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Enumerations

Definition. Let A = (A, ω; θ1, . . . , θn; P1, . . . ,Pk) be a two sorted
countable structure.
An enumeration of A is 〈f ,Bf 〉, where f is a (partial) surjective
mapping of ω onto A, Bf = (ω;ϕ1, . . . , ϕn, σ1, . . . , σk) and

dom(f ) is closed under ϕ1, . . . , ϕn;

(∀x̄ ∈ dom(f ))(∀ȳ ∈ ω)[f (ϕi (x̄ , ȳ)) = θi (f (x̄), ȳ)];

(∀x̄ ∈ dom(f ))(∀ȳ ∈ ω)[σj(x̄ , ȳ) ⇐⇒ Pj(f (x̄), ȳ)].

An enumeration 〈f ,Bf 〉 is total if dom(f ) = ω.

Denote by 〈ϕ〉 = {〈y , x1, . . . , xn〉 | ϕ(x1, . . . xn) = y}.

〈Bf 〉 = 〈ϕ1〉 ⊕ · · · ⊕ 〈ϕn〉 ⊕ 〈σ1〉 ⊕ · · · ⊕ 〈σk〉
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Degree Spectra

Definition.[Richter] The Degree Spectrum of A is the set

DS(A) = {de(〈Bf 〉) | 〈f ,Bf 〉 is a total enumeration of A}.

If DS(A) has a least e-degree a, then a is called the degree of A.

Definition. The Co-Spectrum of A is the set

CS(A) = {de(X ) | X ≤e 〈Bf 〉, 〈f ,Bf 〉 is a tot. enum. of A}.

If CS(A) has a greatest e-degree a then a is called the co-degree
of A.
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Degrees and co-degrees

Proposition. If a structure A has a degree a then a is also the
co-degree of A.

There are examples of structures with no co-degrees and structures
with co-degree but no degree.
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Admissible functions in A

Let A = (A, ω; θ1, . . . , θn,P1, . . . ,Pk) and 〈f ,Bf 〉 is an
enumeration of A.
A function θ : ωr × Am → A is admissible in 〈f ,Bf 〉 if there is a
function ϕ partial recursive in Bf , (〈ϕ〉 ≤e 〈Bf 〉) and:

dom(f ) is closed under ϕ;

(∀x̄ ∈ dom(f ))(∀ȳ ∈ ω)[f (ϕ(x̄ , ȳ)) = θ(f (x̄), ȳ)];

And θ : ωr × Am → ω is admissible in 〈f ,Bf 〉 if there is a function
ϕ partial recursive in Bf

dom(f ) is closed under ϕ;

(∀x̄ ∈ dom(f ))(∀ȳ ∈ ω)[ϕ(x̄ , ȳ) = θ(f (x̄), ȳ)].
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Computable functions on A

Definition.

A function θ is (search) computable in A iff θ is admissible in
all total enumerations of A.

A function θ is (REDS) partially computable in A iff θ is
admissible in all (partial) enumerations of A.

Search computability by Moschkovakis (Fraissé, Lacombe,
Montague);

Computability by means of Recursively Enumerable
Definitional Schemes (REDS) by Shepherdson (Friedman
EDS).
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The Computably Enumerable Sets on A

The domains of the computable functions in A we call the
computably enumerable (c.e.) on A sets.

Let L be the language of A. We add a unary predicate symbol T0

to L to represent a predicate which is true everywhere.

Proposition. A set X ⊆ ωr × Am is c.e. on A iff there is a
recursive function γ : ωr+1 → ω, such that for any n,
Eγ(n,ȳ)(X̄ , W̄ ) is an elementary Σ1 formula in L and there exist
parameters t1, . . . , tl of A such that:

(ȳ , x̄) ∈ X ⇐⇒ (∃n ∈ ω)[A � Eγ(n,ȳ)(X̄/x̄ , W̄ /t̄)].

These sets are exactly the relative intrinsically sets on A.
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The Partially Computably enumerable Sets on A

The domains of the partially computable functions in A we call
partially c.e. on A sets.

