Co-total enumeration degrees and the skip operaotor

Mariya I. Soskova¹

Sofia University

Computability seminar at the University of Notre Dame joint work with Andrews, Ganchev, Kuyper, Lempp, Miller and A. Soskova

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and Sofia University Science Fund project 81/2015.

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

• The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \le d_e(B)$ iff $A \le_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{ x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B) \}.$$

- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \le d_e(B)$ iff $A \le_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \le d_e(B)$ iff $A \le_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{ \langle e, x \rangle \mid x \in W_e(A) \}.$

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Definition

• A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.
- **(**) If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α .

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.
- **(**) If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α .
- **②** The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_X .

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.
- **(**) If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α .
- The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_X .
- $L_X \leq_e \overline{L_X}.$

Definition

A set A is *co-total* if $A \leq_e \overline{A}$. A degree **a** is co-total if it contains a co-total set.

Definition

A set A is *co-total* if $A \leq_e \overline{A}$. A degree **a** is co-total if it contains a co-total set.

Definition (Solon)

A set A is graph co-total if $A \equiv_e \overline{G_f}$ for some total function f. A degree **a** is graph co-total co-total if it contains a graph co-total set.

Definition

A set A is *co-total* if $A \leq_e \overline{A}$. A degree **a** is co-total if it contains a co-total set.

Definition (Solon)

A set A is graph co-total if $A \equiv_e \overline{G_f}$ for some total function f. A degree **a** is graph co-total co-total if it contains a graph co-total set.

Definition (Solon)

A set A is Solon co-total if there is a set $A \equiv_e B$, such that \overline{B} is total.

Definition

A set A is *co-total* if $A \leq_e \overline{A}$. A degree **a** is co-total if it contains a co-total set.

Definition (Solon)

A set A is graph co-total if $A \equiv_e \overline{G_f}$ for some total function f. A degree **a** is graph co-total co-total if it contains a graph co-total set.

Definition (Solon)

A set A is Solon co-total if there is a set $A \equiv_e B$, such that \overline{B} is total.

total \Rightarrow graph co-total \Rightarrow co-total \Rightarrow Solon co-total.

Definition

The degrees below \emptyset' are called the Σ_2^0 enumeration degrees.

Definition

The degrees below \emptyset' are called the Σ_2^0 enumeration degrees.

Proposition

 Σ_2^0 e-degrees are co-total.

Definition

The degrees below \emptyset' are called the Σ_2^0 enumeration degrees.

Proposition

 Σ_2^0 e-degrees are co-total.

Proposition

 Σ_2^0 e-degrees are graph co-total.

Definition

The degrees below \emptyset' are called the Σ_2^0 enumeration degrees.

Proposition

 Σ_2^0 e-degrees are co-total.

Proposition

 Σ_2^0 e-degrees are graph co-total.

Corollary

Graph co-total does not imply total.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition

If A and B are not c.e. then:

• If $C \leq_e A$ then $\{C, B\}$ are a \mathcal{K} -pair.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition

If A and B are not c.e. then:

- If $C \leq_e A$ then $\{C, B\}$ are a \mathcal{K} -pair.
- $\ 2 \ A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition

If A and B are not c.e. then:

- If $C \leq_e A$ then $\{C, B\}$ are a \mathcal{K} -pair.
- $\ \, @ \ \, A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$
- $\ \, {\bf S} \ \, \underline{B} \leq_e \overline{A} \ \, \text{and} \ \, \overline{B} \leq_e \emptyset' \oplus A.$

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition

If A and B are not c.e. then:

• If
$$C \leq_e A$$
 then $\{C, B\}$ are a \mathcal{K} -pair.

$$A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$$

 $\ \, {\bf S} \ \, \underline{B} \leq_e \overline{A} \ \, \text{and} \ \, \overline{B} \leq_e \emptyset' \oplus A.$

Proposition

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \oplus B$ is co-total.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition

If A and B are not c.e. then:

• If
$$C \leq_e A$$
 then $\{C, B\}$ are a \mathcal{K} -pair.

$$A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$$

Proposition

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \oplus B$ is co-total.

Proof: $A \oplus B \leq_e \overline{B} \oplus \overline{A} \equiv_e \overline{A \oplus B}$.

Examples of co-total enumeration degrees: Continuous degrees

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\})$, where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Examples of co-total enumeration degrees: Continuous degrees

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\})$, where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Proposition

Continuous degrees are co-total.

