Partial Degree Spectra of Abstract Structures

Alexandra A. Soskova ¹ joint work with Ivan N. Soskov

Faculty of Mathematics and Informatics Sofia University

 1 Supported by BNSF Grant No. D002-258/18.12.08; Sofia University Science Fund $<\Box \succ < \textcircled{B} \succ < \textcircled{B} \rightarrow < \textcircled{B$

Alexandra A. Soskova Partial Degree Spectra

- Enumerations
- Degree spectra of structures
- Definability on structures
- Partial degree spectra
- Relative stability

Enumerations

Definition. Let $\mathfrak{A} = (A, \omega; \theta_1, \dots, \theta_n; P_1, \dots, P_k)$ be a two sorted countable structure.

An enumeration of \mathfrak{A} is $\langle f, \mathfrak{B}_f \rangle$, where f is a (partial) surjective mapping of ω onto A, $\mathfrak{B}_f = (\omega; \varphi_1, \ldots, \varphi_n, \sigma_1, \ldots, \sigma_k)$ and

- dom(f) is closed under $\varphi_1, \ldots, \varphi_n$;
- $(\forall \bar{x} \in \operatorname{dom}(f))(\forall \bar{y} \in \omega)[f(\varphi_i(\bar{x}, \bar{y})) = \theta_i(f(\bar{x}), \bar{y})];$
- $(\forall \bar{x} \in \operatorname{dom}(f))(\forall \bar{y} \in \omega)[\sigma_j(\bar{x}, \bar{y}) \iff P_j(f(\bar{x}), \bar{y})].$

An enumeration $\langle f, \mathfrak{B}_f \rangle$ is total if dom $(f) = \omega$.

Denote by
$$\langle \varphi \rangle = \{ \langle y, x_1, \dots, x_n \rangle \mid \varphi(x_1, \dots, x_n) = y \}.$$

$$\langle \mathfrak{B}_f \rangle = \langle \varphi_1 \rangle \oplus \cdots \oplus \langle \varphi_n \rangle \oplus \langle \sigma_1 \rangle \oplus \cdots \oplus \langle \sigma_k \rangle$$

Definition. [Richter] *The Degree Spectrum of* \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(\langle \mathfrak{B}_f \rangle) \mid \langle f, \mathfrak{B}_f \rangle \text{ is a total enumeration of } \mathfrak{A} \}.$

If $DS(\mathfrak{A})$ has a least e-degree **a**, then **a** is called *the degree of* \mathfrak{A} .

Definition. The Co-Spectrum of \mathfrak{A} is the set

 $CS(\mathfrak{A}) = \{ d_e(X) \mid X \leq_e \langle \mathfrak{B}_f \rangle, \ \langle f, \mathfrak{B}_f \rangle \text{ is a tot. enum. of } \mathfrak{A} \}.$

If $CS(\mathfrak{A})$ has a greatest e-degree **a** then **a** is called *the co-degree* of \mathfrak{A} .

Proposition. If a structure \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} .

There are examples of structures with no co-degrees and structures with co-degree but no degree.

Let $\mathfrak{A} = (A, \omega; \theta_1, \dots, \theta_n, P_1, \dots, P_k)$ and $\langle f, \mathfrak{B}_f \rangle$ is an enumeration of \mathfrak{A} .

A function $\theta: \omega^r \times A^m \to A$ is admissible in $\langle f, \mathfrak{B}_f \rangle$ if there is a function φ partial recursive in \mathfrak{B}_f , $(\langle \varphi \rangle \leq_e \langle \mathfrak{B}_f \rangle)$ and:

• dom(f) is closed under φ ;

• $(\forall \bar{x} \in \operatorname{dom}(f))(\forall \bar{y} \in \omega)[f(\varphi(\bar{x}, \bar{y})) = \theta(f(\bar{x}), \bar{y})];$

And $\theta: \omega^r \times A^m \to \omega$ is admissible in $\langle f, \mathfrak{B}_f \rangle$ if there is a function φ partial recursive in \mathfrak{B}_f

- dom(f) is closed under φ ;
- $(\forall \bar{x} \in \operatorname{dom}(f))(\forall \bar{y} \in \omega)[\varphi(\bar{x}, \bar{y}) = \theta(f(\bar{x}), \bar{y})].$

Computable functions on $\mathfrak A$

Definition.

- A function θ is (search) computable in \mathfrak{A} iff θ is admissible in all total enumerations of \mathfrak{A} .
- A function θ is (REDS) partially computable in 𝔄 iff θ is admissible in all (partial) enumerations of 𝔄.
- Search computability by Moschkovakis (Fraissé, Lacombe, Montague);
- Computability by means of Recursively Enumerable Definitional Schemes (REDS) by Shepherdson (Friedman EDS).

