Degree Spectra of Structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

Leeds Logic Seminar

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

Outline

- Enumeration degrees
- Degree spectra and co-spectra
- Representing the countable ideals as co-spectra
- Properties of upwards closed set of degrees
- Selman's theorem for degree spectra
- The minimal pair theorem
- Quasi-minimal degrees
- Relatively α-intrinsic sets
- Relative spectra of structures
- Joint spectra of structures
- The connection with the Joint spectra

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Enumeration degrees

Definition (Enumeration operator) $\Gamma_z : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$:

 $x \in \Gamma_z(B) \iff \exists v(\langle v, x \rangle \in W_z \& D_v \subseteq B).$

 D_v – the finite set having canonical code v, W_0, \ldots, W_z, \ldots – the Gödel enumeration of the c.e. sets.

- A is enumeration reducible to B, A ≤_e B, if A = Γ_z(B) for some enumeration operator Γ_z.
- $\blacktriangleright A \equiv_e B \iff A \leq_e B \& B \leq_e A.$

$$\bullet d_e(A) = \{B : B \equiv_e A\}$$

$$\blacktriangleright \ \mathrm{d}_{e}(A) \leq \mathrm{d}_{e}(B) \iff A \leq_{e} B.$$

▶ $D_e = (D_e, \leq, \mathbf{0}_e)$ – the structure of *e*-degrees.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Let $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}$. Definition (A total set)

- $\blacktriangleright A^+ = A \oplus (\mathbb{N} \setminus A).$
- A is total iff $A \equiv_e A^+$.
- A degree is *total* if it contains a total set.

The substructure D_T of D_e consisting of all total degrees is isomorphic of the structure of the Turing degrees.

•
$$A \leq_T B$$
 iff $A^+ \leq_e B^+$.

►
$$A \leq_{c.e.} B$$
 iff $A \leq_e B^+$.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

The enumeration jump operator is defined by Cooper:

Definition (Enumeration jump)

Given a set A, let

•
$$K_A^0 = \{ \langle x, z \rangle : x \in \Gamma_z(A) \}.$$

• $A' = (K_A^0)^+.$
• $A^{(n+1)} = (A^{(n)})'.$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

The enumeration jump is consistent with the Turing jump on the total enumeration degrees.

• Let
$$\mathbf{a} = d_e(\mathbf{A})$$
 and $\alpha < \omega_1^{CK}$.

By A^(α) we shall denote the α-th iteration of the e-jump of A and let a^(α) = d_e(A^(α)).

$$\bullet \ E_0^A = A;$$

$$E_{\beta+1}^{A} = (E_{\beta}^{A})'$$

- If $\alpha = \lim \alpha(p)$, then $E_{\alpha}^{A} = \{ \langle p, x \rangle \mid x \in E_{\alpha(p)}^{A} \}$.
- Set $A^{(\alpha)} = E^A_{\alpha}$.
- (Selman) If for all total X (B ≤_e X^(α) ⇒ A ≤_e X^(α)), then A ≤_e B ⊕ 0^(α)_e.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Enumeration of a structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.

► An enumeration f of A is a total mapping from N onto N.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

・ロット 御マ キャネボット 御子 そうさ

Degree spectra of structures

Definition

The Degree spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

- If a is the least element of DS(𝔅), then a is called the degree of 𝔅.
- L. Richter [1981] degrees of structures.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Definition Let $\alpha < \omega_1^{CK}$. Then the α -th jump spectrum of \mathfrak{A} is the set

 $DS_{\alpha}(\mathfrak{A}) = \{ d_{e}((f^{-1}(\mathfrak{A}))^{(\alpha)}) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

- If a is the least element of DS_α(𝔅), then a is called the α-th jump degree of 𝔅.
- ► J. Knight [1986] jump degrees of structures.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

Definition

A structure \mathfrak{A} is *total* if all elements of $DS(\mathfrak{A})$ are total.

- The definition of the pullback: $\mathfrak{A}^+ = (\mathbb{N}, R_1, \dots, R_k, \neg R_1, \dots, \neg R_k).$
- $DS(\mathfrak{A}^+)$ consists only total enumeration degrees.
- Only bijective enumerations are considered.

