ω-Degree Spectra

Alexandra A. Soskova 1

Sofia University

CCR 2013 Buenos Aires 06.02.13

$\omega\text{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectr

ω-Enumerati Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

¹Supported by Sofia University Science Fund and Master Program Logic and Algorithms

Outline

- Degree spectra and jump spectra
- ightharpoonup ω -enumeration degrees
- ω-degree spectra
- ▶ ω-co-spectra
- A minimal pair theorem
- Quasi-minimal degrees

$\omega\text{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectr

Degrees

ω-Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Enumeratio Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectro Minimal Pair Theorem Quasi-Minimal Degree

- Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.
 - An enumeration f of $\mathfrak A$ is a total mapping from $\mathbb N$ onto $\mathbb N$.
 - ▶ for any $A \subseteq \mathbb{N}^a$ let $f^{-1}(A) = \{\langle x_1, \dots, x_a \rangle : (f(x_1), \dots, f(x_a)) \in A\}.$
 - $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$

Definition (Richter)

The Turing degree spectrum of \mathfrak{A}

 $DS_T(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is an injective enumeration of } \mathfrak{A}\}\$

J. Knight, Ash, Jockush, Downey, Slaman.

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

Definition

We say that $\Gamma: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is an *enumeration operator* iff for some c.e. set W_i for each $B \subseteq \mathbb{N}$

$$\Gamma(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B]\}.$$

The index i of the c.e. set W_i is an index of Γ and write $\Gamma = \Gamma_i$.

Definition

The set A is enumeration reducible to the set B ($A \le_e B$), if $A = \Gamma_i(B)$ for some e-operator Γ_i .

The enumeration degree of A is $d_e(A) = \{B \subseteq \mathbb{N} | A \equiv_e B\}$. The set of all enumeration degrees is denoted by \mathcal{D}_e .

The enumeration jump

Definition

Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem

For any sets A and B:

- 1. A is c.e. in B iff $A \leq_e B^+$.
- 2. $A \leq_T B \text{ iff } A^+ \leq_e B^+$.
- 3. A is Σ_{n+1}^0 relatively to B iff $A \leq_e (B^+)^{(n)}$.

Definition

For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition

A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

Properties of the

The enumeration jump

Definition

Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem

For any sets A and B:

- 1. A is c.e. in B iff $A \leq_e B^+$.
- 2. $A \leq_T B \text{ iff } A^+ \leq_e B^+$.
- 3. A is Σ_{n+1}^0 relatively to B iff $A \leq_e (B^+)^{(n)}$.

Definition

For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition

A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A_-^+)$.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

roperties of the

Definition (Soskov)

lacktriangle The enumeration degree spectrum of ${\mathfrak A}$

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the degree of \mathfrak{A} .

► The co-spectrum of 𝔄

$$CS(\mathfrak{A}) = \{ \mathbf{b} : (\forall \mathbf{a} \in DS(\mathfrak{A}))(\mathbf{b} \leq \mathbf{a}) \}.$$

If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

Definition

The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A}\}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth* jump degree of \mathfrak{A} .

Definition

The set $CS_n(\mathfrak{A})$ of all lower bounds of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} .

If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth* jump co-degree of \mathfrak{A} .

ω-Degree Spectra
Minimal Pair Theorem
Ouasi-Minimal Degree

Example (Richter)

Let $\mathfrak{A}=(A;<)$ be a linear ordering. $\mathrm{DS}(\mathfrak{A})$ contains a minimal pair of degrees and hence $\mathrm{CS}(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $\mathrm{CS}_1(\mathfrak{A})$ consists of all e-degrees of Σ^0_2 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener

There exists a structure 21 s.t

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

ω-Degree Spectra
Minimal Pair Theorem
Ouasi-Minimal Degree

Example (Richter)

Let $\mathfrak{A}=(A;<)$ be a linear ordering. $\mathrm{DS}(\mathfrak{A})$ contains a minimal pair of degrees and hence $\mathrm{CS}(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $\mathrm{CS}_1(\mathfrak{A})$ consists of all e-degrees of Σ^0_2 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener)

There exists a structure 21 s.1

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Example (Richter)

Let $\mathfrak{A}=(A;<)$ be a linear ordering. $\mathrm{DS}(\mathfrak{A})$ contains a minimal pair of degrees and hence $\mathrm{CS}(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $\mathrm{CS}_1(\mathfrak{A})$ consists of all e-degrees of Σ^0_2 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener)

There exists a structure \mathfrak{A} s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

ω-Degree Spectr
Minimal Pair Theorem
Quasi-Minimal Degree

Example (Downey, Jockusch)

Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists a set called the standard type of the group S(G) with the following property: The Turing degree spectrum of G is precisely $\{d_T(X) \mid S(G) \in \Sigma_1^0(X)\}.$

Example (Coles, Downey, Slaman)

Let $A \subseteq \mathbb{N}$. Consider $\mathcal{C}(A) = \{X \mid A \in \Sigma_1^0(X)\}$. By Richter there is a set A such that $\mathcal{C}(A)$ has not a member of least Turing degree.

