A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

> 05.05.2008 J.Kepler Universitaet Linz NOCAS - RISC

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Outline

- Enumeration degrees
- Degree spectra and jump spectra
- Representing the countable ideals as co-spectra
- Properties of upwards closed set of degrees
- The minimal pair theorem
- Quasi-minimal degrees
- Every jump spectrum is spectrum
- Marker's extensions
- Jump inversion theorem for the degree spectra
- Some applications
- Joint spectra of structures
- Relative spectra of structures

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Computable Sets

Definition A set $A \subseteq \mathbb{N}$ is computable if there is a computer program that, on input *n*, decides whether $n \in A$.

Church-Turing thesis: This definition is independent of the programming language chosen.

Example

The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Recall that any finite object can be encoded by a natural number.

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Basic definitions

Given sets $A, B \subseteq \mathbb{N}$ we say that *A* is computable in *B*, and we write $A \leq_T B$, if there is a computable procedure that can tell whether an element is in *A* or not, using *B* as an oracle.

We say that *A* is Turing equivalent to *B*, and we write $A \equiv_T B$ if $A \leq_T B$ and $B \leq_T A$. We let $\mathbf{D} = (\mathcal{P}(\mathbb{N}) / \equiv_T)$, and $\mathcal{D}_T = (\mathbf{D}, \leq_T)$.

There is a least degree **0**. The degree of the computable sets. A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Operations on $\mathcal{D}_{\mathcal{T}}$

Turing Join

Given $A, B \subseteq \mathbb{N}$, we let $A \oplus B = \{2n : n \in A\} \cup \{2n+1 : n \in B\}$. Clearly $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$, and if both $A <_T C$ and $B <_T C$ then $A \oplus B <_T C$.

Turing Jump

Given $A \subseteq \mathbb{N}$, we let A' be the Turing jump of A, that is, $A' = \{ \text{programs, with oracle } A, \text{ that HALT } \}.$ $A' = \{ x \mid P_x^A(x) \text{ halts } \} = K_A.$ For $\mathbf{a} \in \mathbf{D}$, let \mathbf{a}' be the degree of the Turing jump of any set in \mathbf{a}

▶ a <_T a'

• If $\mathbf{a} \leq_{\mathsf{T}} \mathbf{b}$ then $\mathbf{a}' \leq_{\mathsf{T}} \mathbf{b}'$.

A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Enumeration degrees

A set *A* is enumeration reducible to a set *B*, denoted by $A \leq_e B$, if there is an effective procedure to enumerate *A* given any enumeration of *B*.

Definition (Enumeration operator)

 $\Gamma_z: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$:

$$x \in \Gamma_z(B) \iff \exists v(\langle v, x \rangle \in W_z \& D_v \subseteq B).$$

 D_v – the finite set having canonical code v, W_0, \ldots, W_z, \ldots – the Gödel enumeration of the c.e. sets.

A is enumeration reducible to B, A ≤_e B, if A = Γ_z(B) for some enumeration operator Γ_z.

$$\bullet \ A \equiv_e B \iff A \leq_e B \& B \leq_e A.$$

- $\blacktriangleright d_{e}(A) = \{B : B \equiv_{e} A\}$
- The least degree 0_e is he degree of the computable enumerable sets.

►
$$\mathcal{D}_e = (\mathcal{D}_e, \leq_e, \mathbf{0}_e)$$
 – the structure of *e*-degrees.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Definition (A total set)

$$\blacktriangleright A^+ = A \oplus (\mathbb{N} \setminus A).$$

- A is total iff $A \equiv_e A^+$.
- A degree is total if it contains a total set.

The substructure D_T of D_e consisting of all total degrees is isomorphic of the structure of the Turing degrees.

•
$$A \leq_T B$$
 iff $A^+ \leq_e B^+$.

