �
� lim ��� ������� �������
Y � n � u � v � +1

n �������
for all u

�
v in

� �
and

X � n � u � v � X � n+1 � u � v ���� ������� ������� 	 ��� ����������� �������Y � n � u � v � +1 Y � n+1 � u � v � +1
for all n

�
u
�
v in

� �
Making use of the representation (2), we shall obtain an

appropriate representation of ��� u � v � as the sum of an in-
finite series.

Lemma 2. There are two-argument recursive functions
A
�
D
�
an one-argument recursive function B and a three-

argument recursive function C such that
�������������������������������������������������������������

96 I. e., for all u in
� �

there is a natural number n
such that

n�
h(u)G � u � v �
� 2

��
v= �

and G � u � v �
� 0 for all v greater than n �
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m
B(m)

�
D(m,u)0 < A � m � u �
	 2 �

C � m � u � v �
� 2�
v= �

C � m � u � v �
� 0
�

v � m + 1
�
m + 2

�
m + 3

� �����
for m

�
u in

� �
and� �

A � 0 � u � A � 1 � u � A � m � 1 � u � A � m � u � C � m � u � v ���� u � v �
� ��������� � ��������� � ����� ����� ��� ��� � � 1 � ����� ��� � � ����� ��� ��� ��
B( � ) B(

�
) B ( m -

�
) B ( m ) D ( m , u )2 2 2 2 2

m= �
for all u

�
v in

� �
Proof. Let

�
be the set of all rational numbers of the

mform ��� � where m and n are natural numbers. We shall
n2

note three statements concerning the construction of numbers
from

�
having certain connections with given rational

numbers. In fact we shall need the translations of these
statements in the terms of existence of certain recursive
functions, but, for the sake of brevity, formulations will
be given using the words "one can effectively find".

The first statement asserts the well-known density of
the set

�
in the set of the non-negative rational numbers,

namely:

1. For any two rational numbers a and b satisfying the
inequalities 0 	 a < b � one can effectively find a number d
from

�
satisfying the inequalities a < d < b �

To have an explicit example of a translation of the kind
mentioned above, we shall reformulate this statement as fol-
lows: there are four-argument recursive functions

�
and N

such that
i

� � i � j � k � l � k����� < ��� ����������������� < �������
N (i,j,k,l)j+1 2 l+1

whenever i
�
j
�
k
�
l are natural numbers satisfying the in-

equalities
i k����� < ����� �j+1 l+1

The next statement of such a nature is the following
one:

2. Let a
� ����� � a and b

� ����� � b be rational numbers�
s

�
s

satisfying the inequalities

0 	 a < b
�

i � 1
� ����� � s �

i i
and let d be a number from

�
satisfying the inequalities

a + ����� + a < d < b + ����� + b ��
s

�
s
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Then one can effectively find numbers d
� ����� � d from

��
ssatisfying the conditions

a < d < b
�

i � 1
� ����� � s �

i i i
d + ����� + d � d ��

s
The proof of this statement is by induction, and it

makes use of Statement 1. The translation of Statement 2 in
the terms of existence of certain recursive functions will
be omitted (as well as the translation of the next one).

3. Let a
� ����� � a be non-negative rational numbers�

s
satisfying the inequality

a + ����� + a 	 1 ��
s

and e be a positive rational number. Then one can effec-
tively find numbers c and d

� ����� � d from
�

satisfying�
sthe conditions

c < 1
�

d + ����� + d � 1
��

s
a � e 	 c d 	 a �

i � 1
� ����� � s �

i i i
For proving this statement, we first consider the case

when a + ����� + a � 0 � In this case
�
we set c � 0

�
d � 1

��
s

�
d � ����� � d � 0 � Otherwise, using statement 1, we choose a

s
number c from

�
satisfying the inequalities

max � a � e � 0 � + ����� + max � a � e � 0 � < c < a + ����� + a ��
s

�
s

and then, making use of statement 2, we choose numbers d
������� � d from

�
such that

s
max � a -e

�
0
�

a
i i��������������������� 	 d 	 ��� � i � 1

� ����� � s �c i c
d + ����� + d � 1 ��

s
The numbers c

�
d
� ����� � d constructed in this way satisfy�

s
the formulated conditions.

Now we set
X � n � u � v �� � u � v �
� ��� ������� ����� � �

n Y � n � u � v � +1
and we address ourselves to the construction of functions
A
�
B
�
C
�
D with the needed properties. This will be done

in the form of a construction of the functions
A � n � u � C � n � u � v �U � n � u �
� ��������� � � V � n � u � v �
� ��������� ��� �

B( n ) D( n , u )2 2
whose values will belong to

�
for all m

�
u
�
v in

� �
These functions must be effectively computable, and they
must satisfy the following conditions:
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m�
(3) 0 < U � m � u �
	 1 � V � m � u � v �
� 1

��
v= �

(4) V � m � u � v �
� 0
�

v � m + 1
�
m + 2

�
m + 3

� ������ �
(5) ��� u � v �
� W � m � u � v � ��

m= �
where

W � m � u � v �
� U � 0 � u � ����� U � m � 1 � u ��� 1 � U � m � u ��� V � m � u � v � �
We shall ensure the validity of the equality (5) by con-

structing the functions U and V so that the inequalities
1

�
(6) � � u � v � � ��� 	 W � m � u � v �
	�� � u � v �

n n
�

n2
m<n

will hold whenever v < n �
The functional values U � n � u � � V � n � u � v � will be de-

fined for any fixed value of u by recursion on n � If n � 0
then the requirement concerning the inequalities (6) is
trivially satisfied. Suppose now that, for all values of m
which are less than some given natural number n

�
values

from the set
�

are effectively assigned to the expressions
of the form U � m � u � and V � m � u � v � in such a way that for
all v which are less than n the inequalities (6) hold,
and for all m which are less than n the conditions (3) and
(4) are satisfied. Then the expressions W � m � u � v � with
m < n will also make sense. We set�

� � u � v � � W � m � u � v �
n+
� �

m < n
a � ��������� ��� ��� ��������� ��� ��� ��� ������� � v � 0

�
1
� ����� � n �

v U � 0 � u � ��� � U � n-1 � u �
The numbers a

�
a
� ����� � a are rational. They are non-� �

n
negative, as it follows from the inequalities

� � u � v �
��� � u � v �
� 0
n+
�

n
and the validity of (4) and (6) for m < n and v < n

�
re-

spectively. By (1)-(4), we have the inequalities
n n� �
� � u � v �
	 ��� u � v �
	 1�
n+
� �

v= � v= �
and the equalities
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n n� � � �
W � m � u � v �
� W � m � u � v �
�� � � �

v= � m<n m<n v= ��
U � 0 � u � ����� U � m � 1 � u ��� 1 � U � m � u ���
��

m<n�
� U � 0 � u � ����� U � m � 1 � u � � U � 0 � u � ����� U � m � u ���
��

m<n
1 � U � 0 � u � ����� U � n � 1 � u � �

Hence

a + a + ����� + a 	 1 �� �
n

and therefore, by Statement 3, one can effectively find
numbers c and d

�
d
� ����� � d from the set

�
such that� �

n
c < 1

�
d + ����� + d � 1

�� n1a � ������� 	 c d 	 a �
v � 0

� ����� � n �
v n+

�
v v2

We set

U � n � u �
� 1 � c �
V � n � u � v �
� d

�
v � 0

� ����� � n �
v

V � n � u � v �
� 0
�

v � n + 1
�
n + 2

�
n + 3

� �����
Then the inequalities

1
�

� � u � v � � ������� 	 W � m � u � v � 	 � � u � v �
n+
�

n+
� �

n+
�

2
m<n+

�
will hold whenever v < n + 1

�
and for all m which are less

than n + 1 the conditions (3) and (4) will be satisfied. �

Having now Lemmas 1 and 2 at our disposal, we shall re-
present the element � of � in a form showing its

� �
computability in


 � For that purpose, making use of the
functions A

�
B
�
C
�
D from Lemma 2, we define one-argument

recursive functions h
�
h

�

and two-argument recursive func-
tions G

�
G

�

in the following way:

h � u �
� B ��� u � � � h
� � u �
� D ��� u � � � u � � �� � �

h(u)G � u � 0 �
� 2 � A ��� u � � � u � � � G � u � 1 �
� A ��� u � � � u � � �� � � �
G � u � v �
� 0

�
v � 2

�
3
�
4
� ����� �

G
� � u � v �
� C ��� u � � � u � �

v � �� �
Then we set

-h(u) -h’(u)����� u v � G � u � v � 2 � � � ��� u v � G � � u � v � 2 �
Then � and � �

are elements of � � and, by Lemma 1, they
are

� � computable in

 � The

� � computability of � in
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(and hence the validity of the theorem) will be established
by proving the equality

(7) ��� � � � f � � ��� g � �
uwhere f ��� u � 2 u � g ��� u � 3 �

For the proof of (7), we set � ��� f � � ��� � An easy calcu-
lation, using the formula for the iteration from Proposition
1, shows that

m-
�

m m � j� � u � 2 u �
� ��� 2 u
�
0 ��� ��� 2 u

�
1 �

j= �
for all natural numbers u

�
m
�
and � � u � w �
� 0 in the case

mwhen u
�
w are such natural numbers that w � 2 u for all

m in
� � Therefore � �

m m��� � � � � u � v �
� � � u � 2 u ��� � � 2 u
�
v �
��

m= � �
m-
��

m m � j��� 2 u
�
0 ��� � � 2 u

�
v ��� ��� 2 u

�
1 � ��

j= �
m= �

Then
u��� � � g ��� � u � v �
� ��� � � � � 3 �

v �
��
m-
��

m u m u � j u��� 2 � 3 �
0 ��� � � 2 � 3 �

v ��� ��� 2 � 3 �
1 �
��

j= �
m= ��

m-
��

A � m � u � C � m � u � v � � A � j � u �� 1 � ����� ��� � � ����� ��� ��� � � ��������� � � ��� u � v � ��
B ( m ) D ( m , u ) B( j )

�
2 2 j= � 2

m= �
Theorem 1 shows that the made choice of the set



leads to a natural notion of computability for random func-
tions in

� � There are some reasons to assume that this is
the most general notion of effective computability for such
functions. At any rate, the class of the computable random
functions will be not enlarged if we add to



some other

elements � of � satisfying the condition (b) (for ex-
ample, an element � describing "data processing by means
of a dice"). It would be interesting to compare the comput-
ability notion studied in Theorem 1 with other notions from
the literature, e. g. with some notions introduced by Santos
in his papers mentioned in Subsection (I).

The semigroup � of the combinatory space from Proposi-
tion 1 is a subsemigroup of a larger one which will be de-
noted by � � The elements of � are arbitrary mappings� �
of

�
into the closed interval � 0 � ��� � (the value ��� in-

cluded). The partial ordering, the multiplication and the
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extensions
�

and � of the operations
�

and � to �� � �
are defined by means of the same expressions, with only one
detail needing special care, namely the meaning of the prod-
ucts 0 � ��� and ��� � 0 which now may occur at the evaluation
of the expressions. It turns out to be appropriate for our
purposes to assign the value 0 to these products. After
adopting this convention, we have the following result.

Proposition 2. The 9 � tuple� ��� � �
I � � � � � �

L � � R � � � �
T � � F ���� � M � �

is a symmetric and iterative combinatory space, and the
iteration in this space can be expressed in the same way as
in Proposition 1 �

The proof of this proposition is almost the same as the
proof of Proposition 1, and the modifications are mainly in
the direction of simplification (since now no problems arise
about the convergency of the sums with summation variables
ranging over

���
and nothing like the condition (1) has to

be verified).

It is reasonable to look for some intuitive interpreta-
tion of the elements of � and of the operations on them.�
There is a simple interpretation for those elements of � �
whose ranges are contained in

� � � ��� � � Namely one could
consider non-deterministic devices without probabilistic
features, and, when given such a device, one could describe
it by the element � of � such that, for all u

�
v in

����
��� u � v � is equal to the number of the possible computation
paths leading from u to v � More arbitrary elements of � �
can be used in a similar way for the description of non-
deterministic devices which employ the two kind of choices:
the completely free and the probabilistic ones. In this case
an element of � could describe the device by assigning to�
each pair u

�
v of elements of

�
the expected number of the

possible computation paths leading from u to v (the prob-
ability that a path is possible being calculated by multi-
plication taking into account only the probabilistic choices
occurring along the path).