For every sets A the set: $C(A)' = \{X' \mid A \in \Sigma_1^0(X)\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a first jump degree.

Representing the principle countable ideals as co-spectra

Example (Soskov)

Let G be a torsion free abelian group of rank 1. Let \mathbf{s}_G be an enumeration degree of S(G).

- ▶ $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- ▶ The co-degree of G is \mathbf{s}_G .
- ▶ G has a degree iff \mathbf{s}_G is a total e-degree.
- ▶ If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corrolary

Every principle ideal of enumeration degrees is CS(G) for some G.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

Properties of the ω-Degree Spectra

Minimal Pair Theorem

Quasi-Minimal Degree

Representing the principle countable ideals as co-spectra

Example (Soskov)

Let G be a torsion free abelian group of rank 1. Let \mathbf{s}_G be an enumeration degree of S(G).

- ▶ $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- ► The co-degree of G is s_G.
- ▶ G has a degree iff \mathbf{s}_G is a total e-degree.
- ▶ If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corrolary

Every principle ideal of enumeration degrees is CS(G) for some G.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

Properties of the ω-Degree Spectra

Minimal Pair Theorem

Quasi-Minimal Degree

Representing non-principle countable ideals as co-spectra

Example (Soskov)

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then
$$CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

Proportion of the

Spectra with a countable base

Definition

Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

Theorem (Soskov)

A structure $\mathfrak A$ has a degree if and only if $DS(\mathfrak A)$ has a countable base.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

Properties of the

An upwards closed set of degrees which is not a degree spectra of a structure

а

Picture2.png

ω-Degree Spectra

Alexandra A.

Soskova

Degree Spectra

Degrees

 ω -Degree Spectr

v-Degree Spectr Minimal Pair Theorem Quasi-Minimal Degree

b

Definition

Let $A \subseteq \mathcal{D}_e$. A is upwards closed with respect to total enumeration degrees, if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

The degree spectra are upwards closed with respect to total enumeration degrees.

Duranation of the

- Let $\mathcal{A}\subseteq\mathcal{D}_e$ be upwards closed with respect to total enumeration degrees. Denote by
 - $co(A) = \{b : b \in \mathcal{D}_e \& (\forall a \in A)(b \leq_e a)\}.$

- ► (Selman) $A_t = \{ \mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total} \}$ $\implies co(A) = co(A_t).$
- ▶ Let $\mathbf{b} \in \mathcal{D}_e$ and n > 0.
 - $\mathcal{A}_{\mathbf{b},n} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{b} \leq \mathbf{a}^{(n)} \} \Longrightarrow co(\mathcal{A}) = co(\mathcal{A}_{\mathbf{b},n}).$

w Dogico opoc

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

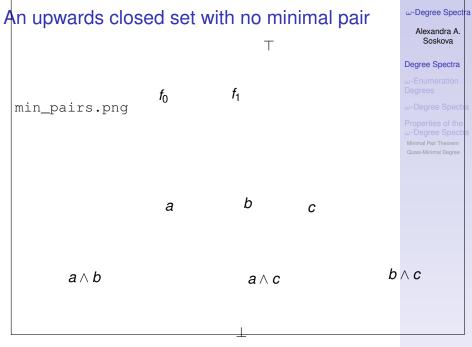
▶ Let $\mathbf{c} \in \mathrm{DS}_n(\mathfrak{A})$ and n > 0. Then

 $CS(\mathfrak{A}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}) \& \mathbf{a}^{(n)} = \mathbf{c}\}).$

► A minimal pair theorem: There exist **f** and **g** in DS(𝔄):

$$(\forall \mathbf{a} \in \mathcal{D}_e)(\forall k)(\mathbf{a} \leq_e \mathbf{f}^{(k)} \& \mathbf{a} \leq_e \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A})).$$

- ► Quasi-minimal degree: There exists q₀ quasi-minimal for DS(X)
 - ▶ $q_0 \notin CS(\mathfrak{A});$
 - ▶ for every total *e*-degree **a**: $\mathbf{a} \ge_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ and $\mathbf{a} \le_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{CS}(\mathfrak{A})$.



