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1. INTRODUCTION

In [2] Soskov introduces the notion of regular enumerations. Using them he
proves the following jump inversion theorem:
Theorem (Soskov) Let k >n >0 and By, ..., By be arbitrary sets of natural
numbers. Let A C N and Q be a total set such that P(By,...,Br) <. Q and
AT <. Q. Suppose also that A £, P(Bo, ..., By). Then there exists a total set
F having the following properties:

(i) For alli < k, B; € ©f,4;

(i) For alli 1 <i<k, FO) =, F&P(By,...,Bi_1);

(iii) F*) =, Q;

(iv) A £, F(,

Here P(By,...) is the polynomial set obtained from By, Bi,... as defined
in Section 2.

In [1] Soskov and Baleva generalize the notion of regular enumeration and
obtain the following result for the infinite case:
Theorem (Soskov, Baleva) Let {B, }a<¢ be a sequence of sets of natural num-
bers. Let also {A,}y<¢ be a sequence of sets of natural numbers, such that for



all v < ¢ is true, that Ay L. P. Finally, let Q be a total set such that P <. Q
and ®7<C A?YL <e Q. Then there is a total set F' such that:

(1) For all y < ¢ is true that B, <. FO) uniformly in ~;

(2) For ally < ¢, ify=p+1 then FO) =, F @ P uniformly in ~;

(8) For all limit v < C is true that F) =, F @ P~ uniformly in ;

(1) F© =, Q;
(5) For all y < C is true that A, £, FO).

In this paper we will prove that this result holds also if we want the target
set F' to be partial, i.e., the degree d.(F') to be partial. Namely we will prove
the following theorem:

Theorem 1.1 Let {B,}a<c be a sequence of sets of natural numbers. Let also
{A,}y<c be a sequence of sets of natural numbers, such that for all v < ¢
is true that A, £. Py. Finally let Q be a total set such that Pr <. Q and
D, AT <. Q. Then there exists a set F such that d.(F) is partial and:

(1) For all v < C is true that B, <, F) uniformly in ~;

(2) For ally < ¢, if y=p+1 then F) =, Ft @ Pg uniformly in y;

(8) For all limit ordinals v < C is true that FO) =, F* @ P~ uniformly in
v

(4) F© =. Q;

(5) For all y < C is true that A, £, FO);

(6) F is quasiminimal over By, i.e. for all total sets X if X <. F then
X <. By.

2. PRELIMINARIES

Let Wy, ..., W;, ... be the Godel enumeration of the r.e. sets. We define the
enumeration operator I'; for arbitrary set of natural numbers by I';(A) = {z |
(Hz,u) € W;)(D,, C A)}, where D, is the finite set with canonical code u. We
define the relation <. over the sets of natural numbers by

A<, B < 3Ji(A=Ty(B)).

The relation <, is reflexive and transitive and defines a equivalence relation =..
We call the equivalence classes of =, enumeration degrees.

The composition of two enumeration operator is also enumeration operator.
Beside this the index of the resulting operator is obtained uniformly from the
indexes of the other ones. This means that there exists a recursive function ¢
such that I';(I';(A)) = T'¢(;,5)(A) for arbitrary set A.

We define the "join" operator @ by A®B = {2z | x € A}U{2x+1 |z € B}.
We set AT = A®A. We say that a set A of natural numbers is total iff A =, A*.



We say that the enumeration degree a is total iff there is a total set A € A.
Otherwise we say that the enumeration degree is partial.

We define the enumeration jump to be A’ = L, where Ly = {(z,i) | = €
T';(A)}. Using ordinal notation we can define the infinite enumeration jump.
More precisely:

Let 1 be a recursive ordinal and let us fix an ordinal notation e € O for 7.
For every ordinal o < 7 we will use the corresponding notation which is < then
e (for an introduction on ordinal notations see [3]). Then not distinguishing the
ordinal from its notation we define the « jump for o < 1 by means of transfinite
induction:

(1) A® =4
(2) If a = B+ 1 then A(®) = (AP)Y
(3) If a = lim (a(p)) then A = {(p,2) | & € AP},

Naturally the definition depends from the choice of the ordinal notation of
a. Despite this, we can prove that if @3 and as are two different notations of
a, then A1) =, A(®2) (see [1], [3]), as in the case of the turing infinite jump.
We define the "polynomials" P, of the sets By, ..., Bq,... with

Definition 2.2 Let ¢ be a recursive ordinal and let {Bq}a<c be a sequence of
sets of natural numbers. Then we define using transfinite induction the sets P,
in the following way:

(1) Py = By
(2) if a = B+ 1 then Po = P}y © Ba;
(3) if @« = lim (a(p)) then Py = P<co @ By, where

Peo =1{(p;7) | € Py}

We also introduce the following notation:

For an arbitrary sequence of sets {Cy }o<¢ we define the set @, _ Cq to be

a<(

P Co = {(a,2) [z € Cu}.

a<(

We will consider partial functions f : N —— N. We will say that f <. A
iff (f) <. A, where (f) is the graphic of f. We will use "partial" finite parts
7 for which 7 : [0,2¢ + 1] — N U {L}. We define the graphic of 7 to be
(ry ={{z,y) | <2¢+1& 7(x) =y # L} and we say that 7 C f iff (7) C (f).
We define lh(7) = 2g + 2

We will assume that an effective and reversible coding of all finite sequences
is fixed. Thus we have an effective and reversible coding for all finite parts. As
usual from now on we will make no difference between a finite part and its code.
Even more: we say that 7 < p iff the inequality holds for the codes of the finite
parts p and 7. By 7 C p we will mean the usual extension property.



Finally we will say that the statement 3P (i, z1,...,z,, A1, ..., Ax), where
i,T1,...,2, € N and Ay,..., A4, C N is uniformly true in zy,...,x, for all
Ay, ... Ay iff there exists a recursive function h(z1,...,z,) such that for every
T1,...,T, € N and every Aq,..., A C N the statement

P(h(zy,...,xn),T1, .y T, A1y, Ag)

is true.

Of course the construction of A is quite difficult and uninformative. Hence,
when we have to prove that some statement is uniformly true, usually we will
show a construction in which all the choices we have to make will be effective.

3. REGULAR ENUMERATIONS

The proof of the theorem in most of its parts repeats the proof of Soskov, Baleva
theorem. A compleat proof of the last one can be found in [1].

Let us first fix a recursive ordinal ¢ and a sequence of sets {Bq }a<c-
The following definitions of ordinal approximation and predecessor as the proofs
of their basic properties are due to Soskov and Baleva.

Definition 3.3 Let a be a recursive ordinal. We will say that @ is an approx-
imation of «, iff @ is finite sequence of ordinals @ = (o, a1, ..., an, @), where
ap=0,aqp <1 < <ap,<aandn>—1.

Definition 3.4 Let o be a recursive ordinal and let 8 < «. Let also @ = {«p,
a1, . Q) is an approzimation of «. We define recursively the notion of
B-predecessor of a:
a) if B = a; for some 0 <i < n then set = {ag,aq,...,0;);
b) if a; < B < aiyq for some 0 < i < n then set 3 to be the B3-predecessor of
<Oéo70[1, ey C)éi+1> 5
c)if an < B < «a then
1ifa=564+1and B=26 set B = {ag,a1,...,0n,0);
2)ifa = 6+1 and 3 < J then set 3 to be the 3-predecessor of (ag, a1, . . ., i, 8);
3) if a = lima(p), po = upla(p) > o] and p1 = ppla(p) > B set B to be
the B-predecessor of {ag, ;... an,a(p),a(po +1),...,a(p1)).

The following lemmas give the basic properties of the ordinal approximation
and predecessor. The full proofs can be found in [1].