(III) The case of probability distributions character-
ized by measures on a � � field of sets. In this subsection,
the additional assumption will be made that a � � field �

on
�

is given, i. e. a set
�

of subsets of
�

such that� � � �
and

�
is closed under difference and under finite

and countable unions. The following coordination between
�

and the computational structure 	 will be also assumed:

(i) for any set E belonging to
� �

its pre-images
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-
�

-
�

-
�

-
�

L � E � � R � E � � T � E � � F � E � belong to
� �

and its pre-image
-
� 

J � E � belongs to every � � field on
�

containing among
its elements all Cartesian products E

� � E ��� where E
�

and
E
�

belong to
�
;

-
�

-
�

(ii) the sets H � true � and H � false � belong to
� �

Example 1. Let 	 be the Moschovakis computational
structure based on an arbitrary set B, and let

�
be an�

arbitrary � � field on B � Let
�

be the least one among the� � fields � on
�

which have the following properties:
(a)

�����
; (b) � O � � � ; (c) whenever E

�

and E
�

belong to�� �
then E

� � E � also belongs to
� � We claim that the con-

ditions (i) and (ii) are satisfied in this case. The valid-
ity of (ii) is clear from the equalities

-
�

o -
�

o oH � true �
� ��� B �
H � false �
� B

�
B � B � � O � �

To verify (i) we note first that, for any E in
� �

the pre-
-
�

image L � E � is either the set E � � or the union of this
set with one or both of the sets � O � � B � and a similar

-
�

statement concerning R � E � holds. We note also that each
-
�

-
�

of the pre-images T � E � � F � E � is either
�

or � � Thus
-
�

-
�

-
�

-
�

the part of (i) concerning L � E � � R � E � � T � E � � F � E � is
satisfied. For the verification of the part concerning
-
�

J � E � � we note the equality
-
�

oJ � E �
� E
�
B �

Thus it is sufficient to show that, whenever
� �

is a � �
field on

�
containing among its elements all Cartesian

products E
� � E ��� where E

�

and E
�

belong to
� �

then
oE

�
B � � �

for all E in
� � This can be shown by verifying

othat � E � �	�
E
�
B � � ���

is one of the � � fields � on
�

having the properties (a)-(c).

Intuitively, we shall consider now non-deterministic
devices such that, for any u in

�
and any E in

� �
there

is a definite probability that the application of the device
with input data u will produce an output data belonging to
E � It is natural to require, for a fixed device and a fixed
input data u

�
the dependence of this probability on the

choice of E to be represented by a measure on
�

with
97values not greater than 1 � For a fixed device, the infor-

�������������������������������������������������������������
97 A measure on

�
is a � � additive non-negative real-

valued function on
� � It is habitual to admit ��� as value

of a measure, but we shall consider only measures with fi-
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mation about the measures on
�

corresponding to all pos-
sible input data can be collected in a function � from� � �

to the interval � 0 � 1 � � such that, for any u in
���

the function � E � ��� u � E � will be the corresponding measure.
Besides the condition on the function � corresponding to
this, one more condition will be imposed, due to technical
reasons, in the definition which will be given below.

We shall denote by � the set of all functions � from� � �
to the interval � 0 � 1 � which satisfy the following

conditions:

(a) for any fixed u in
���

the function � E � ��� u � E �
(denoted further by ��� u � � � ) is a measure on

�
;

(b) for any fixed E in
� �

the function � u � ��� u � E �
(denoted further by ��� � � E � ) is Borel measurable relative

98to
� �
Example 2. Let 	 � � � �

be such as in Example 1. Let�
� be a mapping of B � �

into the interval � 0 � 1 � such� �
that � E � � � u � E � is a measure on

�
for any fixed u in� �

B
�
and � u � � � u � E � is Borel measurable relative to

�� �
for any fixed E in

� � It can be shown that E � B � �
for� �

any E in
�

(by noticing that � E � �	�
E � B � � �

is one of�
the � � fields � on

�
having the properties (a)-(c) ).

Using this fact, we define a mapping � of
� � �

into the
interval � 0 � 1 � in the following way:� � � u � E � B � if u � B

����� u � E �
��� 0 if u � B ��
It is easy to verify that ����� and � is an extension of
� ��

We shall restrict our intuitive considerations to such
devices which can be described (in the already explained
sense) by functions belonging to � �

If f is a partial function in
�

then we define a map-
ping f � of

� � �
into the set � 0 � 1 � by setting

-
�

f ��� u � E �
��
 u � f � E ��

(the meaning of the denotations of the form 
��
 has been
�������������������������������������������������������������
nite values.

98 A real-valued function Z defined on
�

is called
Borel measurable relative to

�
iff, for any choice of the

real number c
�
the set � u � � � Z � u � > c � belongs to

� �
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introduced in the previous section). For ��� f � � condition
(a) is obviously satisfied. As to condition (b), it is

-
�

equivalent to the condition that f � E �� �
for every choice

of E in
� � The partial functions in

�
which have this

property are called measurable relative to
� � Thus we get

the following result:

For any partial function f in
���

f � ��� iff f is
measurable relative to

� �
By the assumption (i), L

�
R
�
T
�
F are measurable rela-

tive to
� � Obvious other examples of functions measurable

relative to
�

are I and the constant total mappings of
M�

into
� �

Remark 1. In general, the mapping � f � f � of the set of
the measurable elements of � � � � into � is not necessar-p
ily an injection. This mapping is an injection iff, for any
two different elements s and t of

���
there is a set E

from
�

such that s � E � t � E �
The set � will be considered by the natural partial

ordering defined as follows: ����� iff ��� u � E �
����� u � E �
for all u in

�
and all E in

� �
To define for the elements of � a multiplication cor-

responding to the sequential composition of devices, we need
an operation of integration. The information needed for the
formulation of the definition is the following one:

If Z is a bounded real-valued function defined on
�

and Borel measurable relative to
� �

and � is a measure on�
� �

then a real number Z d � is defined called the inte-�
M

gral on
�

of Z with respect to � ; the same number is de-�
noted also by Z � v � � � d v � � and, of course, other vari-�

M
ables can be used instead of v (for the definition of the
integral and for its properties which are used in the se-�
quel, cf., for example, Loève [1977]). Instead of we�

M�
shall write simply ��

Here is the definition of the product ��� of two el-
ements � and � of � : this is a mapping of

� � �
into �

determined by means of the equality�
����� � � u � E �
� ��� v � E ����� u � d v � ��

The basic facts concerning this product are formulated in
the following proposition.

Proposition 3. The set � is closed under the multipli-
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cation defined above. This set considered with the intro-
duced partial ordering and multiplication is a partially
ordered semigroup, and I � is an identity of the semigroup.

M
Proof. To show that � is closed under multiplication,

suppose that � and � are some elements � � From the in-
equalities

0 	���� v � E �
	 1 �
using the elementary properties of the integral, we get the
inequalities

0 	������ � � u � E �
	���� u � � � �
These inequalities show that all values of ��� belong to
the interval � 0 � 1 � � Making use of the � � additivity of all
functions of the form ��� v � � � and of the monotone conver-
gence theorem, we easily see the � � additivity of the func-
tion ����� � � u � � � for any fixed u � Suppose now some fixed
set E from

�
is given. We shall show the Borel measurabil-

ity of the function ����� � � � � E � � To do this, it is suffi-
cient to show that, for each Borel measurable bounded non-
negative function Z on

���
the function�

(8) � u � Z � v ����� u � d v ��

is also Borel measurable. If Z is a function of the form
� v � 
 v � E 
 � where E is some fixed set from

� �
then� �

the corresponding function (8) is ��� � � E � � and hence this�
function is Borel measurable. The case of an arbitrary Borel
measurable bounded non-negative function Z can be reduced
to the above case by representing Z as the limit of a mon-
otonically increasing sequence of linear combinations of
functions of the above form. Thus we proved that ������� �

The multiplication in � is obviously monotonically in-
creasing. To show its associativity, we suppose that el-
ements � � � and � of � are given. Let us denote ��� by
� � Then �

��� w � E �
� ��� u � E ���� w � d u ��

for all w � ��� E � � �
and we have to prove the equality

����� ���� ��� � In other words, we have to prove that, for
all w � ��� E � � �

the following equality holds:� � �
� ��� v � E ����� u � d v ��� ��� w � d u �
� ��� v � E ����� w � d v � �� � �

To prove it, it is sufficient to show that, for each Borel
measurable bounded non-negative function Z on

���
the

equality� � �
(9) � Z � v ����� u � d v ��� ��� w � d u �
� Z � v ����� w � d v �� � �

holds for all w in
� � If Z is a function of the form
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� v � 
 v � E 
 � where E is some fixed set from
� �

then the� �
above equality is true, since it is equivalent to the equal-
ity �

��� u � E ���� w � d u �
� ��� w � E � �� � �
The general case can be reduced to this special one in the
same way as in the first part of the proof.

The equalities I � ��� � I � � � are also true, since
M Mthey mean that� �
 v � E 
���� u � d v �
� ��� v � E ��
 u � d v 

� ��� u � E �� �

for all u � ��� E � � � �
For any � and � in � � a real-valued function

� ��� � � �
will be defined on

� � � �
and this function will be shown to

belong again to � � In its definition, the � � field �


will be used, i. e. the least � � field on

�
containing

among its elements all Cartesian products E
� � E ��� where E

�

and E
�

belong to
� � We shall make use also of the notion

of product of two measures on
� � Namely, we shall use the

fact that, to any two measures � �

and � � on
� �

there is a
unique measure � on

�
(called the product of � �

and � �
and denoted by � � � � � ) such that

� � E � � E � �
� � � � E � � � � � E � �
for all E

���
E
�

in
�

(for this fact and for some properties
of � � � � � needed further, cf. e. g. Loève [1977]). Here is
the definition of the function

� ��� � � � �
-
�� ��� � � � � u � E �
� ����� u � � ������� u � � ��� � J � E ���

for all u � ��� E � � � It follows from this definition that� ��� � � � � u � E �
	������ u � � ������� u � � ��� � � �
� ��� u � � ������� u � � �
	 1 �
A straightforward verification shows that

� ��� � � � � u � � � is
a measure on

�
for any fixed u in

� � For the proof of
the Borel measurability of the functions

� ��� � � � � � � E � �
where E � � �

we denote by
�

the set of all K from
�

such that the function

� u � ����� u � � ������� u � � ��� � K �
is Borel measurable relative to

� � If K � E
� � E ��� where E

�

and E
�

belong to
� �

then K � � � since the above function
will be the product of Borel measurable functions ��� � � E � �
and ��� � � E � � in this case. On the other hand,

�
is closed

under unions of monotonically increasing sequences and under
intersections of monotonically decreasing ones. Therefore
(cf., for example, Loève [1977, 1.6])

� � � �
and, in par-
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-
�

ticular, J � E �� � for all E in
� � Thus all functions� ��� � � � � � � E � � where E � � �

are Borel measurable, and hence� ��� � � ���� �
For any � � � � � in � � a real-valued function���	� � � � � � will be defined by means of the equality

���	� � � � � � � u � E �
� � H � � � u � true ����� u � E � +
� H � � � u � false ����� u � E � �

where
-
�

� H � � � u � p �
����� u � H � p ��� �
We have

���	� � � � � � � u � E �
	�� H � � � u � true � + � H � � � u � false �
�
-
�

-
���� u � H � true � � H � false ���
	 1 �

and the verification of the conditions (a) and (b) for the
function �������	� � � � � � is straightforward. Hence this func-
tion belongs to � again. �

For any s in
���

let s be the constant mapping of
�

into
�

with value s
�
and let � be the set of all func-�

tions s � � where s � � � Then the following proposition holds.

Proposition 4. The 9 � tuple� ��� � � I � � � � � � L � � R � � � � T � � F ���
M

is a symmetric and iterative combinatory space � For arbit-
rary � � � in � and arbitrary u � ��� E � �

the equality� �
��� � ��� � u � E �
� � � u � E ��

m
m= �

holds, where � is defined by means of the equality
m� � � �� � v �

E �
� � � ����� � 
 v � E 
��
m � � � � �

m
m-
��� H � � � v �

false � � � � H � � � v �
true ��� �

m j
j= �

��� v �
d v ��� ��� v �

d v � ����� � ��� v �
d v ��� ��� v �

d v � �
m-
�

m m-


m-
� �  � �

The proof of this proposition will be not given in de-
tails. A certain part of the things which have to be done
are verifications using well-known properties of the inte-
grals on

� � We shall note only some moments from the proof,
and we hope the readers who are familiar with measures and
integration on abstract sets will be able to work out the
whole proof.