Let $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ be given structures.

Definition

The relative spectrum $RS(\mathfrak{A}, \mathfrak{A}_1 \dots, \mathfrak{A}_n)$ of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

$$\{d_{\mathrm{e}}(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \& (\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(k)})\}$$

It turns out that all properties of the degree spectra remain true for the relative spectra.

Relatively intrinsically Σ_{α}^{0} sets

Let $\alpha < \omega^{CK}$.

Definition

A set A is intrinsically relatively Σ^0_{α} on $\mathfrak A$ if for every enumeration f of $\mathfrak A$ the set $f^{-1}(A)$ is Σ^0_{α} relative to $f^{-1}(\mathfrak A)$.

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)

A set A is intrinsically relatively Σ_{α}^{0} on $\mathfrak A$ iff the set A is definable on $\mathfrak A$ by a Σ_{α}^{c} formula with parameters.

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

w-begree c

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

Let $\mathcal{B} = \{B_{\gamma}\}_{\gamma < \xi}$ be a sequence of sets, $\xi < \omega_1^{CK}$.

Definition

A set *A* is *relatively* α -intrinsic on $\mathfrak A$ with respect to $\mathcal B$ if for every enumeration f of $\mathfrak A$ such that $(\forall \alpha \in \mathcal E)(f^{-1}(R)) \subseteq f^{-1}(\mathfrak A)(\gamma)$ uniformly in $\alpha \in \mathcal E$

$$(\forall \gamma < \xi)(f^{-1}(B_{\gamma}) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(\gamma)})$$
 uniformly in $\gamma < \xi$ $f^{-1}(A) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(\alpha)}$.

Theorem (Soskov, Baleva)

A set A is relatively α -intrinsic on $\mathfrak A$ with respect to $\mathcal B$ iff A is definable on $\mathfrak A$, $\mathcal B$ by specific kind of positive Σ^c_α formula with parameters, analogue of Ash's recursive infinitary propositional sentences applied for abstract structures.

ω -Enumeration Degrees - background

Theorem (Selman)

$$A \leq_e B \text{ iff } (\forall X)(B \text{ is c.e. in } X \Rightarrow A \text{ is c.e. in } X).$$

Theorem (Case)

$$A \leq_e B \oplus \emptyset^{(n)} \text{ iff } (\forall X)(B \in \Sigma_{n+1}^X \Rightarrow A \in \Sigma_{n+1}^X).$$

Theorem (Ash)

Formally describes the relation:

$$\mathcal{R}_{k}^{n}(A, B_{0}, ..., B_{k})$$
 iff $(\forall X)[B_{0} \in \Sigma_{1}^{X} \& ... \& B_{k} \in \Sigma_{k+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}].$

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

- Uniform reducibility on sequences of sets
- $ightharpoonup \mathcal{S}$ the set of all sequences of sets of natural numbers
- ▶ For $\mathcal{B} = \{B_n\}_{n < \omega} \in \mathcal{S}$ call the jump class of \mathcal{B} the set

$$J_{\mathcal{B}} = \{ d_{\mathbf{T}}(X) \mid (\forall n) (B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n) \}$$
.

Definition (Soskov)

 $\mathcal{A} \leq_{\omega} \mathcal{B}$ (\mathcal{A} is ω -enumeration reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$

 $ightharpoonup \mathcal{A} \equiv_{\omega} \mathcal{B} \text{ if } J_{\mathcal{A}} = J_{\mathcal{B}}.$

a Degree opecha

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

- $ightharpoonup \equiv_{\omega}$ is an equivalence relation on \mathcal{S} .
- $\blacktriangleright \ \mathcal{D}_{\omega} = \{ d_{\omega}(\mathcal{B}) \mid \mathcal{B} \in \mathcal{S} \}.$
- ▶ If $A \subseteq \mathbb{N}$ denote by $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.
- ▶ For every $A, B \subseteq \mathbb{N}$:

$$A \leq_{\mathrm{e}} B \iff J_{B \uparrow \omega} \subseteq J_{A \uparrow \omega} \iff A \uparrow \omega \leq_{\omega} B \uparrow \omega.$$

▶ The mapping $\kappa(d_e(A)) = d_\omega(A \uparrow \omega)$ gives an isomorphic embedding of \mathcal{D}_e to \mathcal{D}_ω .