• Example
$$\mathfrak{A} = (\mathbb{N}; =, \neq).$$

- only the bijective enumerations: $DS(\mathfrak{A}) = \{\mathbf{0}_e\},\$
- all surjective enumerations: DS(A) will consist of all total enumeration degrees.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Proposition

Let *f* be an arbitrary enumeration. There exists a bijective enumeration *g* s.t. $g^{-1}(\mathfrak{A}) \leq_{e} f^{-1}(\mathfrak{A})$.

The Degree Spectra are upwards closed with respect to the total degrees:

 $\mathbf{a} \in \mathrm{DS}(\mathfrak{A}), \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathrm{DS}(\mathfrak{A}).$

Proposition

Let g be an enumeration, $\alpha < \omega_1^{CK}$ and let F be a total set s.t. $g^{-1}(\mathfrak{A})^{(\alpha)} \leq_e F$. There exists an enumeration f s.t.

$$g^{-1}(\mathfrak{A}) \leq_{e} f^{-1}(\mathfrak{A})$$
 and $f^{-1}(\mathfrak{A})^{(\alpha)} \equiv_{e} F$.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

Co-spectra of structures

Definition Let $\emptyset \neq \mathcal{A} \subset \mathcal{D}_{e}$.

The *co-set* of A is the set co(A) of all lower bounds of A:

$$\textit{co}(\mathcal{A}) = \{ \textbf{b} : \textbf{b} \in \mathcal{D}_e \ \& \ (\forall \textbf{a} \in \mathcal{A}) (\textbf{b} \leq \textbf{a}) \}.$$

Example

Fix a $\mathbf{d} \in \mathcal{D}_e$ and let $\mathcal{A}_{\mathbf{d}} = \{\mathbf{a} : \mathbf{a} \ge \mathbf{d}\}$. Then $co(\mathcal{A}_{\mathbf{d}}) = \{\mathbf{b} : \mathbf{b} \le \mathbf{d}\}$.

• co(A) is a countable ideal.

Definition

The Co-spectrum of \mathfrak{A} is the co-set of $DS(\mathfrak{A})$:

$$\mathrm{CS}(\mathfrak{A}) = \{ \mathsf{b} : (\forall \mathsf{a} \in \mathrm{DS}(\mathfrak{A})) (\mathsf{b} \leq \mathsf{a}) \}$$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

Definition

The α th co-spectrum of \mathfrak{A} is the set $CS_{\alpha}(\mathfrak{A}) = co(DS_{\alpha}(\mathfrak{A})).$

- If CS_α(𝔅) contains a greatest element a, then a is called the α-th jump co-degree of 𝔅.
- Observation: If A has α-th jump degree a, then a is also α-th jump co-degree of A. The opposite is not always true.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

Normal Form

Definition

Let $A \subseteq \mathbb{N}$, $\alpha < \omega_1^{CK}$ and let f be an enumeration of \mathfrak{A} . The set A is called α -admissible in the enumeration f if $A \leq_e f^{-1}(\mathfrak{A})^{(\alpha)}$.

The set *A* is α -admissible in \mathfrak{A} if *A* is α -admissible in all enumerations of \mathfrak{A} .

Theorem

 $\mathbf{a} \in CS_{\alpha}(\mathfrak{A})$ iff \mathbf{a} contains an α -admissible in \mathfrak{A} set iff all elements of \mathbf{a} are α -admissible in \mathfrak{A} .

Theorem (Ash, Knight, Manasse, Slaman, Soskov) The α -admissible sets are the sets definable on \mathfrak{A} by means of recursive (Σ_{α}^{+}) infinitary formulae.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Some Examples

1981 (Richter) Let $\mathfrak{A}=(\mathbb{N};<,=,\neq)$ be a linear ordering.

- ► DS(𝔅) contains a minimal pair of degrees, CS(𝔅) = {0_e}.
- If $DS(\mathfrak{A})$ has a degree **a**, then $\mathbf{a} = \mathbf{0}_e$.
- 1986 (Knight 1986) Consider again a linear ordering \mathfrak{A} .
 - CS₁(𝔅) consists of all Σ⁰₂ sets. The first jump co-degree of 𝔅 is **0**'_e.

