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Enumeration degrees

Definition (Enumeration operator)
Γz : P(N) → P(N):

x ∈ Γz(B) ⇐⇒ ∃v(〈v , x〉 ∈ Wz & Dv ⊆ B).

Dv – the finite set having canonical code v ,
W0, . . . , Wz , . . . – the Gödel enumeration of the c.e. sets.

I A is enumeration reducible to B, A ≤e B,
if A = Γz(B) for some enumeration operator Γz .

I A ≡e B ⇐⇒ A ≤e B & B ≤e A.
I de(A) = {B : B ≡e A}
I de(A) ≤ de(B) ⇐⇒ A ≤e B.
I De = (De,≤, 0e) – the structure of e-degrees.
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Let A⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.

Definition (A total set)

I A+ = A⊕ (N \ A).
I A is total iff A ≡e A+.
I A degree is total if it contains a total set.

The substructure DT of De consisting of all total degrees
is isomorphic of the structure of the Turing degrees.

I A ≤T B iff A+ ≤e B+.
I A ≤c.e. B iff A ≤e B+.
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The enumeration jump operator is defined by Cooper:

Definition (Enumeration jump)
Given a set A, let

I K 0
A = {〈x , z〉 : x ∈ Γz(A)}.

I A′ = (K 0
A)+.

I A(n+1) = (A(n))′.

I If A ≤e B, then A′ ≤e B′.
I A is Σ0

n+1 relatively to B iff A ≤e (B+)(n).
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I The enumeration jump is consistent with the Turing
jump on the total enumeration degrees.

I Let a = de(A) and α < ωCK
1 .

I By A(α) we shall denote the α-th iteration of the
e-jump of A and let a(α) = de(A(α)).

I EA
0 = A;

I EA
β+1 = (EA

β )′;
I If α = lim α(p), then EA

α = {〈p, x〉 | x ∈ EA
α(p)}.

I Set A(α) = EA
α .

I (Selman) If for all total X (B ≤e X (α) ⇒ A ≤e X (α)),
then A ≤e B ⊕ 0(α)

e .
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Enumeration of a structure

Let A = (N; R1, . . . , Rk ,=, 6=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N
onto N.

I for any A ⊆ Na let
f−1(A) = {〈x1 . . . xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=)⊕ f−1(6=).
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Degree spectra of structures

Definition
The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

I If a is the least element of DS(A), then a is called the
degree of A.

I L. Richter [1981] — degrees of structures.
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Definition
Let α <ωCK

1 . Then the α-th jump spectrum of A is the
set

DSα(A) = {de((f−1(A))(α)) | f is an enumeration of A}.

I If a is the least element of DSα(A), then a is called
the α-th jump degree of A.

I J. Knight [1986] — jump degrees of structures.
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Definition
A structure A is total if all elements of DS(A) are total.

I The definition of the pullback:
A+ = (N, R1, . . . , Rk ,¬R1, . . . ,¬Rk ).

I DS(A+) consists only total enumeration degrees.
I Only bijective enumerations are considered.
I Example A = (N; =, 6=).

I only the bijective enumerations: DS(A) = {0e},
I all surjective enumerations: DS(A) will consist of all

total enumeration degrees.
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Proposition
Let f be an arbitrary enumeration. There exists a bijective
enumeration g s.t. g−1(A) ≤e f−1(A).
The Degree Spectra are upwards closed with respect to
the total degrees:

a ∈ DS(A), b is total and a ≤ b ⇒ b ∈ DS(A).

Proposition
Let g be an enumeration, α <ωCK

1 and let F be a total set
s.t. g−1(A)(α) ≤e F .
There exists an enumeration f s.t.

g−1(A) ≤e f−1(A) and f−1(A)(α) ≡e F .
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Co-spectra of structures

Definition
Let ∅ 6= A ⊆ De.
The co-set of A is the set co(A) of all lower bounds of A:

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤ a)}.

Example
Fix a d ∈ De and let Ad = {a : a ≥ d}. Then
co(Ad) = {b : b ≤ d}.

