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Enumeration of a Structure

Let A = (N; R1, . . . , Rk ,=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I For each predicate R of A:

f−1(R) = {〈x1, . . . , xr , 0〉 | R(f (x1), . . . , f (xr )}∪
{〈x1, . . . , xr , 1〉 | ¬R(f (x1), . . . , f (xr )}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=).
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Degree Spectra
Definition
The degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

I L. Richter [1981], J. Knight [1986].
I Let ι be the Roger’s embedding of the Turing

degrees into the enumeration degrees and A is a
total structure. Then

DS(A) = {ι(dT(f−1(A))) | f is an enumeration of A}.

I The degree spectra are upwards closed with respect
to the total degrees:

a ∈ DS(A), b is total and a ≤ b ⇒ b ∈ DS(A).

I The jump spectrum of A is the set
DS1(A) = {a′ | a ∈ DS(A)}.
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For any countable structures A and B define the relation

B � A ⇐⇒ DS(A) ⊆ DS(B) .

I A ≡ B if A � B and B � A.
I B′ � A if DS(A) ⊆ DS1(B).
I A � B′ if DS1(B) ⊆ DS(A).
I A ≡ B′ if A � B′ and B′ � A.

Theorem (Soskov)
Each jump spectrum is degree spectrum of a structure,
i.e. for every structure A there exists a structure B such
that A′ ≡ B.
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Definition
Moschovakis’ extension

I 0̄ 6∈ N, N0 = N ∪ {0̄}.
I A pairing function 〈., .〉, range(〈., .〉) ∩ N0 = ∅.
I The least set N∗ ⊇ N0, closed under 〈., .〉.
I Moschovakis’ extension of A is the structure

A∗ = (N∗, R1, . . . , Rn,=, N0, G〈.,.〉).

I A ≡ A∗.
I A new predicate KA (analogue of Kleene’s set).
I For e, x ∈ N and finite part τ , let

τ 
 Fe(x) ⇐⇒ x ∈ Γe(τ−1(A)).

I KA = {〈δ∗, e, x〉 : (∃τ ⊇ δ)(τ 
 Fe(x))}.
I B = (A∗, KA).
I DS1(A) = DS(B).
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Question (Inverting the jump)
Given a set of enumeration degrees A does there exist a
structure C such that DS1(C) = A?

1. Each element of A should be a jump of a degree.
2. A should be upwards closed (since each jump

spectrum is a spectrum and the spectrum is upwards
closed).

Problem
Not any upwards closed set of enumeration degrees is a
spectrum of a structure and hence a jump spectrum.
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A subset B of A is called base of A if for every element a
of A there exists an element b ∈ B such that b ≤ a.

Proposition (Soskov)
If DS(A) has a countable base of total enumeration
degrees, then DS(A) has a least element.

Example
Let a and b be incomparable enumeration degrees. Then
there does not exist a structure A such that:

DS(A) ={c : c is total & c ≥ a}∪
{c : c is total & c ≥ b}.



A Jump Inversion
Theorem for the
Degree Spectra

Alexandra A.
Soskova

Degree Spectra

Every Jump
Spectrum is
Spectrum

Jump Inversion
Theorem for the
Degree Spectra

Marker’s
Extensions

The Construction

Some Applications

a b



A Jump Inversion
Theorem for the
Degree Spectra

Alexandra A.
Soskova

Degree Spectra

Every Jump
Spectrum is
Spectrum

Jump Inversion
Theorem for the
Degree Spectra

Marker’s
Extensions

The Construction

Some Applications

I The set A should be a degree spectrum of a
structure A.

I DS(A) should contain only jumps of enumeration
degrees.

More generally:

Theorem (Jump Inversion Theorem)
If A and B are structures and B′ � A then there exists a
structure C such that B � C and C′ ≡ A.

I The structure C we shall construct as a Marker’s
extension of A.

I We code the structure B in C.
I In our construction we use also the relativized

representation lemma for Σ0
2 sets proved by

Goncharov and Khoussainov
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Theorem B′ � A =⇒ (∃C)(B � C & C′ ≡ A).

DS(A) = DS1(C)

DS(B)

DS1(B)

DS(C)

b

b′

c

c′ = a
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Marker’s Extensions

Let A = (A; R1, . . . , Rs,=).
R∃ — Marker’s ∃-extension of R:

I ∃-fellow for R — X = {x〈a1,...,ar 〉 | R(a1, . . . , ar )}.
I R∃(a1, . . . , ar , x) ⇐⇒

a1, . . . , ar ∈ A & x ∈ X & x = x〈a1,...,ar 〉.
I A∃ = (A ∪

⋃s
i=1 Xi , R∃

1 , . . . , R∃
s , X̄1, . . . , X̄s,=).

