Structural properties of spectra and ω -spectra Logic Seminar at George Washington University March 22, 2018

Alexandra A. Soskova 1

Faculty of Mathematics and Informatics
Sofia University

¹Supported by Bulgarian National Science Fund DN 02/16 /19.12.2016 🗐 🕞 🚽 🛷

Enumeration reducibility

Definition. We say that $\Gamma: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is an *enumeration operator* iff for some c.e. set W_e for each $B \subseteq \mathbb{N}$

$$\Gamma(B) = \{x | (\exists D)[\langle x, D \rangle \in W_e \& D \subseteq B]\}.$$

Definition. The set *A* is *enumeration reducible to* the set *B* ($A \le_e B$), if $A = \Gamma(B)$ for some e-operator Γ .

The enumeration degree of A is $d_e(A) = \{B \subseteq \mathbb{N} | A \equiv_e B\}$.

The set of all enumeration degrees is denoted by \mathcal{D}_e .

The enumeration jump

Definition. Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.

The enumeration jump

Definition. Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- $2 A \leq_T B iff A^+ \leq_e B^+.$

Definition. For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition. A set *A* is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

Enumeration degree spectra

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every total surjective mapping of \mathbb{N} onto A.

Given an enumeration f of \mathfrak{A} and a subset of B of A^n , let

$$f^{-1}(B) = \{\langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots, f(x_n)) \in B\}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$$

Definition. The enumeration degree spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e-degree of* \mathfrak{A} .

Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree $\mathbf{a} \leq_{\mathbf{g}} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Let
$$\mathfrak{A}^+ = (A, R_1, \dots, R_k, R_1^c, \dots, R_k^c).$$

Proposition.

$$\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$$

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A})(\mathbf{b} \leq_e \mathbf{a}) \}.$$

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A})(\mathbf{b} \leq_e \mathbf{a}) \}.$$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

The admissible in a sets

Definition. A set B of natural numbers is admissible in $\mathfrak A$ if for every enumeration f of $\mathfrak A$, $B \leq_{\mathfrak E} f^{-1}(\mathfrak A)$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

Forcing definable in $\mathfrak A$ sets

Every finite mapping of $\mathbb N$ into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$au \Vdash F_e(x) \iff x \in \Gamma_e(au^{-1}(\mathfrak{A})) \text{ and }$$

 $au \Vdash \neg F_e(x) \iff (\forall \rho \supseteq au)(\rho \nvDash F_e(x)).$

Definition. An enumeration f of $\mathfrak A$ is *generic* if for every $e, x \in \mathbb N$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set B of natural numbers is forcing definable in the structure $\mathfrak A$ iff there exist a finite part δ and a natural number e s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

The formally definable sets on $\mathfrak A$

Definition. A Σ_1^+ formula with free variables among X_1, \ldots, X_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{X})$, where θ is a finite conjunction of atomic formulae.

Definition. A set $B \subseteq \mathbb{N}$ is *formally definable* on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \mathbb{N}} \Phi_{\gamma(x)}$ is a Σ_1^+ formula with free variables among X_1, \ldots, X_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(X_1/t_1,\ldots,X_r/t_r)$$
.

Theorem. Let $B \subseteq \mathbb{N}$. Then

- $\mathbf{0}$ $d_e(B) \in CS(\mathfrak{A})$ iff
- **2** $A \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} iff
- B is forcing definable on A iff
- B is formally definable on A.

Jump spectra and jump co-spectra

Definition. The *n*th jump spectrum of \mathfrak{A} is the set

$$DS_n(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A}\}.$$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth jump degree* of \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the nth jump spectrum of \mathfrak{A} is called nth jump co-spectrum of \mathfrak{A} .

If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth jump co-degree of* \mathfrak{A} .