1. One verifies that
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���� s ��� � u � E �
� ��� s � E �
for all � in � � all s

�
u in

�
and all E in

� �
2. For arbitrary s

�
t in

���
one verifies the equality� � �� � s � � t ���
� u � �

where u � J � s � t � �
3. The validity of the equality� �� � I � � � s ������� � ��� � � s ���

M
is established by means of the following calculations, which
make use of a representation of the product of two measures
in the form of an integral and of changing of the order of
integration on the basis of Fubini’s theorem:� � �� � � I � � � s ����� � � u � E �
� � � I � � � s ����� v � E ����� u � d v �
�

M
�

M� � -
�

� I ��� v � � ������� s ��� � v � � ��� � J � E ������� u � d v �
��
M �

-
�

� I ��� v � � ������� s � � ��� � J � E ������� u � d v �
��
M� �

-
�

� I ��� v � � p � � p � q ��� J � E � � ����� s � d q ��� ��� u � d v �
�� �
M� �

-
�

� I ��� v � � p � � p � q ��� J � E � � ����� u � d v ��� ��� s � d q �
�� �
M �

-
�

��� u � � p � � p � q ��� J � E � � ������� s � d q �
��

-
�

����� u � � ������� s � � ��� � J � E �����
�
� -

� ������ u � � ������� s ��� � u � � ��� � J � E �����
� � ��� � � s ��� � u � E � �
The validity of the equality� �� ��� s � � I ������� � ��� s � � � �

M
can be established in a similar way.

4. The verification of the equalities

�����	� � � � � �
�����	� � ��� � ��� � �� � � ���� I � � � s � � � s ������������� � � s � � � s ���
M

makes use of the linear properties of the integral.

5. To prove that the combinatory space
�

is iterative,
we use the Level Omega Iteration Lemma. There is a least
element in � � namely the constant 0

�
and it is equal to�

its product in � with any element of � � If � � � is a
n n = �

monotonically increasing infinite sequence of elements of
� � then we define a real-valued function � by means of
the equality
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(10) ��� u � E �
� lim � � u � E �
n

n �������
and prove that ����� (then it is obvious that � is the
least upper bound of the given sequence). The proof that �
belongs to � is based on the fact that the limit of a
bounded monotonically increasing sequence of measures on

�

is again a measure on
� �

and the limit of a bounded monot-
onically increasing sequence of real functions on

�
which

are Borel measurable relative to
�

is again a Borel meas-
urable function. The continuity of the mappings of the form
��� � ��� � � � � I ��� is seen immediately. The continuity of

M
the mappings of the form ��� � � � is seen by application
of the monotone convergence theorem. To show the continuity
of the mappings of the form ��� � � � � it is sufficient to�
prove the following statement of Helly type: if � � � is

n n = �
a monotonically increasing infinite sequence of elements of
� � the real-valued function � is defined by means of the
equality (10), and Z is a Borel measurable bounded non-
negative function on

���
then� �

Z � v ����� u � d v �
� lim Z � v ��� � u � d v �� �
n

n �������
for all u in

�
(one first verifies this equality in the

case when Z is a function of the form � v � 
 v � E 
 � where�
E is some fixed set from

� �
and then reduces the general�

case to this particular one by representing an arbitrary
Borel measurable bounded non-negative function Z as the
limit of a monotonically increasing sequence of linear com-
binations of functions of the above form).

6. The expression for the iteration can be obtained by
supplementing an application of Proposition II.4.6 to the
application of the Level Omega Iteration Lemma. The proof of
the formula for � � v �

E � is by induction on m �
m �

Remark 2. If ����� � and Z is a Borel measurable bounded
non-negative function on

���
then, for any u in

���
the�

value of the integral Z � v ����� u � d v � is some non-negative�

real number (in the particular case when ��� u � � �
� 1
�
the

number in question is the expectation of the function Z
with respect to the probability measure ��� u � � � ). We shall
denote this number by ��� u � Z � � for short. The following
equalities hold for all measurable elements f of � � � � �p
all � � � � � in � � all u in

�
and all Borel measurable

bounded non-negative functions Z on
� ��

Z � f � u ��� if u � dom f
�

(11) f ��� u � Z �
��� 0 if u � dom f
��
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(12) ����� � � u � Z �
� ��� u � � v � ��� v � Z ��� �
(13)

� ��� � � � � u � Z �
� ��� u � � s � ��� u � � t � Z � J � s � t ������� �
(14)

� ��� � � � � u � Z �
� ��� u � � t � ��� u � � s � Z � J � s � t ������� �
(15) ���	� � � � � � � u � Z �
����� u � � s � H ��� s � ��� u � Z � � ��� u � Z ����� �
where

-
�

-
�

H ��� s � a � b �
��
 s � H � true ��
 a + 
 s � H � false ��
 b
for all s in

�
and all non-negative real numbers a

�
b �

The equality (12) is, up to denotations, the equality (9)
established in the proof of Proposition 3. The equality (15)
follows from the definition of � � the representation of the
values of the measures as integrals and the linear proper-
ties of the integral. For proving (13) and (14), it is ap-
propriate to prove first the equality�
(16)

� ��� � � � � u � Z �
� Z � J � d ����� u � � ������� u � � ��� ��
2

M
and then to obtain them from it by means of Fubini’s the-
orem. The proof of (16), as well as the proof of (11), can
be reduced to proving the equality in the case of

Z ��� r � 
 r � E 
 ��
where E is some fixed set from

� ��
5. Combinatory spaces of functionals

Remark 2 in the previous section contains some formulas
which can be used for the construction of combinatory spaces
not necessarily connected with probability. Here we shall
give such a construction, which is taken (with small modifi-
cations) from the paper Skordev [1980 a]. A result will be
presented (also from that paper) showing that each combina-
tory space is isomorphic to some combinatory space construc-
ted in this way.

We suppose that an infinite set
�

is given together
with an injection J of

�
into

�
and mappings T and F

of
�

into
�

such that rng T � rng F � � � Any quadruple� ��� J � T � F � of this kind will be called a coding struc-
ture. Clearly, if � ��� J � L � R � T � F � H � is a computational
structure, then � ��� J � T � F � is a coding structure, and
each coding structure can be extended to a computational
structure, since one could define L

�
R
�
H by the conditions

dom L � dom R � rng J
�

L � J � s � t ���
� s
�

R � J � s � t ���
� t
�

dom H � rng T � rng F
�

H � T � u ���
� true
�

H � F � u ���
� false �
A computational structure consists of mechanisms for coding
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the ordered pairs and the logical values true and false, and
of corresponding decoding mechanisms, whereas in a coding
structure only the coding mechanisms are present. The reason
to consider now coding structures instead of computational
structures is that in some cases it is appropriate to allow
using of slightly more general decoding mechanisms, namely
ones with non-functional behaviour on the elements of

�
99which are not codes.

The following example of a coding structure will be used
at the end of this section.

Example 1. Let ����� I ������	
� L � R ���
� T � F � be an        
arbitrary combinatory space,

�
be the set ��� and J be�

the restriction of 	 to
���

Let T � F be the mappings of
�

into
�

defined by means of the equalities

T � u ��� T u � F � u ��� F u
� 

Then � � � J � T � F � is a coding structure.

Coming back to the general case, we suppose that, be-
sides the coding structure � � � J � T � F ��� a partially order-
ed set V is also given, and our intention is to use its
elements instead of the non-negative real numbers. For the
time being, the set V is assumed to have at least two dis-
tinct elements (further assumptions will be needed later).

The set of all total mappings of
�

into V will be
denoted by � � The partial ordering in V induces naturally
a partial ordering in � � Namely the inequality Z ��� Z ���
where Z ��� Z � belong to ��� means that Z ��� u ��� Z ��� u � for all
u in

���

We shall denote by � the set of all mappings of
��� �

into V which are monotonically increasing with respect to
their second argument

�

Remark 1
�
The mappings in the above definition of �

can be called functionals. A somewhat simpler definition of
� can be given which is equivalent to the above one up to
isomorphism and could make the construction more similar to
a construction from Chapter 12 of Ivanov [1986]. Namely we
could define � as the set of all monotonically increasing
mappings of � into itself. These mappings can be called
operators, since they transform functions into functions. A
natural one-to-one correspondence between the functionals 

and the operators ! can be fixed by means of the equal-
ity
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"

99 We already came across some coding structures in Exer-
cise II.4.22, but without naming them so.
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!�� Z ��� u ���  � u � Z � �

The reader could try to translate the further definitions
for the case of such a modified definition of � �

The set � is considered with the natural partial or-
dering in it. Namely the inequality � ��� � where � ��� be-
long to � � means that � � u � Z ������� u � Z � for all u in

�
and all Z in � �

An operation of multiplication is defined in � by
using the formula 4.(12). Namely, for any � ��� in � � we
define a mapping � � of

��� � into V by means of the
equality

(1) � � � ��� u � Z ������� u ��� v � � � v � Z ��� �

It is easily verified that � � belongs again to � � The
multiplication operation is monotonically increasing (as a
consequence of the monotonicity of the elements of � with
respect to their second arguments). This operation is also
associative as seen from the following calculations

��� � � ��� ��� w � Z ������� w ��� v � � � � ��� v � Z �����
��� w ��� v � ��� v ��� u � � � u � Z �������

� � �	�
� ����� w � Z ��� �	�
� ��� w ��� u � � � u � Z �����
��� w ��� v � ��� v ��� u � � � u � Z ����� �

Thus � is a partially ordered semigroup.

Remark 2. In the variant of presentation mentioned in
Remark 1, the multiplication in � must be defined as an
ordinary composition of operators, and then its associativ-
ity becomes completely evident.

For each total mapping f of
�

into
� � we define a

mapping f � of
��� � into V by using the formula 4.(11)

i. e. we set

f ��� u � Z ��� Z � f � u ���
for all u � � � Z � � � Clearly, all such mappings f � belong
to � �

The element I � is an identity of the semigroup � � as
M

the following calculations show:

� I �� ��� u � Z ������� u ��� v � I ��� v � Z ��������� u � Z ���
M M

� � I � ��� u � Z ��� I ��� u ��� v � � � v � Z ����� � � u � Z � �
M M "

For each s in
� � we, as usual, shall denote by s the

constant total mapping of
�

into
�

with value s
�
Then" "

s �� � for all s � ��� The set of all s � � where s � � � will
be denoted by � � Note that, for all s � u in � and all Z
in ��� we have
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" "
s ��� u � Z ��� Z � s � u ����� Z � s � �

For the definition of a binary operation 	 in � � we
have two alternatives - to use either the formula 4.(13) or
the formula 4.(14) (the right-hand expressions in both for-
mulas make sense for all � ��� in � � all u in

�
and all

Z in � ). It can be shown by means of examples that choos-
ing the second of these alternatives would be not convenient
for what follows. Therefore we choose the first one, i. e.
we set

(2) 	�� � ��� ��� u � Z ��� � � u ��� s � ��� u ��� t � Z � J � s � t �������
for all � ��� in � � all u in

�
and all Z in � � It

is easily seen that 	�� � ��� ��� � for all � ��� in � �

Now we are going to define a ternary operation � in
� � The formula 4.(15) is not directly usable for this in
the general situation considered now, since the defining
expression of H ��� s � a � b � contains operations which are no
longer present (in particular, no predicate H is given).
However, this can be repaired. We make the assumption that a�
mapping H’ of

���
V into V is given such that H’ is

monotonically increasing with respect to its second and
third arguments, and the equalities

(3) H’ � T � u ��� a � b ��� a � H’ � F � u ��� a � b ��� b

hold for all u in
�

and all a � b in V
�
Such a mapping

H’ always exists. We can, for example, set�
a if s � rng T �

H’ � s � a � b ����� b if s � rng F ����
if s � rng T � rng F �

where
�

is some fixed element of V
�
Having a mapping H’

with the properties formulated above at our disposal, we set

(4) ���	� � � ��� ��� u � Z ������� u ��� s � H’ � s � � � u � Z ������� u � Z �����
for all � � � ��� in � � all u in

�
and all Z in ��� and

we see that ���	� � � ��� ��� � for all � � � ��� in � �

Proposition 1. Let L’ � R’ be elements of � such that

(5) L’ � J � s � t ��� Z ��� Z � s ��� R’ � J � s � t ��� Z ��� Z � t �
100for all s � t in

�
and all Z in � � Then the 9 " tuple

"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"
100 Such elements L’ � R’ of � always exist. We can, for

example, fix some element
�

of V and set	
Z � s � if u � J ��
 � t � �L’ � u � Z ����� �

if u � rng J ��
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� � ��� � I � ��� ��	 � L’ � R’ ��� � T � � F ���
M

is a combinatory space.

