Effective coding and decoding in graphs and linear ordering

National Coding Theory Workshop "Professor Stefan Dodunekov" 2019

Alexandra A. Soskova ${ }^{1}$
Joint work with J. Knight and S. Vatev

${ }^{1}$ Supported by Bulgarian National Science Fund DN 02/16 / 19.12.2016 and NSF grant DMS 1600625/2016

Borel embedding

Definition (Friedman-Stanley, 1989)

We say that a class \mathcal{K} of structures is Borel embeddable in a class of structures \mathcal{K}^{\prime}, and we write $\mathcal{K} \leq_{B} \mathcal{K}^{\prime}$, if there is a Borel function $\Phi: \mathcal{K} \rightarrow \mathcal{K}^{\prime}$ such that for $\mathcal{A}, \mathcal{B} \in \mathcal{K}, \mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

Theorem

The following classes lie on top under \leq_{B}.
(1) undirected graphs [Lavrov,1963; Nies,1996; Marker,2002]
(2) fields of any fixed characteristic [Friedman-Stanley,1989; R. Miller-Poonen-Schoutens-Shlapentokh,2018]
(3) 2-step nilpotent groups [Mal'tsev,1949; Mekler,1981]
(9) linear orderings [Friedman-Stanley,1989]

Graphs $\leq_{B} \operatorname{ACF}(0)$

- There are familiar ways of coding one structure in another, and for coding members of one class of structures in those of another class.
- Sometimes the coding is effective.
- Assuming this, it is interesting when there is effective decoding, and it is also interesting when decoding is very difficult.

Turing computable embeddings

Definition (Calvert-Cummins-Knight-S. Miller, 2004)

We say that a class \mathcal{K} is Turing computably embedded in a class \mathcal{K}^{\prime}, and we write $\mathcal{K} \leq_{\text {tc }} \mathcal{K}^{\prime}$, if there is a Turing operator $\Phi: \mathcal{K} \rightarrow \mathcal{K}^{\prime}$ such that for all $\mathcal{A}, \mathcal{B} \in \mathcal{K}, \mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

A Turing computable embedding represents an effective coding procedure.
Theorem
The following classes lie on top under $\leq_{t c}$.
(1) undirected graphs
(2) fields of any fixed characteristic
(3) 2-step nilpotent groups
(9) linear orderings

Directed graphs $\leq_{t c}$ undirected graphs

Example (Marker)

For a directed graph G the undirected graph $\Theta(G)$ consists of the following:
(1) For each point a in $G, \Theta(G)$ has a point b_{a} connected to a triangle.
(2) For each ordered pair of points $\left(a ; a^{\prime}\right)$ from $G, \Theta(G)$ has a special point $p_{\left(a, a^{\prime}\right)}$ connected directly to b_{a} and with one stop to b_{a}^{\prime}.
(3) The point $p_{\left(a, a^{\prime}\right)}$ is connected to a square if there is an arrow from a to a^{\prime}, and to a pentagon otherwise.

For structures \mathcal{A} with more relations, the same idea works.

Medvedev reducibility

A problem is a subset of 2^{ω} or ω^{ω}.
Problem P is Medvedev reducible to problem Q if there is a Turing operator Φ that takes elements of Q to elements of P.

Definition

We say that \mathcal{A} is Medvedev reducible to \mathcal{B}, and we write $\mathcal{A} \leq_{s} \mathcal{B}$, if there is a Turing operator that takes copies of \mathcal{B} to copies of \mathcal{A}.

Supposing that \mathcal{A} is coded in \mathcal{B}, a Medvedev reduction of \mathcal{A} to \mathcal{B} represents an effective decoding procedure.

Effective interpretability

Definition (Montlbán,2017)

A structure $\mathcal{A}=\left(A, R_{i}\right)$ is effectively interpreted in a structure \mathcal{B} if there is a set $D \subseteq \mathcal{B}^{<\omega}$, computable Σ_{1}-definable over \emptyset, and there are relations \sim and R_{i}^{*} on D, computable Δ_{1}-definable over \emptyset, such that $\left(D, R_{i}^{*}\right) / \sim \cong \mathcal{A}$.

Definition (R. Miller, 2017)

A computable functor from \mathcal{B} to \mathcal{A} is a pair of Turing operators Φ, Ψ such that Φ takes copies of \mathcal{B} to copies of \mathcal{A} and ψ takes isomorphisms between copies of \mathcal{B} to isomorphisms between the corresponding copies of \mathcal{A}, so as to preserve identity and composition.

Equivalence

The main result gives the equivalence of the two definitions.
Theorem (Harrison-Trainor, Melnikov, R. Miller and Montalbán,2017)
For structures \mathcal{A} and \mathcal{B}, \mathcal{A} is effectively interpreted in \mathcal{B} iff there is a computable functor Φ, Ψ from \mathcal{B} to \mathcal{A}.

