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Understanding the structure of the Turing degrees

1 Understanding the expressive power of the theory of the Turing degrees.

Simpson (1977?) proved: The theory of DT is computably isomorphic to
the theory of second order arithmetic

2 Understanding the definable relations in the structure of the Turing
degrees.

Slaman and Woodin (1995) conjectured: The definable relations in DT

are the ones induced by degree invariant relations on sets definable in
second order arithmetic.

3 Understanding the automorphism group of the Turing degrees.

Slaman and Woodin (1995) conjectured: There are no non-trivial
automorphisms of DT .
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Automorphism bases

Definition
Let A be a structure. A set B ⊆ |A| is an automorphism base for A if
whenever f and g are automorphisms of A such that (∀x ∈ B)(f (x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (∀x ∈ B)(f (x) = x) then f is
the identity.

Theorem (Slaman and Woodin)

There is an element g ≤ 0(5) such that {g} is an automorphism base for the
structure of the Turing degrees DT .

Aut(DT) is countable and every member has an arithmetically definable
presentation.

Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.
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Local structures of Turing degrees

Definition
R is the substructure of the computably enumerable degrees.

DT(≤ 0′) is the substructure of all degrees that are bounded by 0′, the ∆0
2

Turing degrees.

1 Shore (1981) proved that the theory of DT(≤ 0′) is computably
isomorphic to the theory of first order arithmetic.

2 Harrington and Slaman proved that the theory ofR is computably
isomorphic to the theory of first order arithmetic.
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The local coding theorem

Definition
A set of degrees Z contained in DT(≤ 0′) is uniformly low if it is bounded by
a low degree and there is a sequence {Zi}i<ω, representing the degrees in Z ,
and a computable function f such that {f (i)}∅′ is the Turing jump of

⊕
j<i Zj.

Example: If
⊕

i<ω Ai is low then A = {dT(Ai) | i < ω} is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of DT(≤ 0′) then Z is definable from finitely
many parameters in DT(≤ 0′).
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Applications of the coding theorem

Using parameters we can code a
model of arithmeticM =
(NM, 0M, sM,+M,×M,≤M).

1 The set NM is definable with
parameters ~p.

2 The graphs of s, +, × and the
relation ≤ are definable with
parameters ~p.

3 N |= ϕ iff DT(≤ 0′) |= ϕT(~p)
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Applications of the coding theorem

If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).
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An indexing of the c.e. degrees
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The Goal

The Goal
Extend this result to an indexing ϕ
of the ∆0

2 Turing degrees.

We will call e an index for a ∆0
2 set

X if {e}∅′ is the characteristic
function of X.

Idea: We can use a further
uniformly low set
Z = {dT(Zi) | i < ω}.
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Biinterpretability with parameters

Theorem (Slaman, S)
There are finitely many ∆0

2 parameters that code a model of arithmeticM
and an indexing of the ∆0

2 degrees.

Proof flavour:
1 A ∆0

2 degree can be defined from four low degrees using meet and join.
2 There exists a uniformly low set of Turing degrees Z , such that every

low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z .

If x, y ≤ 0′, x′ = 0′ and y � x then there are gi ≤ 0′, c.e. degrees ai and
∆0

2 degrees ci,bi ∈ Z for i = 1, 2 such that:
1 gi is the least element below ai which joins bi above ci.
2 x ≤ g1 ∨ g2.
3 y � g1 ∨ g2.
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Applications

Theorem (Slaman, S)
1 DT(≤ 0′) has a finite automorphism base.

2 The automorphism group of DT(≤ 0′) is countable.
3 Every automorphism of DT(≤ 0′) has an arithmetic presentation.
4 Every relation R ⊆ DT(≤ 0′) induced by an arithmetically definable

degree invariant relation is definable with finitely many ∆0
2 parameters.

5 DT(≤ 0′) is rigid if and only if DT(≤ 0′) is biinterpretable with first
order arithmetic.
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Enumeration reducibility

Reducibility Oracle set B Reduced set A

A ≤T B Complete information Complete information

A c.e. in B Complete information Positive information

A ≤e B Positive information Positive information

Definition (Friedberg, Rogers (59))
A ≤e B if there is a c.e. set W, such that

A = W(B) = {x | ∃D(〈x,D〉 ∈ W & D ⊆ B)} .

The structure of the enumeration degrees De is an upper semi-lattice with
least element and jump operation.
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Understanding the structure of the enumeration degrees

Theorem (Slaman, Woodin)
The first order theory of De is computably isomorphic to the theory of Second
order arithmetic.

Theorem (S)
The automorphism group of De has the same properties as the automorphism
group of DT .
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What connects DT and De

Proposition

A ≤T B⇔ A⊕ A is c.e. in B⇔ A⊕ A ≤e B⊕ B.

A set A is total if A ≡e A⊕ A. An enumeration degree is total if it contains a
total set. The set of total degrees is denoted by T OT .

Example: If f is a total function then Gf is a total set. The enumeration jump
of very set is total.