I co(A) is a countable ideal.

Definition
The Co-spectrum of A is the co-set of DS(A):

CS(A) = {b : (∀a ∈ DS(A))(b ≤ a)}.
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Definition
The αth co-spectrum of A is the set
CSα(A) = co(DSα(A)).

I If CSα(A) contains a greatest element a, then a is
called the α-th jump co-degree of A.

I Observation: If A has α-th jump degree a, then a is
also α-th jump co-degree of A. The opposite is not
always true.
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Normal Form

Definition
Let A ⊆ N, α <ωCK

1 and let f be an enumeration of A. The
set A is called α-admissible in the enumeration f if
A ≤e f−1(A)(α).
The set A is α-admissible in A if A is α-admissible in all
enumerations of A.

Theorem
a ∈ CSα(A) iff a contains an α-admissible in A set iff all
elements of a are α-admissible in A.

Theorem ( Ash, Knight, Manasse , Slaman, Soskov)
The α-admissible sets are the sets definable on A by
means of recursive (Σ+

α ) infinitary formulae.
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Some Examples

1981 (Richter) Let A = (N;<,=, 6=) be a linear ordering.
I DS(A) contains a minimal pair of degrees,

CS(A) = {0e}.
I If DS(A) has a degree a, then a = 0e.

1986 (Knight 1986) Consider again a linear ordering A.
I CS1(A) consists of all Σ0

2 sets. The first jump
co-degree of A is 0′e.
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1990 (Ash, Jockush, Knight and [1992] Downey, Knight)
For every α <ωCK

1 there exists a linear ordering A

with α-th jump degree 0(α)
e and with no β-th jump

degree for β < α.
1998 (Slaman, Wehner)

DS(A) = {a : a is total and 0e < a},
I CS(A) = {0e}.

The structure A has co-degree 0e but has not a
degree.
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1998 (based on Coles, Downey, Slaman) Let G be a
torsion free abelian group of rank 1, i.e. G is a
subgroup of Q. Let a 6= 0 ∈ G and let p be a prime
number.

hp(a) =

{
k if k is the greatest s.t. pk |a,

∞ if pk |a for all k .

Let χ(a) = (hp0(a), hp1(a), . . . ) and

Sa = {〈i , j〉 : j ≤ the i-th member of χ(a)}.

For a, b 6= 0 ∈ G, Sa ≡e Sb.
Set sG = de(Sa).
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DS(G) = {b : b is total and sG ≤ b}.

I The co-degree of G is sG.
I G has a degree iff sG is total

I If 1 ≤ α, then s(α)
G is the α-th jump degree of G.

For every d ∈ De there exists a G, s.t. sG = d. Hence
every principle ideal of enumeration degrees is CS(G) for
some G.
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2002 (Soskov) Representing all countable ideals as CS of
structures.
Let B0, . . . , Bn, . . . be a sequence of sets of natural
numbers. Set A = (N; Gϕ;σ,=, 6=),

ϕ(〈i , n〉) = 〈i + 1, n〉;
σ = {〈i , n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

I CS(A) = I(de(B0), . . . , de(Bn), . . . )
I I ⊆ CS(A) : Bk ≤e f−1(A) for each k ;
I CS(A) ⊆ I : if de(A) ∈ CS(A), then A ≤e Bk for some

k .



Degree Spectra of
Structures

Alexandra A.
Soskova

DEGREE
SPECTRA OF
STRUCTURES

CO-SPECTRA OF
STRUCTURES

PROPERTIES OF
THE DEGREE
SPECTRA AND
CO-SPECTRA

RELATIVE
SPECTRA OF
STRUCTURES

PROPERTIES OF
RELATIVE
SPECTRA

Properties of the degree spectra

Let A ⊆ De. Then A is upwards closed if

a ∈ A, b is total and a ≤ b ⇒ b ∈ A.

I The Degree spectra are upwards closed.
I General properties of upwards closed sets of

degrees.