Proof. Some of the conditions from the definition of
the notion of combinatory space are already verified. We
shall present the verification of the remaining ones.

If
 � � and s � � � then, for all u in

�
and all Z in

��� we have" " "�  s � ��� u � Z ��� s ��� u ��� v �  � v � Z �����  � s ��� u ��� Z ���  � s � Z � �

This immediately shows that condition II.1.(1) is satisfied.

If p and q are arbitrary elements of
� � then, for all

u in
�

and all Z in ��� we have" " " "	�� p � � q � ��� u � Z ��� p ��� u ��� s � q ��� u ��� t � Z � J � s � t ���������" "
p ��� u ��� s � Z � J � s � q ��������� Z � J � p � q ����� r ��� u � Z ���

where r � J � p � q ��� and hence" " "	�� p � � q � ��� r � �" " "� L’ 	�� p � � q � ����� u � Z ��� r ��� u ��� v � L’ � v � Z ����� L’ � r � Z ���"
Z � p ��� p ��� u � Z ���" " "� R’ 	�� p � � q � ����� u � Z ��� r ��� u ��� v � R’ � v � Z ����� R’ � r � Z ���"
Z � q ��� q ��� u � Z � �

Thus conditions II.1.(2)-II.1.(4) are verified. The mon-
otonic increasing of the operation � is obvious from its
definition, and hence condition II.1.(16) is also satisfied.

To show that T ��� F � � we take two distinct elements a �
b of � and set Z � � s � H’ � s � a � b � � Then Z � ��� and

T ��� u � Z ��� Z � T � u ����� a � F ��� u � Z ��� Z � F � u ����� b �
hence T ��� u � Z ��� F ��� u � Z ��� for any u in

���
Thus condition

II.1.(8) is satisfied.

To check the conditions II.1.(5)-II.1.(7) and II.1.(9)-
II.1.(15), suppose that some elements � ��� ��� �  of � �
some elements r � u of

�
and some Z from � are given.

The following calculations � where I denotes I � � contain
Mthe verification of the listed conditions.

"��	�� � ��� � r � ��� u � Z ��� 	�� � ��� ��� r � Z ���
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"

	
Z � t � if u � J ��
 � t ���R’ � u � Z ����� �

if u � rng J�
for all u � � � Z � � �
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� � r ��� s � ��� r ��� t � Z � J � s � t ���������" "� � r � ��� u ��� s � �	� r � ��� u ��� t � Z � J � s � t ���������" "	�� � r � ��� r � ��� u � Z ���
" "��	�� I ��� r � �  ��� u � Z ���  � u ��� v � 	�� I ��� r � ��� v � Z ���" � u ��� v � I � v ��� s � �	� r � ��� v ��� t � Z � J � s � t ���������

 � u ��� v � I � v ��� s � ��� r ��� t � Z � J � s � t ���������
 � u ��� v � ��� r ��� t � Z � J � v � t ���������" " � u ��� v � �	� r � ��� u ��� t � Z � J � v � t ��������� 	��  ��� r � ��� u � Z ���

" "��	�� r � � I �  ��� u � Z ���  � u ��� v � 	�� r � � I ��� v � Z �����" � u ��� v � r ��� u ��� s � I � u ��� t � Z � J � s � t ���������" � u ��� v � r ��� u ��� s � Z � J � s � u ���������
 � u ��� v � Z � J � r � u ���������" "

r ��� u ��� s �  � u ��� v � Z � J � s � u ��������� 	�� r � �  ��� u � Z ���
" "�"�"�"� T � r � ��� u � Z ��� T ��� r � Z ��� Z � T � r ����� T � r � ��� u � Z ���
" "�"�"�"� F � r � ��� u � Z ��� F ��� r � Z ��� Z � F � r ����� F � r � ��� u � Z ���

��� T � � � ��� ��� u � Z ��� T ��� u ��� s � H’ � s � � � u � Z ������� u � Z �������
H’ � T � u ��� � � u � Z ������� u � Z ������� � � u � Z ���

��� F � � � ��� ��� u � Z ��� F ��� u ��� s � H’ � s � � � u � Z ������� u � Z �������
H’ � F � u ��� � � u � Z ������� u � Z ����������� u � Z ���

�  ���	� � � ��� ����� u � Z ��� ���	� � � ��� ����� u ��� v �  � v � Z ���
��� u ��� s � H’ � s � � � u ��� v �  � v � Z ��������� u ��� v �  � v � Z ���������

��� u ��� s � H’ � s ���  � ��� u � Z �����  � ��� u � Z �������
���	� �  � �  � ����� u � Z ���

"�����	� � � ��� � r � ��� u � Z ��� ���	� � � ��� ��� r � Z ���
��� r ��� s � H’ � s � � � r � Z ������� r � Z �������" " "�	� r � ��� u ��� s � H’ � s ��� � r � ��� u � Z �����	� r � ��� u � Z �������" " "���	� r � � � r � ��� r � ��� u � Z ���

" " " "����� I � � r � ��� r � �  ��� u � Z ���  � u ��� v � ��� I � � r � ��� r � ��� v � Z ���" " � u ��� v � I � v ��� s � H’ � s ��� � r � ��� v � Z �����	� r � ��� v � Z �������
 � u ��� v � I � v ��� s � H’ � s � � � r � Z ������� r � Z �������
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 � u ��� v � H’ � v � � � r � Z ������� r � Z �������" " � u ��� v � H’ � v ��� � r � ��� u � Z �����	� r � ��� u � Z �������" "���  � � r � ��� r � ��� u � Z � � �
Remark 3. Let � be a subset of � satisfying the con-�

dition that � s � H’ � s � a � b ��� � for some two distinct el-�
ements a � b of V (where H’ is a mapping with the same
properties as above).For each total mapping f of

�
into

o� � let f denote the restriction of f � to the set
��� � ��" oLet � be the set of all s � where s � ��� Suppose also that�

a set � of mappings of
��� � into V is given which are� �

monotonically increasing with respect to their second argu-
ment, and the following conditions are satisfied:

o o o(a) � I � T � F � � ����� ;
M

� �
(b) the expressions in the right-hand sides of the

equalities (1), (2) and (4) make sense for all u � � � Z � � ,�
and their values as functions of u � Z belong to � when-�
ever � ��� ��� belong to � ��
Then we can define multiplication and operations 	 and �
in � by means of the same formulas (1), (2), (4). The�
multiplication in � will be again monotonically increas-�
ing and associative, and therefore � also can be consid-�
ered as a partially ordered semigroup. Let L’ � R’ be now
elements of � satisfying the equalities (5) for all s � t�
in

�
and all Z in � �

Using the proof of Proposition 1�
with the needed obvious changes, we can prove that the
9 " tuple

o o o� � ��� � I ��� ��	 � L’ � R’ ��� � T � F �� �
M
�

is again a combinatory space.

Example 2. Following Ivanov [1986, Exercise 27.6], let
us suppose that a partial ordering is given also in the set� � the mappings J � T � F are monotonically increasing, H’
is monotonically increasing also with respect to its first
argument, and L � R are monotonically increasing total map-
pings of

�
into

�
, satisfying the usual condition that

(6) L � J � s � t ����� s � R � J � s � t ����� t

for all s � t in
���

Remark 3 can be applied for obtaining
the statement of the mentioned exercise. Let � consist of�
those mappings of

�
into V which are monotonically in-
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creasing, and let � consist of those mappings of
��� �� �

into V which are monotonically increasing with respect to
o oboth their arguments. Let L’ � L � R’ � R

�
It can be easily

seen that all assumptions of Remark 3 are satisfied in this
case, and hence the corresponding 9 " tuple �

is a combina-�
tory space.

Remark 4. The combinatory spaces constructed on the ba-
sis of Remark 3 are, in general, not necessarily symmetric.
The book Skordev [1980] contains two examples of symmetric
combinatory spaces of the considered kind. In fact they are
probabilistic examples, but, roughly speaking, using expec-
tations instead of probabilities. We shall formulate appro-
priate versions of these examples in the two theorems below.
Unfortunately, the proofs of these theorems, and especially
of the second one, use too much analysis and topology, and
therefore we decided to omit the proofs this time.

Theorem 1 (Skordev [1980, Ch. II, Proposition 5.5.2]).
Let the set

�
be a compact Hausdorff topological space, and

the mappings J � T � F be continuous. Let V be the set of
the non-negative real numbers, and � be the set of all�
continuous non-negative functions on

���
Let � be the set�

of all mappings
 

of
��� � into V which have the follow-�

ing properties:

(a) for any fixed u in
� � the functional � Z �  � u � Z �

101is linear and has a norm not greater than 1 ;

(b) for any fixed Z in � � the function � u �  � u � Z ��
is continuous.

Let L’ � R’ be elements of � satisfying the equalities (5)�
102 t ffor all s � t in

�
and all Z in � �

Let Z and Z be�
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"

101 I. e.
 � u � a Z + a Z ��� a

 � u � Z � + a  � u � Z � for all  � �   � �
Z � Z in � and all non-negative real numbers a � a � � �  �
and the inequality

 � u � Z � �
sup rng Z holds for all Z � � ��

102 o oSuch L’ � R’ are, for example, L and R (cf. Re-
mark 3) if L and R are continuous total mappings of

�
into

�
satisfying the conditions (6) for all s � t in

���
As an example of a compact Hausdorff topological space ad-
mitting such a continuous pairing mechanism we indicate the
set of all infinite sequences of zeros and ones supplied
with the Tychonoff topology. In this case we can find also

t fcontinuous mappings T � F and functions Z � Z with the
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functions from � such that�
t f t fZ � T � u ����� Z � F � u ����� 1 � Z � u � + Z � u � �

1 �
for all u in

� � and let H’ be the mapping of
���

V into
V defined by means of the equality

t fH’ � s � a � b ��� Z � s � a + Z � s � b �

Then the assumptions in Remark 3 are satisfied, and hence
the corresponding 9 " tuple �

is a combinatory space. More-�
over, this combinatory space is symmetric, and the operation
	 in it can be defined also by means of the formula 4.(14).

Theorem 2 (Skordev [1980, Ch. II, Proposition 5.5.3, and
Ch. III, Section 3.2, Example 15]). Let the set

�
be a

locally compact Hausdorff topological space, and the map-
pings J � T � F be continuous. Let V be the set of the non-
negative real numbers, and � be the set of all bounded�
lower semicontinuous non-negative functions on

���
Let � �

be the set of all mappings
 

of
��� � into V which have�

the following properties:

(a) for any fixed u in
� � the functional � Z �  � u � Z �

is linear and has a norm not greater than 1 ;

(b) for any fixed Z in � � the function � u �  � u � Z ��
is lower semicontinuous;

(c) whenever
�

is a directed upwards subset of � ��
103and sup

� � � � then, for all u in
� � the equality�

 � u � sup � ��� sup �  � u � Z ��� Z � � �
holds.

Let L’ � R’ be elements of � satisfying the equalities (5)�
104for all s � t in

�
and all Z in � �

Let H’ be a map-�
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"
properties formulated next. For instance, we may set T � u �
and F � u � to be always the sequence consisting only of ones
and the sequence consisting only of zeros, respectively,
t fZ � u � to be always the first member of u � and Z � u � to be

talways equal to 1 " Z � u � �
103 The values of sup

�
are determined in a pointwise

way.
104 Such L’ � R’ surely exist if there are continuous to-

tal mappings L and R of
�

into
�

satisfying the condi-
tions (6) for all s � t in

���
In this connection we note

that any locally compact Hausdorff topological space B can
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�
ping of

���
V into V defined in the same way as in The-

t forem 1 (with Z � Z belonging to the new � ). Then the as-�
sumptions in Remark 3 are satisfied, and hence the corre-
sponding 9 " tuple �

is a combinatory space. Moreover, this�
combinatory space is symmetric, and the operation 	 in it
can be defined also by means of the formula 4.(14). The com-
binatory space

�
is iterative, and, for arbitrary � ��� in�

� and arbitrary u � � � Z � � � the equality� �
�
�� � ����� � u � Z ��� ��� u � Z ��

m
m=
�

holds, where � is defined by means of the equality
m

��� v � Z ��� � � v ��� v � � � v ��� v � �����
m
� �   �

m-


f " t� � v ��� v �
Z � v � ��� v � Z �	� ��� v � Z ��� ����� ��� �

m-


m m m j
j=
�

Proposition 1 and the remarks after it do not give suf-
ficient conditions for assuring that the constructed combi-
natory spaces are iterative. We shall give now two such con-
ditions.