Lemma 3.5 For every ordinal approzimation & and every [ < « there is a
unique B-predecessor B of a.



Lemma 3.6 Let @ = (ag,a1,...,q,,a) be an approzimation of a. Then:

(1) If B < a; for some 0 <i<nthen=as 2w

(2) If for some 0 < i < n, a; < B < «a and {Bo,P1,--.,0k) is the B-
predecessor of @ then i <k w oy = for alll =0,...,1

(3) Leta =0+1, a, <8 and B<5. Then f2a < [ =< {ag,a1,...,0,,0)

(4) Let « = lim a(p) be a limit ordinal and let po = upla, < a(p)]. Let also
p1 > po be such that 8 < a(p1). Then

Bae B={ag,al,...an,a(),alpo+1),...,a(p1))

Lemma 3.7 Let v < 3 < « be ordinals, ¥ < 3 and 3 < a. Then 7 =< @.

Let us fix an approximation @ of a. We define the notions of a-regular finite
part, a-rank and @-forcing by means of transfinite recursion over a.

(i) Let first « = 0. Then @ = (0). O-regular are those finite parts satisfying
the condition:

If z€ 2N+ 1, z € dom (7) and 7(z) # L, then 7(z) € By.

If dom (7) = [0,2q + 1] we set the O-rank |7|g of 7 to be ¢ + 1.

We will use the notation R for the set of all O-regular finite parts.

For arbitrary finite part p we define:

P o Fi(l‘) <~ EU(<I’,U> eW; & D, C <T>)7
plko =F;(z) < (V7 € Ro)(1 2 p = 7 Iy Fi(x)).

Now suppose that for all 3 < a the S-regularity, B-rank and (-forcing are
defined. We will also assume that for all 3 < o the function 3-rank denoted by
)\T.|T‘E has the property:

If 7 and p are two (-regular finite parts such that 7 C p, then ITl7 < lpl3-
In particular |7|5 = |plz <= 7=0p.

(ii) Let now a = 3+ 1. Let (8 be the B-predecessor of @. Denote the set of
all B-regular finite parts by Rﬁ. Let also

Xy = {peRz | plrz F()},
S7 = RgNT;(Py),
where I'; is the j-th enumeration operator.

If p is an arbitrary finite part and X is a set of S-regular finite parts we
define the function i5(p, X) by:

ut[t 2 p & 7 € X], if there is such 7 (a)
pz(p, X) = qurlr 2 p & 7 € R3], if (a) is not satisfieble (b)
=l if (a) and (b) are not satisfieble (c)



Definition 3.8 Let 7 be a finite part and let m > 0. We say that p is 3-reqular

m-omitting extension of T, iff p is B-regular evtension of T, defined in [0,q — 1]

and there are natural numbers qo < q1 < -+ < @m < Gm+1 = q such that
a)plgo =T

b) for all p < m is true that p|qps1 = I (p[(qp + 1),X§7,qp>).

It is clear that if p is B-regular m-omitting extension of 7, then qo, q1, ..., gm+1
are unique. Even more: if p; and ps are two S-regular m-omitting extensions of
7 and p1 € pp then py = po. In other case the function p5 is not single valued.

Now we are ready to define the notion of @-regular finite part:
Let T be a finite part defined in [0,q — 1] and let r > 0. We say that T is
a-reqular finite part with a-rank v + 1 iff there are natural numbers

0<ng<lp<by<mni <li<bp < <np <lp <br <Npy1 =q,
such that for all 0 < j < r the following assertions hold:
(1) TIng is a B-reqular finite part with B-rank 1;
(2) 714 = 115 (710 +1), 57 )5
(3) T|b; is B-regular j-omitting extension of T11;;
(4) 7(bj) € Ba;
(5) TInji1 is B-regular extension of 71 (b; + 1) with rank |T [bjlz + 1.

Note that directly from the definition it follows that if 7 is a-regular finite part,
then 7 is also f-regular finite part.
The definition of a-forcing for an arbitrary finite part p is:

p ke Fi(z) <= Jo((v,z) € W; & (Yu € D,) ((u = (i 20, 0) & plb5 B, ()
V(= (s, 1) & plbg —F, (xu)))

plkﬁ_‘Fz(x) < (VTGRE)(pgT:>TU7LaFZ(I))

(iii) Finally let @« = lima(p). Let @ = «ap,a1,...,ap,a and let pg =

upla(p) > ay]. Let also for all p, a(p) be the a(p)-predecessor of @. Note that
for p > py according to Lemma 3.6

@ = <OZ0,O£1, e wanaa(pO)aa(pO + 1)7 e 'va(p»‘

We say that the finite part T defined for [0, q — 1] is a-regular with @-rank r + 1
if there are natural numbers

0<n0<b0<n1<b1<~-~<nr<br<nr+1:q,

such that 0 < j <7 is true that:



(1) 7Ing is a (g, 1, ..., ap)-reqular finite part with rank 1;
(2) 71b; is a a(pg + 2j)-regular finite part with rank 1;

(3) 7(bj) € Ba;

(4) TInjt1 is a a(po + 27 + 1)-regular finite part with rank 1.

Note that in this case, 7 is a a(pg + 2r + 1)-regular finite part with respective
rank 1.

For every finite part p and every i,z € N we define:

p kg Fi(x)<=Iv ((v,x) € Wi & (Yu € Dy)(u = (Puy b, Tu) & p F oo Fi (mu))) ,
p kg ~F(z)<= (V17 € Rg)(p C 7 = 7 V5 Fi(x)).

This concludes the definition. The next Lemma gives the correctness of the
definition and the validity of the assumption for the G-rank.

Lemma 3.9 Let a < ¢ and let 7 be a-reqular finite part. Then the following
statements are true:

(a) Let o = B+ 1. Let also ng,ly, b, ...n,., 1., 0., n,. 1 and ng, 1y, bf, ...
ny, by, by, ngﬂl be two iequences of natural numbers satisfyir/zg (1)/—/(5)/ fron/l/ (ii).
Z:hinb; =P, Moy =Ny and for all 0 < j <1 we have n; = nfj, I} =17 and

i~ Y

(b) Let a = lim(p) and let ng, by, . . .0y, by, ny. oy and ng, by, ... ny, b ny 4
are two sequences of natural numbers satisfying (1)-(4) from (iii). Then r = p,
Nyp1 =1, and for all 0 < j <7 we have n; =n’ and b; =bf.

(c) Let p and T be @-regular finite parts and let 7 C p. Then |7|a < |pls. In
particular |T|lg = |plg <= 7=p.

Proof. (a) Let a = 41 and let ng, I, b, . . ., ny., 1., by, myq and ng, 15, by, - .. my)
ly,by,my. 1 be two sequences of natural numbers satisfying (1)-(5) from (ii).
Without loss of generality we may assume that 7 [ng C 7 nj. Beside this, we
have that |7 [n6|§ =Ir fng|5 = 1. Then considering the properties of S-rank

we obtain 7 [ng = 7 [ ng. Therefore ny = ng. Let now the equality nj = nf

holds. Then 7 [ I} = pz (7’ fn;-,Sjﬁ) = ug (T Fn}’,S?) = 7 [ 1]. Therefore
I = l. Now considering the property of the j-omitting B-regular extensions
(mentioned after the definition) we obtain 7 [b; = 7 [b] and therefore b, = b7,
Now again without loss of generality we may consider 7 [n},, C 7[n},,. But
T I njalg = 17 1Vlg+1 = |7 1V][z+1=|r[n},lz Therefore from the
property of the B-rank we obtain n’,, = nj,. Now the statement r = p is
obvious.

(b) The proof is analogous to the previous one.



