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Computable Sets

Definition
A set A ⊆ N is computable if there is a computer program
that, on input n, decides whether n ∈ A.

Church-Turing thesis: This definition is independent of
the programming language chosen.

Example
The following sets are computable:

I The set of even numbers.
I The set of prime numbers.
I The set of stings that correspond to well-formed

programs.

Recall that any finite object can be encoded by a natural
number.
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Basic definitions

Given sets A, B ⊆ N we say that A is computable in B,
and we write A ≤T B, if there is a computable procedure
that can tell whether an element is in A or not, using B as
an oracle.
We say that A is Turing equivalent to B, and we write
A ≡T B if A ≤T B and B ≤T A.
We let D = (P(N)/ ≡T ), and DT = (D,≤T ).

There is a least degree 0.
The degree of the computable sets.
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Operations on DT

Turing Join
Given A, B ⊆ N, we let A⊕B = {2n : n ∈ A}∪{2n +1 : n ∈ B}.
Clearly A ≤T A⊕ B and B ≤T A⊕ B,
and if both A ≤T C and B ≤T C then A⊕ B ≤T C.

Turing Jump
Given A ⊆ N, we let A′ be the Turing jump of A, that is,

A′ ={programs, with oracle A, that HALT }.
A′ ={x | PA

x (x) halts } = KA.
For a ∈ D, let a′ be the degree of the Turing jump of any
set in a

I a <T a′

I If a ≤T b then a′ ≤T b′.
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Enumeration degrees
A set A is enumeration reducible to a set B, denoted by
A ≤e B, if there is an effective procedure to enumerate A
given any enumeration of B.

Definition (Enumeration operator)
Γz : P(N) → P(N):

x ∈ Γz(B) ⇐⇒ ∃v(〈v , x〉 ∈ Wz & Dv ⊆ B).

Dv – the finite set having canonical code v ,
W0, . . . , Wz , . . . – the Gödel enumeration of the c.e. sets.

I A is enumeration reducible to B, A ≤e B,
if A = Γz(B) for some enumeration operator Γz .

I A ≡e B ⇐⇒ A ≤e B & B ≤e A.
I de(A) = {B : B ≡e A}
I The least degree 0e is he degree of the computable

enumerable sets.
I De = (De,≤e, 0e) – the structure of e-degrees.
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Definition (A total set)

I A+ = A⊕ (N \ A).
I A is total iff A ≡e A+.
I A degree is total if it contains a total set.

The substructure DT of De consisting of all total degrees
is isomorphic of the structure of the Turing degrees.

I A ≤T B iff A+ ≤e B+.
I A ≤c.e. B iff A ≤e B+.
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The enumeration jump operator is defined by Cooper:

Definition (Enumeration jump)
Given a set A, let

I LA = {〈x , z〉 : x ∈ Γz(A)}.
I A′= (LA)+.
I A(n+1) = (A(n))′.

I If A ≤e B, then A′ ≤e B′.
I A is Σ0

n+1 relatively to B iff A ≤e (B+)(n).

I (Selman) If for all total X (B ≤e X (n) ⇒ A ≤e X (n)),
then A ≤e B ⊕ 0(n)

e .
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Enumeration of a Structure

Let A = (N; R1, . . . , Rk ,=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I For each predicate R of A:

f−1(R) = {〈x1, . . . , xr 〉 | R(f (x1), . . . , f (xr )}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=).
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Degree Spectra

Definition
The degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

I L. Richter [1981], J. Knight [1986].
I Let ι be the Roger’s embedding of the Turing

degrees into the enumeration degrees and A is a
total structure. Then

DS(A) = {ι(dT(f−1(A))) | f is an enumeration of A}.

I The n-th jump spectrum of A is the set
DSn(A) = {a(n) | a ∈ DS(A)}.



A Jump Inversion
Theorem for the
Degree Spectra

Alexandra A.
Soskova

Degree Spectra

Co-spectra of
structures

Properties of the
degree spectra
and co-spectra

Every Jump
Spectrum is
Spectrum

Jump Inversion
Theorem for the
Degree Spectra

Marker’s
Extensions

The Construction

Some Applications

Co-spectra of structures

Definition
Let ∅ 6= A ⊆ De.
The co-set of A is the set co(A) of all lower bounds of A:

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤ a)}.

Example
Fix a d ∈ De and let Ad = {a : a ≥ d}. Then
co(Ad) = {b : b ≤ d}.

I co(A) is a countable ideal.

Definition
The co-spectrum of A is the co-set of DS(A):

CS(A) = {b : (∀a ∈ DS(A))(b ≤ a)}.
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Definition
The n-th co-spectrum of A is the set
CSn(A) = co(DSn(A)).