Some examples

- For every linear ordering $DS(\mathfrak{A})$ contains a minimal pair of degrees [Richter] and hence $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.
- For a linear ordering \mathfrak{A} , $\mathrm{CS}_1(\mathfrak{A})$ consists of all e-degrees of Σ^0_2 sets [Knight]. The first co-degree of \mathfrak{A} is $\mathbf{0}'_e$.
- There exists a structure
 ¹ [Slaman, Whener]

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has no degree.

 There is a structure whose spectrum is exactly the non-hyperarithmetical degrees [Greenberg, Motalbán and Slaman]

A special kind of co-degree

Definition. [Knight, Motalbán] A structure $\mathfrak A$ has "enumeration degree X" if every enumeration of X computes a copy of $\mathfrak A$, and every copy of $\mathfrak A$ computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a} \}.$

A special kind of co-degree

Definition. [Knight, Motalbán] A structure $\mathfrak A$ has "enumeration degree X" if every enumeration of X computes a copy of $\mathfrak A$, and every copy of $\mathfrak A$ computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a} \}.$

Example. Given $X \subseteq \mathbb{N}$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

A special kind of co-degree

Definition. [Knight, Motalbán] A structure $\mathfrak A$ has "enumeration degree X" if every enumeration of X computes a copy of $\mathfrak A$, and every copy of $\mathfrak A$ computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a} \}.$

Example. Given $X \subseteq \mathbb{N}$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

Theorem. [A. Montalbán] Let K be Π_2^c class of \exists -atomic structures, i.e. K is the class of structures axiomatized by some Π_2^c sentence and for every structure $\mathfrak A$ in K and every tuple $\bar{a} \in |\mathfrak A|$ the orbit of \bar{a} is existentially definable (with parameters \bar{a}). Then every structure in K has "enumeration degree" given by its \exists -theory.

Representing the principle countable ideals as co-spectra

Example. Let G be a torsion free abelian group of rank 1. [Coles, Downey, Slaman; Soskov] There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.

Representing the principle countable ideals as co-spectra

Example. Let G be a torsion free abelian group of rank 1. [Coles, Downey, Slaman; Soskov] There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some G.

Representing non-principle countable ideals as co-spectra

Theorem.[Soskov] Every countable ideal is the co-spectrum of a structure.

Proof.

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; G_f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then
$$CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$$

Spectra with a countable base

Definition. Let $\mathcal{B}\subseteq\mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

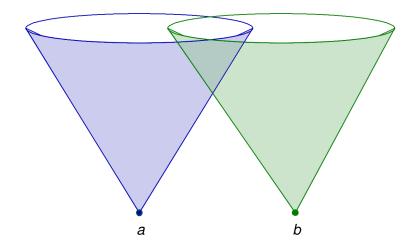
Spectra with a countable base

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

Theorem. A structure $\mathfrak A$ has e-degree if and only if $DS(\mathfrak A)$ has a countable base.

An upwards closed set of degrees which is not a degree spectra of a structure



Other examples

- $\mathfrak A$ has the c.e. extension property (ceep), i.e. if every \exists -type of a finite tuple in $\mathfrak A$ is c.e. if and only if $\mathfrak A$ has a Σ_1 -minimal pair of presentations. [Richter]
- For any set Y and a nonempty Π_1^0 class P there is $X \in P$ such that X and Y form a Σ_1 -minimal pair [Andrews,Miller].
- If $\mathfrak A$ has the ceep then $\mathfrak A$ has a presentation that does not compute a member of any special Π^0_1 class in ω^ω .
- The class of PA degrees is not the degree spectrum of any structure and any degree spectrum containing at least the PA degrees contains a member of non-DNC degree.
- If the degree spectrum of a structure has measure 1, then it contains a non-DNC degree [Miller].
- The upward closure of the set of 1-random degrees is not the spectrum of a structure. (Every 1-random computes a DNC function [Kučera])
- A degree spectrum is never the Turing-upward closure of an F_{σ} set of reals in ω^{ω} , unless it is an enumeration-cone. [Montalban]