Corollary
If \mathcal{A} is effectively interpreted in \mathcal{B}, then $\mathcal{A} \leq_{s} \mathcal{B}$.

Example

The usual definition of the ring of integers \mathbb{Z} involves an interpretation in the semi-ring of natural numbers \mathbb{N}. Let D be the set of ordered pairs (m, n) of natural numbers. We think of the pair (m, n) as representing the integer $m-n$. We can easily give finitary existential formulas that define ternary relations of addition and multiplication on D, and the complements of these relations, and a congruence relation \sim on D, and the complement of this relation, such that $(D,+, \cdot) / \sim \cong \mathbb{Z}$.

Coding and Decoding

Proposition (Kalimullin,2010)

There exist \mathcal{A} and \mathcal{B} such that $\mathcal{A} \leq_{s} \mathcal{B}$ but \mathcal{A} is not effectively interpreted in \mathcal{B}.

Proposition

If \mathcal{A} is computable, then it is effectively interpreted in all structures \mathcal{B}.

Proof.

Let $D=\mathcal{B}^{<\omega}$. Let $\bar{b} \sim \bar{c}$ if \bar{b}, \bar{c} are tuples of the same length. For simplicity, suppose $\mathcal{A}=(\omega, R)$, where R is binary. If $\mathcal{A} \models R(m, n)$, then $R^{*}(\bar{b}, \bar{c})$ for all \bar{b} of length m and \bar{c} of length n. Thus, $\left(D, R^{*}\right) / \sim \cong \mathcal{A}$.

Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing computable embeddings.

Graphs also lie on top under effective interpretation.
Question: What about linear orderings under effective interpretation?
And under using $L_{\omega_{1} \omega}$-formulas?

Interpreting graphs in linear orderings

Proposition

There is a graph G such that for all linear orderings $L, G \not \leq_{s} L$.

Proof.

Let S be a non-computable set. Let G be a graph such that every copy computes S.
We may take G to be a "daisy" graph", consisting of a center node with a "petal" of length $2 n+3$ if $n \in S$ and $2 n+4$ if $n \notin S$.
Now, apply:

Proposition (Richter, 1981)

For a linear ordering L, the only sets computable in all copies of L are the computable sets.

Interpreting a graph in the jump of linear ordering

We are identifying a structure \mathcal{A} with its atomic diagram. We may consider an interpretation of \mathcal{A} in the jump \mathcal{B}^{\prime} of \mathcal{B}. Note that the relations definable in \mathcal{B}^{\prime} by computable Σ_{1} relations are the ones definable in \mathcal{B} by computable Σ_{2} relations.

Proposition

There is a graph G such that for all linear orderings $L, G \not \leq_{s} L^{\prime}$.

Proof.

Let S be a non- Δ_{2}^{0} set. Let G be a graph such that every copy computes S. Then apply:

Proposition (Knight,1986)

For a linear ordering L, the only sets computable in all copies of L^{\prime} (or in the jumps of all copies of L), are the Δ_{2}^{0} sets.

Interpreting a graph in the second jump of linear ordering

Proposition

For any set S, there is a linear ordering L such that for all copies of L, the second jump of L computes S.

Proof.

We may take L to be a "shuffle sum" of $n+1$ for $n \in S \oplus S^{c}$ and ω.

Proposition

For any graph G, there is a linear ordering L such that $G \leq_{s} L^{\prime \prime}$. In fact, G is interpreted in L using computable Σ_{3} formulas.

Proof.

Let S be the diagram of a specific copy G_{0} of G and let L be a linear order such that $S \leq_{s} L^{\prime \prime}$. We have computable functor that takes the second jump of any copy of L to G_{0}, and takes all isomorphisms between copies of L to the identity isomorphism on G_{0}.

Friedman-Stanley embedding of graphs in orderings

Friedman and Stanley determined a Turing computable embedding $L: G \rightarrow L(G)$, where $L(G)$ is a sub-ordering of $\mathbb{Q}^{<\omega}$ under the lexicographic ordering.
(1) Let $\left(A_{n}\right)_{n \in \omega}$ be an effective partition of \mathbb{Q} into disjoint dense sets.
(2) Let $\left(t_{n}\right)_{1 \leq n}$ be a list of the atomic types in the language of directed graphs.

Definition

For a graph G, the elements of $L(G)$ are the finite sequences $r_{0} q_{1} r_{1} \ldots r_{n-1} q_{n} r_{n} k \in \mathbb{Q}^{<\omega}$ such that for $i<n, r_{i} \in A_{0}, r_{n} \in A_{1}$, and for some $a_{1}, \ldots, a_{n} \in G$, satisfying $t_{m}, q_{i} \in A_{a_{i}}$ and $k<m$.

