Relativized Degree Spectra

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

CiE 2006 SWANSEA

Alexandra A. Soskova Relativized Degree Spectra

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Outline

- Enumeration of a structure
- Degree spectra and co-spectra
- Relatively α-intrinsic sets
- Relative spectra of structures
- Normal Form Theorem
- The connection with the Joint Spectra
- The Minimal pair theorem
- Quasi-minimal degrees

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.

• An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

• for any
$$A \subseteq \mathbb{N}^a$$
 let
 $f^{-1}(A) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}.$
• $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \dots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$

🗇 🕨 🔍 医 🖌 🖉 医

The Degree spectrum of A is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

- L. Richter [1981] degrees of structures.
- J. Knight [1986] jump degrees of structures.
- Ash, Jockush, Downey, Slaman, Soskov.

Definition

• The Co-spectrum of \mathfrak{A} is the set

$$\mathrm{CS}(\mathfrak{A}) = \{ \mathbf{b} : (\forall \mathbf{a} \in \mathrm{DS}(\mathfrak{A})) (\mathbf{b} \leq \mathbf{a}) \}.$$

Examples

- 1981 (Richter) Let $\mathfrak{A} = (\mathbb{N}; <, =, \neq)$ be a linear ordering.
 - $DS(\mathfrak{A})$ contains a minimal pair of degrees, $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$.
 - If $DS(\mathfrak{A})$ has a least element **a**, then $\mathbf{a} = \mathbf{0}_e$.
- 1998 (Slaman) $DS(\mathfrak{A}) = \{ \boldsymbol{a} : \boldsymbol{a} \text{ is total and } \boldsymbol{0}_{\boldsymbol{e}} < \boldsymbol{a} \}, \\ CS(\mathfrak{A}) = \{ \boldsymbol{0}_{\boldsymbol{e}} \}.$
 - $DS(\mathfrak{A})$ has not a least element.
- 1998 (Coles, Downey, Slaman) Every principle ideal of enumeration degrees is a $CS(\mathfrak{A})$ for some torsion free abelian group \mathfrak{A} .
- 2002 (Soskov) Every countable ideal is a $CS(\mathfrak{A})$ for some \mathfrak{A} .

・ロン ・厚 と ・ ヨ と ・ ヨ と

Э

Let $\mathcal{A} \subseteq \mathcal{D}_e$. Then \mathcal{A} is *upwards closed* if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

The Degree spectra are upwards closed.

- General properties of upwards closed sets of degrees.
- Specific properties:
 - the Minimal pair type theorem;
 - the existence of Quasi-minimal degree.

1989 (Ash, Knight, Manasse, Slaman, Chisholm).

• The set *A* is *relatively* α *-intrinsic on* \mathfrak{A} if for every enumeration *f* of \mathfrak{A} the set $f^{-1}(A) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(\alpha)}$, $\alpha < \omega_{1}^{CK}$.

2002 (Soskov, Baleva)

- Let $\{B_{\alpha}\}_{\alpha \leq \zeta}$ be a sequence of subset of \mathbb{N} and $\zeta < \omega_1^{CK}$.
- Add each set B_α to the structure A as a new predicate which is relatively α-intrinsic on A.
- Restrict the class of all enumerations of 𝔅 to the class of those enumerations *f* of 𝔅 for which *f*⁻¹(*B*_α) ≤_e *f*⁻¹(𝔅)^(α).

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be arbitrary abstract structures on \mathbb{N} , $k \leq n$. An enumeration *f* of \mathfrak{A} is **k-acceptable** with respect to the structures $\mathfrak{A}_1, \ldots, \mathfrak{A}_k$, if

$$f^{-1}(\mathfrak{A}_1) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))', \ldots, f^{-1}(\mathfrak{A}_k) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))^{(k)}.$$

Denote by \mathcal{E}_k the class of all *k*-acceptable enumerations.

Definition

The Relative spectrum of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)=\{d_{\mathrm{e}}(f^{-1}(\mathfrak{A}))\mid f\in\mathcal{E}_n\}$$

Lemma

If F is a total set, $f \in \mathcal{E}_n$ and $f^{-1}(\mathfrak{A}) \leq_e F$, then there exists an enumeration $g \in \mathcal{E}_n$, such that

2
$$g^{-1}(B) \leq_{\mathrm{e}} F \oplus f^{-1}(B)$$
, for every $B \subseteq \mathbb{N}$.

Corollary

The Relative spectrum $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$ is upwards closed.

Let $k \leq n$. The *k*th Jump Relative spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)=\{\mathbf{a}^{(\mathbf{k})}\mid \mathbf{a}\in\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)\}.$$

Proposition

The kth Jump Relative spectrum $RS_k(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ is upwards closed.

・ロン・(理)・・ヨン・ヨン 三臣

The Relative co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of RS $(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

 $\operatorname{CRS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}.$

Let $k \leq n$. The Relative *k*th co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of $RS_k(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

 $\operatorname{CRS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}.$

イロト 不得 とくほ とくほ とうほ

The jump set \mathcal{P}_k^f of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$:

•
$$\mathcal{P}_0^f = f^{-1}(\mathfrak{A}).$$

• $\mathcal{P}_{k+1}^f = (\mathcal{P}_k^f)' \oplus f^{-1}(\mathfrak{A}_k).$

Theorem

For every $A \subseteq \mathbb{N}$ and $k \leq n$, the following are equivalent:

- $d_{e}(A) \in \operatorname{CRS}_{k}(\mathfrak{A},\mathfrak{A}_{1},\ldots,\mathfrak{A}_{n}).$
- 2 $A \leq_{e} \mathcal{P}_{k}^{f}$, for every k-acceptable enumeration f of \mathfrak{A} with respect to $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{k}$.