(c) Let 7 and p be two @-regular finite parts and let 7 C p. From the proof of

(a) we obtain that the sequence corresponding to 7 and satisfying the definition

of the @-regular finite parts is an initial part of the sequence corresponding to p.

Therefore |7|g < |pla. If 7 € p then we have |T|g < |plg, since in the contrary
case we would obtain that the sequence of p is not monotone.

|

From the definition of @-regular finite part and Lemma 3.9 we obtain

Corollary 3.10 Let « = 3+ 1, @ be an approzimation of a and let 3 be [3-
predecessor of a. Then every a-regqular finite part T is B-reqular and |7’|B > |7|a-

Lemma 3.11 Let 1 < a < ¢ and let @ = {ap,a1,...,Qn,a). Then every
a-regular finite part is (oo, ..., an)-regular and the {ag,...,an)-rank of T is
strictly greater then |T|g.

Proof. We will use transfinite induction over a.. First let &« = 1. Then @ = (0, 1)
and now the statement follows from Corollary 3.10.

Let now o = 8+ 1 and let 3 be > the B-predecessor of @. Then again (from
Corollary 3.10) we obtain that 7 is $-regular finite part and |7|5 > |7|g. From

Lemma 3.6 we know that 3 is of the form (g, a1, . .. ,n, Bri1s - - - ,Bnri), Where
i > 0. Then applying ¢ times the induction hypothesis we obtain that 7 is
{ag, a1, ..., an)-regular and the (ag, a1, ..., a,)-rank of 7 is greater or equal to
7|5 and therefore strictly greater then |7z

Finally let & = lim a(p). Let also |7|g = r + 1 and let pg = up[a(po) > am].
From the definition of @-regular finite part we obtain that 7 is a (ag,aq, ...,
am, a(po), - - ., a(po~+2r+1))-regular finite part with rank 1. From the induction

hypothesis 7 is a (@, a1, ..., apn,a(pg), .- ., a(po + 2r))-regular finite part with
rank at least 2 and since 7 is a {ag, a1, ..., a,, a(pg))-regular finite part with
rank at least 2r + 2, then 7 is {ag, a1, ..., a,)-regular with rank at least 2r + 3
and therefore strictly greater then r + 1.

O
Lemma 3.12 Let o < ¢ and let @ be an approzimation of o. let also 6 < @.
Then there is a natural number k5, such that every a-regular finite part with

rank greater or equal to ki 5 is S-reqular.

Proof. We will use transfinite induction over . When o = 0 the statement is
trivial.

Now let @ = 3+ 1 and let Bloe the B-predecessor of @. Let § < @ (which is
the interesting case). Then § = . According to the induction hypothesis there
isa li = k55, such that every S-regular finite part with rank greater or equal to
k is d-regular. Let us set k_ 5 = k. Then according to Corollary 3.10 we obtain
that k has the desired property.



Finally let o = lima(p), @ = (ag,a1,...,0,,a) and § < @. Let also
po = ppla(p) > ay), let p1 > po be such that a(p;) > § and let us denote the
a(p)-predecessor of @ with a(p). Applying Lemma 3.6 we obtain & =< @(p;).
Then according to the induction hypothesis every @(p;)-regular finite part with
rank greater or equal to ]‘;a(pl)ﬁ is 0-regular. It follows from the proof of the
previous Lemma that there is a natural number r, such that every a-regular
finite part with rank at least r + 1 is @(p;)-regular with rank greater or equal
to ka(pl)j' Let us set ka,ﬁ =r+1

O

Corollary 3.13 Let o < (, @ be an approzimation of o and 3 < @. Let also T
be a-regular finite part with rank greater or equal to k; 5+ s. Then ‘T|ﬁ > s.

Proof. From the definition of the @ regular finite parts we obtain that there are
natural numbers gy < ¢1 < --- < ¢s such that 7 [¢; = 7 and for all j the finite
parts 7; = 7 [ ¢; are a-regular with @-rank at least ka,ﬁ and therefore 3-regular.
But 70 C 71 C -++ € 7, and therefore [7;|5 < |7j41]5. Finally |ro|5 > 1, which
completes the proof.

|

Lemma 3.14 Leta = lima(p). Let@ = {ap, aq, ..., an, ) and pg = up[a(p) >
an]. Let also p1 > po and 7 be a (o, a1, ..., an, a(po), a(po + 1), o(p1))-
Q,

reqular finite part with rank 1. Then for every f < if T is B-reqular then
B < a(pr).

Proof. In order to obtain a contradiction assume that 7 is a 3-regular finite part
for some 3 such that § < @ and a(p1) < 0 < a. Then (3 is the S-predecessor of

<Oéo,0[1, .. .7047“06(]?0),0[(]70 + 1)7 .. 'aa(pl + k)>7

where k > 1. According to Lemma 3.6 3 is of the form

<a03a17"'aanaa(po)a"'7a(p1)7"'7ﬁ>'

As the (B-rank of 7 is at least 1 then from Lemma 3.11 we obtain that the (ayg,
a1, .. 0, a(po), ..., a(pr))-rank of 7 is greater then 1 which is a contradiction.
|

Let @ be an ordinal approximation and let 7 be a finite part. We introduce
the following notation:

Reg(t,a) ={B | B <@ & 7 is B-regular }

Then the following is true:



Lemma 3.15 Let a < (, let @ = (o, a1, ..., 0n, ) be an approzimation of «
and let T be an Q-regular finite part. Then:

a) if o =541 and 0 is the §-predecessor of @ then
B € Reg(t,@) <= B=a V B € Reg(t,9);

b) let « = lim «(p). Let also pg = upla(p) > ay] and for every p > po let
a(p) be ap)-predecessor of @. Let also py > po and let T be a(p1)-regular with
rank 1. Then

B € Reg(t,@) <= B=a V B € Reg(,a(p1)).

Proof. The statement a) is obvious and the statement b) follows directly from
the previous Lemma.
O

Definition 3.16 We say that the sequence Ag,...,An,... of sets of natural
numbers is e-reducible to P iff there is a recursive function h such that for
every n Ap = Ly (P). We say that the sequence is T-reducible to P iff there
is a function x recursive in P, such that for every n A\x.x(n,z) = xa,, where
XA, 18 the characteristic function of A,.

From the definition of the enumeration jump, the e-reducibility and the T-
reducibility of sequences to set we obtain the following Lemma.

Lemma 3.17 Let P be a set such that the sequence {A,} is e-reducible to P.
Then

(1) The sequence {A,} is uniformly T-reducible to P’;

(2) If R <. P then the sequences {A, N R} and {Cy} for which C, =
{z | Iy((y,xz) € R & y € A,} are uniformly e-reducible to P.

The full proof can be found in [2].
We introduce the following notations:

Zg‘,j) = {T € Ra | Tl —\Fz(j)}

0%, = {p| pis a-regular j-omitting extension of 7}

Proposition 3.18 For every ordinal approzimation @, where a < ( the follow-
ing are true:

(1) Ra <e Pao uniformly in a.

(2) The function AT.|T|g is partially recursive in P, uniformly in &;

(3) The sequences {Sf} and { X5} are e-reducible to Py uniformly in a;

(4) The sequence {Z3'} is T-reducible to P;, uniformly in @;

(5) the functions AT, j.pw (T, X?) and AT, j. g (7'7 Sf) are partially recursive
in Py uniformly in @;

(6) The sequence {OF ;} is e-reducible to P,, uniformly @.

10



Before proving the proposition let us note some properties of the sets P,.

Lemma 3.19 (a) If 3 < o < ¢ then Pg <. P, uniformly in o and 3.
(b) If B < a < ( then Bg <. P, uniformly in o and [3;
(c) The sets P, are total.