I If DS(A) contains a least element a, then a is called
the degree of A.

I If DSn(A) contains a least element a, then a is called
the n-th jump degree of A.

I If CS(A) contains a greatest element a, then a is
called the co-degree of A.

I If CSn(A) contains a greatest element a, then a is
called the n-th jump co-degree of A.

I Observation: If A has n-th jump degree a, then a is
also n-th jump co-degree of A. The opposite is not
always true.
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Some Examples

1981 (Richter) Let A = (N;<,=, 6=) be a linear ordering.
I DS(A) contains a minimal pair of degrees,

CS(A) = {0e}.
I If DS(A) has a degree a, then a = 0e.

1986 (Knight 1986) Consider again a linear ordering A.
I CS1(A) consists of all Σ0

2 sets.
I The first jump co-degree of A is 0′

e.
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1998 (Slaman, Wehner)
DS(A) = {a : a is total and 0e < a},

I CS(A) = {0e}.
The structure A has co-degree 0e but has not a
degree.
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1998 (Coles, Downey, Slaman, Soskov) Let G be a
subgroup of Q. There exists an e-degree sG:

DS(G) = {b : b is total and sG ≤ b}.

I The co-degree of G is sG.
I G has a degree iff sG is total

I If 1 ≤ n, then s(n)
G is the n-th jump degree of G.

For every d ∈ De there exists a G, s.t. sG = d. Hence
every principle ideal of enumeration degrees is CS(G) for
some G.
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2002 (Soskov) Every countable ideals is CS of structures.
Let B0, . . . , Bn, . . . be a sequence of sets of natural
numbers. Set A = (N; Gϕ;σ,=, 6=),

ϕ(〈i , n〉) = 〈i + 1, n〉;
σ = {〈i , n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

I CS(A) = I(de(B0), . . . , de(Bn), . . . )
I I ⊆ CS(A) : Bk ≤e f−1(A) for each k ;
I CS(A) ⊆ I : if de(A) ∈ CS(A), then A ≤e Bk for some

k .
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Properties of the degree spectra

Let A ⊆ De. Then A is upwards closed if

a ∈ A, b is total and a ≤ b ⇒ b ∈ A.

I The degree spectra are upwards closed.
I General properties of upwards closed sets of

degrees.

Theorem
Let A be an upwards closed set of degrees. Then
(1) co(A) = co({b ∈ A : b is total}).
(2) Let 1 ≤ n and c ∈ De. Then

co(A) = co({b ∈ A : c ≤ b(n}).
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Specific properties

Theorem
Let A be a structure, 1 ≤ n, and c ∈ DSn(A). Then

CS(A) = co({b ∈ DS(A) : b(n) = c}).

Example
Let B 6≤e A and A 6≤e B′. Set

D = {a : a ≥ de(A)} ∪ {a : a ≥ de(B)}.

A = {a : a ∈ D & a′ = de(B)′}.

I de(B) is the least element of A and hence
de(B) ∈ co(A).

I de(B) 6≤ de(A) and hence de(B) 6∈ co(D).
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Minimal Pair Type Theorems

Theorem
There exist elements f0 and f1 of DS(A) such that for
every n

I f(n)
0 and f(n)

1 do not belong to CSn(A).

I co({f(n)
0 , f(n)

1 }) = CSn(A).

Example
Finite lattice L = {a, b, c, a ∧ b, a ∧ c, b ∧ c, >, ⊥}.

A = {d ∈ De : d ≥ a ∨ d ≥ b ∨ d ≥ c}.
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The Quasi-minimal degree

Definition
Let A be a set of enumeration degrees. The degree q is
quasi-minimal with respect to A if:

I q 6∈ co(A).
I If a is total and a ≥ q, then a ∈ A.
I If a is total and a ≤ q, then a ∈ co(A).

Theorem
If q is quasi-minimal with respect to A, then q is an upper
bound of co(A).

Theorem
For every structure A there exists a quasi-minimal with
respect to DS(A) degree.
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For any countable structures A and B define the relation

B � A ⇐⇒ DS(A) ⊆ DS(B) .

I A ≡ B if A � B and B � A.
I B′ � A if DS(A) ⊆ DS1(B).
I A � B′ if DS1(B) ⊆ DS(A).
I A ≡ B′ if A � B′ and B′ � A.

Theorem
Each jump spectrum is degree spectrum of a structure,
i.e. for every structure A there exists a structure B such
that A′ ≡ B.
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Definition
Moschovakis’ extension

I 0̄ 6∈ N, N0 = N ∪ {0̄}.
I A pairing function 〈., .〉, range(〈., .〉) ∩ N0 = ∅.
I The least set N∗ ⊇ N0, closed under 〈., .〉.
I Moschovakis’ extension of A is the structure

A∗ = (N∗, R1, . . . , Rn,=, N0, G〈.,.〉).