The minimal pair theorem

Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ such that \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree \mathbf{b} there exists a structure $\mathfrak{A}_{\mathbf{b}}$ such that $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x} \}$. Hence

Corollary.[Rozinas] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

The quasi-minimal degree

Definition. Let \mathcal{A} be a set of enumeration degrees. The degree \mathbf{q} is quasi-minimal with respect to \mathcal{A} if:

- $q \notin co(A)$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

The quasi-minimal degree

Definition. Let \mathcal{A} be a set of enumeration degrees. The degree \mathbf{q} is quasi-minimal with respect to \mathcal{A} if:

- $q \notin co(A)$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure $\mathfrak A$ there exists a quasi-minimal with respect to $DS(\mathfrak A)$ degree.

The quasi-minimal degree

Definition. Let \mathcal{A} be a set of enumeration degrees. The degree \mathbf{q} is quasi-minimal with respect to \mathcal{A} if:

- $q \notin co(A)$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure $\mathfrak A$ there exists a quasi-minimal with respect to $DS(\mathfrak A)$ degree.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

- If $\mathbf{a} \in I$ then $\mathbf{a} <_{e} \mathbf{q}$.
- ② If **a** is total and **a** \leq_e **q** then **a** \in I.

Jumps of quasi-minimal degrees

Proposition. For every countable structure $\mathfrak A$ there exist uncountably many quasi-minimal degrees with respect to $DS(\mathfrak A)$.

Proposition. The first jump spectrum of every structure $\mathfrak A$ consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[McEvoy] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Splitting a total set

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \vee \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure $\mathfrak A$ there exists quasi-minimal with respect to $DS(\mathfrak A)$ degrees **p** and **q** such that $\mathbf a = \mathbf p \vee \mathbf q$.

Every jump spectrum is the spectrum of a structure

Let $\mathfrak{A}=(A;R_1,\ldots,R_n)$. Let $\bar{0}\not\in A$. Set $A_0=A\cup\{\bar{0}\}$. Let $\langle .,.\rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle .,.\rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle .,. \rangle}, G_L, G_R).$$

Every jump spectrum is the spectrum of a structure

Let $\mathfrak{A} = (A; R_1, \dots, R_n)$.

Let $\bar{0} \not\in A$. Set $A_0 = A \cup \{\bar{0}\}$. Let $\langle .,. \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle .,. \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of $\mathfrak A$ is the structure

$$\mathfrak{A}^* = (A^*, R_1, \dots, R_n, A_0, G_{\langle .,. \rangle}, G_L, G_R).$$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem. $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$.

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and $\mathfrak A$ be a countable structure such that all elements of $DS(\mathfrak A)$ are above $\mathbf 0^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

Theorem. [Soskov, AS] $\alpha = 1$. If $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$ then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{A})$.

Method: Marker's extensions.

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and $\mathfrak A$ be a countable structure such that all elements of $DS(\mathfrak A)$ are above $\mathbf 0^{(\alpha)}$.

Does there exist a structure $\mathfrak M$ such that $\mathsf{DS}_{\alpha}(\mathfrak M) = \mathsf{DS}(\mathfrak A)$?

Theorem. [Soskov, AS] $\alpha = 1$. If $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$ then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{A})$.

Method: Marker's extensions.

Remark.

- 2009 Montalban Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.
- 2009 Stukachev A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 190

Applications

Example.[Ash, Jockusch, Knight and Downey] For every recursive ordinal α there are structures which have α -jump degree but do not have β jump degree for $\beta < \alpha$.

Applying JIT it is enough to find a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a (n+1)-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure $\mathfrak B$ satisfying:

- DS(B) has not a least element.
- $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Applications

Example.[Ash, Jockusch, Knight and Downey] For every recursive ordinal α there are structures which have α -jump degree but do not have β jump degree for $\beta < \alpha$.