Proof. (a) We must find a recursive function g, such that if § < a < ¢ then
Ps = I'g(a,8)(Pa). We will define g by recursion over the ordinals a < ¢. If
a = 0 then ¢(0,0) = ig, where iq is a fixed index for the enumeration operator
identity. If a = (3 then again g(«, 3) = ig. Now let 8 < a.

First consider o = § + 1. Then Pg <. Ps and therefore Pg = T'y(s 3)(Ps)-
But Ps =T, (T'p, (Pa)), where jo is a fixed index for which A =T (A’) and po
is such that A =T, (A ® C) (jo and py exist and do not depend on A and C').
Then

g9(a, B) = ¢(g(6, B), ¢(jo, Po))-
For the definition of ¢ see Section 2.

Finally let @« = lim «(p). Then there is a recursive function pr not depending
on a, such that Puy = T'priiy(P<a). The function m(a, 3) = ppla(p) > 8],
defined for the limit ordinals o < ¢ and all ordinals 8 < «, is partially recursive.
Then Pg <c Ppi(a,8) a0d Prr(a,8) = Lprim(a.8)) (P<a). We set

g(a, B) = ¢ (g(m(a, B), B), ¢ (pr(m(a; B)), po))-

(b) Follows directly from (a).

(¢) Let @« = lima(p). We must show that N\P., <. P<o. Recall that
Peo = {(p,7) | © € Pypy}. Therefore v € N\P, <= ¢ Pey = z =
(0,y) & y & Pa(p). Now according to the definition of the enumeration jump we
obtain that for arbitrary set C' and every z

2¢C < 2(z,ip) +1e€ ',

where ig is a fixed index for the enumeration operator identity. Now from the
proof of (a) we obtain that the sequence P, () 18 e-reducible to P, uniformly

in a(p) and therefore the condition © € N\P.,, is e-reducible to P,
(]

Proof of Lemma 8.18 Transfinite induction over a. In the case a = 0 the
statements are clear. Now let the statements be true for every é < a. First we
will prove (1).

(1) First consider « = 8+ 1 and let 7 be an arbitrary finite part. Then
we set the number ng to be ng = ug[r [ q € Rﬁ]. Finding ny or proving that
such number does not exist is recursive in Pé uniformly in 3, since according to

the induction hypothesis Rz <. Pg uniformly in 3. If there is no such ng then
T Rp. Let n; be defined for some j > 0. Then, if I (T fnj,5ﬁ> is defined

J
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and 15 (7‘ [n;, Sjﬂ) Cr1,wesetl; =1lh (ug (7’ n;, S?)) Since the function I

is partially recursive in Pj uniformly in 3, defining I; is r.e. in Pj uniformly in

B. If we have defined /; then we set

bj=uqlg>1l &1lqe O(ﬁrﬂj,jﬂ

We know from the induction hypothesis that the sets O’?p ;) are e-reducible to

P (which is a total set) uniformly in 3 and {p, j), and therefore setting b; is
again r.e. in Pé uniformly in 8. Finally if there is a g, such that 7[¢ € Ry, we
set

nj1=pqlqg>b;+1& 7]q € Ry

Knowing b;, defining n;y; is recursive in 7323 uniformly in (3, and therefore is
r.e. in Pé uniformly in 3. Then 7 € Rz iff there is n,y1, which is obtained
following the construction above, such that 7 [n,y; = 7 and for every 0 < j <r
is true that 7(bj) € Ba. The first condition is r.e. in the total set P;. The
second one is e-reducible to B,. The two of them are uniform in @. Therefore
Ra <c¢ Py & Ba.

Now consider @ = lima(p). Let 7 be an arbitrary finite part. According to
Lemma 3.19 we obtain that the sequence {P,,)} is e-reducible to P, uniformly

in @. Since the sets R@ are e-reducible to P, (,) uniformly in a(p), we obtain
that the sequence {R@} is e-reducible to P, uniformly in @. Analogously
to the case @ = 4 1, we can find r.e. in P., and uniformly in @ a sequence
of numbers ng, by, n1, b1, ... satisfying the conditions of the definition of the -
regularity of 7. If for some of the numbers n,.,; is true that n,;; = lh(7) and
for every 0 < j <r 7(b;) € B, then 7 € P,. This questions are e-reducible to

Py uniformly in a.
(2) Follows directly from the proof of (1).
(3) The sequence {S§} is e-reducible to P, uniformly in @ as S = Ra N

I'j(Pa) (Lemma 3.17). In order to prove the statement for {Xg’ﬁ} let us first

assume that o =  + 1. According to the definition ng ={reRa|7ls
Fi(j)}. Also
Tz Fi(j) <= v ({(jv) e W; &

(Vu € Dy)((u = (0,iu, z) & 7 b5 F5, (24)) V (u = (1, iy, 20) & T IF5 25, (24))
According to the induction hypothesis the questions 7 Ib5 F; (z,,)) and 7 b5
—F;, (z.)) are recursive in P uniformly in 4,,, z,, and 3 (the sequences { X ,’f } and

{ZE} are T-reducible to Pj uniformly in 3). Therefore the question 7 -5 F;(5)
is e-reducible toPj uniformly in 4, j and 3. Therefore the sequence {ng>} is
e-reducible to P, uniformly in @. '
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Now let a = lim «(p). Then
7lkg Fi(j) <= F((j,v) € Wi & (Yu € Dy)(u = (Pu, ius Tu) & T lbg(p) Fi, (T4)))
But the sequence {Pqp)} is e-reducible to P, uniformly in . The sets Xg f;
are e-reducible to P, () uniformly in i, j and @(p). Therefore the sequence
{ng)} is e-reducible to P, uniformly in @. As P, is a total set the sequence
{Xg.’j)} is r.e. in P, uniformly in @. Then the question 7 k5, ) Fi, (), i.e.

if e Xz(? ;)> is r.e. P« uniformly in @. Finally we obtain that the sequence

{X?Z j>} is e-reducible to P, uniformly in @.

(4) Since the sequence {ng} is e-reducible to P, uniformly in @ then the
question, for given 7 is it true that (3p € X&)(p 2 7), is r.e. in P, uniformly
in ¢ and @. Then the question, if for given 7 is true that (Vp 2 7)(p € X7), i.e.,
if 7 € Z&, is r.e. in P/, uniformly in ¢ and @. Therefore the sequence {Z&} is

T-reducible to P/, uniformly in @.

(5) Follows directly from the definition of the function pz and the proof of
(4).
(6) The reasoning is analogous to the proof of (1) and uses the fact that the
function A7, i.ug(T, X§) is partially recursive in P/, uniformly in @.
(]

Definition 3.20 Let 7 be a-regular finite part with rank r +1. We define BZ
by:

a) if o =0, then BL ={z | z € dom (1) & z € 2N + 1}

b) if « = B+ 1 and ng,lo,bo, ..., Ny, b, by sy are the numbers from the
definition of the regular parts, then BL = {bg,b1,...,b}

¢)if a = lima(p) and no,bo, ..., N, by, nry1 are the numbers from the def-
inition of the reqular parts, then BL = {by,b1,...,b.}.

Definition 3.21 Let ¢ be an approzimation of (. We say that the partial func-
tion f from N in N is a regular enumeration respecting C iff:

(1) for every finite p C f there is a C-reqular finite part 7 O p such that
TCf;

(2) ifa < ( and z € B, then there is an @-reqular 7 C f such that z € 7(BL).

It is clear from the definition, that if f is a regular enumeration, then f has
(-regular subparts with arbitrary large rank. Then if @ < ¢ and p C f there is
an a-regular finite part 7 C f such that p C 7. In particular there are a-regular
finite subparts of f with arbitrary rank.

