Some applications of Marker's extensions for a sequence of structures

Alexandra A. Soskova¹, Stefan V. Vatev and Alexander A. Terziivanov ²

Faculty of Mathematics and Computer Science Sofia University

March 8, 2015 Spring Eastern Meeting Georgetown University, Washington, D.C. Special Session on Computable Structure Theory

¹Supported NSF garnt Collaboration in Computability

²This research was partially supported by Sofia University Science Fund project 81, 2015

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}$ for any $X \subseteq A^a$.
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$ is the positive atomic diagram of an isomorphic copy of \mathfrak{A} .

We always consider $\mathfrak{A} = (A; R_1, \bar{R_1}, \dots, R_k, \bar{R_k}).$

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}$ for any $X \subseteq A^a$.
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$ is the positive atomic diagram of an isomorphic copy of \mathfrak{A} .

We always consider $\mathfrak{A} = (A; R_1, \bar{R_1}, ..., R_k, \bar{R_k}).$

Definition

For every $X \subseteq A$ and f, g enumerations of A let

$$E_X^{f,g} = \{\langle x, y \rangle \mid f(x) = g(y) \in X\}.$$

Relatively intrinsically c.e. in $\mathfrak A$ sets

Definition

A set $R \subseteq A$ is relatively intrinsically c.e. in $\mathfrak A$ if and only if $f^{-1}(R)$ is c.e. in $f^{-1}(\mathfrak A)$ for every enumeration f of $\mathfrak A$.

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)

A set $R \subseteq A$ is relatively intrinsically c.e. in $\mathfrak A$ if and only if R is definable in $\mathfrak A$ by means of a computable infinitary Σ_1^c formula with parameters.

Equivalent structures

Definition

We call two structures $\mathfrak A$ and $\mathfrak B$ equivalent: $\mathfrak A\equiv \mathfrak B$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of $\mathfrak A$ and $\mathfrak B$.

Equivalent structures

Definition

We call two structures $\mathfrak A$ and $\mathfrak B$ equivalent: $\mathfrak A\equiv \mathfrak B$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of $\mathfrak A$ and $\mathfrak B$.

Definition

Given a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_i\}_{i<\omega}$ the *n*-th polynomial of $\vec{\mathfrak{A}}$ is a structure $\mathcal{P}_n(\vec{\mathfrak{A}})$ defined inductively:

- $\bullet \ \mathcal{P}_0(\vec{\mathfrak{A}}) = \mathfrak{A}_0,$
- $\mathcal{P}_{n+1}(\vec{\mathfrak{A}}) = \mathcal{P}_n(\vec{\mathfrak{A}})' \oplus \mathfrak{A}_{n+1}$.

Here the jump of a structure is appropriately defined.

Equivalent structures

Definition

We call two structures $\mathfrak A$ and $\mathfrak B$ equivalent: $\mathfrak A\equiv \mathfrak B$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of $\mathfrak A$ and $\mathfrak B$.

Definition

Given a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_i\}_{i<\omega}$ the *n*-th polynomial of $\vec{\mathfrak{A}}$ is a structure $\mathcal{P}_n(\vec{\mathfrak{A}})$ defined inductively:

- $\mathcal{P}_0(\vec{\mathfrak{A}}) = \mathfrak{A}_0$,
- $\mathcal{P}_{n+1}(\vec{\mathfrak{A}}) = \mathcal{P}_n(\vec{\mathfrak{A}})' \oplus \mathfrak{A}_{n+1}$.

Here the jump of a structure is appropriately defined.

Theorem

For every sequence of structures $\vec{\mathfrak{A}}$, there exists a structure \mathfrak{M} such that for every n we have $\mathcal{P}_n(\vec{\mathfrak{A}}) \equiv \mathfrak{M}^{(n)}$.

Sequences of sets of natural numbers

Theorem (Selman)

Let $X, Y \subseteq \mathbb{N}$. $X \leq_e Y$ if and only if for every $Z \subseteq \mathbb{N}$, if Y is c.e. in Z then X is c.e. in Z.