Applying JIT it is enough to find a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a (n+1)-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure $\mathfrak B$ satisfying:

- DS(B) has not a least element.
- $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- B is quasi-minimal over $\mathbf{0}^{(n)}$.
- $B' \equiv_e \mathbf{0}^{(n+1)}$.

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{ \mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Applications

Theorem. For each $n \in \mathbb{N}$ and every Turing degree $b \ge 0^{(n)}$ there exists \mathfrak{C} , for which $DS_n(\mathfrak{C}) = \{x \mid x >_T b\}$. [Soskov, A.S.]

Theorem. For every n there is a structure \mathfrak{C} , such that $DS(\mathfrak{C}) = \{x \mid x^{(n)} >_T 0^{(n)}\}$, i.e. the degree spectrum contains exactly all non-low_n Turing degrees.[Goncharov, Harizanov, Knight, McCoy, Miller, Solomon]

Theorem. There is a structure \mathfrak{C} , such that $DS(\mathfrak{C}) = \{x \mid x' \geq_T 0''\}$ [Harizanov, R. Miller].

Jump inversion theorem for ordinals

- The jump inversion theorem holds for successor ordinals [Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006; Vatev,2013]
- The jump inversion theorem does not hold for $\alpha = \omega$. [Soskov 2013]

Every member of $\mathbf{a} \in CS_{\omega}(\mathfrak{M})$ is bounded by a total degree \mathbf{b} , which is also a member of $CS_{\omega}(\mathfrak{M})$.

ω -Enumeration Degrees

- Uniform reducibility on sequences of sets.
- For the sequence of sets of natural numbers $\mathcal{B} = \{B_n\}_{n < \omega}$ call the jump class of \mathcal{B} the set

$$J_{\mathcal{B}} = \{ d_{\mathbb{T}}(X) \mid (\forall n)(B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n) \}$$
.

Definition. $A \leq_{\omega} \mathcal{B}$ (A is ω -enumeration reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$

• $A \equiv_{\omega} B$ if $J_A = J_B$.

ω -Enumeration Degrees

- The relation \leq_{ω} induces a partial ordering of \mathcal{D}_{ω} with least element $\mathbf{0}_{\omega} = d_{\omega}(\emptyset_{\omega})$, where \emptyset_{ω} is the sequence with all members equal to \emptyset .
- \mathcal{D}_{ω} is further an upper semi-lattice, with least upper bound induced by $\mathcal{A} \oplus \mathcal{B} = \{X_n \oplus Y_n\}_{n < \omega}$.
- If $A \subseteq \mathbb{N}$ denote by $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.
- The mapping $\kappa(d_{e}(A)) = d_{\omega}(A \uparrow \omega)$ gives an isomorphic embedding of \mathcal{D}_{e} to \mathcal{D}_{ω} , where $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.

ω -Enumeration Degrees

Let
$$\mathcal{B} = \{B_n\}_{n < \omega}$$
.
The jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:
1 $\mathcal{P}_0(\mathcal{B}) = B_0$

$$2 \mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus \mathcal{B}_{n+1}$$

Definition. A is enumeration reducible \mathcal{B} ($\mathcal{A} \leq_{\mathrm{e}} \mathcal{B}$) iff $A_n \leq_{\mathrm{e}} B_n$ uniformly in n.

Theorem.[Soskov, Kovachev] $A \leq_{\omega} \mathcal{B} \iff A \leq_{e} \mathcal{P}(\mathcal{B})$.