•
$$A \leq_{c.e.} B$$
 iff $A \leq_{e} B^+$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction

The enumeration jump operator is defined by Cooper:

Definition (Enumeration jump)

Given a set A, let

- $L_A = \{ \langle x, z \rangle : x \in \Gamma_z(A) \}.$ • $A' = (L_A)^+.$ • $A^{(n+1)} = (A^{(n)})'.$
- If $A \leq_e B$, then $A' \leq_e B'$.
- A is Σ_{n+1}^0 relatively to B iff $A \leq_e (B^+)^{(n)}$.
- ▶ (Selman) If for all total X ($B \leq_e X^{(n)} \Rightarrow A \leq_e X^{(n)}$), then $A \leq_e B \oplus 0_e^{(n)}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Enumeration of a Structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .
- ▶ For each predicate *R* of 𝔅:

$$f^{-1}(R) = \{ \langle x_1, \ldots, x_r \rangle \mid R(f(x_1), \ldots, f(x_r)) \}.$$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

►
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=).$$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Degree Spectra

Definition The degree spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

- L. Richter [1981], J. Knight [1986].
- Let *i* be the Roger's embedding of the Turing degrees into the enumeration degrees and A is a total structure. Then

 $DS(\mathfrak{A}) = \{\iota(d_{T}(f^{-1}(\mathfrak{A}))) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$

► The *n*-th jump spectrum of \mathfrak{A} is the set $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} \mid \mathbf{a} \in DS(\mathfrak{A})\}.$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Co-spectra of structures

Definition Let $\emptyset \neq \mathcal{A} \subset \mathcal{D}_{e}$.

The co-set of \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} :

$$\textit{co}(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq \mathbf{a}) \}.$$

Example

Fix a $\mathbf{d} \in \mathcal{D}_e$ and let $\mathcal{A}_{\mathbf{d}} = \{\mathbf{a} : \mathbf{a} \ge \mathbf{d}\}$. Then $co(\mathcal{A}_{\mathbf{d}}) = \{\mathbf{b} : \mathbf{b} \le \mathbf{d}\}$.

• co(A) is a countable ideal.

Definition

The co-spectrum of \mathfrak{A} is the co-set of $DS(\mathfrak{A})$:

$$\mathrm{CS}(\mathfrak{A}) = \{ \mathbf{b} : (\forall \mathbf{a} \in \mathrm{DS}(\mathfrak{A})) (\mathbf{b} \leq \mathbf{a}) \}.$$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

egree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Definition The *n*-th co-spectrum of \mathfrak{A} is the set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A})).$

- If DS(A) contains a least element a, then a is called the degree of A.
- If DS_n(𝔅) contains a least element a, then a is called the *n*-th jump degree of 𝔅.
- If CS(𝔅) contains a greatest element a, then a is called the co-degree of 𝔅.
- If CS_n(𝔅) contains a greatest element a, then a is called the *n*-th jump co-degree of 𝔅.
- Observation: If A has *n*-th jump degree **a**, then **a** is also *n*-th jump co-degree of A. The opposite is not always true.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Examples

- 1981 (Richter) Let $\mathfrak{A} = (\mathbb{N}; <, =, \neq)$ be a linear ordering.
 - DS(A) contains a minimal pair of degrees, CS(A) = {0_e}.
 - If $DS(\mathfrak{A})$ has a degree **a**, then $\mathbf{a} = \mathbf{0}_e$.
- 1986 (Knight 1986) Consider again a linear ordering \mathfrak{A} .
 - $CS_1(\mathfrak{A})$ consists of all Σ_2^0 sets.
 - The first jump co-degree of 𝔄 is 0[']_e.

A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction

A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

1998 (Slaman, Wehner) $DS(\mathfrak{A}) = \{\mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a}\},\$

CS(A) = {0_e}.
 The structure A has co-degree 0_e but has not a degree.