Sequences of sets of natural numbers

Theorem (Selman)

Let $X, Y \subseteq \mathbb{N}$. $X \leq_e Y$ if and only if for every $Z \subseteq \mathbb{N}$, if Y is c.e. in Z then X is c.e. in Z.

Definition

A sequence of sets of natural numbers $\mathcal{Y} = \{Y_n\}_{n < \omega}$ is *c.e.* in a set $Z \subseteq \mathbb{N}$ if for every n, Y_n is c.e. in $Z^{(n)}$ uniformly in n.

Sequences of sets of natural numbers

Theorem (Selman)

Let $X, Y \subseteq \mathbb{N}$. $X \leq_e Y$ if and only if for every $Z \subseteq \mathbb{N}$, if Y is c.e. in Z then X is c.e. in Z.

Definition

A sequence of sets of natural numbers $\mathcal{Y} = \{Y_n\}_{n < \omega}$ is *c.e.* in a set $Z \subseteq \mathbb{N}$ if for every n, Y_n is c.e. in $Z^{(n)}$ uniformly in n.

Definition

Given a set X of natural numbers and a sequence \mathcal{Y} of sets of natural numbers, let $X \leq_n \mathcal{Y}$ if for all sets $Z \subseteq \mathbb{N}$,

 \mathcal{Y} is c.e. in Z implies X is Σ_{n+1}^0 in Z;

The relation \leq_n

Ash presents a characterization of " \leq_n " using computable infinitary propositional sentences. Soskov and Kovachev give another characterization in terms of enumeration reducibility.

Definition

Let $\mathcal{X} = \{X_n\}_{n < \omega}$. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

The relation \leq_n

Ash presents a characterization of " \leq_n " using computable infinitary propositional sentences. Soskov and Kovachev give another characterization in terms of enumeration reducibility.

Definition

Let $\mathcal{X} = \{X_n\}_{n < \omega}$. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Theorem (Soskov)

 $X \leq_n \mathcal{Y}$ if and only if $X \leq_e \mathcal{P}_n(\mathcal{Y})$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$.

Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence

$$\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \cdots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}.$$

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where

$$\mathfrak{A}_n = (A_n, R_1^n, R_2^n, \dots R_{m_n}^n)$$
. Let $A = \bigcup_n A_n$.

An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$.

Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence

$$\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \cdots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}.$$

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$.

Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence

$$\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \cdots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}.$$

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$.

Theorem (Soskov)

For every sequence of structures $\vec{\mathfrak{A}}$, there exists a structure \mathfrak{M} , such that for each n, the relatively intrinsically Σ_{n+1} sets in \mathfrak{M} sets coincide with sets $R \leq_n \vec{\mathfrak{A}}$.

The structure \mathfrak{M} is the Marker's extension of the sequence of structures $\vec{\mathfrak{A}}$.

The Moschovakis extension

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$.

- Let $\bar{0} \not\in A$. Set $A_0 = A \cup \{\bar{0}\}$.
- Let $\langle .,. \rangle$ be a pairing function: each element of A_0 is not a pair.
- Let A^* be the least set containing A_0 and closed under $\langle .,. \rangle$.
- $0^* = \overline{0}$, $(n+1)^* = \langle \overline{0}, n^* \rangle$. The set of all n^* we denote by N^* .
- The decoding functions: $L(\langle s, t \rangle) = s \& R(\langle s, t \rangle) = t$, $L(\bar{0}) = R(\bar{0}) = 0^* \ (\forall t \in A)[L(t) = R(t) = 1^*].$

The Moschovakis extension

Let $\mathfrak{A}=(A;R_1,\ldots,R_k).$

- Let $\bar{0} \notin A$. Set $A_0 = A \cup \{\bar{0}\}$.
- Let $\langle .,. \rangle$ be a pairing function: each element of A_0 is not a pair.
- Let A^* be the least set containing A_0 and closed under $\langle .,. \rangle$.
- $0^* = \bar{0}, (n+1)^* = \langle \bar{0}, n^* \rangle.$ The set of all n^* we denote by N^* .
- The decoding functions: $L(\langle s, t \rangle) = s \& R(\langle s, t \rangle) = t$, $L(\bar{0}) = R(\bar{0}) = 0^* \ (\forall t \in A)[L(t) = R(t) = 1^*].$