R∀ — Marker’s ∀-extension of R:
I ∀-fellow for R — Y = {y〈a1,...,ar 〉 | ¬R(a1, . . . , ar )}.
I

1. If R∀(a1, . . . , ar , y) then a1, . . . , ar ∈ A and y ∈ Y ;
2. If a1, . . . , ar ∈ A & y ∈ Y then

¬R∀(a1, . . . , ar , y) ⇐⇒ y = y〈a1,...,ar 〉.
I A∀ = (A ∪

⋃s
i=1 Yi , R∀

1 , . . . , R∀
s , Ȳ1, . . . , Ȳs,=).
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Properties of A∃∀

Definition
The structure A∃∀ is obtained from A as (A∃)∀.

1. R(a1, . . . , ar ) ⇐⇒
(∃x ∈ X )(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y);

2. (∀y ∈ Y )(∃ a unique sequence
a1, . . . , ar ∈ A & x ∈ X )(¬R∃∀(a1, . . . , ar , x , y));

3. (∀x ∈ X )(∃ a unique sequence
a1, . . . , ar ∈ A)(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y).
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Join of Two Structures

Let A = (A; R1, . . . , Rs,=) and B = (B; P1, . . . , Pt ,=) be
countable structures.
The join of the structures A and B is the structure
A⊕B = (A ∪ B; R1, . . . , Rs, P1, . . . , Pt , Ā, B̄,=)

(a) the predicate Ā is true only over the elements of A
and similarly B̄ is true only over the elements of B;

(b) the predicate Ri is defined on the elements of A as in
the structure A and false on all elements not in A and
the predicate Pj is defined similarly.

Lemma
A � A⊕B and B � A⊕B.
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One-to-one Representation of Σ0
2(D) Sets

Let D ⊆ N.
A set M ⊆ N is in Σ0

2(D) if there exists a computable in D
predicate Q such that
n ∈ M ⇐⇒ ∃a∀bQ(n, a, b).

Definition
If M ∈ Σ0

2(D) then M is one-to-one representable if there
is a computable in D predicate Q with the following
properties:

1. n ∈ M ⇔ (∃ a unique a)(∀b)Q(n, a, b);
2. (∀b)(∃ a unique pair 〈n, a〉)(¬Q(n, a, b));
3. (∀a)(∃ a unique n)(∀b)Q(n, a, b).

Lemma (Goncharov and Khoussainov)
If M is a coinfinite Σ0

2(D) subset of N which has an infinite
computable in D subset S such that M \ S is infinite then
M has an one-to-one representation.
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One-to-one Representation of Σ0
2(D) Sets

1. n ∈ M ⇔ (∃ a unique a)(∀b)Q(n, a, b);
2. (∀b)(∃ a unique pair 〈n, a〉)(¬Q(n, a, b));
3. (∀a)(∃ a unique n)(∀b)Q(n, a, b).

n

a

b
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Theorem (Jump Inversion Theorem)
Let B′ � A. Then there exists a structure C such that
B � C and C′ ≡ A.

I The structure C is constructed as

C = B⊕ A∃∀.

I DS1(C) ⊆ DS(A).
For each enumeration h of C we construct an
enumeration f of A such that f−1(A) ≤e h−1(C)′.

I DS(A) ⊆ DS1(C).
For each enumeration f̄ of A there is a bijective
enumeration f of A such that f−1(A) ≤e f̄−1(A).
We construct an enumeration h of C such that
h−1(C)′ ≤e f−1(A), using the one-to-one
representation lemma.

I We use the fact that the degree spectra and the jump
spectra are upwards closed with respect to total
degrees
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Some Applications

Definition
If a is the least element of DS(A) then a is called the
degree of A.

Proposition
Let B′ � A and suppose that the structure A has a
degree. Then there exists a torsion free abelian group G

of rank 1 which has a degree as well and such that
B � G and G′ ≡ A.
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The joint spectrum of A,A1,A2

a′′

a

DS(A) DS(A1) DS(A2)

a′
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The Joint Spectrum of Structures

Let A,A1, . . . ,An be countable structures.

Definition
The joint spectrum of A,A1, . . . ,An is the set
DS(A,A1, . . . ,An) =
{a | a ∈ DS(A), a′ ∈ DS(A1), . . . , a(n) ∈ DS(An)}.

Corrolary
Let B′ � A. There exists a structure C � B such that
DS(A,A1, . . . ,An) = DS1(C,A,A1, . . . ,An).
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Relative Spectra of Structures

Definition
An enumeration f of A is n-acceptable with respect to the
structures A1, . . . , An, if f−1(Ai) ≤e (f−1(A))(i) for each
i ≤ n.

Definition
The relative spectrum of the structure A with respect to
A1, . . . , An is the set
RS(A,A1, . . . ,An) =
{de(f−1(A)) | f is a n-acceptable enumeration of A}.

Proposition
Let B′ � A. There exists a structure C � B such that
RS(A,A1, . . . ,An) = RS1(C,A,A1, . . . ,An).
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