A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:

- 1 $\mathcal{P}_0(\mathcal{B}) = B_0$
- 2 $\mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$

Definition

Let $\mathcal{A} = \{A_n\}_{n < \omega}$, $\mathcal{B} = \{B_n\}_{n < \omega} \in \mathcal{S}$. $\mathcal{A} \leq_{\mathrm{e}} \mathcal{B}$ (\mathcal{A} is enumeration reducible \mathcal{B}) iff $A_n \leq_{\mathrm{e}} B_n$ uniformly in n, i.e. there is a computable function h such that $(\forall n)(A_n = \Gamma_{h(n)}(B_n))$.

Theorem (Soskov, Kovachev)

$$A \leq_{\omega} \mathcal{B} \iff A \leq_{e} \mathcal{P}(\mathcal{B}).$$

Proposition

$$(n < k) \mathcal{R}_k^n(A, B_0, \dots, B_k) \iff A \leq_e \mathcal{P}_n(B_0, \dots, B_n).$$

 $(n \geq k) \mathcal{R}_k^n(A, B_0, \dots, B_k) \iff A \leq_e \mathcal{P}_k(B_0, \dots, B_k)^{(n-k)}.$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:

- 1 $\mathcal{P}_0(\mathcal{B}) = B_0$
- $2 \mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$

Proposition

- ▶ $\mathcal{B} \leq_{\mathsf{e}} \mathcal{P}(\mathcal{B})$.
- $\triangleright \mathcal{P}(\mathcal{P}(\mathcal{B})) \leq_{\mathsf{e}} \mathcal{P}(\mathcal{B}).$
- $ightharpoonup \mathcal{B} \equiv_{\omega} \mathcal{P}(\mathcal{B}).$
- $\blacktriangleright \ \mathcal{A} \leq_{\mathbf{e}} \mathcal{B} \Rightarrow \mathcal{A} \leq_{\omega} \mathcal{B}.$

Lemma

Let A_0, \ldots, A_r, \ldots be sequences of sets such that for every $r, A_r \not\leq_{\omega} \mathcal{B}$. There is a total set X such that $\mathcal{B} \leq_{\omega} \{X^{(n)}\}_{n < \omega}$ and $A_r \not\leq_{\omega} \{X^{(n)}\}_{n < \omega}$ for each r.

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

ω -Enumeration Jump

Definition (Soskov)

For every $A \in S$ the ω -enumeration jump of A is $A' = \{P_{n+1}(A)\}_{n < \omega}$

We have that $J_{\mathcal{A}}' = \{\mathbf{a}' \mid \mathbf{a} \in J_{\mathcal{A}}\}.$

Proposition

- 1. $\mathcal{A} <_{\omega} \mathcal{A}'$.
- 2. $A \leq_{\omega} B \Rightarrow A' \leq_{\omega} B'$.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectr

 ω -Enumeration Degrees

 ω -Degree Spectra

Degrees ω -Degree Spectra

Properties of the

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be an abstract structure and $\mathcal{B} = \{B_n\}_{n < \omega}$ be a fixed sequence of subsets of \mathbb{N} . The enumeration f of the structure \mathfrak{A} is acceptable with respect to \mathcal{B} , if for every n,

$$f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$$
 uniformly in n .

Denote by $\mathcal{E}(\mathfrak{A},\mathcal{B})$ - the class of all acceptable enumerations.

Definition

The ω - degree spectrum of $\mathfrak A$ with respect to $\mathcal B=\{B_n\}_{n<\omega}$ is the set

$$DS(\mathfrak{A},\mathcal{B}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}) \}$$

ω - Degree Spectra and Relative Spectra

The notion of the ω -degree spectrum is a generalization of the relative spectrum:

- ▶ $RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n) = DS(\mathfrak{A}, \mathcal{B})$, where $\mathcal{B} = \{B_k\}_{k < \omega}$,
- \triangleright $B_0 = \emptyset$,
- ▶ B_k is the positive diagram of the structure \mathfrak{A}_k , $k \leq n$
- ▶ $B_k = \emptyset$ for all k > n.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

It is easy to find a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $\mathrm{DS}(\mathfrak A,\mathcal B)\neq\mathrm{DS}(\mathfrak A).$