Proposition. A set X ⊆ ωr × Am is p.c.e. in A if there is a
recursive function γ : ωr+1 → ω, such that for any n,
Pγ(n,ȳ)(X̄ , W̄ ) is a finite conjunctions of atoms or negated atoms
in L and there exist parameters t1, . . . , tl of A such that:

(ȳ , x̄) ∈ X ⇐⇒ (∃n ∈ ω)[A � Pγ(n,ȳ)(X̄/x̄ , W̄ /t̄)].
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Example of a structure with no co-degree

Consider A = (N, ω; Ψ; P), where Ψ : N→ N and
Ψ(〈n, x〉) = 〈n, x + 1〉 and the predicate P ⊆ N:

P(x) =


0 ∃t(x = 〈0, t〉),
0 ∃n∃t(x = 〈n + 1, t〉 & t ∈ ∅(n+1)),

⊥ otherwise.

For every X ⊆ ω: X is c.e. in A iff ∃n(X ≤e ∅(n)).
Consider the sequence ∅ <e ∅′ <e · · · < ∅(n) <e . . . . There is no
set W so that:

(∀X ⊆ ω)(X ≤e W ⇐⇒ ∃n(X ≤e ∅(n))).

And hence A has no co-degree.
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Example of a structure with a co-degree but no degree

Proposition. Let A = (A, ω; R,=A), where A is countable set and
R ⊆ A is a linear order. Then de(∅) is a co-degree of A.

For every X ⊆ ω, if X is c.e. in A then there is a recursive function
γ and there exist parameters t1, . . . , tl of A such that:

y ∈ X ⇐⇒ (∃n ∈ ω)[A � Eγ(n,y)(W̄ /t̄)].

And then X ≤e ∅.
Hence de(∅) is a co-degree of A.

Corollary.[Richter] If A is a countable linear ordering with a
degree, then this degree is 0e = de(∅).
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Example of a structure a co-degree but no degree

An ordinal ξ is constructive if the structure ξ = (ξ, ω;∈,=) is
isomorphic to a computable well ordering.

Proposition. Let ξ be a countable ordinal. Then the structure
ξ = (ξ, ω;∈,=) has a degree if and only if ξ is a constructive
ordinal.

Corollary. If ξ is a countable ξ ≥ ωCK
1 then ξ has a co-degree and

no degree.
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Partial Degree Spectra

Definition. The Partial Degree Spectrum of A is the set

PDS(A) = {de(〈Bf 〉) | 〈f ,Bf 〉 is a partial enumeration of A}.

The least element of A (if it exists) is called a partial degree of A.

Definition. The Partial Co-Spectrum of A is the set

PCS(A) = {de(X ) | X ≤e 〈Bf 〉, 〈f ,Bf 〉 is an enumeration of A}.

If PCS(A) has a greatest e-degree a then a is called a partial
co-degree of A.

Proposition. If a is a partial degree of A then a is a partial
co-degree of A.
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Partial Degrees and Co-degrees

If a is a degree of A and b is a partial degree of A then b ≤ a.
There are structures (e.g. that from Example 1) with no partial
degree.

Definition. A set W ⊆ N is total if (ω \W ) ≤e W . An e-degree
is total if it contains a total set.

Proposition. Let A be a total countable structure with a partial
co-degree a. Then a is a total e-degree.

Consider a set W ∈ a. Then W is p.c.e. in A, i.e. there is a
recursive function γ and parameters t1, . . . , tl of A such that:

y ∈W ⇐⇒ (∃n ∈ ω)[A � Pγ(n,y)(Z̄/t̄)].

The set {L̂ | L(Z̄/t̄) = 0} is total and e-equivalent to W .
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Partial Degrees and Co-degrees

Theorem. If the structure A has a p. co-degree which is a total
e-degree then A has a p. degree too.

Let a be e p.co-degree of A and W ∈ a be a total set.
We construct a standard enumeration 〈f ,Bf 〉 of A such that
〈Bf 〉 ≤e W .
Fact: Since W is a total set then W is e-equivalent to its
characteristic function.
Hence for each r there is a p.r in W universal function Φr for the
p.r. in W functions of r arguments.

If W is not total, then we can construct an enumeration 〈f ,Bf 〉 of
A, W ≡e 〈Bf 〉, but the functions in Bf are not single valued
outside the domain of f .
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Partial Degrees and Co-degrees

Corollary. Every total structure A with a partial co-degree has a
partial degree.