ω -Enumeration Jump

Definition. The ω -enumeration jump of \mathcal{A} is $\mathcal{A}' = \{\mathcal{P}_{n+1}(\mathcal{A})\}_{n<\omega}$

- $J'_A = \{ \mathbf{a}' \mid \mathbf{a} \in J_A \}.$
- The jump is monotone and agrees with the enumeration jump.
- Soskov and Ganchev: Strong jump inversion theorem: for $\mathbf{a}^{(n)} \leq \mathbf{b}$ there exists a *least* $\mathbf{x} \geq \mathbf{a}$ such that $\mathbf{x}^{(n)} = \mathbf{b}$. So, every degree \mathbf{x} in the range of the jump operator has a least jump invert.
- Soskov and Ganchev: if we add a predicate for the jump operator to the language of partial orders then the natural copy of the enumeration degrees in the omega enumeration degrees becomes first order definable.
- The two structures have the same automorphism group.
- Ganchev and Sariev: The jump operator in the upper semi-lattice of the ω -enumeration degrees is first order definable.

ω - Degree Spectra

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be an abstract structure and $\mathcal{B} = \{B_n\}_{n < \omega}$ be a fixed sequence of subsets of \mathbb{N} .

The enumeration f of the structure \mathfrak{A} is acceptable with respect to \mathcal{B} , if for every n,

$$f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$$
 uniformly in n .

Denote by $\mathcal{E}(\mathfrak{A},\mathcal{B})$ - the class of all acceptable enumerations.

Definition. The ω - degree spectrum of $\mathfrak A$ with respect to $\mathcal B=\{B_n\}_{n<\omega}$ is the set

$$DS(\mathfrak{A},\mathcal{B}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}) \}$$

Proposition. $DS(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total e-degrees.

ω -Co-Spectra

For every $A \subseteq \mathcal{D}_{\omega}$ let $co(A) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \ \& \ (\forall \mathbf{a} \in A)(\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition. The ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS(\mathfrak{A},\mathcal{B}) = co(DS(\mathfrak{A},\mathcal{B})).$$

ω -Co-Spectra

For every $A \subseteq \mathcal{D}_{\omega}$ let $co(A) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in A)(\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition. The ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS(\mathfrak{A},\mathcal{B}) = co(DS(\mathfrak{A},\mathcal{B})).$$

Proposition.[Selman] For $A \subseteq \mathcal{D}_e$ we have that $co(A) = co(\{\mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total}\}).$

Corollary. $CS(\mathfrak{A},\mathcal{B}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A},\mathcal{B}) \& \mathbf{a} \text{ is a total } e\text{-degree}\}).$

Minimal pair theorem

Theorem. For every structure $\mathfrak A$ and every sequence $\mathcal B$ there exist total enumeration degrees $\mathbf f$ and $\mathbf g$ in $\mathrm{DS}(\mathfrak A,\mathcal B)$ such that for every ω -enumeration degree $\mathbf a$ and $k \in \mathbb N$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)} \ \& \ \mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}) \ .$$

Quasi-Minimal Degree

Theorem. For every structure $\mathfrak A$ and every sequence $\mathcal B$, there exists $F\subseteq \mathbb N$, such that $\mathbf q=d_\omega(F\uparrow\omega)$ and:

- $\mathbf{0}$ $\mathbf{q} \notin \mathrm{CS}(\mathfrak{A}, \mathcal{B});$
- ② If **a** is a total e-degree and **a** \geq_{ω} **q** then **a** \in DS($\mathfrak{A}, \mathcal{B}$)
- **3** If **a** is a total e-degree and $\mathbf{a} \leq_{\omega} \mathbf{q}$ then $\mathbf{a} \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$.

Countable ideals of ω -enumeration degrees

- $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal.
- $\mathrm{CS}(\mathfrak{A},\mathcal{B}) = I(\mathbf{f}_{\omega}) \cap I(\mathbf{g}_{\omega})$ where $I(\mathbf{f}_{\omega})$ and $I(\mathbf{g}_{\omega})$ are the principal ideals of ω -enumeration degrees with greatest elements $\mathbf{f}_{\omega} = \kappa(\mathbf{f})$ and $\mathbf{g}_{\omega} = \kappa(\mathbf{g})$, the images of \mathbf{f} and \mathbf{g} under the embedding κ of \mathcal{D}_e in \mathcal{D}_{ω} .
- Denote by $I^{(k)}$ the least ideal, containing all kth ω -jumps of the elements of I.