The domains of the computable functions in \mathfrak{A} we call the computably enumerable (c.e.) on \mathfrak{A} sets.

Let *L* be the language of \mathfrak{A} . We add a unary predicate symbol T_0 to *L* to represent a predicate which is true everywhere.

Proposition. A set $X \subseteq \omega^r \times A^m$ is c.e. on \mathfrak{A} iff there is a recursive function $\gamma : \omega^{r+1} \to \omega$, such that for any n, $E^{\gamma(n,\bar{y})}(\bar{X}, \bar{W})$ is an elementary Σ_1 formula in L and there exist parameters t_1, \ldots, t_l of A such that:

$$(\bar{y},\bar{x})\in X\iff (\exists n\in\omega)[\mathfrak{A}\vDash E^{\gamma(n,\bar{y})}(\bar{X}/\bar{x},\bar{W}/\bar{t})].$$

These sets are exactly the relative intrinsically sets on \mathfrak{A} .

The domains of the partially computable functions in \mathfrak{A} we call partially c.e. on \mathfrak{A} sets.

Proposition. A set $X \subseteq \omega^r \times A^m$ is p.c.e. in \mathfrak{A} if there is a recursive function $\gamma : \omega^{r+1} \to \omega$, such that for any n, $P^{\gamma(n,\bar{y})}(\bar{X}, \bar{W})$ is a finite conjunctions of atoms or negated atoms in L and there exist parameters t_1, \ldots, t_l of A such that:

 $(\bar{y},\bar{x})\in X\iff (\exists n\in\omega)[\mathfrak{A}\models P^{\gamma(n,\bar{y})}(\bar{X}/\bar{x},\bar{W}/\bar{t})].$

Example of a structure with no co-degree

Consider
$$\mathfrak{A} = (\mathbb{N}, \omega; \Psi; P)$$
, where $\Psi : \mathbb{N} \to \mathbb{N}$ and
 $\Psi(\langle n, x \rangle) = \langle n, x + 1 \rangle$ and the predicate $P \subseteq \mathbb{N}$:

$$P(x) = \begin{cases} 0 & \exists t(x = \langle 0, t \rangle), \\ 0 & \exists n \exists t(x = \langle n + 1, t \rangle \& t \in \emptyset^{(n+1)}), \\ \bot & otherwise. \end{cases}$$

For every $X \subseteq \omega$: X is c.e. in \mathfrak{A} iff $\exists n(X \leq_e \emptyset^{(n)})$. Consider the sequence $\emptyset <_e \emptyset' <_e \cdots < \emptyset^{(n)} <_e \cdots$. There is no set W so that:

$$(\forall X \subseteq \omega)(X \leq_e W \iff \exists n(X \leq_e \emptyset^{(n)})).$$

And hence a has no co-degree.

Example of a structure with no co-degree

Consider
$$\mathfrak{A} = (\mathbb{N}, \omega; \Psi; P)$$
, where $\Psi : \mathbb{N} \to \mathbb{N}$ and
 $\Psi(\langle n, x \rangle) = \langle n, x + 1 \rangle$ and the predicate $P \subseteq \mathbb{N}$:

$$P(x) = \begin{cases} 0 & \exists t(x = \langle 0, t \rangle), \\ 0 & \exists n \exists t(x = \langle n + 1, t \rangle \& t \in \emptyset^{(n+1)}) \\ \bot & otherwise. \end{cases}$$

For every $X \subseteq \omega$: X is c.e. in \mathfrak{A} iff $\exists n(X \leq_e \emptyset^{(n)})$. Consider the sequence $\emptyset <_e \emptyset' <_e \cdots < \emptyset^{(n)} <_e \cdots$. There is no set W so that:

$$(\forall X \subseteq \omega)(X \leq_e W \iff \exists n(X \leq_e \emptyset^{(n)})).$$

And hence \mathfrak{A} has no co-degree.

Proposition. Let $\mathfrak{A} = (A, \omega; R, =_A)$, where A is countable set and $R \subseteq A$ is a linear order. Then $d_e(\emptyset)$ is a co-degree of \mathfrak{A} .

For every $X \subseteq \omega$, if X is c.e. in \mathfrak{A} then there is a recursive function γ and there exist parameters t_1, \ldots, t_l of A such that:

$$y \in X \iff (\exists n \in \omega) [\mathfrak{A} \vDash E^{\gamma(n,y)}(\overline{W}/\overline{t})].$$

And then $X \leq_e \emptyset$. Hence $d_e(\emptyset)$ is a co-degree of \mathfrak{A} .

Corollary.[Richter] If \mathfrak{A} is a countable linear ordering with a degree, then this degree is $\mathbf{0}_e = d_e(\emptyset)$.

Proposition. Let $\mathfrak{A} = (A, \omega; R, =_A)$, where A is countable set and $R \subseteq A$ is a linear order. Then $d_e(\emptyset)$ is a co-degree of \mathfrak{A} .

