A Jump Inversion Theorem for the Degree Spectra

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

> CiE 2007 SIENA

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Degree spectra and jump spectra
- Every jump spectrum is spectrum
- Marker's extensions
- Jump inversion theorem for the degree spectra
- Some applications
- Joint spectra of structures
- Relative spectra of structures

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

Enumeration of a Structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .
- ► For each predicate R of 𝔄:

$$f^{-1}(R) = \{ \langle x_1, \ldots, x_r, 0 \rangle \mid R(f(x_1), \ldots, f(x_r)) \} \cup \\ \{ \langle x_1, \ldots, x_r, 1 \rangle \mid \neg R(f(x_1), \ldots, f(x_r)) \}.$$

►
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=).$$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

・ロト・日本・日本・日本・日本・ショー

Degree Spectra

Definition

The degree spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

- L. Richter [1981], J. Knight [1986].
- Let *ι* be the Roger's embedding of the Turing degrees into the enumeration degrees and 𝔅 is a total structure. Then

 $DS(\mathfrak{A}) = \{\iota(d_{T}(f^{-1}(\mathfrak{A}))) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$

The degree spectra are upwards closed with respect to the total degrees:

 $\mathbf{a} \in \mathrm{DS}(\mathfrak{A}), \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathrm{DS}(\mathfrak{A}).$

• The jump spectrum of \mathfrak{A} is the set $DS_1(\mathfrak{A}) = \{ \mathbf{a}' \mid \mathbf{a} \in DS(\mathfrak{A}) \}.$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications For any countable structures ${\mathfrak A}$ and ${\mathfrak B}$ define the relation

 $\mathfrak{B} \preceq \mathfrak{A} \iff \mathrm{DS}(\mathfrak{A}) \subseteq \mathrm{DS}(\mathfrak{B})$.

•
$$\mathfrak{A} \equiv \mathfrak{B}$$
 if $\mathfrak{A} \preceq \mathfrak{B}$ and $\mathfrak{B} \preceq \mathfrak{A}$.

•
$$\mathfrak{B}' \preceq \mathfrak{A}$$
 if $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$.

•
$$\mathfrak{A} \preceq \mathfrak{B}'$$
 if $DS_1(\mathfrak{B}) \subseteq DS(\mathfrak{A})$.

•
$$\mathfrak{A} \equiv \mathfrak{B}'$$
 if $\mathfrak{A} \preceq \mathfrak{B}'$ and $\mathfrak{B}' \preceq \mathfrak{A}$.

Theorem (Soskov)

Each jump spectrum is degree spectrum of a structure, i.e. for every structure \mathfrak{A} there exists a structure \mathfrak{B} such that $\mathfrak{A}' \equiv \mathfrak{B}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Definition

Moschovakis' extension

- $\blacktriangleright \ \bar{0} \not\in \mathbb{N}, \mathbb{N}_0 = \mathbb{N} \cup \{\bar{0}\}.$
- A pairing function $\langle ., . \rangle$, range $(\langle ., . \rangle) \cap \mathbb{N}_0 = \emptyset$.
- The least set $\mathbb{N}^* \supseteq \mathbb{N}_0$, closed under $\langle ., . \rangle$.
- ► Moschovakis' extension of \mathfrak{A} is the structure $\mathfrak{A}^* = (\mathbb{N}^*, R_1, \dots, R_n, =, \mathbb{N}_0, G_{\langle .,. \rangle}).$

 $\blacktriangleright \mathfrak{A} \equiv \mathfrak{A}^*.$

- A new predicate $K_{\mathfrak{A}}$ (analogue of Kleene's set).
- ► For $e, x \in \mathbb{N}$ and finite part τ , let $\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})).$
- $\blacktriangleright \ \mathcal{K}_{\mathfrak{A}} = \{ \langle \delta^*, \boldsymbol{e}, \boldsymbol{x} \rangle : (\exists \tau \supseteq \delta) (\tau \Vdash \mathcal{F}_{\boldsymbol{e}}(\boldsymbol{x})) \}.$
- $\blacktriangleright \mathfrak{B} = (\mathfrak{A}^*, K_{\mathfrak{A}}).$
- $\blacktriangleright DS_1(\mathfrak{A}) = DS(\mathfrak{B}).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Question (Inverting the jump)

Given a set of enumeration degrees \mathcal{A} does there exist a structure \mathfrak{C} such that $\mathrm{DS}_1(\mathfrak{C}) = \mathcal{A}$?

- 1. Each element of \mathcal{A} should be a jump of a degree.
- A should be upwards closed (since each jump spectrum is a spectrum and the spectrum is upwards closed).

Problem

Not any upwards closed set of enumeration degrees is a spectrum of a structure and hence a jump spectrum.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions The Construction Some Applications A subset \mathcal{B} of \mathcal{A} is called *base* of \mathcal{A} if for every element **a** of \mathcal{A} there exists an element **b** $\in \mathcal{B}$ such that **b** \leq **a**.