Proposition 2 (cf. Exercise 27.7 in Ivanov [1986]). Let
every chain in V (including the empty one) has a least
upper bound. Then the combinatory space

�
considered in

Proposition 1 is iterative.

Proof. We shall apply the Unrestricted Iteration Lemma
(Proposition II.4.5). The assumption (i) in it (each chain
in � has a least upper bound) is obviously satisfied (the
least upper bound can be constructed by a pointwise transi-
tion to least upper bounds in V ). It remains to verify the
assumption (ii), namely that the mappings ��
 � � 
 � with
fixed � in � � and the mappings ��
 � 
 z � with fixed z in
� � are continuous with respect to least upper bounds of
arbitrary chains. But this continuity is clear from the
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"
be embedded in a locally compact Hausdorff topological space
with a continuous pairing mechanism. This can be done by
means of an appropriate extension of the topological struc-

ture from the space B to the set B � of the Moschovakis
computational structure  �

To satisfy all assumptions of
B

the theorem, we can take also T � F from  and set
B

t f o t fZ � u ��� 0 � Z � u ��� 1 for all u in B � Z � u ��� 1 � Z � u ��� 0
for the other u

�
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equalities

� � 
 ��� u � Z ��� 
�� u ��� v � � � v � Z �����"� 
 r � ��� u � Z ��� 
�� r � Z �
and the pointwise character of the least upper bounds of the
chains in � � �

Proposition 3. Let V have a least element � and let each
monotonically increasing infinite sequence of elements of V
has a least upper bound. Let � consists of all elements

 �
of � such that, for any fixed u in

� � the mapping
� Z �  � u � Z � of � into V is continuous with respect to
least upper bounds of monotonically increasing infinite se-
quences in � � Let L’ and R’ belong to � � and H’ � con-�
sidered as a function of its second or third argument, be
continuous with respect to least upper bounds of monotonic-
ally increasing infinite sequences in V

�
Then � is a sub-�

semigroup of the partially ordered semigroup � � and if 	 ��
and � are the restrictions of 	 and � to � and to� �

3� � respectively, then the 9 " tuple�
� � ��� � I � ��� ��	 � L’ � R’ ��� � T � � F ���� �

M
� �

is an iterative combinatory space.

Proof. It is easily seen that � is closed under multi-�
plication and under operations 	 and � (when considering
the case of � � one uses that the made continuity assumption
about H’ implies the continuity of H’ � considered as a
function of its second and its third argument simultaneous-
ly). For each total mapping f of

�
into

� � the corre-
sponding f � belongs to � �

In particular, I � � T � � F ��
M

belong to � � and � ��� �
Since L’ and R’ also belong to� �

� � and, by Proposition 1,
�

is a combinatory space, it�
is clear that

�
is also a combinatory space. So it remains�

only to show that
�

is iterative. This will be done by�
application of the Level Omega Iteration Lemma.

Let
�

be the least element of V
�
Then � � � u Z � � is

the least element of � � and 
 � � � for each 
 in � �� �
since

� 
 � ��� u � Z ��� � � u ��� v � 
�� v � Z ����� � � � � u � Z �
for all u � � � Z � � �

To show that each monotonically increasing infinite
sequence of elements of � has a least upper bound in � �� �
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���

suppose that �  � is such a sequence. This sequence has
k k=
�

a least upper bound
 

in � � and the problem is to show
that

 � � �
For that purpose, suppose some u in

�
is�

���
fixed, and a monotonically increasing sequence � Z � of

n n=
�

elements of � is given. Let Z be the least upper bound of
this sequence in � � Then

��� ��� ��� � u � Z ��� sup �  � u � Z � � � sup � sup �  � u � Z � � � �
k k=

�
k n n=

�
k=
�

��� ��� ���
sup � sup �  � u � Z � � � � sup �  � u � Z � � �

k n k=
�

n=
�

n n=
�

Thus for any fixed u in
� � � Z �  � u � Z � is continuous with

respect to least upper bounds of monotonically increasing
infinite sequences in ��� and hence

 � � ��
Now let � be some fixed element of � �

As seen in�
the proof of Proposition 2, the mapping ��
 � � 
 is continu-
ous with respect to least upper bounds of arbitrary chains
in � , hence, in particular, it will be continuous with re-
spect to least upper bounds of monotonically increasing in-
finite sequences in � �

As to the mappings ��
 � 
�� and�
��
 � ����� � 
 � I � ��� their continuity follows from the equal-

Mities

� 
�� ��� u � Z ������� u ��� v � 
�� v � Z �����
����� � 
 � I � ��� u � Z ������� u ��� s � H’ � s � 
�� u � Z ��� I ��� u � Z �����

M M
and the continuity of � and H’

� �
We shall end this section by showing that the combina-

tory spaces described in Remark 3 are general enough in the
sense that every given combinatory space is isomorphic to
some of them. This will be seen from the following proposi-
tion.

Proposition 4. Let ����� I ������	
� L � R ���
� T � F � be        
an arbitrary combinatory space, � � � J � T � F � be the corre-
sponding coding structure from Example 1. Let V be the set
of those elements � of � which satisfy the equality

105
� u ��� for all u in

� � and let
�

and V be equipped
with the partial orderings induced from � �

Let H’ be the �
restriction of the operation � to the set

���
V
�
For each"

element 
 of � � let 
 be the mapping of
�

into V de-
fined by means of the equality

"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"
105 Some information about the elements with this property

can be found in Exercise II.1.26.
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"

 � u ��� 
 u � " 106and let � be the set of all mappings 
�� where 

� � �� 

For each element
 

of � � let
 �

be the mapping of
��� � �

into V defined by means of the equality
" � � u � 
���� 
  u �

and let � be the set of all mappings
 � � where

 � � �� 
Let � and � be equipped by the partial orderings in-� �

oduced by the partial ordering in V
�
Let the denotations f

107and � have the same meaning as in Remark 3, and let�
L’ � L

� � R’ � R
� �

Then: 
(i) the set V is infinite;

(ii) the mappings J � T � F � H’ are monotonically in-
creasing with respect to all their arguments, and the equal-
ities (3) hold for all u in

�
and all a � b in V ;

(iii) � s � H’ � s � a � b ��� � for all a � b in V ;�
(iv) all mappings

 � � where
 � � � are monotonical-

ly increasing with respect to both their arguments;

(v) the mapping �  �  �

is an isomorphism between the
partially ordered sets � and � ; �

(vi) for all � ��� ��� in � � all u in
�

and all Z in
� � we have the equalities�

� � � � � � u � Z ����� � � u ��� v � � � � v � Z �����
��	 � � ��� ��� � � u � Z ��� � � � u ��� s � � � � u ��� t � Z � J � s � t ���������

��� �	� � � ��� ��� � � u � Z ����� � � u ��� s � H’ � s � � � � u � Z ����� � � u � Z ����� ;
o o o(vii) the equalities I

� � I � T
� � T � F

� � F hold,
M

 
and the image of � under �  �  �

is equal to � ; �
(viii) for all s � t in

�
and all Z in � � the equal-�

ities (5) hold.

"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"
106 "

In the case when 

� � � the above definition of 
"
gives the result that 
 � u ��� 
 for all u in

� � hence there
is no collision between this definition and the previously"
given definition of s for s � ���

107 o " "
I. e. f � u � 
���� 
 � f � u ����� 
 f � u � for all total mappings

f of
�

into
�

and all u � � � 

� � � and � is the set of �" oall s � where s � ���
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Proof. We shall verify only the equalities in (vi), and
the rest will be left to the reader. Let � ��� ��� belong to
� � u be an element of

�
, and Z be an element of � � �"

By the definition of � � Z � 
 for some 
 in � �
Then� 

� � � u ��� v � � � � v � Z ������� � � u ��� v � 
 � v ���"�� �
� � � u � 
 � ��� 
 � � u � � � � � � � u � Z ���

� � � u ��� s � � � � u ��� t � Z � J � s � t ���������
� � � u ��� s � � � � u ��� t � 
 	 � s � t �������

� � � u ��� s � � � � u ��� t � 
 	 � s � I � t ����� "�� ��"�"�"�"�"�"�"� � � u ��� s � � � � u � 
�	 � s � I � ����� 
� � � u ��� s � 
 	 � s � I ��� u ��� 
� � � u ��� s � 
 	 � I ��� u � s ��� "�� ��"�"�"�"�"���� ��"� � � u � 
�	 � I � � u � ��� 
 	 � I ��� u � � u �   


 	 � � ��� � u � ��	 � � ��� ��� � � u � Z ��� 
� � � u ��� s � H’ � s � � � � u � Z ����� � � u � Z �������

� � � u ��� s � � � s � 
 � u � 

� u �����
� � � u ��� s � 
 � � I � � u ��� u � s ��� "�� "�"�"�"�"�"���� ��"���� ��"

� � � u � 
 � � I � � u � � u � ��� 
 � � I � � u ��� u ��� u �   

 � �	� � � ��� � u � ��� �	� � � ��� ��� � � u � Z � �  �

In other words, Proposition 4 says that the given combi-
natory space ����� I ������	
� L � R ���
� T � F � is isomorphic        

o oto the combinatory space
� � ��� � I ��� ��	 � L’ � R’ ��� � T �� �

M
�

oF � constructed as in Remark 3 on the basis of the coding
structure � � � J � T � F ��� the sets V ��� ��� and the mappings� �
H’ � L’ � R’ specified in the proposition. The combinatory
space

�
constructed in this way would be also of the kind�

considered in Example 2 (with the mentioned partial ordering
in

�
) if we generalize that example conveniently (by taking

into account the remark after Exercise 27.6 in Ivanov [1986]
and, in addition, allowing L’ and R’ to be not necessarily
generated by monotonically increasing total mappings).

6. Combinatory spaces connected with
complexity of data processing

In this section, a computational structure
� � � � � J � L � R � T � F � H �
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is supposed to be given. A construction will be presented
which is based on the following intuitive idea about the
complexity of data processing. We consider devices (possibly
non-deterministic) which transform elements of

�
into el-

ements of
���

and we suppose that, whenever a concrete
transformation of this sort is completed by some device,
then some object is defined which characterizes the complex-
ity of the concrete transformation. This object could be,
for example, a number measuring the duration of the work of
the device, or a number measuring the cost of the concrete
data processing, or a vector consisting of both mentioned
numbers. If the device sometimes uses external sources of
information, the object in question could be also the number
of times during the work when such external sources have
been used.

When a data processing device of this kind is given
�
we

could use as a mathematical description of it the set of all
ordered triples � u � k � v � � such that it is possible the
work of the device with input data u to terminate with
output data v and complexity k of the data processing.

A natural assumption about the objects measuring the
complexity is that an associative operation of addition is
defined for them, and this operation has a zero element.
Therefore a semigroup E will be supposed to be given with
the semigroup operation denoted as addition, and it will be
assumed that there is an element � of E such that the
equalities k + ����� + k � k hold for all k in E 	 Since E is
a semigroup, the associativity law



k + l � + m � k +



l + m �

must hold for all k
�
l
�
m in E 	 However, we shall not as-

sume that the semigroup operation in E is necessarily
commutative (this enables, for example, E to consist of
strings, and the concatenation operation to play the role of
addition).

After all what has been said above, it is clear that the
used mathematical descriptions of devices will be subsets of
the Cartesian product

��
E
��� 	 We shall construct an iter-

ative combinatory space whose semigroup will have all such
subsets as its elements. The multiplication of such subsets
will correspond to sequential composition of devices, and
the other components of the combinatory space will also have
a natural intuitive interpretation.

Proposition 1. Let � be the set of all subsets of the
Cartesian product

��
E
�����

and let � be partially ordered
by the inclusion relation. Let a multiplication in � be
defined by the following equality, where � ��� denote arbit-
rary elements of ���
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� � � � � u � k � w ����
v
�
i
�
j

 � u � i � v ��� ��� � v � j � w ����� � i + j � k ��� 	

Then � is a partially ordered semigroup.