1998 (Coles, Downey, Slaman, Soskov) Let G be a subgroup of Q. There exists an e-degree s_G:

 $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq \mathbf{b}\}.$

- ▶ The co-degree of *G* is **s**_{*G*}.
- ► G has a degree iff s_G is total
- ▶ If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the *n*-th jump degree of *G*.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G. A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

2002 (Soskov) Every countable ideals is CS of structures. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; G_{\varphi}; \sigma, =, \neq)$,

$$\varphi(\langle i, n \rangle) = \langle i+1, n \rangle;$$

$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k\}.$$

►
$$CS(\mathfrak{A}) = I(d_e(B_0), ..., d_e(B_n), ...)$$

► $I \subseteq CS(\mathfrak{A}) : B_k \leq_e f^{-1}(\mathfrak{A})$ for each k ;
► $CS(\mathfrak{A}) \subseteq I$: if $d_e(A) \in CS(\mathfrak{A})$, then $A \leq_e B_k$ for some k .

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへで

The Construction

Properties of the degree spectra

Let $\mathcal{A} \subseteq \mathcal{D}_e$. Then \mathcal{A} is upwards closed if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

- The degree spectra are upwards closed.
- General properties of upwards closed sets of degrees.

Theorem

Let A be an upwards closed set of degrees. Then

(1)
$$co(\mathcal{A}) = co(\{\mathbf{b} \in \mathcal{A} : \mathbf{b} \text{ is total}\}).$$

(2) Let $1 \leq n$ and $\mathbf{c} \in \mathcal{D}_e$. Then

$$co(\mathcal{A}) = co(\{\mathbf{b} \in \mathcal{A} : \mathbf{c} \leq \mathbf{b}^{(n)}\}).$$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Specific properties

Theorem

Let \mathfrak{A} be a structure, $1 \leq n$, and $\mathbf{c} \in DS_n(\mathfrak{A})$. Then

 $\mathrm{CS}(\mathfrak{A}) = co(\{\mathbf{b} \in \mathrm{DS}(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$

Example

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Set

 $\mathcal{D} = \{\mathbf{a} : \mathbf{a} \ge d_e(A)\} \cup \{\mathbf{a} : \mathbf{a} \ge d_e(B)\}.$ $\mathcal{A} = \{\mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)'\}.$

- ► $d_{c}(B)$ is the least element of A and hence $d_{c}(B) \in co(A)$.
- ► $d_e(B) \leq d_e(A)$ and hence $d_e(B) \notin co(D)$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Minimal Pair Type Theorems

Theorem

There exist elements f_0 and f_1 of $\mathrm{DS}(\mathfrak{A})$ such that for every n

Example

Finite lattice $L = \{a, b, c, a \land b, a \land c, b \land c, \top, \bot\}$.

$$\mathcal{A} = \{ \mathbf{d} \in \mathcal{D}_{\boldsymbol{e}} : \mathbf{d} \geq \mathbf{a} \lor \mathbf{d} \geq \mathbf{b} \lor \mathbf{d} \geq \mathbf{c} \}.$$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

The Quasi-minimal degree

Definition

Let \mathcal{A} be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to \mathcal{A} if:

- ▶ $\mathbf{q} \notin co(\mathcal{A}).$
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem

If **q** is quasi-minimal with respect to A, then **q** is an upper bound of co(A).

Theorem

For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

For any countable structures ${\mathfrak A}$ and ${\mathfrak B}$ define the relation

 $\mathfrak{B} \preceq \mathfrak{A} \iff \mathrm{DS}(\mathfrak{A}) \subseteq \mathrm{DS}(\mathfrak{B})$.

•
$$\mathfrak{A} \equiv \mathfrak{B}$$
 if $\mathfrak{A} \preceq \mathfrak{B}$ and $\mathfrak{B} \preceq \mathfrak{A}$.

•
$$\mathfrak{B}' \preceq \mathfrak{A}$$
 if $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$.

•
$$\mathfrak{A} \preceq \mathfrak{B}'$$
 if $DS_1(\mathfrak{B}) \subseteq DS(\mathfrak{A})$.

•
$$\mathfrak{A} \equiv \mathfrak{B}'$$
 if $\mathfrak{A} \preceq \mathfrak{B}'$ and $\mathfrak{B}' \preceq \mathfrak{A}$.