Proposition (Soskov)

If $DS(\mathfrak{A})$ has a countable base of total enumeration degrees, then $DS(\mathfrak{A})$ has a least element.

Example

Let **a** and **b** be incomparable enumeration degrees. Then there does not exist a structure \mathfrak{A} such that:

 $DS(\mathfrak{A}) = \{ \mathbf{c} : \mathbf{c} \text{ is total } \& \mathbf{c} \ge \mathbf{a} \} \cup \\ \{ \mathbf{c} : \mathbf{c} \text{ is total } \& \mathbf{c} \ge \mathbf{b} \}.$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

- ► The set A should be a degree spectrum of a structure 𝔄.
- DS(A) should contain only jumps of enumeration degrees.

More generally:

Theorem (Jump Inversion Theorem)

If \mathfrak{A} and \mathfrak{B} are structures and $\mathfrak{B}' \preceq \mathfrak{A}$ then there exists a structure \mathfrak{C} such that $\mathfrak{B} \preceq \mathfrak{C}$ and $\mathfrak{C}' \equiv \mathfrak{A}$.

- The structure & we shall construct as a Marker's extension of A.
- We code the structure \mathfrak{B} in \mathfrak{C} .
- In our construction we use also the relativized representation lemma for Σ⁰₂ sets proved by Goncharov and Khoussainov

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Marker's Extensions

Let
$$\mathfrak{A} = (A; R_1, \dots, R_s, =)$$
.
 R^{\exists} — Marker's \exists -extension of R :
 $\flat \exists$ -fellow for $R - X = \{x_{\langle a_1, \dots, a_r \rangle} \mid R(a_1, \dots, a_r)\}$.
 $\triangleright R^{\exists}(a_1, \dots, a_r, x) \iff a_1, \dots, a_r \in A \& x \in X \& x = x_{\langle a_1, \dots, a_r \rangle}$.
 $\flat \mathfrak{A}^{\exists} = (A \cup \bigcup_{i=1}^s X_i, R_1^{\exists}, \dots, R_s^{\exists}, \overline{X}_1, \dots, \overline{X}_s, =)$.
 R^{\forall} — Marker's \forall -extension of R :
 $\flat \forall$ -fellow for $R - Y = \{y_{\langle a_1, \dots, a_r \rangle} \mid \neg R(a_1, \dots, a_r)\}$.
 \flat
1. If $R^{\forall}(a_1, \dots, a_r, y)$ then $a_1, \dots, a_r \in A$ and $y \in Y$;
2. If $a_1, \dots, a_r \in A \& y \in Y$ then
 $\neg R^{\forall}(a_1, \dots, a_r, y) \iff y = y_{\langle a_1, \dots, a_r \rangle}$.

$$\blacktriangleright \mathfrak{A}^{\forall} = (\mathbf{A} \cup \bigcup_{i=1}^{s} Y_i, \mathbf{R}_1^{\forall}, \dots, \mathbf{R}_s^{\forall}, \bar{Y}_1, \dots, \bar{Y}_s, =).$$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

(日)

Properties of $\mathfrak{A}^{\exists\forall}$

Definition

The structure $\mathfrak{A}^{\exists \forall}$ is obtained from \mathfrak{A} as $(\mathfrak{A}^{\exists})^{\forall}$.

- 1. $R(a_1,...,a_r) \iff$ $(\exists x \in X)(\forall y \in Y)R^{\exists \forall}(a_1,...,a_r,x,y);$
- 2. $(\forall y \in Y)(\exists a \text{ unique sequence} a_1, \dots, a_r \in A \& x \in X)(\neg R^{\exists \forall}(a_1, \dots, a_r, x, y));$
- 3. $(\forall x \in X)(\exists a \text{ unique sequence} a_1, \ldots, a_r \in A)(\forall y \in Y)R^{\exists \forall}(a_1, \ldots, a_r, x, y).$

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

・ロト・日本・日本・日本・日本・ショー

Join of Two Structures

Let $\mathfrak{A} = (A; R_1, \dots, R_s, =)$ and $\mathfrak{B} = (B; P_1, \dots, P_t, =)$ be countable structures.

The join of the structures \mathfrak{A} and \mathfrak{B} is the structure $\mathfrak{A} \oplus \mathfrak{B} = (A \cup B; R_1, \dots, R_s, P_1, \dots, P_t, \overline{A}, \overline{B}, =)$

- (a) the predicate \overline{A} is true only over the elements of *A* and similarly \overline{B} is true only over the elements of *B*;
- (b) the predicate R_i is defined on the elements of A as in the structure \mathfrak{A} and false on all elements not in A and the predicate P_i is defined similarly.

Lemma

 $\mathfrak{A} \preceq \mathfrak{A} \oplus \mathfrak{B}$ and $\mathfrak{B} \preceq \mathfrak{A} \oplus \mathfrak{B}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction Some Applications

One-to-one Representation of $\Sigma_2^0(D)$ Sets

Let $D \subseteq \mathbb{N}$.

