Definability, automorphisms and enumeration degrees

Mariya I. Soskova¹

Sofia University and UC Berkeley

Logic Colloquium 2014

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), BNSF Grant No. DMU 03/07/ 12.12.2011 and Sofia University Science Fund project 97/2014. = ∽ ⊲ <

• Understanding the expressive power of the theory of the Turing degrees.

Understanding the definable relations in the structure of the Turing degrees.

• Understanding the automorphism group of the Turing degrees.

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of D_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.

• Understanding the automorphism group of the Turing degrees.

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of D_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: The definable relations in D_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Understanding the automorphism group of the Turing degrees.

イロト イロト イヨト イヨト

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: The definable relations in D_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Understanding the automorphism group of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: There are no non-trivial automorphisms of \mathcal{D}_T .

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Definition

 $\mathcal R$ is the substructure of the computably enumerable degrees.

Definition

 $\mathcal R$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Definition

 $\mathcal R$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

• Shore (1981) proved that the theory of $\mathcal{D}_T (\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.

Definition

 $\mathcal R$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

- Shore (1981) proved that the theory of $\mathcal{D}_T(\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.
- Solution \mathcal{R} Harrington and Slaman proved that the theory of \mathcal{R} is computably isomorphic to the theory of first order arithmetic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

Example: If $\bigoplus_{i < \omega} A_i$ is low then $\mathcal{A} = \{ d_T(A_i) \mid i < \omega \}$ is uniformly low.

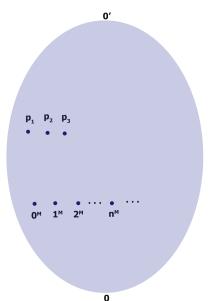
Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

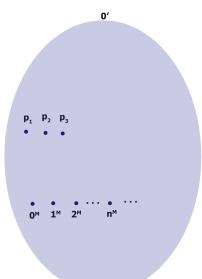
Example: If $\bigoplus_{i < \omega} A_i$ is low then $\mathcal{A} = \{ d_T(A_i) \mid i < \omega \}$ is uniformly low.

Theorem (Slaman and Woodin)

If Z is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then Z is definable from finitely many parameters in $\mathcal{D}_T(\leq \mathbf{0}')$.

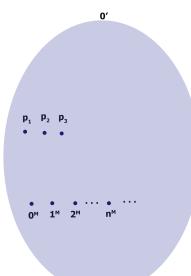


Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$



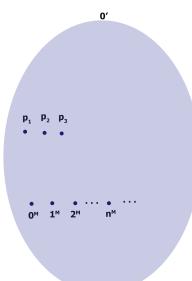
Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

• The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.



Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- Provide a state of a state of



Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- Provide a straight of s, +, × and the relation ≤ are definable with parameters p.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

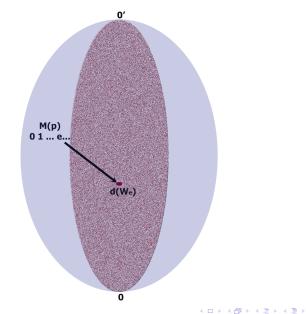
If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T (\leq \mathbf{0}')$ such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

An indexing of the c.e. degrees



The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

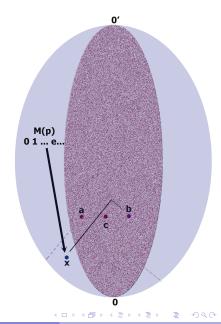
We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

> < E > < E >

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

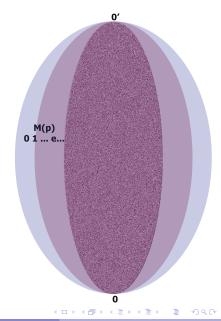
We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.