Theorem

Each jump spectrum is degree spectrum of a structure, i.e. for every structure \mathfrak{A} there exists a structure \mathfrak{B} such that $\mathfrak{A}' \equiv \mathfrak{B}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Definition

Moschovakis' extension

- ▶ $\overline{0} \notin \mathbb{N}$, $\mathbb{N}_0 = \mathbb{N} \cup \{\overline{0}\}$.
- A pairing function $\langle ., . \rangle$, range $(\langle ., . \rangle) \cap \mathbb{N}_0 = \emptyset$.
- The least set $\mathbb{N}^* \supseteq \mathbb{N}_0$, closed under $\langle ., . \rangle$.
- ► Moschovakis' extension of \mathfrak{A} is the structure $\mathfrak{A}^* = (\mathbb{N}^*, R_1, \dots, R_n, =, \mathbb{N}_0, G_{\langle .,. \rangle}).$

 $\blacktriangleright \ \mathfrak{A} \equiv \mathfrak{A}^*.$

- A new predicate $K_{\mathfrak{A}}$ (analogue of Kleene's set).
- ► For $e, x \in \mathbb{N}$ and finite part τ , let $\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})).$
- $\blacktriangleright \ \mathcal{K}_{\mathfrak{A}} = \{ \langle \delta^*, \boldsymbol{e}, \boldsymbol{x} \rangle : (\exists \tau \supseteq \delta) (\tau \Vdash \mathcal{F}_{\boldsymbol{e}}(\boldsymbol{x})) \}.$
- ▶ $\mathfrak{B} = (\mathfrak{A}^*, K_{\mathfrak{A}}).$
- $\blacktriangleright DS_1(\mathfrak{A}) = DS(\mathfrak{B}).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Question (Inverting the jump)

Given a set of enumeration degrees \mathcal{A} does there exist a structure \mathfrak{C} such that $\mathrm{DS}_1(\mathfrak{C}) = \mathcal{A}$?

- 1. Each element of \mathcal{A} should be a jump of a degree.
- A should be upwards closed (since each jump spectrum is a spectrum and the spectrum is upwards closed).

Problem

Not any upwards closed set of enumeration degrees is a spectrum of a structure and hence a jump spectrum.

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

A subset \mathcal{B} of \mathcal{A} is called base of \mathcal{A} if for every element **a** of \mathcal{A} there exists an element **b** $\in \mathcal{B}$ such that **b** \leq **a**.

Proposition

If $DS(\mathfrak{A})$ has a countable base of total enumeration degrees, then $DS(\mathfrak{A})$ has a least element.

Example

Let **a** and **b** be incomparable enumeration degrees. Then there does not exist a structure \mathfrak{A} such that:

 $DS(\mathfrak{A}) = \{ \mathbf{c} : \mathbf{c} \text{ is total } \& \mathbf{c} \ge \mathbf{a} \} \cup \\ \{ \mathbf{c} : \mathbf{c} \text{ is total } \& \mathbf{c} \ge \mathbf{b} \}.$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction



- ► The set A should be a degree spectrum of a structure 𝔄.
- ► DS(𝔅) should contain only jumps of enumeration degrees.

More generally:

Theorem (Jump Inversion Theorem)

If \mathfrak{A} and \mathfrak{B} are structures and $\mathfrak{B}' \preceq \mathfrak{A}$ then there exists a structure \mathfrak{C} such that $\mathfrak{B} \preceq \mathfrak{C}$ and $\mathfrak{C}' \equiv \mathfrak{A}$.

- The structure & we shall construct as a Marker's extension of A.
- ▶ We code the structure 𝔅 in 𝔅.
- In our construction we use also the relativized representation lemma for Σ⁰₂ sets proved by Goncharov and Khoussainov

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

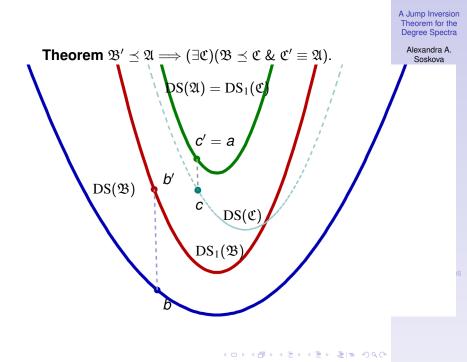
Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction



