The enumeration degrees: Local and global structural interactions

Mariya I. Soskova¹

Sofia University

10th Panhellenic Logic Symposium

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and Sofia University Science Fund project 81/2015.

The spectrum of relative definability

If a set of natural numbers A can be *defined* using as parameter a set of natural numbers B, then A is reducible to B.

- There is a total computable function f, such that x ∈ A if and only if f(x) ∈ B: many-one reducibility (A ≤_m B).
- **②** There is an algorithm to determine whether $x \in A$ using finitely many facts about membership in *B*: Turing reducibility $(A \leq_T B)$.
- So There is an algorithm that allows us to enumerate A using any enumeration of B: enumeration reducibility $(A \leq_e B)$.
- There is an arithmetical formula with parameter B that determines whether x ∈ A: arithmetical reducibility (A ≤_a B).
- So a compute a complete description of A in terms of the Borel hierarchy: hyperarithmetical reducibility (A ≤_h B).

Degree structures

Definition

- $A \equiv B$ if $A \leq B$ and $B \leq A$.
- $d(A) = \{B \mid A \equiv B\}.$
- $d(A) \leq d(B)$ if and only if $A \leq B$.
- There is a least upper bound operation \lor .
- There is a jump operation '.

The many-one degrees

Theorem (Ershov, Paliutin)

The partial ordering of the many-one degrees is the unique partial order P such that the following conditions hold.

- \bigcirc *P* is a distributive upper-semi-lattice with least element.
- **2** Every element of *P* has at most countably many predecessors.
- **9** P has cardinality the continuum.

Given any distributive upper-semi-lattice L with least element and of cardinality less than the continuum with the countable predecessor property and given an isomorphism π between an ideal I in L and an ideal π(I) in P, there is an extension π* of π to an isomorphism between L and π*(L) such that π*(L) is an ideal in P.

The automorphism group of \mathcal{D}_m has cardinality $2^{2^{\omega}}$ and every element of \mathcal{D}_m other than its least one, $\mathbf{0}_m$, has a nontrivial orbit.

The hyperarithmetical degrees

Theorem (Slaman and Woodin: Biinterpretability)

The partial ordering of the hyperarithmetical degrees is *biinterpretable* with the structure of second-order arithmetic. There is a way within the ordering \mathcal{D}_h to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the hyper-arithmetical degree of X.

can be defined in \mathcal{D}_h as a property of $\vec{\mathbf{p}}$ and \mathbf{x} .

- There are no nontrivial automorphisms of \mathcal{D}_h .
- A relation on degrees is definable in \mathcal{D}_h if and only if the corresponding relation on sets is definable in second order arithmetic.

Understanding the middle of the spectrum

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

can be defined using a parameter \mathbf{g} in \mathcal{D}_T as a property of $\vec{\mathbf{p}}$ and \mathbf{x} .

- There are at most countably many automorphisms of \mathcal{D}_T .
- Relations on degrees induced by a relations on sets definable in second order arithmetic are definable with parameters in \mathcal{D}_T .
- The degrees below **0**⁽⁵⁾ form an automorphism base.
- Rigidity is equivalent to full biinterpretability.

Understanding the middle of the spectrum

Theorem (Slaman, Woodin)

The first order theory of \mathcal{D}_e is computably isomorphic to the theory of second order arithmetic.

Theorem (S: Biinterpretability with parameters)

There is a way within \mathcal{D}_e to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the enumeration degree of X.

can be defined using a parameter \mathbf{g} in \mathcal{D}_e as a property of $\vec{\mathbf{p}}$ and \mathbf{x} .

- There are at most countably many automorphisms of \mathcal{D}_e .
- Relations on degrees induced by a relations on sets definable in second order arithmetic are definable with parameters in \mathcal{D}_e .
- The degrees below $\mathbf{0}_e^{(8)}$ form an automorphism base.
- Rigidity is equivalent to full biinterpretability.

Local structures

Definition

 $\ensuremath{\mathcal{R}}$ is the substructure consisting of all Turing degrees that contain c.e. sets.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure consisting of all Turing degrees that are bounded by $\mathbf{0}'_T$.

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the substructure consisting of all enumeration degrees that are bounded by $\mathbf{0}'_e$.

Theorem (Harrington, Slaman; Shore; Ganchev, S)

The theory of each local structure is computably isomorphic to first order arithmetic.

Theorem (Slaman, S)

The local structure of the Turing degrees, $\mathcal{D}_T (\leq 0')$, is biinterpretable with first order arithmetic modulo the use of finitely many parameters.