Theorem
Let A be an upwards closed set of degrees. Then
(1) co(A) = co({b ∈ A : b is total}).
(2) Let 1 ≤ α <ωCK

1 and c ∈ De. Then

co(A) = co({b ∈ A : c ≤ b(α)}).
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Specific properties

Theorem
Let A be a structure, 1 ≤ α <ωCK

1 , and c ∈ DSα(A). Then

CS(A) = co({b ∈ DS(A) : b(α) = c}).

Example
Let B 6≤e A and A 6≤e B′. Set

D = {a : a ≥ de(A)} ∪ {a : a ≥ de(B)}.

A = {a : a ∈ D & a′ = de(B)′}.

I de(B) is the least element of A and hence
de(B) ∈ co(A).

I de(B) 6≤ de(A) and hence de(B) 6∈ co(D).
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Minimal Pair Type Theorems

Theorem
Let c ∈ DS2(A). There exist total f, g ∈ DS(A), such that
f′′ = g′′ = c and CS(A) = co({f ,g}).

Theorem
Let α <ωCK

1 and let b ∈ DSα(A). There exist elements f0
and f1 of DS(A) such that

I f(α)
0 ≤ b and f(α)

1 ≤ b.

I If β < α, then f(β)
0 and f(β)

1 do not belong to CSβ(A).

I If β + 1 < α, then co({f(β)
0 , f(β)

1 }) = CSβ(A).

Example
Finite lattice L = {a, b, c, a ∧ b, a ∧ c, b ∧ c, >, ⊥}.

A = {d ∈ De : d ≥ a ∨ d ≥ b ∨ d ≥ c}.
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The Quasi-minimal degree

Definition
Let A be a set of enumeration degrees. The degree q is
quasi-minimal with respect to A if:

I q 6∈ co(A).
I If a is total and a ≥ q, then a ∈ A.
I If a is total and a ≤ q, then a ∈ co(A).

Theorem
If q is quasi-minimal with respect to A, then q is an upper
bound of co(A).

Theorem
For every structure A there exists a quasi-minimal with
respect to DS(A) degree.
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Definition
Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem
Let A be a set of degrees possessing a quasi-minimal
degree. Suppose that there exists a countable base B of
A such that all elements of B are total. Then A has a
least element.

Corrolary
A total structure A has a degree if and only if DS(A) has a
countable base.
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Corrolary
Let a and b be incomparable Turing degrees. There does
not exist a structure A such that DS(A) is equal to the
union of the cones above a and b.

Example
An upwards closed set A of degrees which does not
possess a quasi-minimal degree.
Let a and b be two incomparable total degrees.
Let A = {c : c ≥ a ∨ c ≥ b}.
Clearly A has a countable base of total degrees, but it has
not a least element. So, A has no quasi-minimal degree.
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Relatively α-intrinsic sets

1989 Ash, Knight, Manasse, Slaman, Chisholm.
I The set A is relatively α-intrinsic on A if for every

enumeration f of A the set f−1(A) ≤e f−1(A)(α),( α -
constructive ordinal).

2002 Soskov, Baleva.
I Let {Bα}α≤ζ be a sequence of subset of N and ζ be

a constructive ordinal.
I Add each set Bα to the structure A as a new

predicate which is relatively α-intrinsic on A.
I Restrict the class of all enumerations of A to the

class of those enumerations f of A for which
f−1(Bα) ≤e f−1(A)(α).
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Relative Spectra of Structures

Let A1, . . . ,An be arbitrary abstract structures on N,
k ≤ n.
An enumeration f of A is k-acceptable with respect to the
structures A1, . . . , Ak , if

f−1(A1) ≤e (f−1(A))′ . . . f−1(Ak ) ≤e (f−1(A))(k).

Denote by Ek the class of all k -acceptable enumerations.

Definition
The Relative spectrum of the structure A with respect to
A1, . . . , An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) | f ∈ En}
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Lemma
If F is a total set, f ∈ En and f−1(A) ≤e F, then there
exists an enumeration g ∈ En, such that

1. g−1(A) ≡e F ⊕ f−1(A) ≡e F;
2. g−1(B) ≤e F ⊕ f−1(B), for every B ⊆ N.