Marker's Extensions

Let $\mathfrak{A} = (A; R_1, \dots, R_s, =)$. R^{\exists} — Marker's \exists -extension of R:

► \exists -fellow for $R - X = \{x_{\langle a_1, \dots, a_r \rangle} \mid R(a_1, \dots, a_r)\}.$

$$R^{\exists}(a_1,\ldots,a_r,x) \iff a_1,\ldots,a_r \in A \& x \in X \& x = x_{\langle a_1,\ldots,a_r \rangle}.$$

$$\blacktriangleright \mathfrak{A}^{\exists} = (A \cup \bigcup_{i=1}^{s} X_i, R_1^{\exists}, \dots, R_s^{\exists}, \bar{X}_1, \dots, \bar{X}_s, =).$$

 R^{\forall} — Marker's \forall -extension of R:

•
$$\forall$$
-fellow for $R - Y = \{y_{\langle a_1, \dots, a_r \rangle} \mid \neg R(a_1, \dots, a_r)\}.$

1. If
$$R^{\forall}(a_1, \ldots, a_r, y)$$
 then $a_1, \ldots, a_r \in A$ and $y \in Y$;
2. If $a_1, \ldots, a_r \in A \& y \in Y$ then
 $\neg R^{\forall}(a_1, \ldots, a_r, y) \iff y = y_{\langle a_1, \ldots, a_r \rangle}$.
• $\mathfrak{A}^{\forall} = (A \cup \bigcup_{i=1}^{s} Y_i, R_1^{\forall}, \ldots, R_s^{\forall}, \overline{Y}_1, \ldots, \overline{Y}_s, =).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

Properties of $\mathfrak{A}^{\exists\forall}$

Definition

The structure $\mathfrak{A}^{\exists \forall}$ is obtained from \mathfrak{A} as $(\mathfrak{A}^{\exists})^{\forall}$.

- 1. $R(a_1,...,a_r) \iff$ $(\exists x \in X)(\forall y \in Y)R^{\exists \forall}(a_1,...,a_r,x,y);$
- 2. $(\forall y \in Y)(\exists a \text{ unique sequence} a_1, \dots, a_r \in A \& x \in X)(\neg R^{\exists \forall}(a_1, \dots, a_r, x, y));$
- 3. $(\forall x \in X)(\exists a \text{ unique sequence} a_1, \dots, a_r \in A)(\forall y \in Y)R^{\exists \forall}(a_1, \dots, a_r, x, y).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction Some Applications

Join of Two Structures

Let $\mathfrak{A} = (A; R_1, \dots, R_s, =)$ and $\mathfrak{B} = (B; P_1, \dots, P_t, =)$ be countable structures.

The join of the structures \mathfrak{A} and \mathfrak{B} is the structure $\mathfrak{A} \oplus \mathfrak{B} = (A \cup B; R_1, \dots, R_s, P_1, \dots, P_t, \overline{A}, \overline{B}, =)$

- (a) the predicate \overline{A} is true only over the elements of *A* and similarly \overline{B} is true only over the elements of *B*;
- (b) the predicate R_i is defined on the elements of A as in the structure \mathfrak{A} and false on all elements not in A and the predicate P_i is defined similarly.

Lemma

 $\mathfrak{A} \preceq \mathfrak{A} \oplus \mathfrak{B}$ and $\mathfrak{B} \preceq \mathfrak{A} \oplus \mathfrak{B}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

One-to-one Representation of $\Sigma_2^0(D)$ Sets

Let $D \subseteq \mathbb{N}$.