Reducibilities

Reducibility	Oracle set B	Reduced set A
$A \leq_T B$	Complete information	Complete information
A c.e. in B	Complete information	Positive information
$A \leq_e B$	Positive information	Positive information

Definition

• $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$$

2 A c.e. in B if there is a c.e. set W, such that

 $A = W^B = \left\{ x \mid \exists D_1, D_2(\langle x, D_1, D_2 \rangle \in W \& D_1 \subseteq B \& D_2 \subseteq \overline{B}) \right\}.$

$$A \leq_T B \text{ if } A \text{ c.e. in } B \text{ and } \overline{A} \text{ c.e. in } B.$$

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A}$ is c.e. in $B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $TOT = \iota(D_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \lor, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', \mathbf{0}_e)$$

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

TOT is an automorphism base for D_e .

Definability in \mathcal{D}_T and the local structures

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

- A degree **a** is Low_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n)}$.
- A degree **a** is High_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n+1)}$.

Theorem (Nies, Shore, Slaman)

All jump classes apart from Low_1 are first order definable in \mathcal{R} and in $\mathcal{D}_T (\leq \mathbf{0}')$.

Method: "Involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic."

Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Kalimullin pairs

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

- A trivial example is $\{A, U\}$, where U is c.e: $W = \mathbb{N} \times U$.
- **2** If A is a semi-computable set, then $\{A, \overline{A}\}$ is a K-pair: $W = \{(m, n) \mid s_A(m, n) = m\}.$

Theorem (Kalimullin)

A pair of sets A, B is a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_e)((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Theorem (Cai, Lempp, Miller, S)

... by the same formula as in \mathcal{D}_e .

Theorem (Ganchev, S)

The low enumeration degrees are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$: **a** is low if and only if every **b** \leq **a** bounds a half of a \mathcal{K} -pair.

Maximal \mathcal{K} -pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal \mathcal{K} -pair. Total enumeration degrees are joins of maximal \mathcal{K} -pairs.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a nonzero degree is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

The main definability question

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

- The total degrees above $0'_e$ are definable as the range of the jump operator.
- **2** The total degrees below $\mathbf{0}'_e$ are definable as joins of maximal \mathcal{K} -pairs.
- **③** The total degrees are definable with parameters in \mathcal{D}_e .

Every total degree is the join of a maximal \mathcal{K} -pair.

Question (Ganchev, S)

Is the the join of every maximal \mathcal{K} -pair total?

Defining totallity in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial \mathcal{K} -pair.

- The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q} .
- **②** The uncountable component: C will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in \mathcal{D}_e .

The relation c.e. in

Definition

A Turing degree **a** is *c.e.* in a Turing degree **x** if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set $\{ \langle \iota(\mathbf{a}), \iota(\mathbf{x}) \rangle \mid \mathbf{a} \text{ is c.e. in } \mathbf{x} \}$ is first order definable in \mathcal{D}_e .

- Ganchev, S had observed that if TOT is definable by maximal K-pairs then the image of the relation 'c.e. in' is definable for non-c.e. degrees.
- A result by Cai and Shore allowed us to complete this definition.

The total degrees as an automorphism base

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_{e}^{(5)}$ are an automorphism base of \mathcal{D}_{e} .

Question

Can we improve this bound further?

The local coding theorem of Slaman and Woodin

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- The graphs of s, +, × and the relation ≤ are definable with parameters p
 .

$$\mathbb{D} \models \varphi \text{ iff} \\ \mathcal{D}_T(\leq \mathbf{0}') \models \varphi_T(\vec{\mathbf{p}})$$

An indexing of the c.e. degrees

Theorem (Slaman, Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin)

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin)

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

Idea: Can we extend this indexing to capture more elements in D_e ?

Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, S)

If \vec{p} defines a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ_2^0 enumeration degrees.

Proof flavour:

The image of the c.e. degrees \rightarrow The low co-d.c.e. e-degrees

- \rightarrow The low Δ_2^0 e-degrees
- \rightarrow The total Δ^0_2 e-degrees

Moving outside the local structure

- Extend to an indexing of all total degrees that are "c.e. in" and above some total Δ⁰₂ enumeration degree.
 - ► The jump is definable.
 - The image of the relation "c.e. in" is definable.
- Pelativizing the previous theorem extend to an indexing of U_{x≤0'} ℓ([x, x']).

Moving outside the local structure

Solution Extend to an indexing of all total degrees below $\mathbf{0}_e''$.

Theorem (Slaman, S)

Let *n* be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 degrees.

Consequences

Theorem (Slaman, S)

- The enumeration degrees below $\mathbf{0}'_e$ are an automorphism base for \mathcal{D}_e .
- **②** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

- Can we show that there is a similar interaction between the local and global structures of the Turing degrees?
- Can we show that the local structure of the enumeration degrees is biinterpretable with first order arithmetic (with or without parameters)?