No uniform interpretation of G in $L(G)$

Theorem
There are not $L_{\omega_{1} \omega}$ formulas that, for all graphs G, interpret G in $L(G)$.
The idea of Proof: We may think of an ordering as a directed graph. It is enough to show the following.

Proposition

$1 \omega_{1}^{C K}$ is not interpreted in $L\left(\omega_{1}^{C K}\right)$ using computable infinitary formulas.
2 For all X, ω_{1}^{X} is not interpreted in $L\left(\omega_{1}^{X}\right)$ using X-computable infinitary formulas.

Proof of (1)

The Harrison ordering H has order type $\omega_{1}^{C K}(1+\eta)$. It has a computable copy.

Let I be the initial segment of H of order type $\omega_{1}^{C K}$. Thinking of H as a directed graph, we can form the linear ordering $L(H)$. We consider $L(I) \subseteq L(H)$.

Proposition (Main)

There do not exist computable infinitary formulas that define an interpretation of H in $L(H)$ and an interpretation of I in $L(I)$.

To prove (1), we suppose that there are computable infinitary formulas interpreting $\omega_{1}^{C K}$ in $L\left(\omega_{1}^{C K}\right)$. Using Barwise Compactness theorem, we get essentially H and I with these formulas interpreting H in $L(H)$ and I in $L(I)$.

Conjecture

We believe that Friedman and Stanley did the best that could be done.
Conjecture. For any Turing computable embedding Θ of graphs in orderings, there do not exist $L_{\omega_{1} \omega}$ formulas that, for all graphs G, define an interpretation of G in $\Theta(G)$.
M. Harrison-Trainor and A. Montlbán came to a similar result very recently by a totally different construction. Their result is that there exist structures which cannot be computably recovered from their tree of tuples.
They proved:
(1) There is a structure \mathcal{A} with no computable copy such that $T(\mathcal{A})$ has a computable copy.
(2) For each computable ordinal α there is a structure \mathcal{A} such that the Friedman and Stanley Borel interpretation $L(\mathcal{A})$ is computable but \mathcal{A} has no Δ_{α}^{0} copy.

Mal'tsev embedding of fields in groups,1960

If F is a field, we denote by $H(F)$ the multiplicative group of matrices of kind

$$
h(a, b, c)=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

where $a, b, c \in F$. Note that $h(0,0,0)=1$.
Groups of kind $H(F)$ are known as Heisenberg groups.
Theorem (Mal'tsev, 1960)
There is a copy of F defined in $H(F)$ with parameters.

Definition of F in $H(F)$

Let u, v be a non-commuting pair in $H(F)$.
Then $(D,+, \cdot(u, v))$ is a copy of F, where
(1) D is the group center $-x \in D \Longleftrightarrow[x, u]=1$ and $[x, v]=1$,
(2) $x+y=z$ if $x * y=z$, where $*$ is the group operation,
(3) $x \cdot(u, v) y=z$ if there exist x^{\prime}, y^{\prime} such that

$$
\left[x^{\prime}, u\right]=\left[y^{\prime}, v\right]=1,\left[x^{\prime}, v\right]=x,\left[u, y^{\prime}\right]=y, \text { and }\left[x^{\prime}, y^{\prime}\right]=z
$$

Here $[x, y]=x^{-1} y^{-1} x y$.
Definability: We have finitary existential formulas that define D and the relation + and its complement. For any non-commuting pair (u, v), we have finitary existential formulas, with parameters (u, v) that define the relation - and its complement.

Natural isomorphisms

For a non-commuting pair (u, v), where $u=h\left(u_{1}, u_{2}, u_{3}\right)$ and $v=h\left(v_{1}, v_{2}, v_{3}\right)$, let

$$
\Delta_{(u, v)}=\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

Theorem
The function f that takes $x \in F$ to $h\left(0,0, \Delta_{(u, v) \cdot F} x\right)$ is an isomorphism.

Morozov's isomorphism

Lemma (Morozov)

Let (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ be non-commuting pairs in $G=H(F)$. Let $F_{(u, v)}$ and $F_{\left(u^{\prime}, v^{\prime}\right)}$ be the copies of F defined in G with these pairs of parameters. There is an isomorphism g from $F_{(u, v)}$ onto $F_{\left(u^{\prime}, v^{\prime}\right)}$ defined in G by an existential formula with parameters $u, v, u^{\prime}, v^{\prime}$.

Note that $\Delta_{(u, v)}$ is the multiplicative identity in $F_{(u, v)}$.
Let $g(x)=y \Longleftrightarrow x=\Delta_{(u, v)} \cdot\left(u^{\prime}, v^{\prime}\right) y$.