- $ightharpoonup \mathfrak{A} = \{\mathbb{N}, \mathcal{S}, =, \neq\}, \text{ where }$
- ▶ $S = \{(n, n+1) \mid n \in \mathbb{N}\}.$
- ▶ $\mathbf{0}_e \in \mathrm{DS}(\mathfrak{A})$ and then all total enumeration degrees are elements of $\mathrm{DS}(\mathfrak{A})$.
- ▶ $B_0 = \emptyset'$, $B_n = \emptyset$ for each $n \ge 1$.
- ▶ Let $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ and $f(x_0) = 0$.
- ▶ $k \in B_n \iff (\exists x_1) \dots (\exists x_k) (f^{-1}(S)(x_0, x_1) \& \dots \& f^{-1}(S)(x_{k-1}, x_k) \& x_k \in f^{-1}(B_n)).$
- ► $B_n \leq_{\mathrm{e}} f^{-1}(\mathfrak{A}) \oplus f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$.
- ▶ Then $\emptyset' \leq_e B_0 \leq_e f^{-1}(\mathfrak{A})$. Thus $\mathbf{0}_e \not\in \mathrm{DS}(\mathfrak{A},\mathcal{B})$.

ω - Degree Spectra

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

w-Degree Spectr
Minimal Pair Theorem
Quasi-Minimal Degree

Proposition

 $DS(\mathfrak{A},\mathcal{B})$ is upwards closed with respect to total e-degrees.

Lemma

Let f be an enumeration of $\mathfrak A$ and F be a total set such that $f^{-1}(\mathfrak A) \leq_{\mathrm{e}} F$ and $f^{-1}(B_n) \leq_{\mathrm{e}} F^{(n)}$ uniformly in n. Then there exists an acceptable enumeration g of $\mathfrak A$ with respect to $\mathcal B$ such that $g^{-1}(\mathfrak A) \equiv_{\mathrm{e}} F$.

ω - Jump Spectra

Definition

The kth ω -jump spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$\mathrm{DS}_k(\mathfrak{A},\mathcal{B}) = \{\mathbf{a^{(k)}} \mid \mathbf{a} \in \mathrm{DS}(\mathfrak{A},\mathcal{B})\}.$$

Proposition

 $DS_k(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total e-degrees.

Lemma (Soskov)

Let $Q \subseteq \mathbb{N}$ be a total set, $B_0, \ldots, B_k \subseteq \mathbb{N}$, such that $\mathcal{P}_k(\{B_0, \ldots, B_k\}) \leq_e Q$. There is a total set F such that:

- $ightharpoonup F^{(k)} \equiv Q.$
- $(\forall i \leq k) (B_i \leq_{\mathrm{e}} F^{(i)}).$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

ω -Co-Spectra

For every $A \subseteq \mathcal{D}_{\omega}$ let $co(A) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in A)(\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition

The ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS(\mathfrak{A},\mathcal{B}) = co(DS(\mathfrak{A},\mathcal{B})).$$

For every enumeration f of $\mathcal{E}(\mathfrak{A},\mathcal{B})$ consider the sequence

- $f^{-1}(\mathcal{B}) = \{ f^{-1}(\mathfrak{A}) \oplus f^{-1}(B_0), f^{-1}(B_1), \dots, f^{-1}(B_n), \dots \}$
- $P(f^{-1}(\mathcal{B})) \equiv_{\omega} \{f^{-1}(\mathfrak{A})^{(n)}\}_{n<\omega} \equiv_{\omega} f^{-1}(\mathfrak{A}) \uparrow \omega.$
- ▶ So $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ iff $\mathcal{P}(f^{-1}(\mathcal{B})) \leq_{\omega} f^{-1}(\mathfrak{A}) \uparrow \omega$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectr

Degrees

ω -Degree Spectra

Properties of the w-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

Proposition

For each $A \in S$ it holds that $d_{\omega}(A) \in CS(\mathfrak{A}, \mathcal{B})$ if and only if $A <_{\omega} \mathcal{P}(f^{-1}(\mathcal{B}))$ for every $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$.

Actually the elements of the ω -co-spectrum of $\mathfrak A$ with respect to \mathcal{B} form a countable ideal in \mathcal{D}_{ω} .

Definition

The kth ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS_k(\mathfrak{A},\mathcal{B}) = co(DS_k(\mathfrak{A},\mathcal{B})).$$

We will see that the kth ω -co-spectrum of $\mathfrak A$ with respect to \mathcal{B} is the least ideal containing all kth ω -enumeration jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

- Let \mathcal{L} be the language of the structure \mathfrak{A} . For each *n* let P_n be a new unary predicate representing the set B_n .
 - An elementary Σ_0^+ formula is an existential formula of the form
 - $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atomic formulae in $\mathcal{L} \cup \{P_0\}$;
 - A Σ_n^+ formula is a c.e. disjunction of elementary Σ_n^+ formulae:
 - An elementary Σ_{n+1}^+ formula is a formula of the form $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atoms of the form $P_{n+1}(Y_i)$ or $P_{n+1}(W_i)$ and Σ_n^+ formulae or negations of Σ_n^+ formulae in $\mathcal{L} \cup \{P_0\} \cup \cdots \cup \{P_n\}$.