The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

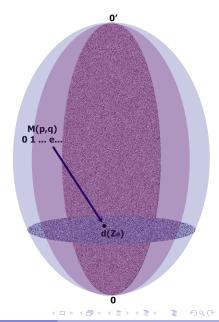


The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{ d_T(Z_i) \mid i < \omega \}.$

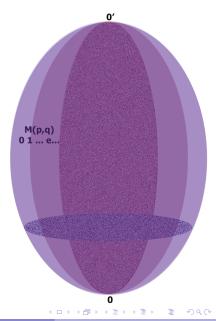


The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{ d_T(Z_i) \mid i < \omega \}.$



Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

• A Δ_2^0 degree can be defined from four low degrees using meet and join.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

- A Δ_2^0 degree can be defined from four low degrees using meet and join.
- There exists a uniformly low set of Turing degrees Z, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

- A Δ_2^0 degree can be defined from four low degrees using meet and join.
- There exists a uniformly low set of Turing degrees Z, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.

If $\mathbf{x}, \mathbf{y} \leq \mathbf{0}', \mathbf{x}' = \mathbf{0}'$ and $\mathbf{y} \leq \mathbf{x}$ then there are $\mathbf{g}_i \leq \mathbf{0}'$, c.e. degrees \mathbf{a}_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i \in \mathcal{Z}$ for i = 1, 2 such that:

- **9** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
- $2 x \leq \mathbf{g}_1 \vee \mathbf{g}_2.$

Applications

Theorem (Slaman, S)

• $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Applications

Theorem (Slaman, S)

- $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.
- **2** The automorphism group of $\mathcal{D}_T(\leq \mathbf{0}')$ is countable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications

Theorem (Slaman, S)

- $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.
- **2** The automorphism group of $\mathcal{D}_T (\leq \mathbf{0}')$ is countable.
- Solution Every automorphism of $\mathcal{D}_T(\leq \mathbf{0}')$ has an arithmetic presentation.

Applications

Theorem (Slaman, S)

- $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.
- **2** The automorphism group of $\mathcal{D}_T (\leq \mathbf{0}')$ is countable.
- **③** Every automorphism of $\mathcal{D}_T(\leq \mathbf{0}')$ has an arithmetic presentation.
- Every relation $R \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ_2^0 parameters.

Applications

Theorem (Slaman, S)

- $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.
- **2** The automorphism group of $\mathcal{D}_T (\leq \mathbf{0}')$ is countable.
- **③** Every automorphism of $\mathcal{D}_T(\leq \mathbf{0}')$ has an arithmetic presentation.
- Every relation $R \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ_2^0 parameters.
- $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reducibility	Oracle set <i>B</i>	Reduced set A

2

Reducibility	Oracle set <i>B</i>	Reduced set A
$A \leq_T B$	Complete information	Complete information

2

イロト イポト イヨト イヨト

Reducibility	Oracle set <i>B</i>	Reduced set A
$A \leq_T B$	Complete information	Complete information
A c.e. in B	Complete information	Positive information

2

イロト イポト イヨト イヨト

Reducibility	Oracle set <i>B</i>	Reduced set A
$A \leq_T B$	Complete information	Complete information
A c.e. in B	Complete information	Positive information
$A \leq_e B$	Positive information	Positive information

2

イロト イポト イヨト イヨト

Reducibility	Oracle set <i>B</i>	Reduced set A
$A \leq_T B$	Complete information	Complete information
A c.e. in B	Complete information	Positive information
$A \leq_e B$	Positive information	Positive information

Definition (Friedberg, Rogers (59))

 $A \leq_e B$ if there is a c.e. set W, such that

 $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$

The structure of the enumeration degrees \mathcal{D}_e is an upper semi-lattice with least element and jump operation.

Understanding the structure of the enumeration degrees

Theorem (Slaman, Woodin)

The first order theory of D_e is computably isomorphic to the theory of Second order arithmetic.

Understanding the structure of the enumeration degrees

Theorem (Slaman, Woodin)

The first order theory of D_e is computably isomorphic to the theory of Second order arithmetic.

Theorem (S)

The automorphism group of \mathcal{D}_e has the same properties as the automorphism group of \mathcal{D}_T .

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Example: If f is a total function then G_f is a total set.

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Example: If f is a total function then G_f is a total set. The enumeration jump of very set is total.

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Example: If f is a total function then G_f is a total set. The enumeration jump of very set is total.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Example: If f is a total function then G_f is a total set. The enumeration jump of very set is total.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $(\mathcal{D}_T, \leq_T, \lor, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', \mathbf{0}_e)$

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

Example: If f is a total function then G_f is a total set. The enumeration jump of very set is total.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $(\mathcal{D}_T, \leq_T, \lor, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', \mathbf{0}_e)$

Question (Rogers (67))

Is the set of total enumeration degrees first order definable in \mathcal{D}_e ?