For every $X \subseteq \omega$, if X is c.e. in \mathfrak{A} then there is a recursive function γ and there exist parameters t_1, \ldots, t_l of A such that:

$$y \in X \iff (\exists n \in \omega) [\mathfrak{A} \models E^{\gamma(n,y)}(\bar{W}/\bar{t})].$$

And then $X \leq_e \emptyset$. Hence $d_e(\emptyset)$ is a co-degree of \mathfrak{A} .

Corollary. [*Richter*] If \mathfrak{A} is a countable linear ordering with a degree, then this degree is $\mathbf{0}_e = d_e(\emptyset)$.

An ordinal ξ is constructive if the structure $\xi = (\xi, \omega; \in, =)$ is isomorphic to a computable well ordering.

Proposition. Let ξ be a countable ordinal. Then the structure $\xi = (\xi, \omega; \in, =)$ has a degree if and only if ξ is a constructive ordinal.

Corollary. If ξ is a countable $\xi \ge \omega_1^{CK}$ then ξ has a co-degree and no degree.

Definition. The Partial Degree Spectrum of \mathfrak{A} is the set

 $PDS(\mathfrak{A}) = \{ d_e(\langle \mathfrak{B}_f \rangle) \mid \langle f, \mathfrak{B}_f \rangle \text{ is a partial enumeration of } \mathfrak{A} \}.$

The least element of \mathfrak{A} (if it exists) is called *a partial degree of* \mathfrak{A} .

Definition. The Partial Co-Spectrum of \mathfrak{A} is the set

 $PCS(\mathfrak{A}) = \{ d_e(X) \mid X \leq_e \langle \mathfrak{B}_f \rangle, \ \langle f, \mathfrak{B}_f \rangle \text{ is an enumeration of } \mathfrak{A} \}.$

If $PCS(\mathfrak{A})$ has a greatest e-degree **a** then **a** is called *a partial co-degree of* \mathfrak{A} .

Proposition. If **a** is a partial degree of \mathfrak{A} then **a** is a partial co-degree of \mathfrak{A} .

Image: A image: A

Partial Degrees and Co-degrees

If **a** is a degree of \mathfrak{A} and **b** is a partial degree of \mathfrak{A} then $\mathbf{b} \leq \mathbf{a}$. There are structures (e.g. that from Example 1) with no partial degree.

Definition. A set $W \subseteq \mathbb{N}$ is *total* if $(\omega \setminus W) \leq_e W$. An e-degree is *total* if it contains a total set.

Proposition. Let \mathfrak{A} be a total countable structure with a partial co-degree **a**. Then **a** is a total e-degree.

Consider a set $W \in \mathbf{a}$. Then W is p.c.e. in \mathfrak{A} , i.e. there is a recursive function γ and parameters t_1, \ldots, t_l of A such that:

$$y \in W \iff (\exists n \in \omega) [\mathfrak{A} \models P^{\gamma(n,y)}(\overline{Z}/\overline{t})].$$

The set $\{\hat{L} \mid L(\overline{Z}/\overline{t}) = 0\}$ is total and e-equivalent to W.

Theorem. If the structure \mathfrak{A} has a *p*. co-degree which is a total *e*-degree then \mathfrak{A} has a *p*. degree too.

Let **a** be e p.co-degree of \mathfrak{A} and $W \in \mathbf{a}$ be a total set. We construct a standard enumeration $\langle f, \mathfrak{B}_f \rangle$ of \mathfrak{A} such that $\langle \mathfrak{B}_f \rangle \leq_e W$. Fact: Since W is a total set then W is e-equivalent to its characteristic function. Hence for each r there is a p.r in W universal function Φ_r for the p.r. in W functions of r arguments.

If W is not total, then we can construct an enumeration $\langle f, \mathfrak{B}_f \rangle$ of \mathfrak{A} , $W \equiv_e \langle \mathfrak{B}_f \rangle$, but the functions in \mathfrak{B}_f are not single valued outside the domain of f.

Corollary. Every total structure \mathfrak{A} with a partial co-degree has a partial degree.

Proposition. Let $\mathfrak{A} = (A, \omega; R_1, \ldots, R_k)$, where all the predicates $R_j \subseteq A^{m_j}$. Then \mathfrak{A} has a partial co-degree $\mathbf{0}_{\mathbf{e}}$.

Corollary. Every countable linear ordering has a partial degree $\mathbf{0}_{\mathbf{e}}$. And hence if ξ is not constructive ordinal, then the structure $(\xi, \omega; \in, =)$ has a partial degree $\mathbf{0}_{\mathbf{e}}$ and has no degree.