If f is regular and @ < ¢ then with Bé we will denote the set

BL={b| (37 C f)(r € Ra & b € BL)}.

It is clear that f(Bé) = B,.
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Proposition 3.22 Let f be a reqular enumeration. Then:
(1) BO <e f;
(2) if a = B+ 1<, then By <. f* @ Pj uniformly in a;
(3) if « < ¢ is a limit ordinal, then By, <. [t @® P<o uniformly in o;
(4) Po < £ uniformly in a.

Proof. Let f be a regular enumeration. It is clear that Bg = 2N + 1. It follows
from the regularity that By = f (B(J)c ). Therefore By <. f.

We will prove (2) and (3) using transfinite induction over a.

Let first « = #+ 1. Let @ be the a-predecessor of ¢, and let 3 be the j-
predecessor of @. Since f is a regular enumeration, then for every finite part
p C f there is an @-regular finite part 7 C f, such that p C 7. Therefore there
is a sequence of natural numbers

O<nog<lp<by<--<n. <l <b.-<...,

satisfying the conditions from the definition of the a-regular finite parts, and
also satisfying that 7. = f [n,; is an @-regular finite part with ||z = r+1 for
all » > 0. Therefore Bé = {bo, b1,...}. We will prove, that there is a recursive
in f+ @Pé, uniform in 3 procedure, which draws out the numbers ng, o, bo, - - . -
We know from the definition, that 7y = f [ ng is an @-regular finite part with
rank |79l = 1. According to Proposition 3.18 the set Ry is recursive in Pj

uniformly in B. Using the oracle f* we may obtain successively all the finite

parts f[q for g =0,1,--- . Lemma 3.9 guarantees that 7y is the first from the
so obtained finite parts which is in Rg. Thus we obtain ng = lh(7o).
Now let » > —1 and let the numbers ng, ly, bo, . . ., np, ly, by, npy1 have been

obtained. As Sjﬂ is recursive in ’Pé uniformly in /3, using the oracle Pé we may

obtain f 111 = pig (f [(nye1 + 1),51.5). Thus we get l,11 = Ih(f [Ls1). We
know that f[b,,1 is a B-regular, r + l-omitting extension of f [l,,1. Therefore
there are numbers I,11 = ¢ < @1 < -+ < @41 < ¢ry2 = by41 such that for
every p < 1+ 1 is true that:

flap1 = 125} (f [gp + 1)’X<Ep,qp>) ’

Therefore, since the sets X ]ﬁ are recursive in 7% uniformly in 3, using suc-
cessively the oracles f+ and P;j we may generate the finite parts f [ (gp + 1)
for p = 0,1,...7 + 2. At the end of this procedure we obtain the number
br11. In order to obtain n,,s we generate using the oracle f* the finite parts
fl(brg1+1+¢q) for g =0,1,.... Then n.yo = h(f [n,42), where f [n, o is
the first of the generated parts which is in Ry .

Thus we obtain that the set Bf = {by,b1,...} is recursive in f+ @ Pj and

therefore B, = f(Bf) <. fT @ Ps.
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Now let o = lima(p). It is clear, that the sequence {P,,)} is uniformly

e-reducible to P.,. Let @ be the a-predecessor of ¢ and let a(p) be the a(p)-
predecessor of @. Since f is a regular enumeration, we can assume that f is the
union of a-regular finite parts. Therefore there are numbers

O<ng<bg<ng <by<---<n.<b.-<...

satisfying the conditions of the definition. Since for every p the sets R@
are uniformly e-reducible to P;(p), they are also uniformly e-reducible to P.
Hence applying the procedure form above we can get the numbers ng, by, . . . , 1, by-,
recursively in f* @ P—,. Therefore B, = f(B)) <. f* ® P<a.

Thus in both cases the sets Bf arer.e. in f+ ©Pj and f+@P<,, and besides
this the procedures are uniform over 0 and «. Therefore the reducibilities in

points (2) and (3) of the theorem are uniform over a.

We will prove statement (4) with transfinite induction over .

In the case @ = 0 the statement is (1). Now let @« = 8+ 1. Then P, =
Pj @ By According to the induction hypothesis Pg <. f (8 yniformly in 8 and
therefore 73['3 < @ uniformly in . Beside this B, <. fT @ P4 uniformly in
@ and therefore B, <. f(® uniformly in «. Therefore P, <. f(® uniformly in
a.

Finally let @ = lima(p). Then P, = P<q @ B,. According to the induc-
tion hypothesis Py () <e f@®) uniformly in a(p). Therefore Pap) <e f@
uniformly in a(p) and therefore P., <, f(® uniformly in . Beside this
Ba <. ft @& Py and therefore P, <, f(* uniformly in a.

O
Corollary 3.23 Let f be a reqular enumeration. Then By <. f(®).

Proof. From (5) of the proposition P, < f*. But B, < P, which proves the
corollary.
a

Definition 3.24 Let f be a partial function from N to N, let o be a recursive
ordinal and let i,z € N. We define the relation =, by:

a)a=0
f o Fi(z) < 3v((v,2) € Wi & Dy € (f));
b)a=p+1

fEa Fi(z) © Fv((v,z) € W; & (Yu € Dy)((u = (in, 24,0) & f s Fi, (z4))

R V(= (i Def oy —F (.))):
¢) a= lima(p
[ Fa Fi(z) & Fv((v,z) € Wi&k(Vu € Dy)(u = (pu,iu, Tu)&f Fapy) Fi (%))

d) for all other cases
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The following Lemma is true:

Lemma 3.25 There is a partial recursive function h such that for every recur-
siwe ordinal o and every enumeration operator I'; is true that

x € Fl(f(a)) — f |:04 Fh(a,i)(x)

Before proving the Lemma let us note that for arbitrary set C' if « = 5+ 1
then

C =, {u|(u=(0,iy, ) &2y € T, (CN)V (u= (1, iy, 2) &z € T3, (CO))],
and if & = lim a(p) then
c =e {U | U= <pu7iu7xu> &, € I, (O(a(p“)))}

uniformly in o.

Proof of Lemma 3.25 We will show that there is a sequence of recursive functions
{Aj.ha(J)}a<c uniform in o such that for every o < ¢ and every i the statement

x € Fi(f(“)) = fFa Fr o))

holds. We will use transfinite induction over @ < (. First let « = 0. We set
ho(i) = 4. Tt is clear from the definition of = that hy has the desired property.
Now let a = 6+ 1. Then

zeTi(f1)

|}
Jo({z,v) € W; & D, C f(@)
|}
Jo((z,v) € Wi & (Vu € D) ((u = (0, iy, 2,) & x € Ty, (fP))V
(u=(1,iy,Ty) & x, & I‘iu(f(ﬁ)))).

Then from hg we obtain
T € Fz(f(a))

)
Jo((z,v) € Wi & (Yu € Dy)((u = (0, i, 7u) &f Fp Frpi,)(Tu))V
(u= <1aimmu> &f ):B th(iu,)(xu)»)'

Consider the set W such that (x,v) € W iff there exists v’ such that (z,v') € W;
and
V{t,i,x)((t,hs(i),x) € D, <= (t,i,x) € Dy)

Since the function hg is recursive uniformly in 3, then we can obtain recur-
sively and uniformly in § the finite sets D, from the finite sets D,.. Therefore
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the set W is r.e. with Gddel index 49. Thus we obtain x € I'y) <= f =i, ().
Beside this, W is obtained uniformly from the index i of the r.e. set W; and
the function hg. Then i is also obtained uniformly from ¢ and hg. We set
ha (i) = ip.