Definition

The sequence $\mathcal{A}=\{A_n\}_{n<\omega}$ of sets of natural is *formally* k-definable on $\mathfrak A$ with respect to $\mathcal B$ if there exists a computable function $\gamma(x,n)$ such that for each $n,x\in\omega$ $\Phi^{\gamma(n,x)}(W_1,\ldots,W_r)$ is a Σ_{n+k}^+ formula, and elements t_1,\ldots,t_r of $|\mathfrak A|$ such that for every $n,x\in\omega$, the following equivalence holds:

$$x \in A_n \iff (\mathfrak{A}, \mathcal{B}) \models \Phi^{\gamma(n,x)}(W_1/t_1, \ldots, W_r/t_r).$$

Theorem

The sequence \mathcal{A} of sets of natural numbers is formally k-definable on \mathfrak{A} with respect to \mathcal{B} iff $d_{\omega}(\mathcal{A}) \in CS_k(\mathfrak{A}, \mathcal{B})$.

Degrees

-Degree Spectra

Properties of the ω -Degree Spectra

Minimal Pair Theorem

Quasi-Minimal Degree

Let $A \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees.

We remind that

$$co(\mathcal{A}) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \ \& \ (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$$

Proposition

$$co(A) = co(\{a : a \in A \& a \text{ is total}\}).$$

Corrolary

$$CS(\mathfrak{A},\mathcal{B}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A},\mathcal{B}) \& \mathbf{a} \text{ is a total e-degree}\}).$$

Let $A \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees and k > 0.

Proposition

There exists $\mathbf{b} \in \mathcal{D}_e$ such that

$$co(A) \neq co(\{\mathbf{a} : \mathbf{a} \in A \& \mathbf{b} \leq \mathbf{a}^{(k)}\}).$$

- ▶ Let $d_e(A) \in A$ and a set $B \not\leq_e A^{(k)}$.
- ► Consider $\mathcal{B} = \{\emptyset, \dots, \emptyset^{(k-1)}, B, B', \dots, \}$.
- $\blacktriangleright \mathcal{B} \not\leq_{\omega} A \uparrow \omega \Rightarrow \mathbf{d}_{\omega}(\mathcal{B}) \not\in co(\mathcal{A}).$
- ▶ $\mathcal{B} \leq_{\omega} C \uparrow \omega$ for each C s.t. $B \leq_{\mathrm{e}} C^{(k)}$.

Proposition

Let n > 0. There is a structure \mathfrak{A} , a sequence \mathcal{B} and $\mathbf{c} \in \mathrm{DS}_n(\mathfrak{A},\mathcal{B})$ such that if $\mathcal{A} = \{\mathbf{a} \in \mathrm{DS}(\mathfrak{A},\mathcal{B}) \mid \mathbf{a}^{(n)} = \mathbf{c}\}$ then

$$CS(\mathfrak{A},\mathcal{B})\neq co(\mathcal{A}).$$

- ▶ Consider a linear order $\mathfrak A$ which has no n-jump degree, $\mathcal B=\emptyset\uparrow\omega$ and $\mathrm{d}_{\mathbf e}(\mathcal C)\in\mathrm{DS}_n(\mathfrak A).$
- ► Consider $C = \{\emptyset, \dots, \emptyset^{(n-1)}, C, C', \dots, \}$.
- ▶ $\mathbf{d}_{\omega}(\mathcal{C}) \notin \mathrm{CS}(\mathfrak{A})$, otherwise $\mathrm{d}_{e}(C)$ will be an n-jump degree of \mathfrak{A} .
- ▶ $\mathbf{d}_{\omega}(\mathcal{C}) \in co(\mathcal{A})$.

Minimal Pair Theorem

Theorem

For every structure $\mathfrak A$ and every sequence $\mathcal B \in \mathcal S$ there exist total enumeration degrees **f** and **g** in $DS(\mathfrak{A}, \mathcal{B})$ such that for every ω -enumeration degree **a** and $k \in \mathbb{N}$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)} \ \& \ \mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}) \ .$$

Proof.

Case k = 0.