A set $M \subseteq \mathbb{N}$ is in $\Sigma_2^0(D)$ if there exists a computable in D predicate Q such that

 $n \in M \iff \exists a \forall b Q(n, a, b).$

Definition

If $M \in \Sigma_2^0(D)$ then *M* is *one-to-one representable* if there is a computable in *D* predicate *Q* with the following properties:

- 1. $n \in M \Leftrightarrow (\exists a \text{ unique } a)(\forall b)Q(n, a, b);$
- 2. $(\forall b)(\exists a unique pair \langle n, a \rangle)(\neg Q(n, a, b));$
- 3. $(\forall a)(\exists a unique n)(\forall b)Q(n, a, b).$

Lemma (Goncharov and Khoussainov)

If *M* is a coinfinite $\Sigma_2^0(D)$ subset of \mathbb{N} which has an infinite computable in *D* subset *S* such that $M \setminus S$ is infinite then *M* has an one-to-one representation.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

One-to-one Representation of $\Sigma_2^0(D)$ Sets

- 1. $n \in M \Leftrightarrow (\exists a \text{ unique } a)(\forall b)Q(n, a, b);$
- 2. $(\forall b)(\exists a unique pair \langle n, a \rangle)(\neg Q(n, a, b));$
- 3. $(\forall a)(\exists a \text{ unique } n)(\forall b)Q(n, a, b).$

Alexandra A. Soskova

Degree Spectra

Every Jump

Theorem (Jump Inversion Theorem)

Let $\mathfrak{B}' \preceq \mathfrak{A}$. Then there exists a structure \mathfrak{C} such that $\mathfrak{B} \preceq \mathfrak{C}$ and $\mathfrak{C}' \equiv \mathfrak{A}$.

► The structure 𝔅 is constructed as

$$\mathfrak{C}=\mathfrak{B}\oplus\mathfrak{A}^{\exists\forall}.$$

► $DS_1(\mathfrak{C}) \subseteq DS(\mathfrak{A}).$

For each enumeration *h* of \mathfrak{C} we construct an enumeration *f* of \mathfrak{A} such that $f^{-1}(\mathfrak{A}) \leq_{\mathrm{e}} h^{-1}(\mathfrak{C})'$.

►
$$DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{C}).$$

For each enumeration \overline{f} of \mathfrak{A} there is a bijective enumeration f of \mathfrak{A} such that $f^{-1}(\mathfrak{A}) \leq_e \overline{f}^{-1}(\mathfrak{A})$. We construct an enumeration h of \mathfrak{C} such that $h^{-1}(\mathfrak{C})' \leq_e f^{-1}(\mathfrak{A})$, using the one-to-one representation lemma.

We use the fact that the degree spectra and the jump spectra are upwards closed with respect to total degrees A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Some Applications

Definition

If **a** is the least element of $DS(\mathfrak{A})$ then **a** is called the *degree of* \mathfrak{A} .

Proposition

Let $\mathfrak{B}' \preceq \mathfrak{A}$ and suppose that the structure \mathfrak{A} has a degree. Then there exists a torsion free abelian group \mathfrak{G} of rank 1 which has a degree as well and such that $\mathfrak{B} \preceq \mathfrak{G}$ and $\mathfrak{G}' \equiv \mathfrak{A}$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

The Joint Spectrum of Structures

Let $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be countable structures.

Definition

The joint spectrum of $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set $DS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = \{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}), \mathbf{a}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{a}^{(\mathbf{n})} \in DS(\mathfrak{A}_n)\}.$

Corrolary

Let $\mathfrak{B}' \preceq \mathfrak{A}$. There exists a structure $\mathfrak{C} \succeq \mathfrak{B}$ such that $DS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n) = DS_1(\mathfrak{C}, \mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

Relative Spectra of Structures

Definition

An enumeration f of \mathfrak{A} is *n*-acceptable with respect to the structures $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, if $f^{-1}(\mathfrak{A}_i) \leq_e (f^{-1}(\mathfrak{A}))^{(i)}$ for each $i \leq n$.

Definition

The relative spectrum of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is a } n\text{-acceptable enumeration of } \mathfrak{A}\}.$

Proposition

Let $\mathfrak{B}' \leq \mathfrak{A}$. There exists a structure $\mathfrak{C} \succeq \mathfrak{B}$ such that $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = RS_1(\mathfrak{C}, \mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Degree Spectra

Every Jump Spectrum is Spectrum

Jump Inversion Theorem for the Degree Spectra

Marker's Extensions

The Construction

S. Goncharov, B. Khoussainov, Complexity of categorical theories with computable models.

Algebra and Logic, 43(6): 365–373, 2004.

D. Marker

Non Σ_n -axiomatizable almost strongly minimal theories.

J. Symbolic Logic, 54(3) : 921–927 1989.

I. N. Soskov,

A jump inversion theorem for the enumeration jump. *Arch. Math. Logic* 39 : 417–437, 2000.

I. N. Soskov,

Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, 96 : 45–68, 2003.

A Jump Inversion Theorem for the Degree Spectra

> Alexandra A. Soskova

Appendix