The proof of this proposition is left to the reader. We
note only that, instead of a direct proof, one can use also
an embedding � of � into the partially ordered semigroup
� 
 �� E � � namelym
(1) � 
�	 � � � � � u � i � � � v � j � ���

i � E � �
k

 � u � k � v ��� 	 �

i + k � j ��� 	
For each binary relation f in

�
(in particular, for

each partial function f in
�
)
�
we set

f 
 � � � u � � � v ��� � u � v ��� f � 	
We shall denote by � the set of those f 
 which correspond
to constant total functions f in

� 	
The promised construction of an iterative combinatory

space is described in the following proposition.

Proposition 2. Let � be the partially ordered semi-
group from Proposition 1, and let a binary operation � and
a ternary operation  be defined in � as follows:

� 
 � ��� � �� � u � k � w ��� � s � t � i � j 
 � u � i � s ����� � � u � j � t ��� ���
J


s
�
t � � w

�
i + j � k ��� �

 
�� � � ��� � �� � u � k � w ��� � i � j 
 
 � u � i � true ��� H � � � u � j � w �������
� u � i � false ��� H � � � u � j � w ��� � � �

i + j � k ��� �
where

H
� � � � u � i � p ��� � v 
 � u � i � v ��� � �

H


v � � p ��� 	

Then:

(i) the 9 � tuple
� ��� � � I 
 � � � � � L 
 � R 
 �  � T 
 � F 
 �

M
is an iterative combinatory space;

(ii) the combinatory space
�

is symmetric iff the ad-
dition operation in E is commutative;

(iii) for any � � � in � � any u
�
w in

�
and any k in

E
�
the condition

� u � k � w ������� � ���
is equivalent to the existence of a natural number m such
that, for some sequence v

� 	 	 	 � v of elements of
�

and� m
some sequences i

� 	 	 	 � i and j
� 	 	 	 � j of elements of� m � m- �
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E
�
the following conditions are satisfied:

v � u
�

v � w
�

� m
� v �

i
�
true ��� H � � � v �

j
�
v ��� � � l � 0

� 	 	 	 � m � 1 �
l l l l l+ �

� v �
i
�
false ��� H � �

m m

i + j � + 	 	 	 + 
 i + j � + i � k 	� � m- � m- � m

The proof of this proposition is again left to the read-
er, since it contains almost nothing essentially different
from the proofs of other statements of a similar type which
occur in the preceding chapters and sections. The only more
specific moment is the proof that the symmetry of

�
im-

plies commutativity of the addition in E 	 This can be done
by taking arbitrary elements i

�
j of E and applying the

*condition II.1.(7 ) to an arbitrary element x of � and to

� � �� � i � � � s � � 	 � �� � j � � � s � �
where s is some fixed element of

� 	
Remark 1. If we are interested only in deterministic

devices then we could use a smaller combinatory space, whose
semigroup consists only of the subsets

	
of

��
E
���

sat-
isfying the condition that

� u � i � v ��� 	 � � u � j � w ��� 	 � �
i � j

�
v � w

for all u
�
v
�
w in

�
and all i

�
j in K 	 We shall call

such subsets functional. Let � be the set of all function-�
al subsets of

��
E
��� 	 The set � contains among its el-�

ements all f 
 corresponding to partial functions f in
���

and it is closed under the multiplication defined in Prop-
osition 1 and the operations � �  defined in Proposition 2.
Therefore we obtain a combinatory space by restriction of
the mentioned operations to � and taking it as the semi-�
group of the space. It is easily seen that this combinatory
space is also iterative, and the same expression for the
iteration holds in it. Note that each element

	
of � can�

be determined also by means of two functions having one and
the same domain, namely the partial function from

�
to

�
,

consisting of all pairs � u � v � � where � u � k � v ��� 	 for some
k
�
and the partial function from

�
to E

�
consisting of

all pairs � u � k � � where � u � k � v ��� 	 for some v 	 We shall
call these partial functions the output component and the
complexity component of

	 	 We may use this terminology also
in the case when the whole combinatory space from Proposi-
tion 2 is considered, but

	
is a functional element of � 	

An illustrative example follows. The intuitive idea in
it (containing obvious idealizations) can be described as
follows. One considers input-output behaviour and duration
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of the work of devices which transform natural numbers into
natural numbers. The class of those devices is studied which
can be constructed by the methods of combining mentioned in
Section 2 from primitive ones corresponding to L

�
R
�
T
�
F

and from three additional sorts of primitive devices: ones
transforming momentarily any given number u into u + 1

�
other ones transforming momentarily any given number u into
u � 1 � and third ones which do not change the given number,
but cause a delay equal to 1 (some unit of time being fix-
ed). The example shows that any partial recursive function
can be computed by some device from this class with a delay
given by an arbitrarily chosen partial recursive function
with the same domain (assuming momentary interactions be-
tween the components of the compound devices and momentary
coding and decoding by means of J

�
L
�
R
�
T
�
F
�
H ).

Example 1. Let
�

be a standard computational structure
on the natural numbers, E be the semigroup of the natural
numbers with the usual addition operation, and

�
be the

combinatory space from Proposition 2 corresponding to these�
and E 	 Let � � � S 
 � P 
 ��� � � where

S ��� u 	 u + 1 � P ��� u 	 u � 1 ��� � � � u � 1 � u ��� u �	� � 	
We claim that COMP



� � consists of the recursively enumer-�

able functional elements of � � and obviously these are ex-
actly the functional elements of � having partial recur-
sive output and complexity components. The fact that all
elements of COMP



� � are recursively enumerable and func-�

tional is seen by induction on the construction of these
elements. For the proof of the converse statement, suppose	

is an arbitrary recursively enumerable functional el-
ement of � 	 Let f and g be the output and the complexity
component of

	 �
respectively. Using the partial recursive-

ness of f and g and applying Theorem I.3.1, one can prove
that the elements f 
 and g 
 of � are

� � computable in�
S 
 � P 
�� 	 On the other hand, the following equality holds:

	 � L � � � 
 L � P 
 R � � R � � 
 f 
 � g 
�� 	
The

� � computability of
	

is clear from this equality.

Remark 2. In the thesis Ignatov [1979], the combinatory
space from Remark 1 is considered in the case when

�
is

the computational structure from Example I.1.8
�
and E is

the same as in Example 1. Computability in this combinatory
space is used for estimating the complexity of computation
of concrete recursive functions. Special attention is paid
to computability in the set � consisting, so to say, of
the functions S and P with complexity 1 	 Intuitively, the
computability of an element

	
in this set � means that

the value of the output component of
	

can be effectively
computed, starting from the value of the argument, by using
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as many additions and subtractions of 1 as the complexity
component indicates. A number of concrete elements

	
are

shown to be computable in � , and some other ones are shown
to be not computable in � (for example, whatever the natu-
ral number n is, the element, whose both components are
� u 	 n u � is computable in � � and whenever

	
is an element

computable in � and having output component � u 	 n u � then
the value of the complexity component of

	
at u cannot be

less than


n � 1 � u ). Maybe a further study of the comput-

ability in this combinatory space could lead to some more
profound results.

7. Combinatory spaces connected with
side effects of data processing

Again a computational structure
� ��� ��� J � L � R � T � F � H �

is supposed to be given. In addition, a non-empty set E is
supposed also to be given, and its elements will be now re-
garded as states of the environment in which the data pro-
cessing is carried out. The way of running of the processing
by a given device can, in general, depend not only on the
input data, but also on the state of the environment at the
start of the process. On the other hand, the processing may
sometimes have the side effect of changing this state, and
therefore, the state at the end of the processing will be
not necessarily the same as at the start. In the case of
non-deterministic devices the mentioned dependencies are not
necessarily functional, and the mathematical counterpart of
the above intuitive ideas will be a binary relation in the
Cartesian product

��
E 	 A pair � � u � i � � � v � j � � of el-

ements of
��

E will belong to this relation if output v
in state j of the environment is a possible result of a
processing started with input u in state i of the environ-
ment. In this sense such relations will be used as mathemat-
ical descriptions of devices, and a combinatory space will
be constructed whose semigroup will consist of all such re-
lations. The semigroup multiplication will be the ordinary
composition of relations, since now it corresponds again to
the sequential composition of devices.

The following proposition contains the construction in
question.

Proposition 1. Let � be the partially ordered semi-
group � 
 �� E � of all binary relations in

��
E 	 For eachm

binary relation f in
���

let

f 
 � � � � u � k � � � v � k � ��� � u � v ��� f � k � E � 	
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Let
�

be the set of all f � corresponding to constant
total functions in ��� Let � and � be, respectively, a
binary and a ternary operation in �	� defined as follows:

��
�������������� u � i ����� w � k ������
s
�
t
�
j 
���� u � i ����� s � j ������� �!��� u � j ����� t � k ������� �

J 
 s � t ��� w ��"#�
��
�$��������������� u � i ����� w � k ������

j 
���� u � i ����� true � j ����� H $ �%��� u � j ����� w � k ������� &
��� u � i ����� false � j ����� H $ �%��� u � j ����� w � k ���������"#�

where

H $�������� u � i ����� p � j ����� � v 
���� u � i ����� v � j ������$ � H 
 v ��� p ��"'�
Then:

(i) the 9 ( tuple
) �����	� I �*� � ���� L �*� R �*���� T �*� F �+�

M
is an iterative combinatory space;

(ii) the combinatory space
)

is symmetric iff the set
E consists of a single element;

(iii) for any ,��$ in �	� any u � w in � and any i � k
in E � the condition

��� u � i ����� w � k �����.-/,��$10
is equivalent to the existence of a natural number m such
that, for some sequence v �2�����/� v of elements of � and3

m
some sequences i �2�����/� i and j �2�����/� j of elements of3

m
3

m
E � the following conditions are satisfied:

v � u � v � w � i � i � j � k �3
m

3
m

��� v � i ����� true � j ����� H $� l � 0 �2�����/� m ( 1 �
l l l

��� v � j ����� v � i ������,� l � 0 �2�����/� m ( 1 �
l l l+ 4 l+ 4

��� v � i ����� false � j ����� H $1�
m m m

The proof again will be left to the reader. We give only
the following hint in connection with the statement (ii): to
prove the implication from the symmetry of

)
to the state-

ment that all elements of E are equal each other, suppose
i, j are arbitrary elements of E and apply the condition

*II.1.(7 ) to an arbitrary element x of
�

and to

����
��65 E ��5*
���� s � i ��"#�7����
��65 E ��5*
���� s � j ��"#�
where s is some fixed element of ���

The combinatory spaces connected with complexity of data
processing (cf. the previous section) can be embedded in
combinatory spaces of the type considered now, and for that
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purpose the mapping
�

defined by the equality 6.(1) can be
used. Here is the precise formulation of this fact.

Proposition 2. Let an associative operation of addition
be defined in the set E � and let this operation has a zero
element 3 � Let

) �����	� I �*� � ���� L �*� R �*���� T �*� F �+�
M

be the combinatory space from the above proposition, and let
) ����� � I � � ��� � L � R ��� � T � F �3 3 3 3 3 3 3 3 3 3

be the combinatory space from Proposition 6.2. Let
�

be the
mapping of � into � defined by means of the equality3
6.(1). Then

�
is an isomorphic embedding of the partially

ordered semigroup � into the partially ordered semigroup3
�	� the image of

�
under

�
is equal to

� � and the fol-3
lowing equalities hold (where -/,��$10 denotes iteration3
in
)

):3
� 
 I ��� I �*� � 
 L ��� L �*� � 
 R ��� R �*� � 
 T ��� T �*� � 
 F ��� F �*�3

M
3 3 3 3
� 
��!
�������������
 � 
����� � 
�������3

� 
��!
�$��������������
 � 
�$��� � 
����� � 
�������3
� 
-/,��$102��� - � 
�,��� � 
�$�03

(the last three hold for all ������$��, in � ).3
The verification of everything what is claimed in the

above proposition contains no difficult moments, and we
leave this verification to the reader. We note only that the
last equality could be verified either by using the charac-
terizations of the iteration in the both combinatory spaces
or by using the Knaster-Tarski-Kleene representation of
least fixed points and the fact that the image of � under3
�

is closed with respect to least upper bounds of monoton-
ically increasing sequences,

Remark 1. If E has more than one element, then the
image of � under

�
in the above proposition is surely3

different from the whole ��� This can be seen, for example,
by using the fact that, whenever � is an element of � �3
then the following condition is satisfied:

�
u
�
v
�
i
�
j 
���� u � i ����� v � j ����� � 
��� ����

k 
���� u � j ����� v � k ����� � 
������
Remark 2. A smaller combinatory space than the combina-

tory space from Proposition 1 can be constructed by using
the partially ordered semigroup � 
��65 E � instead ofp
� 
��65 E �� We shall not enter into details, since they arem
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similar to things mentioned in Remark 6.2 (instead of the
name "complexity component" now the name "environment compo-
nent" will be appropriate).