- ▶ Let $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ and $F = f^{-1}(\mathfrak{A})$ is a total set.
- ▶ Denote by $\mathcal{X}_0, \mathcal{X}_1, \dots \mathcal{X}_r \dots$ all sequences ω -enumeration reducible to $\mathcal{P}(f^{-1}(\mathcal{B}))$.
- ▶ Consider C_0, C_1, \dots, C_r ... among them which are not formally definable on $\mathfrak A$ with respect to $\mathcal B$.
- ► There is an enumeration h such that $C_r \not\leq_{\omega} \mathcal{P}(h^{-1}(\mathcal{B})), r \in \omega$.
- ▶ There is a total set G such that $\mathcal{P}(h^{-1}(\mathcal{B})) \leq_{\omega} G \uparrow \omega$ and $\mathcal{C}_r \nleq_{\omega} G \uparrow \omega$, $r \in \omega$.
- ▶ There is a $g \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ such that $g^{-1}(\mathfrak{A}) \equiv_{\mathrm{e}} G$. Thus $d_{\mathrm{e}}(G) \in \mathrm{DS}(\mathfrak{A}, \mathcal{B})$.
- ▶ If $A \leq_{\omega} F \uparrow \omega$ and $A \leq_{\omega} G \uparrow \omega$ then $A = \mathcal{X}_r$ and $A \neq \mathcal{C}_l$ for all $l \in \omega$. So $d_{\omega}(A) \in CS(\mathfrak{A}, \mathcal{B})$.

Alexandra A. Soskova

OOSKOVA

Degree Spectr

Degrees

ω-Degree Spec

Minimal Pair Theorem
Quasi-Minimal Degree

Proof.

 $I(\mathbf{a}) = \{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& \mathbf{b} \leq_{\omega} \mathbf{a}\} = co(\{\mathbf{a}\}).$

- ► $CS(\mathfrak{A}, \mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g})$ where $\mathbf{f} = d_e(F)$ and $\mathbf{g} = d_e(G)$.
- ▶ We shall prove now that $I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}) = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$ for every k.
- ▶ Suppose that $\mathcal{A} = \{A_n\}_{n < \omega}$, $\mathcal{A} \leq_{\omega} F^{(k)} \uparrow \omega$ and $\mathcal{A} \leq_{\omega} G^{(k)} \uparrow \omega$.
- ▶ Denote by $C = \{C_n\}_{n < \omega}$ the sequence such that $C_n = \emptyset$ for n < k, and $C_{n+k} = A_n$ for each n.
- $A \leq_{\omega} \mathcal{C}^{(k)}, \ \mathcal{C} \leq_{\omega} F \uparrow \omega \text{ and } \mathcal{C} \leq_{\omega} G \uparrow \omega \Rightarrow d_{\omega}(\mathcal{C}) \in \mathrm{CS}(\mathfrak{A}, \mathcal{B}).$
- Let $h \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$. Then $\mathcal{C} \leq_{\omega} h^{-1}(\mathfrak{A}) \uparrow \omega$ and thus $\mathcal{C}^{(k)} \leq_{\omega} (h^{-1}(\mathfrak{A}) \uparrow \omega)^{(k)}$.
- ▶ Hence $d_{\omega}(\mathcal{A}) \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$.

Corrolary

 $CS_k(\mathfrak{A},\mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A},\mathcal{B})$.

- ▶ $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal;
- $\mathsf{CS}(\mathfrak{A},\mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g});$
- ▶ $I^{(k)}$ the least ideal, containing all kth ω -jumps of the elements of I;
- ► (Ganchev) $I = I(\mathbf{f}) \cap I(\mathbf{g}) \Longrightarrow I^{(k)} = I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)})$ for every k;
- ► $I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}) = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$ for each k
- ▶ Thus $I^{(k)} = CS_k(\mathfrak{A}, \mathcal{B})$.

There is a countable ideal I of ω -enumeration degrees for which there is no structure $\mathfrak A$ and sequence $\mathcal B$ such that $I = CS(\mathfrak{A}, \mathcal{B}).$

- $A = \{0, 0', 0'', \dots, 0^{(n)}, \dots\};$
- ► $I = I(A) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} \leq_{\omega} \mathbf{0}^{(n)}) \}$ a countable ideal generated by A.
- Assume that there is a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $I = CS(\mathfrak{A}, \mathcal{B})$
- ▶ Then there is a minimal pair **f** and **g** for $DS(\mathfrak{A}, \mathcal{B})$, so $I^{(n)} = I(\mathbf{f}^{(n)}) \cap I(\mathbf{q}^{(n)})$ for each n.
- **f** > **0**⁽ⁿ⁾ and **q** > **0**⁽ⁿ⁾ for each n.
- Then by Enderton and Putnam [1970], Sacks [1971]: $\mathbf{f}'' > \mathbf{0}^{(\omega)}$ and $\mathbf{q}'' > \mathbf{0}^{(\omega)}$.
- ▶ Hence $I'' \neq I(\mathbf{f}'') \cap I(\mathbf{g}'')$. A contradiction.