Corollary
The Relative spectrum RS(A,A1, . . . , An) is upwards
closed.



Degree Spectra of
Structures

Alexandra A.
Soskova

DEGREE
SPECTRA OF
STRUCTURES

CO-SPECTRA OF
STRUCTURES

PROPERTIES OF
THE DEGREE
SPECTRA AND
CO-SPECTRA

RELATIVE
SPECTRA OF
STRUCTURES

PROPERTIES OF
RELATIVE
SPECTRA

Let k ≤ n. The k th Jump Relative spectrum of A with
respect to A1, . . . ,An is the set

RSk (A,A1, . . . ,An) = {a(k) | a ∈ RS(A,A1, . . . ,An)}.

Proposition
The kth Jump Relative spectrum RSk (A,A1, . . . An) is
upwards closed.
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Relative Co-spectra of Structures

Definition
The Relative co-spectrum of A with respect to
A1, . . . ,An, is the co-set of RS(A,A1, . . . ,An), i.e.

CRS(A,A1, . . . ,An) = {b | (∀a ∈ RS(A,A1, . . . ,An))(b ≤ a)}.

Let k ≤ n. The Relative k th co-spectrum of A with
respect to A1, . . . ,An, is the co-set of RSk (A,A1, . . . ,An),
i.e.

CRSk (A,A1, . . . ,An) = {b | (∀a ∈ RSk (A,A1, . . . ,An))(b ≤ a)}.
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The jump set

The jump set P f
k of A with respect to A1, . . . ,An :

1. P f
0 = f−1(A).

2. P f
k+1 = (P f

k )′ ⊕ f−1(Ak+1).

Theorem
For every A ⊆ N and k ≤ n, the following are equivalent:

1. de(A) ∈ CRSk (A,A1, . . . ,An).
2. A ≤e P f

k , for every k-acceptable enumeration f of A

with respect to A1, . . . , Ak .
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The Normal Form Theorem

The set A is formally k-definable on A with respect to
A1, . . . ,An if there exists a recursive sequence
{Φγ(x)(W1, . . . , Wr )} of Σ+

k formulae and elements
t1, . . . , tr of N such that:
x ∈ A ⇐⇒ (A,A1, . . . ,An) |= Φγ(x)(W1/t1, . . . , Wr/tr ).

I Σ+
0 : (∃Y )(β1 & . . . & βk ) ;

I Σ+
k+1: c.e. disjunction of (∃Y )Φ(X , Y ),

Φ = (φ1 & . . . & φl & β).

Theorem
de(A) ∈ CRSk (A,A1, . . . ,An) if and only if A is formally
k-definable on A with respect to A1, . . . ,An.
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The connection with the Joint Spectra

Definition
The Joint spectrum of A,A1, . . . ,An is the set

DS (A,A1, . . . ,An) =

{a : a ∈ DS(A), a′ ∈ DS(A1), . . . , a(n) ∈ DS(An)}.

1. CS(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).
2. There are structures A and A1, for which

CS1(A,A1) 6= CRS1(A,A1).
3. The difference:

I A ≤e P(f−1(A), f−1
1 (A1), . . . , f−1

n (An)) for every
enumerations f of A, f1 of A1,. . . , fn of An.

I in the normal form (A,A1 . . . , An) — as a
many-sorted structure with separated sorts.
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Minimal Pair Theorem

Theorem
For any structures A,A1, . . . ,An, there exist enumeration
degrees f and g in RS(A,A1, . . . ,An), such that for any
enumeration degree a and each k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CRSk (A,A1, . . . ,An).
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Quasi-Minimal Degree

Theorem
For any structures A,A1, . . . , An there exists an
enumeration degree q such that:

1. q 6∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then

a ∈ RS(A,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then

a ∈ CRS(A,A1 . . .An).
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