Definition

The Moschovakis extension of \mathfrak{A} is the structure

$$\mathfrak{A}^{\star} = (A^{\star}; A_0, R_1^{\star}, \dots, R_k^{\star}, G_{\langle \dots \rangle}, G_L, G_R).$$

$$R_i^*(t) \iff (\exists a_1 \in A) \dots (\exists a_{r_i} \in A)(t = \langle a_1, \dots, a_{r_i} \rangle \& R_i(a_1, \dots, a_{r_i})).$$

The set $K^{\mathfrak{A}}$

A new predicate $K^{\mathfrak{A}}$ (analogue of Kleene's set). For $e, x \in \mathbb{N}$ and finite part τ , let

$$au dash F_e(x) \leftrightarrow x \in W_e^{ au^{-1}(\mathfrak{A})}$$
 $au dash \neg F_e(x) \leftrightarrow (orall
ho \supseteq au)(
ho dash F_e(x))$
 $K^{\mathfrak{A}} = \{ \langle \delta^*, e^*, x^* \rangle : (\exists au \supseteq \delta)(au dash F_e(x)) \}.$
 $\mathfrak{A}' = (\mathfrak{A}^*, K^{\mathfrak{A}}), \ \mathfrak{A}^{(n+1)} = (\mathfrak{A}^{(n)})'.$

Proposition

For every $R \subseteq A$ we have

- R is relatively intrinsically c.e. on \mathfrak{A}' iff R is relatively intrinsically Σ_2 on \mathfrak{A} .
- R is relatively intrinsically c.e. on $\mathfrak{A}^{(n)}$ iff R is relatively intrinsically Σ_{n+1} on \mathfrak{A} .

The jump structure \mathfrak{A}'

$$\mathfrak{A}'=(\mathfrak{A}^{\star},\mathcal{K}^{\mathfrak{A}}).$$

Proposition

For every enumeration f of $\mathfrak A$ there exists an enumeration g of $\mathfrak A'$, such that

- $g^{-1}(\mathfrak{A}') \leq_{\mathbf{T}} (f^{-1}(\mathfrak{A}))_T';$

Proposition

For every enumeration g of \mathfrak{A}' there exists an enumeration f of \mathfrak{A} , such that

- $(f^{-1}(\mathfrak{A}))_T' \leq_{\mathbf{T}} g^{-1}(\mathfrak{A}');$
- $E^{f,g}_{\Delta}$ is c.e. in $g^{-1}(\mathfrak{A}')$.

The *n*th polynomial of a sequence of structures

Definition

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ and $\mathfrak{B} = (B; P_1, \dots, P_m)$ are structures and $A \cap B = \emptyset$. The join of \mathfrak{A} and \mathfrak{B} we call the structure $\mathfrak{A} \oplus \mathfrak{B} = (A \cup B; A, B, R_1, \dots, R_k, P_1, \dots, P_m)$.

Definition

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_i\}_{i \in \omega}$ be a sequence of structures with disjoint domains $A_i \cap A_j = \emptyset$ for $i \neq j$. The nth polynomial of $\vec{\mathfrak{A}}$ we call the structure $\mathcal{P}_n(\vec{\mathfrak{A}})$, defined inductively:

Our goal is to prove that if $\mathfrak{M}(\vec{\mathfrak{A}})$ is the Marker's extension of the sequence $\vec{\mathfrak{A}}$ then

$$(\forall n \in \mathbb{N})(\mathfrak{M}(\vec{\mathfrak{A}})^{(n)} \equiv \mathcal{P}_n(\vec{\mathfrak{A}})).$$

The definability in $\mathcal{P}_n(\vec{\mathfrak{A}})$

If f is an enumeration of $\vec{\mathfrak{A}}$ denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \cdots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}$. Denote by $A_n^n = \bigcup_{i=0}^n A_i$.