8. Some combinatory spaces of set-valued partial mappings

As usually, a computational structure
� �����.� J � L � R � T � F � H �

is supposed to be given. For the sake of simplicity, the
predicate H will be assumed to be total.

We shall consider partial mappings of � into the set
of its subsets. The intuitive idea behind our considerations
will be the following one. When describing the behaviour of
a non-deterministic computational procedure, it is sometimes
reasonable to proceed as follows:

(i) to specify the input data for which the execution of
the procedure necessarily terminates,

(ii) to specify which are the possible output data cor-
responding to each concrete instance of the input data men-
tioned above, and

(iii) to pay no attention to what happens for the other
input data.

The description obtained in this way can be represented by a
function, which is defined only for the input data mentioned
in (i) and transforms each instance of these data into the
set of all possible output data corresponding to it. A com-
binatory space will be constructed now which is related to
this intuitive idea.

We shall denote by � the set of all functions � such
that dom ���!�.� rng �������.� where ��� is the set of all
subsets of ��� We introduce in � the partial ordering which
is usual for sets of partial functions, namely, for any �
and � in �	� we adopt the convention

������� � dom ��� dom � � �
u � dom ��
���
 u ������
 u ���

(i. e. ����� is equivalent to ������ taking into account the
interpretation of � and � as subsets of �65	��� ). For any
� and � in �	� we shall denote by ��� the element � of
� determined by means of the following conditions:

(a) dom ����� u � dom � : ��
 u �
� dom �" ;
(b) for any u in dom �� the equality

��
 u ����������
 v �.� v ����
 u ��"
holds.
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Proposition 1. The set
���

considered with the partial
ordering and the multiplication introduced above, is a par-
tially ordered semigroup.

Proof. A straightforward verification. �
Remark 1. In Exercise II.4.13, a combinatory space has

been defined whose semigroup consists of all pairs � f � A �
with f ���
	�� � A ���� Let us denote now that partially or-
dered semigroup by

� � For each such pair � f � A � belonging�
to

���
let ����� f � A ��� be the function � from A to ����

defined by means of the equality

��� u ����� v ��� u � v ��� f � �
Then � is a monotonically increasing mapping of

�
onto����

and this mapping preserves the multiplication. If
� f � A � , describes some non-deterministic computational pro-
cedure in the way explained in the footnote to Exercise
II.4.13, then the corresponding ����� f � A ��� will describe the
same procedure in the way considered now.

For each partial function f in � � let f ! be the el-
ement of

�
determined by the conditions that dom f !"� dom f

and f !#� u ����� f � u ��� for all u in dom f � Let $ be the set of
all f ! corresponding to constant total functions in ��

Remark 2. If f is a partial function in � � then its
representation in the combinatory space from Exercise
II.4.13 is � f � dom f � � and obviously ����� f � dom f ����� f !%�
Therefore the set $ defined above is the image under �
of the set $ from that exercise.

A binary operation & will be defined in
�

as follows:
if ' and ( are arbitrary elements of

���
then &���' � ()� is

the element � of
�

such that
108dom ����� u � dom ' : '�� u ��*�+,�.- u � dom ()� ,

and, for all u in dom � and all w in � � the equivalence

w �%��� u �0/%-,1 s �%'�� u ��1 t �%(�� u ��� w � J � s � t ���
holds.

For each 2 in
���

we define a partial mapping H 2 of
� into the set of the subsets of � true � false � as follows:
dom � H 2)��� dom 2 and, for all u in dom 2 � � H 2)�3� u � is the
image of the set 2�� u � under H �

For any 2 � ' � ( in
���

we shall denote by 4���2 � ' � ()�
5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5

108 Compare with the definition of the operation & in
Exercise I.8.3.



8. COMBINATORY SPACES OF SET-VALUED PARTIAL MAPPINGS 291

the element � of
�

such that

dom ����� u � dom 2 : � true �%� H 2)�3� u �0�.- u � dom ')� �
109� false �%� H 2)�3� u �0�.- u � dom ()��� �

and, for all u in dom � and all w in � � the equivalence

w �%��� u �0/%- true �%� H 2)�3� u � � w �%'�� u ���
false �%� H 2)�3� u � � w �%(�� u �

holds.

Remark 3. It can be easily verified that the mapping �
of

�
onto

�
preserves the operations & and 4.��

Two further notions will be introduced, and they will be
similar to notions introduced in Exercise II.4.17. Suppose
� and 2 are some elements of

� � An element u of � will
be called � � 2 5 regular iff the following condition is sat-
isfied

u � dom 2 � � true �%� H 2)�3� u �0�.- u � dom � �)�
An element w of � will be called a � � 2 5 successor of the
element u iff

u � dom 2 � u � dom � � true �%� H 2)�3� u � � w � � � u �)�
It is appropriate also to introduce the notion of a

� � 2 5 path. As in Exercise II.4.18, a sequence (finite or
infinite) of elements of � will be called a � � 2 5 path iff
each term of this sequence except for the first one is a
� � 2 5 successor of the previous term of the sequence. A
� � 2 5 path is called to begin at (to end at) a given el-
ement v of � iff v is the first (the last) term of the
given � � 2 5 path.

Proposition 2. The 9 5 tuple
� ��� ��� I ! � $ � & � L ! � R ! � 4 � T ! � F !#�

M
is an iterative combinatory space. If � and 2 are some
elements of

�
then � �

� 2�� is the element � of
�

deter-
mined by means of the following conditions:

(a) dom � is the intersection of all subsets Q of �
such that, whenever an element of � is � � 2 5 regular, and
all its � � 2 5 successors belong to � � then this element
also belongs to � ;

(b) for any u � dom � � w �%� � the condition w �%��� u � is
equivalent to the condition that w � dom 2 � false �%� H 2)�3� w � �
and a finite � � 2 5 path exists which begins at u and ends
at w �
5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5

109 Compare with the definition of the operation 4 in
Exercise I.8.3.
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The proof of this proposition consists of simpler vari-
ants of the solutions of Exercises II.4.13 and II.4.17. We
leave this proof to the reader, whom we give the advice to
study those exercises and the hint to the second of them.

Remark 4. The domain of � �
� 2�� can be characterized

also by using the notion of � � 2 5 path in the same way as in
Exercise II.4.18. Namely dom � �

� 2�� consists of the el-
ements of � such that all � � 2 5 paths beginning at them
are finite and consist only of � � 2 5 regular elements.

Remark 5. Using the characterizations of the correspond-
ing iterations in Exercise II.4.17 and in the above proposi-
tion, one can verify that the mapping � preserves also the
iteration.

Remark 6. It can be easily seen that the combinatory
space

�
from Proposition 2 is not symmetric. A symmetric

and again iterative combinatory space can be obtained if we
replace

�
by the smaller set consisting of the partial

mappings of � into the set of the non-empty subsets of �
(compare with Exercise II.4.19). Note that in this case
dom &���' � ()� is simply the intersection of dom ' and dom (.�

Remark 7. Another modification of the combinatory space
from Proposition 2 can be obtained if we replace

�
by its

subset consisting of the partial mappings of � into the
set of the finite subsets of �� Again an iterative combina-
tory space is obtained, and this time the characterization
of dom � �

� 2�� by using the notion of a � � 2 5 path can be
modified as in Exercise II.4.20. In other words, � �

� 2��
can be characterized as the mapping � of � into ���
which is determined by the condition (b) from Proposition 2,
and the condition that dom � consists of the elements u of
� having the following properties: all � � 2 5 paths begin-
ning at u consist only of � � 2 5 regular elements, and
there is a finite upper bound for the lengths of these
� � 2 5 paths.

Remark 8. A topological generalization of the statement
in the above remark is possible. Suppose the set � in the
given computational structure

�
is a Hausdorff topological

- � - �space, the sets dom L
�
dom R

�
H � true � � H � false � are open,

and the mappings J
�
L
�
R
�
T
�
F are continuous (the statement

from the above remark will correspond to the case when the
topology is the discrete one). Then an iterative combinatory
space arises also if we replace the set

�
by its subset

consisting of those partial mappings of � into ��� which
have open domains and are upper semicontinuous in them in
the sense of Berge [1966, Chapter VI, � 1] (the upper semi-
continuity in this sense requires, in particular, the values
of the mappings to be compact subsets of � ). It can be
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shown that the iteration in this combinatory space can be
characterized in the same way as in the previous remark. For
the proofs, cf. Skordev [1980, Chapter II, Proposition
5.9.7, and Chapter III, Section 3.2, Example 20]. In the
same sections of that book also the case is considered when
the additional restriction is imposed on the mappings their
values to be connected subsets of the topological space ��
In the case of such mappings, it turns out that, for any
fixed u in the domain of � �

� 2�� � all � � 2 5 paths begin-
ning at u and ending at elements of the set � �

� 2�� � u �
have one and the same length. These topological consider-
ations have some relation to the interval analysis in the
sense of Moore [1966].

Remark 9. Propositions 1 and 2 remain valid if we re-
place the partial ordering in

�
by another one which is

defined in the following way:

' � ( /%- dom '�� dom ( ��� u � dom (���'�� u ����(�� u ���
(a motivation for using such a partial ordering can be de-
rived from the above-mentioned relation to the interval ana-
lysis). To prove that the new combinatory space obtained in
this way will be iterative, and the iteration in it will be
the same, we may use the part (b) of the Unrestricted Iter-
ation Lemma (Proposition II.4.5). The same change of the
partial ordering can be made also in the modifications of�

indicated in Remarks 6-8 (in the case of the spaces from
Remarks 7 and 8, part (b) of the Level Omega Iteration Lemma
is also applicable).

In the case when the given computational structure is a
standard computational structure on the natural numbers,
some results about

� 5 computability will be formulated
which are counterparts of the statements of Exercises
III.2.13, III.2.16, III.2.17 and III.2.18 (and even can be
deduced from them by using the mapping � ). These results
are listed in the next proposition. We shall omit their
proofs, and our advice to the reader is to prove them by
simplifying the proposed way of solution for the mentioned
exercises.

Proposition 3. Let
�

be a standard computational
structure on the natural numbers, and let S ��� u � u + 1 �
P ��� u � u � 1 � Then:

(i) COMP ��� S ! � P ! � � u �	��� � consists of the elements ��

of
�

such that all values of � are non-empty, dom � is a
�& 5 set, and the set � � u � v ��� u � dom � � v �%��� u ��� is the�

intersection of the Cartesian product � dom �)�%	
� with some
recursively enumerable binary relation;
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(ii) COMP ��� S ! � P ! � � u ��� 0 � 1 � � � consists of the el-�

ements � of
�

such that all values of � are finite and
non-empty, the set � � u � v ��� u � dom � � v �%��� u ��� is recur-
sively enumerable, and there is a partial recursive function
which transforms each u from dom � into the cardinality of

110the corresponding set ��� u � ;
(iii) COMP ��� S ! � P ! � � u �	� � � u ��+ � � consists of the el-�

�ements � of
�

such that dom � is a & 5 set, and the set�
� � u � v ��� u � dom � � v �%��� u ��� is the intersection of the
Cartesian product � dom �)�%	
� with some recursively enumer-
able binary relation;

(iv) COMP ��� S ! � P ! � � u ��� 0 � 1 � � � u ��+ � � consists of the�

elements � of
�

such that all values of � are finite,
the set � � u � v ��� u � dom � � v �%��� u ��� is recursively enumer-
able, and there is a partial recursive function which trans-
forms each u from dom � into the cardinality of the corre-
sponding set ��� u �)�

Set-valued partial mappings can be used for the descrip-
tion of non-deterministic computational procedures also in
another way, which is in the spirit of the ideas from Sec-
tion I.8 (especially of S. Nikolova’s ideas which are em-
bodied in Exercise I.8.3). The change in the kind of the
description can be expressed by a change in the clause (i)
at the beginning of the present section. Namely the words
"the execution of the procedure necessarily terminates" must
be replaced now by the words "unproductive termination of
the execution of the procedure is impossible" (or, in a
variant closer to Nikolova’s ideas, by the words "failures
during the execution of the procedure are impossible"). The
corresponding combinatory space will be the same as in Prop-
osition 1 up to the partial ordering in

�
and to the iter-

ation, which will be quite different and will look as fol-
lows (compare with the partial ordering and the iteration
defined in Exercise I.8.3). The partial ordering will be the
following one:

' � ( /%- dom '�� dom ( ��� u � dom '���'�� u � ��(�� u ���
(this is the inverse partial ordering of that one which has
been mentioned in Remark 9) � The iteration of � controlled
by 2 will be now the mapping � of � into ��� which is
determined by the condition (b) from Proposition 2, and the
condition that dom � consists of the elements of � such
5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5#5

110 A statement equivalent to this is established in Skor-
dev [1980, Chapter IV, Section 1.2, Example 8].
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that all � � 2 5 paths beginning at them consist only of
� � 2 5 regular elements.