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

- 1990 (Ash, Jockush, Knight and [1992] Downey, Knight) For every $\alpha < \omega_1^{CK}$ there exists a linear ordering \mathfrak{A} with α -th jump degree $\mathbf{0}_e^{(\alpha)}$ and with no β -th jump degree for $\beta < \alpha$.
- 1998 (Slaman, Wehner) $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \},\$

•
$$CS(\mathfrak{A}) = \{\mathbf{0}_e\}.$$

The structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

1998 (based on Coles, Downey, Slaman) Let *G* be a torsion free abelian group of rank 1, i.e. *G* is a subgroup of *Q*. Let $a \neq 0 \in G$ and let *p* be a prime number.

$$h_p(a) = egin{cases} k & ext{if } k ext{ is the greatest s.t. } p^k | a, \ \infty & ext{if } p^k | a ext{ for all } k. \end{cases}$$

Let
$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), ...)$$
 and

 $S_a = \{ \langle i, j \rangle : j \leq \text{the } i \text{-th member of } \chi(a) \}.$

For $a, b \neq 0 \in G$, $S_a \equiv_e S_b$. Set $\mathbf{s}_G = d_e(S_a)$.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq \mathbf{b} \}.$

- The co-degree of G is s_G.
- G has a degree iff s_G is total
- If $1 \le \alpha$, then $\mathbf{s}_{G}^{(\alpha)}$ is the α -th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G. Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

2002 (Soskov) Representing all countable ideals as CS of structures.

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; G_{\varphi}; \sigma, =, \neq)$,

$$\varphi(\langle i, n \rangle) = \langle i+1, n \rangle;$$

$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k\}.$$

►
$$CS(\mathfrak{A}) = I(d_e(B_0), \dots, d_e(B_n), \dots)$$

► $I \subseteq CS(\mathfrak{A}) : B_k \leq_e f^{-1}(\mathfrak{A})$ for each k ;
► $CS(\mathfrak{A}) \subseteq I$: if $d_e(A) \in CS(\mathfrak{A})$, then $A \leq_e B_k$ for some k .

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Properties of the degree spectra

Let $\mathcal{A} \subseteq \mathcal{D}_e$. Then \mathcal{A} is *upwards closed* if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

- The Degree spectra are upwards closed.
- General properties of upwards closed sets of degrees.

Theorem

Let A be an upwards closed set of degrees. Then

(1)
$$co(\mathcal{A}) = co(\{\mathbf{b} \in \mathcal{A} : \mathbf{b} \text{ is total}\}).$$

(2) Let $1 \leq \alpha < \omega_1^{CK}$ and $\mathbf{c} \in \mathcal{D}_e$. Then

$$\textit{co}(\mathcal{A}) = \textit{co}(\{\mathbf{b} \in \mathcal{A} : \mathbf{c} \leq \mathbf{b}^{(\alpha)}\}).$$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

・ロト・西ト・山下・山下・山下・

Specific properties

Theorem Let \mathfrak{A} be a structure, $1 \leq \alpha < \omega_1^{CK}$, and $\mathbf{c} \in DS_{\alpha}(\mathfrak{A})$. Then

 $\mathrm{CS}(\mathfrak{A}) = \operatorname{co}(\{\mathbf{b} \in \mathrm{DS}(\mathfrak{A}) : \mathbf{b}^{(\alpha)} = \mathbf{c}\}).$

Example

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Set

 $\mathcal{D} = \{\mathbf{a} : \mathbf{a} \ge d_e(A)\} \cup \{\mathbf{a} : \mathbf{a} \ge d_e(B)\}.$ $\mathcal{A} = \{\mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)'\}.$

- ► $d_{e}(B)$ is the least element of A and hence $d_{e}(B) \in co(A)$.
- ► $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \notin co(D)$.

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Minimal Pair Type Theorems

Theorem

Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist total $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$, such that $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Theorem

Let $\alpha < \omega_1^{CK}$ and let $\mathbf{b} \in DS_{\alpha}(\mathfrak{A})$. There exist elements \mathbf{f}_0 and \mathbf{f}_1 of $DS(\mathfrak{A})$ such that

•
$$\mathbf{f}_0^{(\alpha)} \leq \mathbf{b}$$
 and $\mathbf{f}_1^{(\alpha)} \leq \mathbf{b}$.

• If $\beta < \alpha$, then $f_0^{(\beta)}$ and $f_1^{(\beta)}$ do not belong to $CS_{\beta}(\mathfrak{A})$.

• If
$$\beta + 1 < \alpha$$
, then $co(\{\mathbf{f}_0^{(\beta)}, \mathbf{f}_1^{(\beta)}\}) = CS_{\beta}(\mathfrak{A})$.