Proposition

For every enumeration f of $\vec{\mathfrak{A}}$ and each $n \in \mathbb{N}$ there exists an enumeration g of $\mathcal{P}_n(\vec{\mathfrak{A}})$ such that:

- $E_{A_n^n}^{f,g}$ is c.e. in $\mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}}))$.

Proposition

For every enumeration g of $\mathcal{P}_n(\vec{\mathfrak{A}})$ there exists an enumeration f of the set A_n^n such that:

- $E_{A_n^n}^{g,f}$ is c.e. in $g^{-1}(\mathcal{P}_n(\vec{\mathfrak{A}}))$.

The connection between \leq_n and $\mathcal{P}_n(\vec{\mathfrak{A}})$

Theorem

Let $n \in \mathbb{N}$ and $R \subseteq \bigcup_{i=0}^{n} A_i$. The following equivalence is true:

R is relatively intrinsically Σ_1 in $\mathcal{P}_n(\vec{\mathfrak{A}}) \iff R \leq_n \vec{\mathfrak{A}}$.

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \ldots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a},x_0) \in G_{h_0}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a},x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n [M_n(\bar{a}, x_0, \dots x_n)].$$

Let
$$\vec{\mathfrak{A}} = {\{\mathfrak{A}_n\}_{n<\omega}}$$
, and $A = \bigcup_n A_n$.

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

• For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Let
$$\vec{\mathfrak{A}} = {\{\mathfrak{A}_n\}}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- **②** For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Theorem (Soskov)

For each $n \in \mathbb{N}$ and every $R \subseteq A$ $R \leq_n \vec{\mathfrak{A}}$ iff R is relatively intrinsically Σ_{n+1} in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Corollary

$$\mathcal{P}_n(\vec{\mathfrak{A}}) \equiv \mathfrak{M}(\vec{\mathfrak{A}})^{(n)}$$
 for every $n \in \mathbb{N}$.

Strong reducibility of structures

Definition

Let $\mathfrak A$ and $\mathfrak B$ be countable structures and $A\subseteq B$. The structure $\mathfrak A$ is *strong reducible* in the structure $\mathfrak B:\mathfrak A\leq \mathfrak B$ if the following conditions hold:

- for each enumeration g of $\mathfrak B$ there is an enumeration f of $\mathfrak A$, such that $f^{-1}(\mathfrak A) \leq_{\mathrm T} g^{-1}(\mathfrak B)$ and
- ② the set $E_A^{g,f}$ is c.e. in $g^{-1}(\mathfrak{B})$.

Proposition

If $\mathfrak{A} \leq \mathfrak{B}$ then for all $R \subseteq A$ if R is definable by means of an infinitary Σ_1^c formula in \mathfrak{A} then R is definable by Σ_1^c formula in \mathfrak{B}

Strong reducibility of structures

Theorem (Terziivanov)

For every sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_i\}_{i \in \omega}$, where $\mathfrak{A}_i = (A_i; R_{1,i}, \dots, R_{m_i,i})$ with disjoint domains and each $n \in \mathbb{N}$,

$$\mathcal{P}_n(\vec{\mathfrak{A}}) \leq \mathfrak{M}(\vec{\mathfrak{A}})^{(n)}$$
.

The opposite direction is not true for each sequence of structures. The question here when the opposite is true?

- C. Ash, J. Knight, M. Manasse, T. Slaman Generic copies of countable structures. Annals of Pure and Applied Logic bf 42 (1989), 195 - 205.
- J. Chisholm

 Effective model theory vs. recursive model theory.

 The Journal of Symbolic Logic bf 55 (1990), no. 3, 1168 1191.
- I. N. Soskov Effective properties of Marker's Extensions. Journal of Logic and Computation, 23 (6), (2013) 1335–1367.
- A. A. Terziivanov Some applications of effective properties of Marker's Extensions. Master thesis, Sofia university, 2014.
- S. Vatev
 Conservative Extensions of Abstract Structures.
 Lecture Notes in Computer Science, 6735, CiE2011, 300 309.