A set $M \subseteq \mathbb{N}$ is in $\Sigma_2^0(D)$ if there exists a computable in D predicate Q such that

 $n \in M \iff \exists a \forall b Q(n, a, b).$

Definition

If $M \in \Sigma_2^0(D)$ then *M* is one-to-one representable if there is a computable in *D* predicate *Q* with the following properties:

- 1. $n \in M \Leftrightarrow (\exists a \text{ unique } a)(\forall b)Q(n, a, b);$
- 2. $(\forall b)(\exists a unique pair \langle n, a \rangle)(\neg Q(n, a, b));$
- 3. $(\forall a)(\exists a \text{ unique } n)(\forall b)Q(n, a, b).$

Lemma (Goncharov and Khoussainov)

If *M* is a co-infinite $\Sigma_2^0(D)$ subset of \mathbb{N} which has an infinite computable in *D* subset *S* such that $M \setminus S$ is infinite then *M* has an one-to-one representation.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

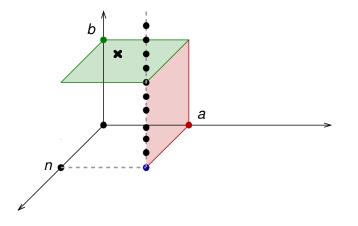
The Construction

One-to-one Representation of $\Sigma_2^0(D)$ Sets

- 1. $n \in M \Leftrightarrow (\exists a \text{ unique } a)(\forall b)Q(n, a, b);$
- 2. $(\forall b)(\exists a unique pair \langle n, a \rangle)(\neg Q(n, a, b));$
- 3. $(\forall a)(\exists a unique n)(\forall b)Q(n, a, b).$

Alexandra A. Soskova

Degree Spectra



Theorem (Jump Inversion Theorem) Let $\mathfrak{B}' \preceq \mathfrak{A}$. Then there exists a structure \mathfrak{C} such that $\mathfrak{B} \preceq \mathfrak{C}$ and $\mathfrak{C}' \equiv \mathfrak{A}$.

The structure & is constructed as

$$\mathfrak{C}=\mathfrak{B}\oplus\mathfrak{A}^{\exists\forall}.$$

- ► $DS_1(\mathfrak{C}) \subseteq DS(\mathfrak{A}).$
- ► $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{C}).$
- We use the one-to-one representation lemma.
- We use the fact that the degree spectra and the jump spectra are upwards closed with respect to total degrees

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Definition

If **a** is the least element of $DS(\mathfrak{A})$ then **a** is called the *degree of* \mathfrak{A} .

Proposition

Let $\mathfrak{B}' \preceq \mathfrak{A}$ and suppose that the structure \mathfrak{A} has a degree. Then there exists a torsion free abelian group \mathfrak{G} of rank 1 which has a degree as well and such that $\mathfrak{B} \preceq \mathfrak{G}$ and $\mathfrak{G}' \equiv \mathfrak{A}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

 $DS_0(\mathfrak{A}) = DS(\mathfrak{A}) DS_{n+1}(\mathfrak{A}) = \{\mathbf{a}' : \mathbf{a} \in DS_n(\mathfrak{A})\}.$ By induction on *n* we show that for each *n* there is a structure $\mathfrak{A}^{(n)}$ such that $DS_n(\mathfrak{A}) = DS(\mathfrak{A}^{(n)}).$

Theorem

Let \mathfrak{A} and \mathfrak{B} be structures such that $DS(\mathfrak{A}) \subseteq DS_n(\mathfrak{B})$. Then there is a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B}) \stackrel{\circ}{e} DS_n(\mathfrak{C}) = DS(\mathfrak{A})$. A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

- (C1) $DS(\mathfrak{A}) \subseteq \{a : \mathbf{0}^{(n)} \le a\}.$
- (C2) $DS(\mathfrak{A})$ has no least element.
- (C3) \mathfrak{A} has a first jump degree = $\mathbf{0}^{(n+1)}$.
 - ▶ 𝔅 = (N; =)

►
$$DS(\mathfrak{A}) \subseteq DS_n(\mathfrak{B}).$$

JIT There is a structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = DS(\mathfrak{A})$

- ► C has no *n*-th jump degree and hence no *k*-th jump degree, *k* ≤ *n*
- ▶ But $DS_{n+1}(\mathfrak{C}) = DS_1(\mathfrak{A})$ and hence the (n+1)-th jump degree of \mathfrak{C} is $\mathbf{0}^{(n+1)}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Fact