Proof: On the board.

Unique correct axiom

Theorem

An e-degree **a** is graph co-total if and only if **a** contains a co-total set A, such that for some enumeration operator Γ , we have that $A = \Gamma(\overline{A})$ and for every $n \in A$ there is a unique axiom $\langle n, D \rangle \in \Gamma$ such that $D \subseteq A$.

Definition

Let $G = (\mathbb{N}, E)$ be a graph. $S \subseteq \mathbb{N}$ is an *exact cover* for G if:

- If $i \neq j$ are in S then $(i, j) \notin E$.
- **②** For every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in S$.

Definition

Let $G = (\mathbb{N}, E)$ be a graph. $S \subseteq \mathbb{N}$ is an *exact cover* for G if:

- If $i \neq j$ are in S then $(i, j) \notin E$.
- **2** For every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in S$.

Note that $\overline{S} \leq_e S$, as $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Definition

Let $G = (\mathbb{N}, E)$ be a graph. $S \subseteq \mathbb{N}$ is an *exact cover* for G if:

- If $i \neq j$ are in S then $(i, j) \notin E$.
- **②** For every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in S$.

Note that $\overline{S} \leq_e S$, as $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Theorem

There is an exact cover S of $\omega^{<\omega}$, such that \overline{S} does not have graph co-total degree.

Proof: Infinite injury relative to \emptyset' .

Definition

Let $G = (\mathbb{N}, E)$ be a graph. $S \subseteq \mathbb{N}$ is an *exact cover* for G if:

- If $i \neq j$ are in S then $(i, j) \notin E$.
- **②** For every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in S$.

Note that $\overline{S} \leq_e S$, as $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Theorem

There is an exact cover S of $\omega^{<\omega}$, such that \overline{S} does not have graph co-total degree.

Proof: Infinite injury relative to \emptyset' .

Corollary

Co-total does not imply graph co-total.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of A is the set $A^{\circ} = \overline{K_A}$. The skip of a degree **a** is $\mathbf{a}^{\circ} = d_e(A^{\circ})$.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of A is the set $A^{\circ} = \overline{K_A}$. The skip of a degree **a** is $\mathbf{a}^{\circ} = d_e(A^{\circ})$.

Proposition

A degree **a** is co-total if and only if $\mathbf{a}^\circ = \mathbf{a}'$.

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $I S \leq_e \overline{A}.$
- $\ \ \, \overline{K_A} \leq_e S.$

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $S \leq_e \overline{A}.$
- $\ \, \textcircled{K}_A \leq_e S.$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $S \leq_e \overline{A}.$
- $\ \, \textcircled{K_A} \leq_e S.$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $S \leq_e \overline{A}.$
- $\ \, \textcircled{K_A} \leq_e S.$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then $A = \hat{A} \cup \{ \langle n, s \rangle \mid n \in \overline{S} \}.$

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $S \leq_e \overline{A}.$
- $\ \ \, \overline{K_A} \leq_e S.$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then
$$A = \hat{A} \cup \{ \langle n, s \rangle \mid n \in \overline{S} \}.$$

Note! $\overline{S} \leq_e A \oplus \emptyset'$. So if we start out with an S that is not total as a set (such as K_U) then A is not co-total.

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^\circ \equiv_e S$.

Proof: We build A so that:

- $S \leq_e \overline{A}.$
- $\ \ \, \overline{K_A} \leq_e S.$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then
$$A = \hat{A} \cup \{ \langle n, s \rangle \mid n \in \overline{S} \}.$$

Note! $\overline{S} \leq_e A \oplus \emptyset'$. So if we start out with an S that is not total as a set (such as K_U) then A is not co-total.

Corollary

Solon co-total does not imply co-total.

Proposition If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

Proposition If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

• If A is Σ_2^0 and nonlow then $\{L_{K_A}, R_{K_A}\}$ is a nontrivial \mathcal{K} -pair.

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

• If A is Σ_2^0 and nonlow then $\{L_{K_A}, R_{K_A}\}$ is a nontrivial \mathcal{K} -pair. Furthermore $R_{K_A}^{(n)} \equiv_e A^{(n)}$ and $R_{K_A}^{(n)} = \emptyset^{(n)}$.