The embedding ι : DT → De, defined by ι(dT(A)) = de(A⊕ A), preserves the
order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ , 0T) ∼= (T OT ,≤e,∨,′ , 0e) ⊆ (De,≤e,∨,′ , 0e)

Question (Rogers (67))
Is the set of total enumeration degrees first order definable in De?
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Semi-computable sets
Definition (Jockusch)
A is semi-computable if there is a total computable function sA, such that
sA(x, y) ∈ {x, y} and if {x, y} ∩ A 6= ∅ then sA(x, y) ∈ A.

Example:
A left cut in a computable linear ordering is a semi-computable set.
In particular for any set A consider LA = {σ ∈ 2<ω | σ ≤ A}.
Every nonzero Turing degree contains a semi-computable set that is not
c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-computable set then for every X:

(de(X) ∨ de(A)) ∧ (de(X) ∨ de(A)) = de(X).

If X is not computable then there is a semi-computable set A with
de(X ⊕ X) = de(A) ∨ de(A).
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Kalimullin pairs

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W, such that
A× B ⊆ W and A× B ⊆ W.

Example:
1 A trivial example is {A,U}, where U is c.e: W = N× U.
2 If A is a semi-computable set, then {A,A} is a K-pair:

W = {(m, n) | sA(m, n) = m}.

Theorem (Kalimullin)
A pair of sets A,B is a K-pair if and only if their enumeration degrees a and b
satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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Definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper bound of a
triple a,b, c, such that K(a,b), K(b, c) and K(c, a).

Corollary (Kalimullin)
1 The enumeration jump is first order definable in De.
2 The set of total enumeration degrees above 0′e is first order definable in
De.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchev, S)
The class of K-pairs below 0′e is first order definable in De(≤ 0′e). . .

Theorem (Cai, Lempp, Miller, S)
. . . by the same formula as in De.

Theorem (Ganchev, S)
1 The theory of De(≤ 0′e) is computably isomorphic to the theory of first

order arithmetic.
2 The low enumeration degrees are first order definable in De(≤ 0′e).
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Maximal K-pairs

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Example: A semi-computable pair is a maximal K-pair.
Total enumeration degrees are joins of maximal K-pairs.

Theorem (Ganchev, S)
If {A,B} is a nontrivial K-pair in De(≤ 0′e) then there is a semi-computable
set C, such that A ≤e C and B ≤e C.

Corollary
In De(≤ 0′e) a nonzero degree is total if and only if it is the least upper bound
of a maximal K-pair.
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Defining total enumeration degrees in De

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable set C,
such that A ≤e C and B ≤e C.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets {A,B} forms a
nontrivial K-pair.

1 The countable component: we use W to construct an effective labeling of
the computable linear ordering Q.

2 The uncountable component: C will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set of total enumeration degrees is first order definable in De.
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The relation c.e. in

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in some
X ∈ x.

Recall that ι is the standard embedding of DT into De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set {〈ι(a), ι(x)〉 | a is c.e. in x} is first order definable in De.

1 Ganchev, S had observed that if T OT is definable by maximal K-pairs
then the image of the relation ‘c.e. in’ is definable for non-c.e. degrees.

2 A result by Cai and Shore allowed us to complete this definition.
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The total degrees as an automorphism base

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees.

If DT is rigid then De is rigid.

The automorphism analysis for the enumeration degrees follows.

The total degrees below 0(5)e are an automorphism base of De.
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Towards a better automorphism base of De

Theorem (Slaman, Woodin)
There are total ∆0

2 parameters
that code a model of arithmetic
M and an indexing of the
image of the c.e. Turing
degrees.

Idea: In the wider context of
De we can reach more
elements: non-total elements.
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Towards a better automorphism base of De

Theorem (Slaman, S)
If ~p defines a model of
arithmeticM and an indexing
of the image of the c.e. Turing
degrees then ~p defines an
indexing of the total ∆0

2
enumeration degrees.

Proof flavour:
The image of the c.e. degrees
→ The low 3-c.e. e-degrees
→ The low ∆0

2 e-degrees
→ The total ∆0

2 e-degrees

Mariya I. Soskova (SU and UC Berkeley) Definability, automorphisms and e-degrees 23 / 1



Moving outside the local structure

1 Extend to an indexing of all
total degrees that are “c.e. in ”
and above some total ∆0

2
enumeration degree.

I The jump is definable.

I The image of the relation
“c.e. in ” is definable.

2 Relativizing the previous
theorem extend to an
indexing of

⋃
x≤0′ ι([x, x

′]).
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Moving outside the local structure

3 Extend to an indexing of all
total degrees below 0′′e .
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And now we iterate
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And now we iterate

Theorem (Slaman, S)
Let n be a natural number and ~p be parameters that index the image of the c.e.
Turing degrees. There is a definable from ~p indexing of the total ∆0

n+1 degrees.
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Consequences

Theorem (Slaman, S)
1 There is a finite automorphism base for the enumeration degrees

consisting of total ∆0
2 enumeration degrees.

2 The image of the c.e. Turing degrees is an automorphism base for De.
3 If the structure of the c.e. Turing degrees is rigid then so is the structure

of the enumeration degrees.

Question
1 Can every automorphism of the Turing degrees be extended to an

automorphism of the enumeration degrees?
2 Can we extend automorphisms of the c.e. degrees to automorphisms of
DT or of De?
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