Example

Finite lattice $L = \{a, b, c, a \land b, a \land c, b \land c, \top, \bot\}$.

$$\mathcal{A} = \{ \mathbf{d} \in \mathcal{D}_{\boldsymbol{e}} : \mathbf{d} \ge \mathbf{a} \lor \mathbf{d} \ge \mathbf{b} \lor \mathbf{d} \ge \mathbf{c} \}.$$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●目目 の々で

The Quasi-minimal degree

Definition

Let \mathcal{A} be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to \mathcal{A} if:

- ▶ $\mathbf{q} \notin co(\mathcal{A}).$
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem

If **q** is quasi-minimal with respect to A, then **q** is an upper bound of co(A).

Theorem

For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Definition Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall a \in \mathcal{A})(\exists b \in \mathcal{B})(b \leq a).$

Theorem

Let A be a set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base B of A such that all elements of B are total. Then A has a least element.

Corrolary

A total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Corrolary

Let **a** and **b** be incomparable Turing degrees. There does not exist a structure \mathfrak{A} such that $DS(\mathfrak{A})$ is equal to the union of the cones above **a** and **b**.

Example

An upwards closed set A of degrees which does not possess a quasi-minimal degree.

Let **a** and **b** be two incomparable total degrees.

Let $\mathcal{A} = \{\mathbf{c} : \mathbf{c} \ge \mathbf{a} \lor \mathbf{c} \ge \mathbf{b}\}.$

Clearly A has a countable base of total degrees, but it has not a least element. So, A has no quasi-minimal degree.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Relatively α -intrinsic sets

1989 Ash, Knight, Manasse, Slaman, Chisholm.

The set A is relatively α-intrinsic on 𝔅 if for every enumeration f of 𝔅 the set f⁻¹(A) ≤_e f⁻¹(𝔅)^(α),(α constructive ordinal).

2002 Soskov, Baleva.

- Let {B_α}_{α≤ζ} be a sequence of subset of N and ζ be a constructive ordinal.
- Add each set B_α to the structure A as a new predicate which is relatively α-intrinsic on A.
- ► Restrict the class of all enumerations of 𝔅 to the class of those enumerations *f* of 𝔅 for which *f*⁻¹(*B*_α) ≤_e *f*⁻¹(𝔅)^(α).

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Relative Spectra of Structures

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be arbitrary abstract structures on \mathbb{N} , $k \leq n$.

An enumeration f of \mathfrak{A} is **k-acceptable** with respect to the structures $\mathfrak{A}_1, \ldots, \mathfrak{A}_k$, if

$$f^{-1}(\mathfrak{A}_1) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))' \dots f^{-1}(\mathfrak{A}_k) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))^{(k)}.$$

Denote by \mathcal{E}_k the class of all *k*-acceptable enumerations.

Definition

The Relative spectrum of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)=\{d_{\mathrm{e}}(f^{-1}(\mathfrak{A}))\mid f\in\mathcal{E}_n\}$$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

・ロト・西ト・山下・山下・山下・

Lemma

If *F* is a total set, $f \in \mathcal{E}_n$ and $f^{-1}(\mathfrak{A}) \leq_e F$, then there exists an enumeration $g \in \mathcal{E}_n$, such that

1.
$$g^{-1}(\mathfrak{A}) \equiv_{e} F \oplus f^{-1}(\mathfrak{A}) \equiv_{e} F;$$

2. $g^{-1}(B) \leq_{e} F \oplus f^{-1}(B)$, for every $B \subseteq \mathbb{N}$

Corollary

The Relative spectrum $RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ is upwards closed.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

.

Let $k \le n$. The *k*th Jump Relative spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}_{k}(\mathfrak{A},\mathfrak{A}_{1},\ldots,\mathfrak{A}_{n})=\{\mathbf{a}^{(\mathbf{k})}\mid \mathbf{a}\in\mathrm{RS}(\mathfrak{A},\mathfrak{A}_{1},\ldots,\mathfrak{A}_{n})\}.$$

Proposition

The kth Jump Relative spectrum $RS_k(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ is upwards closed.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

 $\operatorname{CRS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}.$

Let $k \leq n$. The Relative *k*th co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of $RS_k(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

$$\operatorname{CRS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}$$

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

・ロト・日本・日本・日本・今日・

The jump set

The jump set \mathcal{P}_k^f of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$: 1. $\mathcal{P}_0^f = f^{-1}(\mathfrak{A})$. 2. $\mathcal{P}_{k+1}^f = (\mathcal{P}_k^f)' \oplus f^{-1}(\mathfrak{A}_{k+1})$.