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

• A *left cut* in a computable linear ordering is a semi-computable set.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set *A* consider $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \le A \}.$

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set *A* consider $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \le A \}.$
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set *A* consider $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \le A \}.$
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

イロト イタト イヨト イヨト

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set *A* consider $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \le A \}.$
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

• If X is not computable then there is a semi-computable set A with $d_e(X \oplus \overline{X}) = d_e(A) \lor d_e(\overline{A}).$

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

• A trivial example is $\{A, U\}$, where U is c.e. $W = \mathbb{N} \times U$.

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

- A trivial example is $\{A, U\}$, where U is c.e. $W = \mathbb{N} \times U$.
- If A is a semi-computable set, then $\{A,\overline{A}\}$ is a \mathcal{K} -pair: $W = \{(m,n) \mid s_A(m,n) = m\}.$

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

- A trivial example is $\{A, U\}$, where U is c.e: $W = \mathbb{N} \times U$.
- If A is a semi-computable set, then $\{A,\overline{A}\}$ is a \mathcal{K} -pair: $W = \{(m,n) \mid s_A(m,n) = m\}.$

Theorem (Kalimullin)

A pair of sets A, B is a \mathcal{K} -pair if and only if their enumeration degrees \mathbf{a} and \mathbf{b} satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_e)((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_{e}$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_{e}$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

① The enumeration jump is first order definable in \mathcal{D}_e .

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_{e}$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

- **①** The enumeration jump is first order definable in \mathcal{D}_e .
- **②** The set of total enumeration degrees above $\mathbf{0}'_e$ is first order definable in \mathcal{D}_e .

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Theorem (Cai, Lempp, Miller, S) ... by the same formula as in \mathcal{D}_e .

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Theorem (Cai, Lempp, Miller, S)

 \dots by the same formula as in \mathcal{D}_e .

Theorem (Ganchev, S)

- The theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the theory of first order arithmetic.
- **2** The low enumeration degrees are first order definable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximal \mathcal{K} -pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Maximal \mathcal{K} -pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal \mathcal{K} -pair. Total enumeration degrees are joins of maximal \mathcal{K} -pairs.

Maximal \mathcal{K} -pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal \mathcal{K} -pair. Total enumeration degrees are joins of maximal \mathcal{K} -pairs.

Theorem (Ganchev, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Maximal *K*-pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal \mathcal{K} -pair. Total enumeration degrees are joins of maximal \mathcal{K} -pairs.

Theorem (Ganchev, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Corollary

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a nonzero degree is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let *W* be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial *K*-pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let *W* be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial *K*-pair.

 The countable component: we use W to construct an effective labeling of the computable linear ordering Q.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let *W* be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial *K*-pair.

- The countable component: we use W to construct an effective labeling of the computable linear ordering Q.
- **②** The uncountable component: *C* will be a left cut in this ordering.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let *W* be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial *K*-pair.

- The countable component: we use W to construct an effective labeling of the computable linear ordering Q.
- ② The uncountable component: *C* will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in \mathcal{D}_e .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The relation c.e. in

Definition

A Turing degree **a** is *c.e.* in a Turing degree **x** if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

The relation c.e. in

Definition

A Turing degree **a** is *c.e.* in a Turing degree **x** if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

The relation c.e. in

Definition

A Turing degree **a** is *c.e.* in a Turing degree **x** if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set $\{\langle \iota(\mathbf{a}), \iota(\mathbf{x}) \rangle \mid \mathbf{a} \text{ is c.e. in } \mathbf{x}\}$ is first order definable in \mathcal{D}_{e} .

- Ganchev, S had observed that if TOT is definable by maximal \mathcal{K} -pairs then the image of the relation 'c.e. in' is definable for non-c.e. degrees.
- A result by Cai and Shore allowed us to complete this definition.

くぼう くほう くほう

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

• If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.

