Cupping Δ_2 Enumeration Degrees to $0'$

Guohua Wu Mariya I. Soskova

School of Physical and Mathematical Sciences
Nanyang Technological University,
guohua@ntu.edu.sg

Department of Pure Mathematics
University of Leeds
mariya@maths.leeds.ac.uk

21.07.07
Definitions

Definition

1. A set A is enumeration reducible to a set B ($A \leq_e B$), if there is a c.e. set Φ such that

 \[n \in A \iff \exists D (\langle n, [D] \rangle \in \Phi \land D \subseteq B). \]

2. A is enumeration equivalent to B ($A \equiv_e B$) if $A \leq_e B$ and $B \leq_e A$.

3. Let $d_e(A) = \{ B | A \equiv_e B \}$.

4. $(D_e, <, \cup, ', 0_e)$ is the semi-lattice of the enumeration degrees.
Local Degree Structure

There is a natural embedding of the Turing degrees in the Enumeration degrees. Images of Turing degrees under this embedding are the total e-degrees.

\[0' \]

\[\Sigma_2 \] e-degrees

Partial \(\Delta_2 \) e-degrees

Total \(\Delta_2 \) e-degrees

\[\Pi_1 \] e-degrees

\[0_e \]
Cupping

We say that a degree a is cuppable if there exists a degree $b < 0'_e$ such that $a \cup b = 0'_e$.

Cooper Sorbi and Yui proved that every nonzero Δ_2 e-degree is cuppable by a total Δ_2 e-degree.
Generic Sets

Definition
A set A is generic if for every c.e. set W there exists a finite string $\lambda \subset \chi_A$ such that:

$$
\lambda \in W \lor (\forall \mu \supseteq \lambda)(\mu \notin W).
$$

Degrees of generic sets are called generic degrees.

- Every generic enumeration degree a is quasiminimal, hence partial.
- Copestake proved that generic degrees are low if and only if they are Δ_2.
Theorem 1

Theorem

Every nonzero Δ_2 enumeration degree a can be cupped by a Δ_2 generic e-degree b, hence by a partial low degree.
Requirements

Given a nonzero Δ_2 set A we will construct a Δ_2-set B such that:

$$S : \Gamma^{A,B} = \overline{K}.$$

$$G_i : (\exists \lambda \subset B)(\lambda \in W_i \lor \forall \mu \supseteq \lambda[\mu \notin W_i]).$$
The S-strategy

\[S : \Gamma^{A,B} = \overline{K}. \]

The S-strategy runs at the beginning of every stage and constructs an e-operator Γ such that:

- For every $n \in \overline{K}$ there is a valid axiom $\langle n, A \upharpoonright a_n, B \upharpoonright b_n \rangle$.
- If n exits \overline{K} we correct Γ by extracting b_n from B.
The G-strategy

$$G_i : (\exists \lambda \subset B)(\lambda \in W_i \lor \forall \mu \supseteq \lambda [\mu \notin W_i]).$$

The G-strategy will select a threshold k. Choose a witness $\lambda = B \upharpoonright b_k$. Wait for $\mu \supseteq \lambda$ to enter W.
Conflict

G would like to preserve μ as an initial segment of B, meanwhile S might like to change B to rectify Γ.
Solution

Extract the marker b_k to prevent S from injuring the restraint. Approximate A up to a_k threatening to prove that it is c.e. Start a new cycle.
A-retreat

If there is an A-change, restore B. Now $\mu \subseteq B$. A is nonzero and Δ_2 hence there will be a permanent change in A eventually.
Definitions

1. A set A is n-c.e. if there is a computable function f such that for each x, $f(x, 0) = 0$, $|\{s + 1 \mid f(x, s) \neq f(x, s + 1)\}| \leq n$ and $A(x) = \lim_s f(x, s)$.

2. A is ω-c.e. if there are two computable functions $f(x, s), g(x)$ such that for all x, $f(x, 0) = 0$, $|\{s + 1 \mid f(x, s) \neq f(x, s + 1)\}| \leq g(x)$ and $\lim_s f(x, s) \downarrow = A(x)$.

3. A degree a is n-c.e.$(\omega$-c.e.) if it contains a n-c.e.$(\omega$-c.e.) set.
A noncuppable c.e. degree

Cooper and Yates proved that there is a noncuppable c.e. Turing degree. Hence a 2-c.e. e-degree that cannot be cupped by any 2-c.e. e-degree.
Theorem 2

Theorem

*Given a nonzero ω-c.e. e-degree a, there is a 3-c.e. e-degree b such that $a \cup b = 0'_e$.***
Requirements

Given a nonzero ω-c.e set A we will construct a 3-c.e. set B and an extra Π_1 set E such that:

$$S : \Gamma^{A,B} = \overline{K}.$$

$$N_i : E \neq \psi_i^B.$$
The N-strategy

\[N_i : E \neq \Psi^B_i. \]

- Choose a threshold k and a witness $x > k$.
- Wait for x to enter Ψ^B.
- Approximate $A \upharpoonright a_k$ and extract b_k. Start a new cycle.
- If there is an A-change re-enumerate b_k to restore the initial segment of B.
New tricks

- Sets of markers - if n has A-marker a_n then it has a B-marker B_n a set of size $\sum_{x < a_n} g(x)$.
- Make the approximations of the set A monotone and always restore the last computation.

![Diagram showing sets A, B, and B_k with intersections and unions](image)
Bibliography