For each set $A \subseteq \mathbb{N}$ there is a group $G_A \subseteq Q$ such that that:

- 1. $DS(G_A) = \{ d_T(X) : A \text{ is c.e. in } X \}$
- 2. $d_{\mathrm{T}}(J_e(A))$ is the first jump degree of G_A $(J_e(A) = \{x : x \in W_x(A)\})$

From the relativized variant of JIT of McEvoy, there is a set *A*:

1.
$$(\emptyset^{(n)})^+ <_e A$$
;
2. $(\forall X)(X^+ \leq_e A \Rightarrow X \leq_T \emptyset^{(n)});$
3. $\emptyset^{(n+1)} \equiv_T J_e(A).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction

Let $\mathfrak{A} = G_A$.

- (C1) $d_{\mathrm{T}}(X) \in \mathrm{DS}(\mathfrak{A}) \Rightarrow A \text{ is c.e. in } X \Rightarrow (\emptyset^{(n)})^+ \text{ is c.e. in } X$. So $\emptyset^{(n)} \leq_{\mathrm{T}} X$.
- (C2) $DS(\mathfrak{A})$ has no minimal degree. Assume that $d_T(X)$ is the minimal element of $DS(\mathfrak{A})$. Then by Selman's theorem $X^+ \leq_e A$ and $X \leq_T \emptyset^{(n)}$. So *A* is c.e. in $\emptyset^{(n)}$. It follows that $A \leq_e (\emptyset^{(n)})^+$. A contradiction.
- (C3) \mathfrak{A} has a first jump degree = $\mathbf{0}^{(n+1)}$.

A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

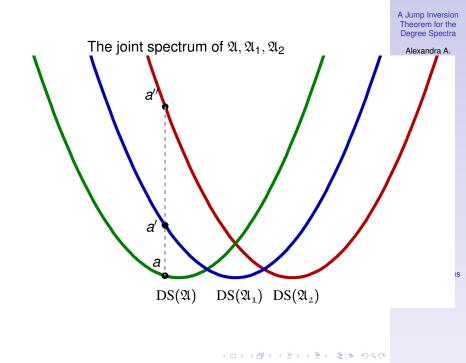
Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The Construction



The Joint Spectrum of Structures

Let $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be countable structures.

Definition The joint spectrum of $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set $DS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) =$ $\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}), \mathbf{a}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{a}^{(\mathbf{n})} \in DS(\mathfrak{A}_n)\}.$

Corrolary

Let $\mathfrak{B}' \leq \mathfrak{A}$. There exists a structure $\mathfrak{C} \succeq \mathfrak{B}$ such that $DS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = DS_1(\mathfrak{C}, \mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Relative Spectra of Structures

Definition

An enumeration f of \mathfrak{A} is n-acceptable with respect to the structures $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, if $f^{-1}(\mathfrak{A}_i) \leq_e (f^{-1}(\mathfrak{A}))^{(i)}$ for each $i \leq n$.

Definition

The relative spectrum of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is a } n\text{-acceptable enumeration of } \mathfrak{A}\}.$

Proposition

Let $\mathfrak{B}' \leq \mathfrak{A}$. There exists a structure $\mathfrak{C} \succeq \mathfrak{B}$ such that $\mathrm{RS}(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = \mathrm{RS}_1(\mathfrak{C}, \mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Co-spectra of structures

Properties of the degree spectra and co-spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

S. Goncharov, B. Khoussainov, Complexity of categorical theories with computable models.

Algebra and Logic, 43(6): 365–373, 2004.

D. Marker

Non Σ_n -axiomatizable almost strongly minimal theories.

J. Symbolic Logic, 54(3) : 921–927 1989.

I. N. Soskov,

A jump inversion theorem for the enumeration jump. *Arch. Math. Logic* 39 : 417–437, 2000.

I. N. Soskov,

Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, 96 : 45–68, 2003.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Appendix