프 🖌 🛪 프 🛌

The set *A* is *formally k*-*definable* on \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ if there exists a recursive sequence $\{\Phi^{\gamma(x)}(W_1, \ldots, W_r)\}$ of Σ_k^+ formulae and elements t_1, \ldots, t_r of \mathbb{N} such that: $x \in A \iff (\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) \models \Phi^{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r).$ • $\Sigma_0^+ : (\exists \overline{Y})(\beta_1 \& \ldots \& \beta_k);$ • Σ_{k+1}^+ : r.e. disjunction of $(\exists \overline{Y})\Phi(\overline{X}, \overline{Y}),$ $\Phi = (\phi_1 \& \ldots \& \phi_l \& \beta).$

Theorem

A set $A \in CRS_k(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$ if and only if A is formally k-definable on \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$.

・ロト ・同ト ・ヨト ・ヨト

The Joint spectrum of $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\begin{array}{ll} \mathrm{DS}(\mathfrak{A},\mathfrak{A}_1,\ldots &,\mathfrak{A}_n) = \\ \{\mathbf{a}: \mathbf{a}\in \mathrm{DS}(\mathfrak{A}), \mathbf{a}'\in \mathrm{DS}(\mathfrak{A}_1),\ldots, \mathbf{a}^{(n)}\in \mathrm{DS}(\mathfrak{A}_n)\}. \end{array}$$

$$CS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = CRS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n).$$

- 2 There are structures \mathfrak{A} and \mathfrak{A}_1 , for which $CS_1(\mathfrak{A}, \mathfrak{A}_1) \neq CRS_1(\mathfrak{A}, \mathfrak{A}_1)$.
- The difference:
 - $A \leq_{e} \mathcal{P}(f^{-1}(\mathfrak{A}), f_{1}^{-1}(\mathfrak{A}_{1}), \dots, f_{n}^{-1}(\mathfrak{A}_{n}))$ for every enumerations f of \mathfrak{A}, f_{1} of $\mathfrak{A}_{1}, \dots, f_{n}$ of \mathfrak{A}_{n} .
 - in the normal form (A, A₁..., A_n) as a many-sorted structure with separated sorts.

イロト イポト イヨト イヨ

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$, there exist enumeration degrees **f** and **g** in RS($\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$), such that for any enumeration degree **a** and each $k \leq n$:

$$\mathbf{a} \leq \mathbf{f^{(k)}} \ \& \ \mathbf{a} \leq \mathbf{g^{(k)}} \Rightarrow \mathbf{a} \in \mathrm{CRS}_k(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n).$$

⇒ < ⇒ > < ≡</p>

- Soskov An enumeration degree \textbf{q}_0 is *quasi-minimal with respect to* $DS(\mathfrak{A})$ if
 - $\mathbf{q}_0 \notin \mathrm{CS}(\mathfrak{A});$
 - for any total enumeration degree \mathbf{a} : $\mathbf{a} \ge \mathbf{q}_0 \Rightarrow \mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ and $\mathbf{a} \le \mathbf{q}_0 \Rightarrow \mathbf{a} \in \mathrm{CS}(\mathfrak{A})$.

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ there exists an enumeration degree **q** such that:

- $\mathbf{q} \notin CRS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n);$
- 2) If a is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)$;
- **③** If **a** is a total degree and **a** ≤ **q**, then **a** ∈ CRS($\mathfrak{A}, \mathfrak{A}_1 \dots \mathfrak{A}_n$).

ヘロト ヘヨト ヘヨト ヘ

- Soskov An enumeration degree \textbf{q}_0 is *quasi-minimal with respect to* $DS(\mathfrak{A})$ if
 - $\mathbf{q}_0 \notin \mathrm{CS}(\mathfrak{A});$
 - for any total enumeration degree \mathbf{a} : $\mathbf{a} \ge \mathbf{q}_0 \Rightarrow \mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ and $\mathbf{a} \le \mathbf{q}_0 \Rightarrow \mathbf{a} \in \mathrm{CS}(\mathfrak{A})$.

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ there exists an enumeration degree **q** such that:

- 2 If **a** is a total degree and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$;
- If **a** is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in CRS(\mathfrak{A}, \mathfrak{A}_1 \dots \mathfrak{A}_n)$.

▲御 ▶ ▲ 臣 ▶ ▲

- The Minimal pair theorem.
- The Quasi-minimal degree.

- Questions:
 - Find other specific properties of Relative spectra of structures?
 - For any structures A, A₁,..., A_n, does there exist a structure B such that DS(B) = RS(A, A₁,..., A_n)?

ト < 臣 > < 臣 >

C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures. Ann. Pure Appl. Logic 42 : 195–205 1989.

J. Chisholm,

Effective model theory vs. recursive model theory *J. Symbolic Logic*, 55:1168–1191 1990.

I. N. Soskov and V. Baleva Ash's Theorem for abstract structures. Proceedings of Logic Colloquium'2002, 2002.

I. N. Soskov,

Degree spectra and co-spectra of structures.

Ann. Univ. Sofia, 96:45-68, 2003.