I A ≡ A∗.
I A new predicate KA (analogue of Kleene’s set).
I For e, x ∈ N and finite part τ , let

τ  Fe(x) ⇐⇒ x ∈ Γe(τ−1(A)).

I KA = {〈δ∗, e, x〉 : (∃τ ⊇ δ)(τ  Fe(x))}.
I B = (A∗, KA).
I DS1(A) = DS(B).
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Question (Inverting the jump)
Given a set of enumeration degrees A does there exist a
structure C such that DS1(C) = A?

1. Each element of A should be a jump of a degree.
2. A should be upwards closed (since each jump

spectrum is a spectrum and the spectrum is upwards
closed).

Problem
Not any upwards closed set of enumeration degrees is a
spectrum of a structure and hence a jump spectrum.
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A subset B of A is called base of A if for every element a
of A there exists an element b ∈ B such that b ≤ a.

Proposition
If DS(A) has a countable base of total enumeration
degrees, then DS(A) has a least element.

Example
Let a and b be incomparable enumeration degrees. Then
there does not exist a structure A such that:

DS(A) ={c : c is total & c ≥ a}∪
{c : c is total & c ≥ b}.
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I The set A should be a degree spectrum of a
structure A.

I DS(A) should contain only jumps of enumeration
degrees.

More generally:

Theorem (Jump Inversion Theorem)
If A and B are structures and B′ � A then there exists a
structure C such that B � C and C′ ≡ A.

I The structure C we shall construct as a Marker’s
extension of A.

I We code the structure B in C.
I In our construction we use also the relativized

representation lemma for Σ0
2 sets proved by

Goncharov and Khoussainov
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Theorem B′ � A =⇒ (∃C)(B � C & C′ ≡ A).

DS(A) = DS1(C)

DS(B)

DS1(B)

DS(C)

b

b′

c

c′ = a
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Marker’s Extensions

Let A = (A; R1, . . . , Rs,=).
R∃ — Marker’s ∃-extension of R:

I ∃-fellow for R — X = {x〈a1,...,ar 〉 | R(a1, . . . , ar )}.
I R∃(a1, . . . , ar , x) ⇐⇒

a1, . . . , ar ∈ A & x ∈ X & x = x〈a1,...,ar 〉.
I A∃ = (A ∪

⋃s
i=1 Xi , R∃

1 , . . . , R∃
s , X̄1, . . . , X̄s,=).

R∀ — Marker’s ∀-extension of R:
I ∀-fellow for R — Y = {y〈a1,...,ar 〉 | ¬R(a1, . . . , ar )}.
I

1. If R∀(a1, . . . , ar , y) then a1, . . . , ar ∈ A and y ∈ Y ;
2. If a1, . . . , ar ∈ A & y ∈ Y then

¬R∀(a1, . . . , ar , y) ⇐⇒ y = y〈a1,...,ar 〉.
I A∀ = (A ∪

⋃s
i=1 Yi , R∀

1 , . . . , R∀
s , Ȳ1, . . . , Ȳs,=).
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Properties of A∃∀

Definition
The structure A∃∀ is obtained from A as (A∃)∀.

1. R(a1, . . . , ar ) ⇐⇒
(∃x ∈ X )(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y);

2. (∀y ∈ Y )(∃ a unique sequence
a1, . . . , ar ∈ A & x ∈ X )(¬R∃∀(a1, . . . , ar , x , y));

3. (∀x ∈ X )(∃ a unique sequence
a1, . . . , ar ∈ A)(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y).
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Join of Two Structures

Let A = (A; R1, . . . , Rs,=) and B = (B; P1, . . . , Pt ,=) be
countable structures.
The join of the structures A and B is the structure
A⊕B = (A ∪ B; R1, . . . , Rs, P1, . . . , Pt , Ā, B̄,=)

(a) the predicate Ā is true only over the elements of A
and similarly B̄ is true only over the elements of B;

(b) the predicate Ri is defined on the elements of A as in
the structure A and false on all elements not in A and
the predicate Pj is defined similarly.

Lemma
A � A⊕B and B � A⊕B.
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One-to-one Representation of Σ0
2(D) Sets

Let D ⊆ N.
A set M ⊆ N is in Σ0

2(D) if there exists a computable in D
predicate Q such that
n ∈ M ⇐⇒ ∃a∀bQ(n, a, b).