Computable functor

Theorem

There is a computable functor Φ, Ψ from $H(F)$ to F.

- For $G \cong H(F), \Phi(G)$ is the copy of F obtained by taking the first non-commuting pair (u, v) in G and forming $(D ;+; \cdot(u, v))$.
- Take $\left(G_{1}, f, G_{2}\right)$, where $G_{i}=H(F)$, and $G_{1} \cong_{f} G_{2}$. Let $(u, v),\left(u^{\prime}, v^{\prime}\right)$ be the first non-commuting pairs in G_{1}, G_{2}, respectively.
- Let h be the isomorphism from $F_{(f(u), f(v))}$ onto $F_{\left(u^{\prime}, v^{\prime}\right)}$ defined in G_{2} with parameters $f(u), f(v), u^{\prime}, v^{\prime}$.
- Let f^{\prime} be the restriction of f to the center of G_{1}.
- Then $\Psi\left(G_{1}, f, G_{2}\right)=h \circ f^{\prime}$.

Finitely existential interpretation and generalizing

Corollary (Alvir,Calvert,Harizanov,Knight,Miller,Morozov,S,Weisshaar, 2019)
F is effectively interpreted in $H(F)$.
$(u, v, x) \sim\left(u^{\prime}, v^{\prime}, x^{\prime}\right)$ holds if Morozov's isomorphism from $F_{(u, v)}$ to $F_{\left(u^{\prime}, v^{\prime}\right)}$ takes x to x^{\prime}.

Proposition

Suppose \mathcal{A} has a copy $\mathcal{A}_{\bar{b}}$ defined in (\mathcal{B}, \bar{b}), using computable Σ_{1} formulas, where the orbit of \bar{b} is defined by a computable Σ_{1} formula $\varphi(\bar{x})$. Suppose also that there is a computable Σ_{1} formula $\psi\left(\bar{b}, \bar{b}^{\prime}, u, v\right)$ that, for any tuples $\bar{b}, \bar{b}^{\prime}$ satisfying $\varphi(\bar{x})$, defines a specific isomorphism $f_{\bar{b}, \bar{b}^{\prime}}$ from $\mathcal{A}_{\bar{b}}$ onto $\mathcal{A}_{\bar{b}^{\prime}}$. We suppose that for each \bar{b} satisfying $\varphi, f_{\bar{b}, \bar{b}}$ is the identity isomorphism, and for any $\bar{b}, \bar{b}^{\prime}$, and $\bar{b}^{\prime \prime}$ satisfying φ, $f_{\bar{b}^{\prime}, \bar{b}^{\prime \prime}} \circ f_{\bar{b}, \bar{b}^{\prime}}=f_{\bar{b}, \bar{b}^{\prime \prime}}$. Then there is an effective interpretation of \mathcal{A} in \mathcal{B}.
$S L_{2}(C)$

Let C be an algebraically closed field of characteristic 0 and of infinite transcendence degree.
We consider $S L_{2}(C)$ for the group of 2×2 matrices over C with determinant 1.

Proposition

F is interpreted in $S L_{2}(F)$ with parameters.
Let A be the set of matrices of form $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$.
Let M be the set of matrices of form $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$.

Let T consist of the pairs (X, Y) such that $X \in A$ and $Y \in M$ and Y has a square root Z such that $Z * P * Z^{-1}=X$.
For $(X, Y) \in T$, we define addition and multiplication relations as follows:
(1) $(X, Y) \oplus\left(X^{\prime}, Y^{\prime}\right)=(U, V)$ if $X * X^{\prime}=U$ and $(U, V) \in T$,
(2) $(X, Y) \otimes\left(X^{\prime}, Y^{\prime}\right)=(U, V)$ if $Y * Y^{\prime}=V$ and $(U, V) \in T$.

We define the set T with parameters.
Possibly, we can show model completeness of the theory of $S L_{2}(C)$. This, together with the result, according to Pillay, saying that C is interpreted in $S L_{2}(C)$ by elementary first order formulas with no parameters, we could show that it is interpreted with existential formulas.

固 W．Calvert，D．Cummins，J．F．Knight，and S．Miller
Comparing classes of finite structures
Algebra and Logic，vo．43（2004），pp．374－392．
易 H．Friedman and L．Stanley
A Borel reducibility theory for classes of countable structures JSL，vol．54（1989），pp．894－914．

圊 J．Knight，A．Soskova，and S．Vatev
Coding in graphs and linear orderings
https：／／arxiv．org／abs／1903．06948
國 M．Harrison－Trainor，A．Melnikov，R．Miller，and A．Montalbán Computable functors and effective interpretability， JSL，vol．82（2017），pp．77－97．

THANK YOU