Proposition. Let A = (A, ω; R1, . . . ,Rk), where all the predicates
Rj ⊆ Amj . Then A has a partial co-degree 0e.

Corollary. Every countable linear ordering has a partial degree 0e.
And hence if ξ is not constructive ordinal, then the structure
(ξ, ω;∈,=) has a partial degree 0e and has no degree.
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Relative Stability

Let A = (N, ω; θ1, . . . , θn; P1, . . . ,Pk).

Definition. The structure A is relatively stable if for every total
enumeration 〈f ,Bf 〉 of A the mapping f is partially recursive in
Bf .

Definition. The structure A is algorithmic complete if all the p.r.
functions on N are computable in A considered as functions on N
and on ω.

Proposition. The following conditions are equivalent:

A is relatively stable;

the converting function α : N→ ω, λn.α(n) = n is
computable;

A is algorithmic complete.
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Example of an algorithmic complete structure

Ash, Knight, Manasse, Slaman, Chisholm

Theorem. A is algorithmic complete if there exists a recursive
function γ(n, x) and parameters t1, . . . , tl ∈ N such that

(∀x ∈ N)(∀y ∈ ω)(x = y ⇐⇒ (∃n ∈ ω)(A � Eγ(n,y)(Z̄/t̄,X/x))).

Proposition. The structure A = (N, ω; S ,=N), where S : N→ N
is the successor function on N is algorithmic complete..

If E y = T (F y (Z ),X ) then A � E y (Z/0,X/x) ⇐⇒ x = y.
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Super Relative Stability

Definition. The structure A is super relatively stable if for every
enumeration 〈f ,Bf 〉 of A the mapping f has a p.r. in Bf function
g ⊇ f , i.e. for every n if f (n) is defined then g(n) is defined and
f (n) = g(n).

Let 〈f ,Bf 〉 be an enumeration of A. Then for every function ϕ
with the property ϕ(x) = α(f (x)) for x ∈ dom(α), ϕ ⊇ f .
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Super Relative Stability

Proposition. The following conditions are equivalent:

A is super relatively stable;

The converting function α : N→ ω, λn.α(n) = n is partially
computable in A;

Every c.e subset of ωr+m, considered as a subset of ωr × Nm,
is c.e. in A.

There exists a recursive function γ(n, x) and parameters
t1, . . . , tl ∈ N such that

(∀x ∈ N)(∀y ∈ ω)(x = y ⇔ (∃n ∈ ω)(A � Pγ(n,y)(Z̄/t̄,X/x))).
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Partially algorithmic completeness

Definition. The structure A is partially algorithmic complete if all
the p.r. functions on N are partially computable in A considered as
functions on N and on ω.

Definition. A structure A is finitely generated if there are finitely
many elements t1, . . . , tl and variables W1, . . . ,Wl , such that

A = {λ(W̄ /t̄) | λ is a term on W̄ }.

Proposition. If a structure A is partially algorithmic complete
then it is finitely generated and hence the computable functions in
A and the partially computable functions coincide.

Theorem. A structure A is partially algorithmic complete if and
only if A is super relatively stable and finitely generated.
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Example of algorithmic complete structures

Consider the structure A = (N, ω; P; Z ),
where P : N→ N, P(x) = x − 1 for x > 0 and P(0) = 0,
and Z (x) = 0 if x = 0, and Z (x) = 1 if x > 0.
It is clear that A is not finitely generated. Thus it is not partially
algorithmic complete.
Let L = (F ,T ) be the language of A and x ∈ N, y ∈ ω.

x = y ⇐⇒ A � ¬T (X/x) & · · · ¬T (F y−1(X/x) & T (F y (X/x)).

Since it is super relative stable and hence relatively stable. Then it
is algorithmic complete.

An example of partially algorithmic complete structure is
A = (N, ω; S ,P; Z ), where
S(x) = x + 1,
P(x) = x − 1 for x > 0 and not defined if x = 0,
Z (x) = 0 if x = 0 and not defined if x > 0.
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Partial Degree Spectra

Thank you!
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