Definition
If M ∈ Σ0

2(D) then M is one-to-one representable if there
is a computable in D predicate Q with the following
properties:

1. n ∈ M ⇔ (∃ a unique a)(∀b)Q(n, a, b);
2. (∀b)(∃ a unique pair 〈n, a〉)(¬Q(n, a, b));
3. (∀a)(∃ a unique n)(∀b)Q(n, a, b).

Lemma (Goncharov and Khoussainov)
If M is a co-infinite Σ0

2(D) subset of N which has an
infinite computable in D subset S such that M \ S is
infinite then M has an one-to-one representation.
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One-to-one Representation of Σ0
2(D) Sets

1. n ∈ M ⇔ (∃ a unique a)(∀b)Q(n, a, b);
2. (∀b)(∃ a unique pair 〈n, a〉)(¬Q(n, a, b));
3. (∀a)(∃ a unique n)(∀b)Q(n, a, b).

n

a

b
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Theorem (Jump Inversion Theorem)
Let B′ � A. Then there exists a structure C such that
B � C and C′ ≡ A.

I The structure C is constructed as

C = B⊕ A∃∀.

I DS1(C) ⊆ DS(A).
I DS(A) ⊆ DS1(C).
I We use the one-to-one representation lemma.
I We use the fact that the degree spectra and the jump

spectra are upwards closed with respect to total
degrees
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Definition
If a is the least element of DS(A) then a is called the
degree of A.

Proposition
Let B′ � A and suppose that the structure A has a
degree. Then there exists a torsion free abelian group G

of rank 1 which has a degree as well and such that
B � G and G′ ≡ A.
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DS0(A) = DS(A) DSn+1(A) = {a′ : a ∈ DSn(A)}.
By induction on n we show that for each n there is a
structure A(n) such that DSn(A) = DS(A(n)).

Theorem
Let A and B be structures such that DS(A) ⊆ DSn(B).
Then there is a structure Csuch that DS(C) ⊆ DS(B) è
DSn(C) = DS(A).
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(C1) DS(A) ⊆ {a : 0(n) ≤ a}.
(C2) DS(A) has no least element.
(C3) A has a first jump degree = 0(n+1).

I B = (N; =)

I DS(A) ⊆ DSn(B).
JIT There is a structure C such that DSn(C) = DS(A)

I C has no n-th jump degree and hence no k -th jump
degree, k ≤ n

I But DSn+1(C) = DS1(A) and hence the (n + 1)-th
jump degree of C is 0(n+1).
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Fact
For each set A ⊆ N there is a group GA ⊆ Q such that
that:

1. DS(GA) = {dT(X ) : A is c.e. in X}
2. dT(Je(A)) is the first jump degree of GA

( Je(A) = {x : x ∈ Wx(A)})

From the relativized variant of JIT of McEvoy, there is a
set A:

1. (∅(n))+ <e A;
2. (∀X )(X+ ≤e A ⇒ X ≤T ∅(n));
3. ∅(n+1) ≡T Je(A).
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Let A = GA.
(C1) dT(X ) ∈ DS(A) ⇒ A is c.e. in X ⇒ (∅(n))+ is c.e. in

X . So ∅(n) ≤T X .
(C2) DS(A) has no minimal degree.

Assume that dT(X ) is the minimal element of DS(A).
Then by Selman’s theorem X+ ≤e A and X ≤T ∅(n).
So A is c.e. in ∅(n). It follows that A ≤e (∅(n))+. A
contradiction.

(C3) A has a first jump degree = 0(n+1).
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The joint spectrum of A,A1,A2

a′′

a

DS(A) DS(A1) DS(A2)

a′
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The Joint Spectrum of Structures

Let A,A1, . . . ,An be countable structures.

Definition
The joint spectrum of A,A1, . . . ,An is the set
DS(A,A1, . . . ,An) =
{a | a ∈ DS(A), a′ ∈ DS(A1), . . . , a(n) ∈ DS(An)}.

Corrolary
Let B′ � A. There exists a structure C � B such that
DS(A,A1, . . . ,An) = DS1(C,A,A1, . . . ,An).
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Relative Spectra of Structures

Definition
An enumeration f of A is n-acceptable with respect to the
structures A1, . . . , An, if f−1(Ai) ≤e (f−1(A))(i) for each
i ≤ n.

Definition
The relative spectrum of the structure A with respect to
A1, . . . , An is the set
RS(A,A1, . . . ,An) =
{de(f−1(A)) | f is a n-acceptable enumeration of A}.

Proposition
Let B′ � A. There exists a structure C � B such that
RS(A,A1, . . . ,An) = RS1(C,A,A1, . . . ,An).
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