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

- If A is Σ_2^0 and nonlow then $\{L_{K_A}, R_{K_A}\}$ is a nontrivial \mathcal{K} -pair. Furthermore $R_{K_A}^{(n)} \equiv_e A^{(n)}$ and $R_{K_A}^{(\overline{n})} = \emptyset^{(n)}$.
- If A and B are non-arithmetical then their skips form a double helix.

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

- If A is Σ_2^0 and nonlow then $\{L_{K_A}, R_{K_A}\}$ is a nontrivial \mathcal{K} -pair. Furthermore $R_{K_A}^{(n)} \equiv_e A^{(n)}$ and $R_{K_A}^{(\overline{n})} = \emptyset^{(n)}$.
- If A and B are non-arithmetical then their skips form a double helix.

Proposition

If G is generic relative to a total set X then $(G \oplus X)^{\circ} = \overline{G} \oplus X'$.

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\circ} \equiv_{e} B \oplus \emptyset'$.

- If A is Σ_2^0 and nonlow then $\{L_{K_A}, R_{K_A}\}$ is a nontrivial \mathcal{K} -pair. Furthermore $R_{K_A}^{(n)} \equiv_e A^{(n)}$ and $R_{K_A}^{(\overline{n})} = \emptyset^{(n)}$.
- If A and B are non-arithmetical then their skips form a double helix.

Proposition

If G is generic relative to a total set X then $(G \oplus X)^{\circ} = \overline{G} \oplus X'$.

• If G is arithmetically generic then the skips of G and \overline{G} form a double helix.

$$A \subseteq B \Rightarrow K_A \subseteq K_B$$

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B}$$

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}}$$

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}} \Rightarrow$$
$$\overline{K_{\overline{K_A}}} \subseteq \overline{K_{\overline{K_B}}}$$

The enumeration operator is monotone: if $A \subseteq B$ then $\Gamma(A) \subseteq \Gamma(B)$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}} \Rightarrow$$

$$\overline{K_{\overline{K_A}}} \subseteq \overline{K_{\overline{K_B}}}$$

By Knaster-Tarski's fixed point theorem:

Proposition

There are sets A and B such that $B = A^{\circ}$ and $A = B^{\circ}$.

The enumeration operator is monotone: if $A \subseteq B$ then $\Gamma(A) \subseteq \Gamma(B)$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}} \Rightarrow$$

$$\overline{K_{\overline{K_A}}} \subseteq \overline{K_{\overline{K_B}}}$$

By Knaster-Tarski's fixed point theorem:

Proposition

There are sets A and B such that $B = A^{\circ}$ and $A = B^{\circ}$. The sets A and B are above all hyperarithmetical sets.

Theorem

If $S \ge_e X'$ is $\Pi_2^0(X')$ then there is a non-total $\Pi_1^0(X')$ set A > X such that $A^\circ \equiv_e S$.

Proof: Infinite injury relative to X'.

Theorem

If $S \ge_e X'$ is $\Pi_2^0(X')$ then there is a non-total $\Pi_1^0(X')$ set A > X such that $A^\circ \equiv_e S$.

Proof: Infinite injury relative to X'.

Let P^X be a computable in X listing of all $\Pi_2^0(X)$ and above X sets.

Theorem

If $S \ge_e X'$ is $\Pi_2^0(X')$ then there is a non-total $\Pi_1^0(X')$ set A > X such that $A^\circ \equiv_e S$.

Proof: Infinite injury relative to X'.

Let P^X be a computable in X listing of all $\Pi_2^0(X)$ and above X sets.

We have a computable function f such that $(P_{f(e)}^X)^\circ \equiv_e P_e^{X'}$, $P_{f(e)}^X > X$ and $P_{f(e)}^X$ is not total.

Theorem

If $S \ge_e X'$ is $\Pi_2^0(X')$ then there is a non-total $\Pi_1^0(X')$ set A > X such that $A^\circ \equiv_e S$.

Proof: Infinite injury relative to X'.

Let P^X be a computable in X listing of all $\Pi^0_2(X)$ and above X sets.

We have a computable function f such that $(P_{f(e)}^X)^\circ \equiv_e P_e^{X'}$, $P_{f(e)}^X > X$ and $P_{f(e)}^X$ is not total.

Let e be a fixed point such that $P_e^X = P_{f(e)}^X$ and consider the sequence

$$P_e^{\emptyset}, P_e^{\emptyset'}, P_e^{\emptyset''}, \dots$$

Corollary

There is an arithmetical set A, such that for every n, $A^{(n)}$ is non-total.