9. Some combinatory spaces of hybrid nature

Many of the examples of combinatory spaces considered
until now have an intuitive interpretation connected with
certain kinds of descriptions of data processing devices or
procedures. In the different examples, the corresponding
descriptions reflect different aspects of the behaviour of
the devices or procedures. E. g., we have probabilistic ex-
amples of combinatory spaces and examples of combinatory
spaces connected with the complexity of data processing.
Besides such examples of combinatory spaces, it is possible
to construct also combinatory spaces of descriptions which
reflect simultaneously several aspects of the behaviour in
question. We shall indicate now some combinatory spaces of
such a hybrid nature.

We shall show first how to construct combinatory spaces
connected simultaneously with probability and with complex-
ity of data processing.

We suppose that a computational structure
� ��� � � J � L � R � T � F � H �

and a semigroup E are given. The semigroup operation in E
will be denoted as addition, and we assume the existence of
an element � of E such that k + � � � + k � k for all k in
E � The intuitive idea about the data processing devices,
which are the object of study, is the following one. The
devices proceed in a probabilistic manner such that, given
any element u of � as input data, for each v in � and
each k in E

�
there is a definite probability that v will

be produced as output data, and the complexity of data pro-
cessing will be equal to k � Mathematically, this state of
affairs can be described by a function � from �
	 E 	�� into
the interval � 0

�
1 � such that, for any u in � � the equal-

ity
��� ��� u � k � v ��� 1���

k v

holds. Let
�

be the set of all such functions �.� We intro-
duce a partial ordering in

�
in the natural way, namely

' � ( means that '�� u � k � v � � (�� u � k � v � for all u
�
v in �

and all k in E � For any two elements ' and ( of
���

we
define a real-valued function '%( by means of the equality
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������������ u k w � 	 i + j � k 	 ��
 v � j � w  ��
 u � i � v �������
i j v

One can prove that ��� belongs to � again, and the multi-
plication in � defined in this way is an associative oper-
ation. We shall not give the proof, but we shall mention
that it is possible to reduce the proof of the associativity�
to the case of multiplication of mappings of 
���� E  into�
0 � 1 ��� and for that purpose it is appropriate to set

�� 
��  
�� u � i ��� � v � j �� � 	 i + k � j 	 ��
 u � k � v �
k

for each � in � and all � u � i ��� � v � j � in ��� E
(compare with the equality 6.(1)). Since the multiplication
in � is obviously monotonically increasing, the set �
becomes a partially ordered semigroup.

For each partial mapping f of � into � � we define an
element f � of � by means of the equality

f � 
 u � k � v  � 	 � u � v ��� f � k �! 	��
We denote by " the set of those f � which correspond to
constant total functions in � �

For any two elements � and � in �#� we define a real-
valued function $ 
�� � �  on the set ��� E �%� in the follow-
ing way: for any u � v in � and any k in E � we set

���$ 
�� � �  
 u � k � v  � 	 i + j � k 	 ��
 u � i � L 
 v � ��
 u � j � R 
 v ����
i j

if v � rng J � and we set $ 
�� � �  
 u � k � v  � 0 otherwise. It
can be proved that $ 
�� � �  belongs to � again.

For any & in �#� we define a real valued function H &
on the set ��� E �%' true � false ( by setting

� - )
 H &� 
 u � i � p  � & 
 u � i � s �	 s � H 
 p �	���
s

Then we set

* 
 &�� � � �  
 u � k � v  �
��� 	 i + j � k 	 
�
 H &� 
 u � i � true  ��
 u � j � v � +���
i j 
�
 H &� 
 u � i � false  ��
 u � j � v �

for all &�� � � � in �#� all u � v in � and all k in E � It
can be proved that

* 
 &�� � � � %��� for all &�� � � � in �+�
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The definitions we gave can be motivated by means of
intuitive reasons concerning descriptions of data processing
devices and of some combinations of such devices. The fol-
lowing proposition (compare with Propositions 4.1 and 6.2)
gives a logical justification of these definitions.

Proposition 1. The 9 � tuple
� �!� �#� I �%� " � $�� L �%� R �%� * � T �%� F � �

M
is an iterative combinatory space � For arbitrary ��� & in�#� arbitrary u � w in � and any k in E � the equality� �� ��� & � 
 u � k � w  � � 
 u � k � w �

m
m=  

holds, where
� � � � � �� 
 u � k � w  � ����� ����� ����� 	 v � u � v � w 	 �

m
� � � � � �  m
v v i i j j
0 m 0 m 0 m-1

m- )�
 H &� 
 v � i � false ���� 
 H &� 
 v � i � true 	� 
 v � j � v �
 �
m m l l l l l+ )

l=  
	 
 i + j  + ����� + 
 i + j  + i � k 	��  m- ) m- ) m

The combinatory space
�

is symmetric iff the addition
operation in E is commutative.

We shall not present the proof, but we hope that the
readers, who have carried out the proofs of the two other
above-mentioned propositions, will be able to carry out also
this one.

We shall mention quite briefly another example of combi-
natory spaces of a hybrid nature. The aspects described by
the elements of the space now will be the following one:
input-output relation, including complexity of the proces-
sing, and set of the input data for which the processing
necessarily terminates. Thus features of the combinatory
spaces from Exercise II.4.13 and from Proposition 6.2 will
be put together.

We assume that � and E are the same as before, and,
for the sake of simplicity, it is appropriate to suppose
that the predicate H is total. We shall denote by � the
set of all ordered pairs � � � A ��� where �� ��� E �%� � A  � �
A partial ordering is introduced in � by means of the fol-
lowing convention:� � � A ��� � � � B ����� � � � � A � B ��

u � B � k
�
v 
�� u � k � v ��� � � � � u � k � v ��� � ��

A multiplication in � is defined by means of the equality



298 APPENDIX. A SURVEY OF EXAMPLES OF COMBINATORY SPACES

� � � A � � � � B � �!� ��� � ' u � B � � k
�
v 
�� u � k � v ��� � � � v � A �( ���

where ��� is the product of � and � as elements of the
combinatory space from Proposition 6.2 (i. e. as elements of
the semigroup from Proposition 6.1). We think the rest of
the construction of the combinatory space can be left to the
reader. The combinatory space constructed in this way is
again iterative, and the characterization of the iteration
in it is a certain hybrid of the characterizations of the
iterations in the above-mentioned two kinds of combinatory
spaces (i. e. a hybrid of the characterizations from Exer-
cise II.4.17 and Proposition 6.2).

10. Products of combinatory spaces

In this section, we shall generalize a construction from
Exercise II.1.40, namely the construction of the power-space

K� � where
�

is an arbitrary combinatory space, and K is
an arbitrary non-empty set. We shall generalize also the

Kstatement of Exercise II.3.9 that
�

is iterative, when-
ever

�
is iterative.

We suppose that K is some non-empty set, and a combi-
natory space

� � � � � I � " � $ � L � R � * � T � F �
k k k k k k k k k k

is assigned to each k from K � We shall denote by � the
set of all functions � such that dom ��� K � and ��
 k %���

k
for all k in K � We make the set � to be a partially or-
dered semigroup by the conventions that, for any � � � in�#� the inequality ����� holds iff, for all k in K � the
inequality ��
 k  ����
 k  holds in

� � and ��� is the el-
k

ement � of � such that ��
 k  �!��
 k  ��
 k  for all k in K �
We set

I ��� k � I � L ��� k � L � R ��� k � R � T ��� k � T � F ��� k � F �
k k k k k" �!' � ��� � � k � K 
���
 k %��" �( �

k
A binary operation $ and a ternary operation

*
are de-

fined in � by means of the equalities

$ 
�� � �  ��� k �#$ 
�� � � �� * 
 &�� � � �  ��� k � * 
 & � � � � ��
k k k k k k k

The following two propositions can be verified immedi-
ately (however, the verification of the first of them makes
use of the Axiom of Choice in the general case).

Proposition 1. For any k in K and any x in " �
kthere is an element � of " such that ��
 k  � x �
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Proposition 2. For all ����� in � � the elements��� ������	�� T ��� F � of 
 also belong to ���
The main result in this section reads as follows.

Theorem 1. Let
��� 
 � I � ��� � � � L � R ����� T � F � �

where ��� is a subset of � such that:

(i) for any k in K and any x in � � there is an
kelement � of ��� such that � � k 	 � x ;

(ii) for all ����� in ��� � the elements
��� ������	�� T ��� F �

of 
 also belong to �����
Then:

(a)


is a combinatory space;

(b) if the combinatory spaces


are iterative for all

k
k in K � then


is also iterative, and, for all � ��� in
 and all k in K � the equality� � ����� � k 	 � � � � k 	���� � k 	��

k
holds, where

��� � � � means iteration in


�

k k
Proof. The conditions II.1.(2), II.1.(9) and II.1.(10)

from the definition of the notion of combinatory space are
satisfied due to the assumption that ��� satisfies condition
(ii) above. To verify condition II.1.(1), suppose that �
and � are such elements of 
 that � ��� � � for all � in����� Then, taking arbitrary k from K and arbitrary x in� � we, by condition (i) above, can find an element � of
k��� such that � � k 	 � x � Using this � � we get
� � k 	 x � � � k 	 � � k 	 � � � � 	 � k 	 � � � � 	 � k 	 � � � k 	 � � k 	 � � � k 	 x �

Since x was chosen arbitrary in � � we conclude that
k� � k 	 � � � k 	 � But k was also arbitrary, hence � � � � The

verification of all other conditions in the definition of
the notion of combinatory space is straightforward.

For the proof of (b), suppose that


is iterative for

k
all k in K � Let � ��� be arbitrary elements of 
 � and let� � � k � � � � k 	���� � k 	�� � We shall show that � is the iter-

k
ation of � controlled by � in the combinatory space


�

Clearly, � � � � ���!� � � I 	 � To check the second condition in
the definition of iteration, suppose that " is some subset
of � invariant with respect to � � and # ��$ are elements
of 
 satisfying the inequality

(1) #�� � � ��� #%� ��$�	 �"
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We shall prove that #�� $ � � For that purpose, we suppose"
that � is an arbitrary element of " � We have to prove the
inequality #%��� $ � ��� Let k be an arbitrary element of K �
We must prove that # � k 	 � � k 	 � $ � k 	%� � k 	 � � k 	 � Let us denote
by " the set of the values at k of the elements of " �

k
By this definition, � � k 	 � " � Obviously, " � � � It is

k k k
easily verified that, whenever some elements � and � of
 satisfy the inequality � � ��� then the inequality"� � k 	 � � � k 	 also holds. Hence the inequality (1) implies the"

k
inequality

(2) # � k 	 � � � � � k 	�� # � k 	 � � k 	���$ � k 	�	 �
k"

k
Now we shall show that " is invariant with respect to

k� � k 	 � Let � and � be elements of 
 satisfying the in-
k

equality ������� We have to prove that �%� � k 	 ���%� � k 	 � To" "
k k

do this we consider elements � and � of 
 such that� � k 	 � � � � � k 	 � � � and � � k � 	 � � � k � 	 for all k � in
K ��� k � � It is easily seen that � � � � Since " is invari-"
ant with respect to � � this implies the inequality� ��� � ��� Hence the inequality � � k 	 � � k 	 � � � k 	 � � k 	" "

k
holds, i. e. �%� � k 	 ���%� � k 	 � Thus we proved the invariance"

k
of " with respect to � � k 	 � This invariance, together with

k
the inequality (2), implies the inequality

# � k 	 � $ � k 	%� � k 	 �"
k

Taking into account the already mentioned fact that � � k 	
belongs to " � we get the needed inequality

k # � k 	 � � k 	 � $ � k 	%� � k 	 � � k 	 �
	
By Propositions 1 and 2, the set � is an example of a

set ��� satisfying the assumptions of the above theorem. In
general, smaller sets ��� could also happen to satisfy
these assumptions. For instance, to obtain the statements

Kconcerning


as corollaries of the theorem, we can take��� to be the set of all constant mappings of K into ���
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