Finally let @ = lima(p). Then z € T;(f(¥)) < Jv((z,v) € W; & (Vu €
D) (u = (pu,in, ) &y € Ty, (f@®u))))). Then according to the induction
hypothesis = € T;(f(¥)) <= Jo((z,v) € W; & (Yu € D,)(u = (pu, Tu,iu) &
I Faw) Fha(pu>(iu)($u)~ Let us consider the set W, for which (z,v) € W iff
there is a v’ such that (x,v") € W; and

VP, i, 2)((P; ha@) (i), 1) € Dy <= (p,i, ) € D).

Then, exactly as above (as the sequence of recursive functions {fqp)} is uniform
in a(p)), the finite sets D, are obtained recursively from the finite sets D,,
uniformly in {a(p)} and therefore uniformly in «. Then the set W is r.e. with
index jg, which is obtained uniformly from the index i and «. It is clear that
r €T(f) <= fl=a Fj,(z). We set hy(i) to be ha(i) = jo.
In both cases h, (i) is uniformly obtained in ¢ and a.
([l

Corollary 3.26 Let f be a partial function from N to N and let « be a recursive
ordinal. Then A <. f(® iff there is an i such that for every x the condition
x € A<= [ |=q Fi(x) is satisfied.

Let us note, that for every @ < (3 the relation I is monotone, i.e., if 7 C p are
a-regular finite parts and 7 Ibz F;(x), then p Ikz F;(x), and also if 7 IF5 —F;(z),
then p kg = F;(x).

Lemma 3.27 Let f be a regular enumeration. Then:
(1) for every @ 2 ¢, f Fa Fi(z) & (37 C f)(T € Ra & 7 kg Fi(z));
(2) for everya < ¢, f Ea ~Fi(z) & (37 C f)(7 € Rg & 7 kg ~F;(x)).

Proof. We will use transfinite induction over «. First let @« = 0. Then the
validity of (1) follows from the compactness of the enumeration operators I';.
Now let us prove (2). Let f ¢ —F;(x). In order to obtain a contradiction
assume, that for every O-regular 7 C f is true that 7 I —F;(z), i.e., for every
O-regular 7 C f there is p € Ry such that p O 7 and p Iz F;(z). Consider the
set S ={p e Ry|plg Fi(x)}. It is clear that S <. Py and therefore there is an
index j, for which S = S?. Let u C f a I-regular finite part such that |u|t > j.
Such one exists, because f is regular and 1 < {. According to the definition
of the I-regular finite parts there is a O-regular finite part pg C p such that
po € S;-) = S5. Then py C f and from (1) f o Fi(z), which is a contradiction.

Now suppose that (1) and (2) are true for every ¢ < . We will show that
the assertions are also true for a.

17



a) « = @+ 1. First we show (1). Let f =, F;(x). Then there is v
such that (v,z) € W; and (Vu € D,)((u = (lu, 2w, 0)&f =5 Fi, (24))V (v =
(tu, Ty, V& =g —F;, (24))). According to the induction hypothesis we ob-
tain 70,71 C f such that (Vu € Dy)((u = (iu, 2w, 0)&7o IF5 Fi, (z4))V (u =
(iu, Tu, 1)&T1 b5 —F;, (24))). Since one of the finite parts is extending the
other and the forcing relation is monotone, we may assume 79 = 7, = 7. Then
from the definition of the @-forcing we obtain that 7 k5 F;(x).

The reverse direction is analogous.

Let us now prove (2). The reasoning is analogous to that of the case o = 0.
Let f o —Fi(z). In order to obtain a contradiction assume that for every
a-regular 7 C f is true that 7 [f5 —F;(z), i.e., for every a-regular 7 C f there is
p € Ry such that p O 7 and p Ik& F;(z). Consider the set S ={p € Rz | p k&
Fi(z)}. It is clear that S <. P, and therefore there is an index j for which
S = SF. Let u C f be such an a + I-regular finite part that |[p|g > j. Such
finite part exists as f is regular and a4+ 1 < {. According to the definition of
the o + 1-regular finite parts, there is an @-regular finite part pp C u such that
po € Sja = S. Then py C f, po IFaF,(») and form (1) we obtain f =, Fi(z),
which is a contradiction.

The opposite direction follows directly from (1).

b) @ = lima(p). First we prove (1). Let f = Fi(z). Then there is a v
such that (v, z) € W; and (Vu € Dy)(u = (pu, iu, Tu)&f Fap,) Fi. (2u)). Then
according to the induction hypothesis, for every u € D,,, u = (py, iy, T,) there
is 7, C f such that 7, Il—m F;, (z,). Since D, is finite, then there is 7 C f
such that 7, C 7 for all u € D,. As the forcing is monotone 7 I~ Fj, (z4)
for every u € D,. Then according to the definition of the a-forcing 7 IF5 F;(x).

Now suppose that there is 7 C f such that 7 IF&z F;(z). Then there is v such

that (v,2) € W; and (Vu € Dy)(u = (pu, by, Tu)&T oy Fiu(2u)). Without

loss of generality we may assume that 7 is «a(p,)-regular for every u € D,,.
Then according to the induction hypothesis f F=q(p,) Fi, (z4) for every u € D,.
Therefore f =, Fi(x).

The proof of (2) repeats the proof for the case « = 5+ 1.

O

Proposition 3.28 Let f be a reqular enumeration. Then f is quasiminimal
over By, i.e., By <. f and for every total set X is true that:

X <¢ = X <. Bo.

Proof. First let us prove that By <. f. We know from proposition 3.22 that
By <¢ f. It remains to show that f €. By. In order to obtain a contradiction
assume that f <. Bp. Then the set R = {7 € R | JaTy(f(x) = y&f(x) #
7(y))} is e-reducible to By. Then there is an index i for which R = S . As f
is regular there is a 1-regular finite part 7 C f such that |7|; > iy. According
to the definition of the 1-regular finite parts, there is a number [;, such that
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7o = 7 [l;, either is in S{ or no O-regular extension of 7 is in S . Since 79 C f
it is clear that the first case is impossible. On the other hand we may extend 7
and obtain the finite part 7 in such a way, that 79 C 7y and 7y € R. Therefore
the second case is also impossible. Therefore f €. By.

Let us now prove the second part of the quasimimality condition.

Let A be a total set such that A <. f. Since A is total, then there is a
total function ¢ such that (1)) =, A. Since ¢ <. f, then there is an i such that
() =T;((f)). Now consider the set of O-regular finite parts

S={r€Ro | IxInIy2(y1 # y2 & 7 ko Fi({x,y1)) & 7 Ik Fi({z,y2))}

The condition selecting the finite parts is r.e. and therefore S <. By. Then there
is a 7 such that S = S;-J. Let p C f be a finite part such that |p|; > j + 1. Such
a p exists, because f is a regular enumeration. Let ng,lo, bo, ..., n;,1;,b;,... be
the numbers satisfying the definition of the 1-regular finite parts for p. Then
plly =g (p[(nj +1), S?). According to the definition of y either p[i1; € S;-)

or none of its O-regular extensions is in S;-). Let us assume that the first holds.
Then p [1; ko (z,y1) and p [ l; ko (z,y2) for some z and y; # y2. Then
f Eo (z,y1) and f =¢ (z,y1) and therefore 1(x) = y1 # y2 = ¢ (x) which is not
possible. Therefore none of the 0-regular extensions of p is in S?.