Theorem

For every $A \subseteq \mathbb{N}$ and $k \leq n$, the following are equivalent:

- 1. $d_{e}(A) \in \operatorname{CRS}_{k}(\mathfrak{A}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}).$
- A ≤_e P^f_k, for every k-acceptable enumeration f of 𝔅 with respect to 𝔅₁,..., 𝔅_k.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

The Normal Form Theorem

The set *A* is *formally k*-*definable* on \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ if there exists a recursive sequence $\{\Phi^{\gamma(x)}(W_1, \ldots, W_r)\}$ of Σ_k^+ formulae and elements t_1, \ldots, t_r of \mathbb{N} such that: $x \in A \iff (\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) \models \Phi^{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r).$ $\blacktriangleright \Sigma_0^+ : (\exists \overline{Y})(\beta_1 \& \ldots \& \beta_k);$ $\vdash \Sigma_{k+1}^+$: c.e. disjunction of $(\exists \overline{Y})\Phi(\overline{X}, \overline{Y}),$ $\Phi = (\phi_1 \& \ldots \& \phi_l \& \beta).$

Theorem

 $d_{e}(A) \in \operatorname{CRS}_{k}(\mathfrak{A}, \mathfrak{A}_{1}, \dots, \mathfrak{A}_{n})$ if and only if A is formally *k*-definable on \mathfrak{A} with respect to $\mathfrak{A}_{1}, \dots, \mathfrak{A}_{n}$.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The connection with the Joint Spectra

Definition

The Joint spectrum of $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

DS
$$(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a}: \mathbf{a} \in \mathrm{DS}(\mathfrak{A}), \mathbf{a}' \in \mathrm{DS}(\mathfrak{A}_1), \ldots, \mathbf{a}^{(\mathbf{n})} \in \mathrm{DS}(\mathfrak{A}_n)\}.$$

1.
$$CS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = CRS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n).$$

- 2. There are structures \mathfrak{A} and \mathfrak{A}_1 , for which $CS_1(\mathfrak{A}, \mathfrak{A}_1) \neq CRS_1(\mathfrak{A}, \mathfrak{A}_1)$.
- 3. The difference:
 - ► $A \leq_{e} \mathcal{P}(f^{-1}(\mathfrak{A}), f_1^{-1}(\mathfrak{A}_1), \dots, f_n^{-1}(\mathfrak{A}_n))$ for every enumerations f of \mathfrak{A} , f_1 of $\mathfrak{A}_1, \dots, f_n$ of \mathfrak{A}_n .
 - ► in the normal form (𝔄, 𝔄₁...,𝔄ₙ) as a many-sorted structure with separated sorts.

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Minimal Pair Theorem

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$, there exist enumeration degrees **f** and **g** in RS($\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$), such that for any enumeration degree **a** and each $k \leq n$:

$$\mathbf{a} \leq \mathbf{f}^{(\mathbf{k})} \& \mathbf{a} \leq \mathbf{g}^{(\mathbf{k})} \Rightarrow \mathbf{a} \in \mathrm{CRS}_k(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n).$$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

Degree Spectra of Structures

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

Quasi-Minimal Degree

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ there exists an enumeration degree **q** such that:

- 1. $q \notin CRS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n);$
- 2. If **a** is a total degree and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$;
- 3. If **a** is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in CRS(\mathfrak{A}, \mathfrak{A}_1 \dots \mathfrak{A}_n)$.

Degree Spectra of Structures

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

CO-SPECTRA OF STRUCTURES

PROPERTIES OF THE DEGREE SPECTRA AND CO-SPECTRA

RELATIVE SPECTRA OF STRUCTURES

PROPERTIES OF RELATIVE SPECTRA

きょう きょう きょう きょう きょう

- C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures. Ann. Pure Appl. Logic 42 : 195–205 1989.
- J. Chisholm, Effective model theory vs. recursive model theory *J. Symbolic Logic*, 55:1168–1191 1990.
- I. N. Soskov and V. Baleva Ash's Theorem for abstract structures. Proceedings of Logic Colloquium'2002, 2002.

I. N. Soskov,

Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, 96:45–68, 2003.

Degree Spectra of Structures

> Alexandra A. Soskova

Appendix

きょう きょう きょう きょう きょう