ω-Degree Spector
Minimal Pair Theorem
Quasi-Minimal Degree

Theorem

For every structure $\mathfrak A$ and every sequence $\mathcal B$, there exists $F\subseteq \mathbb N$, such that $\mathbf q=d_\omega(F\uparrow\omega)$ and:

- 1. $\mathbf{q} \notin \mathrm{CS}(\mathfrak{A}, \mathcal{B})$;
- 2. If **a** is a total e-degree and $\mathbf{a} \geq_{\omega} \mathbf{q}$ then $\mathbf{a} \in \mathrm{DS}(\mathfrak{A}, \mathcal{B})$
- 3. If **a** is a total e-degree and $\mathbf{a} \leq_{\omega} \mathbf{q}$ then $\mathbf{a} \in CS(\mathfrak{A}, \mathcal{B})$.

(Soskov) There is a partial generic enumeration f of \mathfrak{A} such that $d_{\rm e}(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to DS(\mathfrak{A}) and $f^{-1}(\mathfrak{A}) \not<_{e} D(\mathfrak{A})$.

• (Ganchev) There is a set F such that $f^{-1}(\mathfrak{A}) <_{e} F$, $f^{-1}(\mathcal{B}) <_{\omega} F \uparrow \omega$ and for total X: $X \leq_{\mathrm{e}} F \Rightarrow X \leq_{\mathrm{e}} f^{-1}(\mathfrak{A}).$

▶ Set $\mathbf{q} = d_{\omega}(F \uparrow \omega)$ and let X be a total set.

Quasi-Minimal Degree

- ▶ If $\mathbf{q} \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$ then $d_{\omega}(f^{-1}(\mathfrak{A}) \uparrow \omega) \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$. Then $f^{-1}(\mathfrak{A}) \leq_{e} D(\mathfrak{A})$. A contradiction.
- ▶ If $X <_e F$ then $X <_e f^{-1}(\mathfrak{A})$. Thus $d_e(X) \in CS(\mathfrak{A})$. But $DS(\mathfrak{A}, \mathcal{B}) \subseteq DS(\mathfrak{A})$. So $d_{\omega}(X \uparrow \omega) \in CS(\mathfrak{A}, \mathcal{B})$.
- ▶ If $X >_{e} F$ then $X >_{e} f^{-1}(\mathfrak{A})$. Hence dom(f) is c.e. in X. Let ρ be a computable in X enumeration of dom(f). Set $h = \lambda n.f(\rho(n))$. So $h^{-1}(\mathcal{B}) \leq_{e} X \uparrow \omega$. Then $d_{e}(X) \in DS(\mathfrak{A}, \mathcal{B})$.

ω -degree spectra

Questions:

- Is it true that for every structure $\mathfrak A$ and every sequence $\mathcal B$ there exists a structure $\mathfrak B$ such that $\mathrm{DS}(\mathfrak B)=\mathrm{DS}(\mathfrak A,\mathcal B)$?
- If for a countable ideal $I \subseteq \mathcal{D}_{\omega}$ there is an exact pair then are there a structure \mathfrak{A} and a sequence \mathcal{B} so that $\mathrm{CS}(\mathfrak{A},\mathcal{B}) = I$?

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectr

Degrees

 ω -Degree Spectra

Properties of the ω-Degree Specti Minimal Pair Theorem Quasi-Minimal Degree

- Ganchev, H., Exact pair theorem for the ω -enumeration degrees, *LNCS*, (B. Löwe S. B. Cooper and A. Sorbi, eds.), **4497**, 316–324 (2007)
- Soskov I. N., Degree spectra and co-spectra of structures. Ann. Univ. Sofia, 96 45-68 (2003)
- Soskov, I. N., Kovachev, B. Uniform regular enumerations Mathematical Structures in Comp. Sci. **16** no. 5, 901–924 (2006)
- Soskov, I. N. The ω -enumeration degrees, *J. Logic* and Computation 17 no. 6, 1193-1214 (2007)
- Soskov, I. N., Ganchev H. The jump operator on the ω -enumeration degrees. Annals of Pure and Applied Logic, **160**, 289–301 (2009)
- Soskova, A. A. Relativized degree spectra. J. Logic and Computation 17, no. 6, 1215-1233 (2007)