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The enumeration degrees

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x,D〉 ∈W & D ⊆ B)} .

A ≡e B if A ≤e B and B ≤e A.

The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕B).

The enumeration jump: de(A)′ = de(KA ⊕KA), where
KA = {〈e, x〉 | x ∈We(A)}.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

A set A is total if A ≡e A⊕A. An enumeration degree is total if it contains a
total set. The set of total degrees is denoted by T OT .

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound and the jump operation.

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.
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Motivation from symbolic dynamics by Emmanuel Jeandel

Definition
A subshift is a closed subset X ⊆ 2ω such that if aα ∈ X then α ∈ X .

X is minimal if there is no Y ⊂ X , such that Y is a subshift.

The language of X is the set
LX = {σ ∈ 2<ω | ∃α ∈ X(σ is a subword of α)}.
LX is the set of forbidden words.

1 If X is minimal and σ ∈ LX then for every α ∈ X , σ is a subword of α.
2 The Turing degrees that compute elements of X are exactly the degrees

that contain enumerations of LX .
3 LX ≤e LX .
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Three definitions

Definition
A set A is co-total if A ≤e A. A degree a is co-total if it contains a co-total
set.

Definition (Solon)

A set A is graph co-total if A ≡e Gf for some total function f . A degree a is
graph co-total co-total if it contains a graph co-total set.

Definition (Solon)

A set A is Solon co-total if there is a set A ≡e B, such that B is total.

total⇒ graph co-total⇒ co-total⇒ Solon co-total.
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Examples of co-total enumeration degrees: Σ0
2

enumeration degrees

Definition
The degrees below ∅′ are called the Σ0

2 enumeration degrees.

Proposition

Σ0
2 e-degrees are co-total.

Proposition

Σ0
2 e-degrees are graph co-total.

Corollary
Graph co-total does not imply total.
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Examples of co-total enumeration degrees: Joins of
nontrivial K-pairs
Definition
A K-pair is a pair of sets {A,B} for which there is a c.e. set W such that
A×B ⊆W and A×B ⊆W .

Proposition
If A and B are not c.e. then:

1 If C ≤e A then {C,B} are a K-pair.
2 A ≤e B and A ≤e ∅′ ⊕B.
3 B ≤e A and B ≤e ∅′ ⊕A.

Proposition
If {A,B} is a nontrivial K-pair then A⊕B is co-total.

Proof: A⊕B ≤e B ⊕A ≡e A⊕B.
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Examples of co-total enumeration degrees: Continuous
degrees

Definition (J. Miller)
An e-degree is continuous if it contains a set of the form
A =

⊕
i<ω({q | q < αi} ⊕ {q | q > αi}, where {αi}i<ω is a sequence of real

numbers.

Proposition
Continuous degrees are co-total.

Proof: On the board.
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Unique correct axiom

Theorem
An e-degree a is graph co-total if and only if a contains a co-total set A, such
that for some enumeration operator Γ, we have that A = Γ(A) and for every
n ∈ A there is a unique axiom 〈n,D〉 ∈ Γ such that D ⊆ A.
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Exact covers
Definition
Let G = (N, E) be a graph. S ⊆ N is an exact cover for G if:

1 If i 6= j are in S then (i, j) /∈ E.
2 For every element i /∈ S there is a j ∈ S such that (i, j) ∈ S.

Note that S ≤e S, as i ∈ S iff there is a j 6= i such that (i, j) ∈ E and j ∈ S.

Theorem
There is an exact cover S of ω<ω, such that S does not have graph co-total
degree.

Proof: Infinite injury relative to ∅′.

Corollary
Co-total does not imply graph co-total.
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The skip operator

Recall that KA =
⊕

e Γe(A).

Proposition

If A ≤e B then KA ≤1 KB .

Definition
The skip of A is the set A◦ = KA. The skip of a degree a is a◦ = de(A

◦).

Proposition
A degree a is co-total if and only if a◦ = a′.
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Skip inversion

Theorem
Let S ≥e ∅′. There is a set A such that A◦ ≡e S.

Proof: We build A so that:
1 S ≤e A.
2 KA ≤e S.

We first build a table Â with one empty box in each column as a set c.e. in ∅′.
The set of empty boxes will be computable from ∅′.
Then A = Â ∪

{
〈n, s〉 | n ∈ S

}
.

Note! S ≤e A⊕ ∅′. So if we start out with an S that is not total as a set (such
as KU ) then A is not co-total.

Corollary
Solon co-total does not imply co-total.
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We first build a table Â with one empty box in each column as a set c.e. in ∅′.
The set of empty boxes will be computable from ∅′.
Then A = Â ∪
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Examples of skips

Proposition
If {A,B} is a non-trivial K-pair then A◦ ≡e B ⊕ ∅′.

1 If A is Σ0
2 and nonlow then {LKA

, RKA
} is a nontrivial K-pair.

Furthermore R(n)
KA
≡e A

(n) and R n©KA
= ∅(n).

2 If A and B are non-arithmetical then their skips form a double helix.

Proposition

If G is generic relative to a total set X then (G⊕X)◦ = G⊕X ′.

1 If G is arithmetically generic then the skips of G and G form a double
helix.
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A fixed point for the double skip

The enumeration operator is monotone: if A ⊆ B then Γ(A) ⊆ Γ(B).

A ⊆ B ⇒ KA ⊆ KB ⇒ KA ⊇ KB ⇒ KKA
⊇ KKB

⇒

KKA
⊆ KKB

By Knaster-Tarski’s fixed point theorem:

Proposition
There are sets A and B such that B = A◦ and A = B◦. The sets A and B are
above all hyperarithmetical sets.
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Sack’s intermediate skip
Theorem
If S ≥e X

′ is Π0
2(X

′) then there is a non-total Π0
1(X

′) set A > X such that
A◦ ≡e S.

Proof: Infinite injury relative to X ′.

Let PX be a computable in X listing of all Π0
2(X) and above X sets.

We have a computable function f such that (PX
f(e))

◦ ≡e P
X′
e , PX

f(e) > X and
PX
f(e) is not total.

Let e be a fixed point such that PX
e = PX

f(e) and consider the sequence

P ∅e , P
∅′
e , P

∅′′
e , . . .

Corollary

There is an arithmetical set A, such that for every n, An© is non-total.
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