Now consider the set

(72 p1Ly) & (301,65 € Ry)(Ih(p) > Ih(61)2) &
S — R\Vz>l 61/2()7&L:>p():L)&
| Jx3y1 Fya (Y1 # y2&01 kg Fi((x,y1)) & 02 g Fi({(x, y2)))

As above S’ = S?, for some j' and there is a finite part 79 C f such that either

T E S?, or no O-regular extension of 7y is in S;-’. Let us assume that the first
one holds and let 61, o, x, Y1, yo satisfy the condition. As % is a total function
Y(x) = y for some y. Without loss of generality we may assume y # y;. Then
there is a O-regular finite part 7 C f such that 7 2 79 and 7 ko F;({x,y)).
Therefore 1h(71) > 1h(d1) and 61(2) # L = 71 (2) = L. The last one guarantees
the existence of a finite part 71 such that (r{) = (71) U (01). Then 71 D p[;
and 7{ Ik F;((z,y)), and 7{ IFo F;({z,y1)). Therefore 7{ € S which contradicts
the property of p[;. Thus no of the 0-regular extensions of 7y is in SO
Finally consider the set

R={reRg| 7210}

It is clear that R <. By. All O-regular finite subparts of f are in R and therefore
(W) C {{x,y) | 3r € R)(7 Ity F;({x,y))}. For every two finite parts p1,p2 € R
if p1 Ik5 Fi({x, y1)) and pa I5 Fi({z,y2)), then y1 = y2. In the contrary case the
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O-regular extension 7 of 7y having the property lh(7;) = max{lh(p1),lh(p2)}
and (Vz > lh(7p))(m2(2) = 1) is in S’. But this contradicts the property of o
which was proved above. Then {(z,y) | (37 € R)(7 IFo F;({z,y))} C (¢) and
therefore this two sets coincide. But {(x,y) | (37 € R)(7 ko Fi({z,y))} < Bo
and therefore (¢) <. By.

(]

Proposition 3.29 Let f be a regular enumeration and o < (. Then the fol-
lowing assertions hold:

(1) ifa=B+1, then f(®) <, fT & PL;

(2) if a is a limit ordinal then f(®) <, f+ ® P.,.

Proof. First let & = 3+ 1. Recall that f(®) = L;{(ﬁ), where Ly = {(y,2) | y €

I.(f®)}. There is a zp not depending on (3 such that Lyw = T, (f9).
Therefore

f ':ﬁ Fh(ﬁ,zo)(x) T c Lf(ﬁ).
Now applying Lemma 3.27 we obtain

T e Lf(a) — GrCf)(re Rﬁ & T ”_E Fh(ﬁ,zo)(x))a

WS N\Lf([}) — (37‘ - f)(T S Rﬁ & T lkﬁ —|Fh(5720)(x)).

Therefore according to Proposition 3.18 and as the question 7 C f is uniformly
recursive in f*, we obtain that L £8) and N\Lfm) are uniformly e-reducible

f* @ Pj. Therefore f(@) <, f+ @& P}

Now let « be a limit ordinal. Then there is a zy not depending on «, such
that f(®) =T, (f(®). Therefore

z € [ = @ C /)7 € Ra & 7 lba Fia,z0)-

According to Proposition 3.18 we obtain f(® < f+ & P,. According to Propo-
sition 3.22 Py <. fT @ P<qa. Therefore f() <, f+ & P_,.
O

From Proposition 3.22 and 3.29 we obtain the following

Corollary 3.30 Let f be a reqular enumeration and let o < . Then:
(1) if = B+1, then f) =, [T & P);
(2) if o is a limit ordinal, then f(*) =, f+ & P.,.

The following two definitions will be helpful in proving the existence of regular
enumerations.
Let us fix a total function o, such that for every a < ¢ o(a) € B,.
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Definition 3.31 Let a < ¢ and let @ be an approximation of a. We say that T
is a-complete for o if

B € Reg(t,@) = o(B) € T(B%).

Now let us fix a sequence of sets of natural numbers {A,}, < such that (Vy <

O(Ay Ze Py).

Definition 3.32 let a < ( and let @ be an approximation of a. We say that
the finite part T is @-omitting in respect to {A,} iff for every B € Reg(t,@) the
following is true:
If3=6+1, 6 is the § predecessor of 5 and |T|B =r+ 1, then for every p <r
there exist a g, € dom (7) and a S-regular finite part Pp+1 C T such that

a) ppt1 b5 Fplap) & 7(qp) € As:

b) pp+1 b5 ~Fp(ap) & 7(qp) € As.

Note that, as for all x the assertion x € As V x ¢ As holds, then the
conditions a) and b) are equivalent to

a) T(Qp) ¢ As = pp+1 -5 Fp(‘]p)%
V) 1(qp) € As = ppt1 b5 ~Fp(ap)-

If 6 = (80,01, ...,0) is an approximation of § and § < a, then we will note the
approximation (g, d1,...,d,a) of a with (9, a).
Now we are ready to prove that the regular enumerations exist.

Proposition 3.33 Let a < ¢ and let @ be an approximation of . Then the
following assertions hold:

(1) For every @-regular finite part T and every y € N there is a a-regular
extension p of T such that |plg = |Tlz + 1, p(Ih(7)) = y, p is @-omittimg and
a-complete.

(2) For every & < @, for every d-reqular T with rank 1 and every y € N
there is a &, a-regular extension p of T with rank 1 such that p(Ih(7)) =y, p is
8, a-omitting and &, a-complete.

Proof. We will prove simultaneously (1) and (2) with transfinite induction over
a.

a) o = 0. In this case (2) is trivial. Now let us consider (1). Let 7 be
O-regular finite part and let y € N. Set p to be

T(z), = <lh(T)
Y, x = Lh(T)
PO =Y 5(0), = =ih(r) +1
-l x>Ih(r)+1
Then p is a 0-regular finite part satisfying all the desired properties.
b) Let @ = 3+ 1 and let 3 be the 3-predecessor of @. First we prove (1).
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Let 7 be @-regular finite part and let y € N. Let also dom (7) = [0,q — 1]
and |T|g = r + 1. Note that according to the induction hypothesis for (1), it is
true that for every S-regular finite part 0, every set Z C Rz and every y € N the

function “5(9 *y,7) has a value. Let us denote n,,1 with ¢. As 7 is B-regular,

then p = pz(7*y, Srﬁﬂ) is defined. Then let I,+1 = lh(p’). We will construct a

special B-regular r + l-omitting extension of p’. We will define with induction
over p < r + 2 the B-regular finite parts pp and the numbers ¢,. Set o = I, 11
and po = p’. Assume that for some p < r + 2 the number ¢, and the finite part
pp are defined. Consider the set

C={z| Gp2pp)p€Rz&play) =& pltz Fplgp)}-

Note that

v ¢C <= (YpeRz)(p 2 (pp*z) = plz Fpap))-

From the definition of C' and Proposition 3.18 we obtain C' <, P and therefore
C # Ag. Let xg be the least number such that

20 € Ag&ao C V xg € Ag& g € C.

Then set ppi1 = pg (pp * xO,Xfp’qm) and gp+1 = 1h(pp+1).

Now we obtain that p” = p,o is a F-regular r + l-omitting extension pq.
Set b1 = lh(p”). Finally set p to be a B-regular extension of p”, such that
ol = lp"l5 + 1, p(bry1) = o(a), p is a B-omitting and [-complete. Then p
satisfies (1) from the theorem. Indeed: from the construction of p we obtain
that p is an @-regular extension of 7 x y and |plg = |7|g + 1. In order to show
that p is @-complete in respect to o recall that according to Lemma 3.15

0 € Reg(p,@) < §=a V 0 € Reg(p,B).

Now fix a § € Reg(p,@). If § = @ (i.e., § = a) then o(a) = p(b.y1). If
§ € Reg(p, ), then, since p is F-complete finite part, there is a bs € dom(p),
such that o(d) = p(bs). Therefore p is a-complete.