Let
$$\mathfrak{A} = (\mathbb{N}, \omega; \theta_1, \ldots, \theta_n; P_1, \ldots, P_k).$$

Definition. The structure \mathfrak{A} is *relatively stable* if for every total enumeration $\langle f, \mathfrak{B}_f \rangle$ of \mathfrak{A} the mapping f is partially recursive in \mathfrak{B}_f .

Definition. The structure \mathfrak{A} is *algorithmic complete* if all the p.r. functions on \mathbb{N} are computable in \mathfrak{A} considered as functions on \mathbb{N} and on ω .

Proposition. The following conditions are equivalent:

- \mathfrak{A} is relatively stable;
- the converting function α : N → ω, λn.α(n) = n is computable;
- \mathfrak{A} is algorithmic complete.

Example of an algorithmic complete structure

• Ash, Knight, Manasse, Slaman, Chisholm

Theorem. \mathfrak{A} is algorithmic complete if there exists a recursive function $\gamma(n, x)$ and parameters $t_1, \ldots, t_l \in \mathbb{N}$ such that

 $(\forall x \in \mathbb{N})(\forall y \in \omega)(x = y \iff (\exists n \in \omega)(\mathfrak{A} \models E^{\gamma(n,y)}(\overline{Z}/\overline{t},X/x))).$

Proposition. The structure $\mathfrak{A} = (\mathbb{N}, \omega; S, =_{\mathbb{N}})$, where $S : \mathbb{N} \to \mathbb{N}$ is the successor function on \mathbb{N} is algorithmic complete..

If $E^{y} = T(F^{y}(Z), X)$ then $\mathfrak{A} \models E^{y}(Z/0, X/x) \iff x = y$.

Definition. The structure \mathfrak{A} is *super relatively stable* if for every enumeration $\langle f, \mathfrak{B}_f \rangle$ of \mathfrak{A} the mapping f has a p.r. in \mathfrak{B}_f function $g \supseteq f$, i.e. for every n if f(n) is defined then g(n) is defined and f(n) = g(n).

Let $\langle f, \mathfrak{B}_f \rangle$ be an enumeration of \mathfrak{A} . Then for every function φ with the property $\varphi(x) = \alpha(f(x))$ for $x \in \operatorname{dom}(\alpha)$, $\varphi \supseteq f$.

Proposition. The following conditions are equivalent:

- \mathfrak{A} is super relatively stable;
- The converting function α : N → ω, λn.α(n) = n is partially computable in 𝔅;
- Every c.e subset of ω^{r+m}, considered as a subset of ω^r × ℕ^m, is c.e. in 𝔄.
- There exists a recursive function $\gamma(n, x)$ and parameters $t_1, \ldots, t_l \in \mathbb{N}$ such that

$$(orall x \in \mathbb{N})(orall y \in \omega)(x = y \Leftrightarrow (\exists n \in \omega)(\mathfrak{A} \vDash P^{\gamma(n,y)}(ar{Z}/ar{t},X/x)))$$

Definition. The structure \mathfrak{A} is *partially algorithmic complete* if all the p.r. functions on \mathbb{N} are partially computable in \mathfrak{A} considered as functions on \mathbb{N} and on ω .

Definition. A structure \mathfrak{A} is finitely generated if there are finitely many elements t_1, \ldots, t_l and variables W_1, \ldots, W_l , such that

 $A = \{\lambda(\overline{W}/\overline{t}) \mid \lambda \text{ is a term on } \overline{W}\}.$

Proposition. If a structure \mathfrak{A} is partially algorithmic complete then it is finitely generated and hence the computable functions in \mathfrak{A} and the partially computable functions coincide.

Theorem. A structure \mathfrak{A} is partially algorithmic complete if and only if \mathfrak{A} is super relatively stable and finitely generated.

Example of algorithmic complete structures

Consider the structure $\mathfrak{A} = (\mathbb{N}, \omega; P; Z)$, where $P : \mathbb{N} \to \mathbb{N}$, P(x) = x - 1 for x > 0 and P(0) = 0, and Z(x) = 0 if x = 0, and Z(x) = 1 if x > 0. It is clear that \mathfrak{A} is not finitely generated. Thus it is not partially algorithmic complete. Let L = (F, T) be the language of \mathfrak{A} and $x \in \mathbb{N}, y \in \omega$.

$$x = y \iff \mathfrak{A} \models \neg T(X/x) \& \cdots \neg T(F^{y-1}(X/x) \& T(F^y(X/x))).$$

Since it is super relative stable and hence relatively stable. Then it is algorithmic complete.

An example of partially algorithmic complete structure is
$$\mathfrak{A} = (\mathbb{N}, \omega; S, P; Z)$$
, where $S(x) = x + 1$, $P(x) = x - 1$ for $x > 0$ and not defined if $x = 0$, $Z(x) = 0$ if $x = 0$ and not defined if $x > 0$.

Thank you!