Proposition. [Ganchev] $I = I(\mathbf{f}_{\omega}) \cap I(\mathbf{g}_{\omega}) \Longrightarrow I^{(k)} = I(\mathbf{f}_{\omega}^{(k)}) \cap I(\mathbf{g}_{\omega}^{(k)})$ for every k.

- $I(\mathbf{f}_{\omega}^{(k)}) \cap I(\mathbf{g}_{\omega}^{(k)}) = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$ for each k.
- Thus $I^{(k)} = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$.

Corollary. $CS_k(\mathfrak{A}, \mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

Countable ideals of ω -enumeration degrees

There is a countable ideal I of ω -enumeration degrees for which there is no structure \mathfrak{A} and sequence \mathcal{B} such that $I = CS(\mathfrak{A}, \mathcal{B})$.

- Consider $\mathcal{A} = \{\mathbf{0}_{\omega}, \mathbf{0}_{\omega}', \mathbf{0}_{\omega}'', \ldots, \mathbf{0}_{\omega}^{(n)}, \ldots\}$:
- $I = I(d_{\omega}(A)) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} <_{\omega} \mathbf{0}^{(n)}) \}$
- Assume that there is a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $I = CS(\mathfrak{A}, \mathcal{B})$
- Then there is a minimal pair **f** and **g** for $DS(\mathfrak{A}, \mathcal{B})$, so $I^{(n)} = I(\mathbf{f}_{\omega}^{(n)}) \cap I(\mathbf{q}_{\omega}^{(n)})$ for each n.
- But $\mathbf{f}_{\alpha} > \mathbf{0}_{\alpha}^{(n)}$ and $\mathbf{q}_{\alpha} > \mathbf{0}_{\alpha}^{(n)}$ for each n.
- If $F \in \mathbf{f}$ and $G \in \mathbf{q}$ then $F >_{\mathcal{T}} \emptyset^{(n)}$ and $G >_{\mathcal{T}} \emptyset^{(n)}$ for every n.
- Then by Enderton and Putnam [1970], Sacks [1971] $F'' >_{\tau} \emptyset^{(\omega)}$ and $G'' > \emptyset^{(\omega)}$ and hence $\mathbf{f}'' >_T \mathbf{0}_{\tau}^{(\omega)}$ and $\mathbf{q}'' >_T \mathbf{0}_{\tau}^{(\omega)}$.
- Then $\kappa(\iota(\mathbf{0}_{\tau}^{(\omega)})) \in I(\mathbf{f}_{\iota\iota}'') \cap I(\mathbf{q}_{\iota\iota}'')$.
- But $\kappa(\iota(\mathbf{0}_{\tau}^{(\omega)})) \notin I''$ since all elements of I'' are bounded by $\mathbf{0}_{\omega}^{(k+2)}$ for some k.
- Hence $I'' \neq I(\mathbf{f}''_{\omega}) \cap I(\mathbf{g}''_{\omega})$. A contradiction.

Degree spectra

• Questions:

- ▶ Describe the sets of enumeration degrees which are equal to $DS(\mathfrak{A})$ for some structure \mathfrak{A} .
- For a countable ideal $I \subseteq \mathcal{D}_{\omega}$ if there is an exact pair then are there a structure \mathfrak{A} and a sequence \mathcal{B} so that $CS(\mathfrak{A}, \mathcal{B}) = I$?
- ▶ Is it true that for every structure $\mathfrak A$ and every sequence $\mathcal B$ there exists a structure $\mathfrak B$ such that $\mathrm{CS}_\omega(\mathfrak B)=\mathrm{CS}(\mathfrak A,\mathcal B)$? The answer is yes, Soskov (2013), using Marker's extentions