< (1) > < (2) > <

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

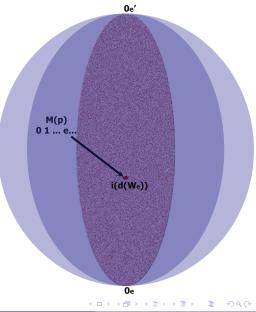
The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_{e}^{(5)}$ are an automorphism base of \mathcal{D}_{e} .

Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin)

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

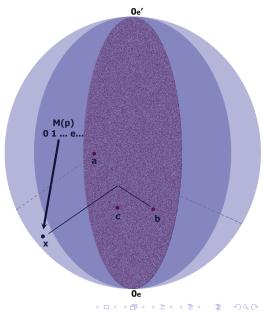


Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin)

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

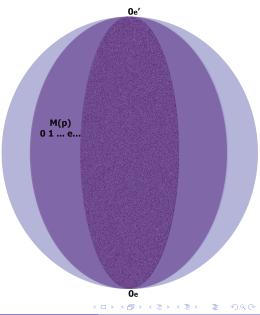
Idea: In the wider context of D_e we can reach more elements: non-total elements.



Towards a better automorphism base of \mathcal{D}_e

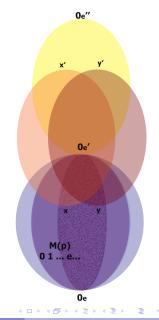
Theorem (Slaman, S) If \vec{p} defines a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ_2^0 enumeration degrees.

 $\begin{array}{l} \textit{Proof flavour:} \\ \text{The image of the c.e. degrees} \\ \rightarrow \text{The low 3-c.e. e-degrees} \\ \rightarrow \text{The low } \Delta_2^0 \text{ e-degrees} \\ \rightarrow \text{The total } \Delta_2^0 \text{ e-degrees} \end{array}$



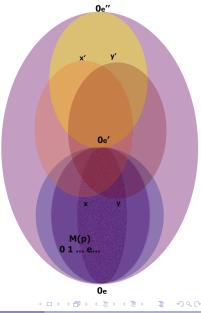
Moving outside the local structure

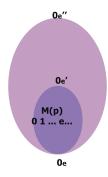
- Extend to an indexing of all total degrees that are "c.e. in " and above some total Δ⁰₂ enumeration degree.
 - ► The jump is definable.
 - The image of the relation "c.e. in" is definable.
- Pelativizing the previous theorem extend to an indexing of U_{x≤0}, ι([x, x']).



Moving outside the local structure

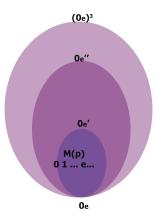
Solution Extend to an indexing of all total degrees below $\mathbf{0}_{e}^{\prime\prime}$.





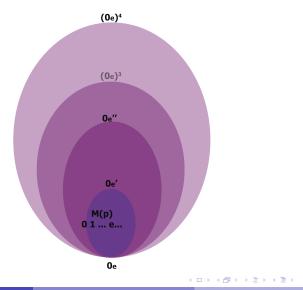
2

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

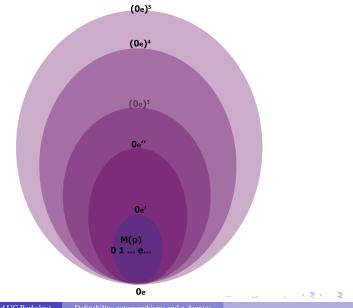


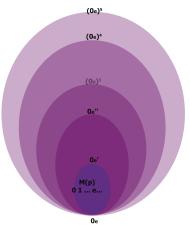
2

イロト イヨト イヨト イヨト



2





Theorem (Slaman, S)

Let n be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 degrees.

イロト イポト イヨト イヨト

Theorem (Slaman, S)

 There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees.

∃ ► < ∃ ►</p>

Theorem (Slaman, S)

- There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees.
- **2** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .

Theorem (Slaman, S)

- There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees.
- **2** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Theorem (Slaman, S)

- There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees.
- **(a)** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?

Theorem (Slaman, S)

- There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees.
- **(2)** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_{e} .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

- Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?
- Can we extend automorphisms of the c.e. degrees to automorphisms of D_T or of D_e?

• □ ▶ • • □ ▶ • • □ ▶ • •

2