Now let us prove that p is @-omitting. Fix d + 1 € Reg(p,@). Then again
according to Lemma 3.15 either § = 3 or 6 + 1 € Reg(p,3) holds. First let
d = (. Then as |plg = r+2, fix ap < r+ 1. Consider the finite part p,y1
and the number ¢, from the construction. If p,,1(gp) € Ag, it follows from the
construction, that pp41(gp) is not in the corresponding set C. Now according
to the note made after the definition of C', we have py11 -5 —Fp(q,). Therefore
the condition (a’) from the definition of the @-omitting holds. On other hand if
pp+1(qp) & Ag holds then p,41 is the least -regular extension of pp, * (pp+1(qp))
such that p,i1 Ib5 Fj,(gp) and there for the condition (b') from the definition of
the @-omitting is satisfied.
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fé+1 € Reg(p, ) then we obtain the omitting conditions from the fact
that p is a f-omitting finite part.

Now let us prove (2). Let 6 < @ and let 7 be a é-regular finite part with rank 1.
1) 6 = 3. Then 6 = (3 and besjde this G is the f-predecessor of §, . Let

ng = lh(7r) and pg = Ii5 (7- * 1, Sg ) Let also p; be a 0-omitting, G-regular

extension of pg, built as above, let by = 1h(p;) and let p be a [-complete, -
omitting extension of pi, such that pi(b1) = o(a) and |plz = [p1lz + 1. It is
clear that p is a (5, a)-regular finite part with rank 1, which is a-complete and
a-omitting.

2) § < 3. Then according to Lemma 3.6 the 3-predecessor of (§,a) is (5, 3)
and 0 < [ holds. Using the induction hypothesis extend 7 to a (8, 3)-regular
finite part p; with rank 1, such that p;(lh(7)) = y. Then we extend p; to a
(8, a)-complete and (§, a)-omitting finite part p with rank 1 as in the prove of

(D).

c)Let o = lima(p). Let @ = (ag, o, . . ., oy, @) and let pg = pplay, < ap)].
As in the previous case let us first prove (1).

Let 7 be an a-regular finite part with rank » + 1 and let ¥y € N. It is
clear that 7 is an a(pg + 2r + 1)-regular finite part with rank 1. According to
the induction hypothesis for (2) there is an (a(pg + 2r + 1), a(po + 2r + 2))-
regular extension pg of 7 with rank 1 such that po(lh(7)) = y. Set b.41 =
lh(pg). Again according to the induction hypothesis for (2) we construct a
{a(po +2r + 1), a(po + 21 + 2), a(po + 2r + 3))-regular extension p of py with
rank 1, such that p(b,+1) = o(«) and p is {a(py + 2r + 1), a(po + 2r +2), a(po +
2r + 3))-complete and {a(pg + 2r + 1), a(po + 2r + 2), a(po + 27 + 3))-omitting.
Note that (a(po +2r + 1), a(po + 2r + 2),a(po + 2r + 3)) = a(po +2r + 3).
Therefore p is an a-regular finite part with rank r 4+ 2. It remains to show
that p is @-complete and @-omitting. Let 3 € Reg(p,a@). Then 3 = @ or
B € Reg(t,a(po + 2r + 3)). In both cases it follows from the construction that
o(8) € pl(BY).

In order to show, that p is @-omitting, let us assume that 8 = J + 1. Then
B # a and therefore 3 € Reg(7, a(pg + 2r + 3)). As pis a(po + 2r + 3)-omitting
then it satisfies the omitting conditions in respect to (.

Finally let us show (2). Let § < @ and let 7 be a d-regular finite part
with rank 1. Let y € N and let also ps = pp[d < a(p)]. According to the
induction hypothesis for (2), there is a (5, a(ps))-regular extension p; of 7 such
that p;(lh(7)) = y and p; has (5, a(ps))-rank 1. Then again according to the
induction hypothesis for (2) we obtain a (3, a(ps), a(ps + 1))-regular extension
p of p1, which has rank 1 and for which p(by) = o(a) holds and which also is
(8, aps), a(ps+1))-complete and (5, a(ps), a(ps+1))-omitting. Then p is (5, -
regular extension of 7 with rank 1 which is (0, a)-complete and (J, a)-omitting.

]
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Note that from the proof we have that the construction is recursive in the
set
(@ AY) @ 0 @ P

v<¢

Now we are ready to prove the main theorem.

Proof of Theorem 1.1 Let us fix an arbitrary approximation ¢ of (. We will
construct recursively in @ a sequence of finite regular parts {75} such that
Ts € To41 and that the partial function f = J, 75 is a regular enumeration.
Using the previous propositions and some additional reasoning we will see that
the set F' = (f) has the desired properties.

As @ is total and P¢ <. @ then according to Lemma 3.6 there are a recursive
in @ function o(7,4), such that for every v < ¢ the function \i.o (v, ) is enumer-
ating B,. Let us fix c. When constructing the sequence {7}, we will ensure that
every finite part 7, is (-regular with (-rank equal to s+ 1, and 7,1 is (-omitting
in respect to {A,} and (-complete in respect to o5 = Ay.0(v,(s)1) where
s ={(8)o, (s)1). Let us also fix a recursive in () enumeration yo,y1,...,Ys,- - -
of Q.

We begin by setting 7y to be an arbitrary (-regular finite part with (-rank
1. Let 75 be constructed. Then according to Proposition 3.33 we can obtain
recursively in Q a (-regular extension 74,1 of 7s, such that 74,1 (Ih(7s)) = ys,
|TS+1|E = |TS\Z—|— 1 and 74, is (-omitting and (-complete in respect to os. Note
that 7541 is strictly extending 7.

First let us show that f is a regular enumeration.

Note that f is a partial function from N in N, and for every p C f there
is an index s, such that p C 75. Then consider 7 =< ¢ and z € B.,. Let us
fix an s such big that every (-regular finite part with (-rank at least s is 7-
regular (such an s exists according to Lemma 3.13). We can also choose s that
2z = 0(7,(s)1) holds. Then as 7,41 has (-rank s+ 2 and is (-complete in respect
to 05 = Ay.0(7, (s)1) we obtain that z € 7,11 (B"*"). Therefore f is a regular
enumeration.

Now we show that f(©) =, Q.

It is clear that fT <., Q. Beside this as f is regular then according to
Proposition 3.29 f(©) <, f* @& P <. Q. From the proof of Proposition 3.22 we
obtain a recursive in f* @ P, procedure which gives us the sequence g5 = lh(7y).
It is also true that

yeQ > Is(y = f(gs)),
and f(qs) is always defined. Thus Q <. f(©) and therefore f(9) =, Q.
It remains to prove that for every v < ¢ A, £ f () is satisfied.
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To obtain a contradiction assume that for some v < ¢ 4, < F) holds.
Then the set f~1(A,) = {z | Iy (z,y) € (f) & y € A,) } is also e-reducible to
fO). Then there is an index 4, for which

r€C > fl, Fi(a)

Let v + 1 be the v + 1-predecessor of ¢ and let 7 be the y-predecessor of 7 + 1.
Let s be so big that every (-regular finite part is 7 + I-regular with 7 + I-rank
greater or equal to ¢ (such an s exists according to Lemma 3.13). Then 7441
is v + L-regular and |75 1|557 > i As 754 s (-omitting finite part there is a
q € dom (7541) and a J-regular finite part p C 7,41 such that:

plx Fi(q) & 7s11(q) € Ay V plbx 2Fi(q) & Ts41(q) € A,
Therefore
flg) e Ay = Bp C flplF5 Fi(q)) & fq) € Ay = (3p € f)(p Ik ~Fi(q))
Then according to the Truth Lemma (Lemma 3.27),
fEyFilg) <= q¢C,

which is a contradiction.
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