Effective coding and decoding in graphs and linear ordering

National Coding Theory Workshop "Professor Stefan Dodunekov" 2019

Alexandra A. Soskova ¹

Joint work with J. Knight and S. Vatev

 $^{^1} Supported$ by Bulgarian National Science Fund DN 02/16 /19.12.2016 and NSF grant DMS 1600625/2016

Borel embedding

Definition (Friedman-Stanley, 1989)

We say that a class \mathcal{K} of structures is *Borel embeddable* in a class of structures \mathcal{K}' , and we write $\mathcal{K} \leq_B \mathcal{K}'$, if there is a Borel function $\Phi: \mathcal{K} \to \mathcal{K}'$ such that for $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, $\mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

Theorem

The following classes lie on top under \leq_B .

- undirected graphs [Lavrov,1963; Nies,1996; Marker,2002]
- fields of any fixed characteristic [Friedman-Stanley,1989; R. Miller-Poonen-Schoutens-Shlapentokh,2018]
- 3 2-step nilpotent groups [Mal'tsev,1949; Mekler,1981]
- Iinear orderings [Friedman-Stanley, 1989]

Graphs $\leq_B ACF(0)$

- There are familiar ways of coding one structure in another, and for coding members of one class of structures in those of another class.
- Sometimes the coding is effective.
- Assuming this, it is interesting when there is effective decoding, and it
 is also interesting when decoding is very difficult.

Turing computable embeddings

Definition (Calvert-Cummins-Knight-S. Miller, 2004)

We say that a class \mathcal{K} is *Turing computably embedded* in a class \mathcal{K}' , and we write $\mathcal{K} \leq_{tc} \mathcal{K}'$, if there is a Turing operator $\Phi : \mathcal{K} \to \mathcal{K}'$ such that for all $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, $\mathcal{A} \cong \mathcal{B}$ iff $\Phi(\mathcal{A}) \cong \Phi(\mathcal{B})$.

A Turing computable embedding represents an effective coding procedure.

Theorem

The following classes lie on top under \leq_{tc} .

- undirected graphs
- g fields of any fixed characteristic
- **3** 2-step nilpotent groups
- Iinear orderings

Directed graphs \leq_{tc} undirected graphs

Example (Marker)

For a directed graph G the undirected graph $\Theta(G)$ consists of the following:

- For each point a in G, $\Theta(G)$ has a point b_a connected to a triangle.
- ② For each ordered pair of points (a; a') from G, $\Theta(G)$ has a special point $p_{(a,a')}$ connected directly to b_a and with one stop to b'_a .
- **3** The point $p_{(a,a')}$ is connected to a square if there is an arrow from a to a', and to a pentagon otherwise.

For structures ${\cal A}$ with more relations, the same idea works.

Medvedev reducibility

A problem is a subset of 2^{ω} or ω^{ω} .

Problem P is Medvedev reducible to problem Q if there is a Turing operator Φ that takes elements of Q to elements of P.

Definition

We say that \mathcal{A} is *Medvedev reducible* to \mathcal{B} , and we write $\mathcal{A} \leq_s \mathcal{B}$, if there is a Turing operator that takes copies of \mathcal{B} to copies of \mathcal{A} .

Supposing that $\mathcal A$ is coded in $\mathcal B$, a Medvedev reduction of $\mathcal A$ to $\mathcal B$ represents an effective decoding procedure.

Effective interpretability

Definition (Montlbán, 2017)

A structure $\mathcal{A}=(A,R_i)$ is effectively interpreted in a structure \mathcal{B} if there is a set $D\subseteq \mathcal{B}^{<\omega}$, computable Σ_1 -definable over \emptyset , and there are relations \sim and R_i^* on D, computable Δ_1 -definable over \emptyset , such that $(D,R_i^*)/_{\sim}\cong \mathcal{A}$.

Definition (R. Miller, 2017)

A computable functor from $\mathcal B$ to $\mathcal A$ is a pair of Turing operators Φ, Ψ such that Φ takes copies of $\mathcal B$ to copies of $\mathcal A$ and Ψ takes isomorphisms between copies of $\mathcal B$ to isomorphisms between the corresponding copies of $\mathcal A$, so as to preserve identity and composition.

Equivalence

The main result gives the equivalence of the two definitions.

Theorem (Harrison-Trainor, Melnikov, R. Miller and Montalbán,2017)

For structures $\mathcal A$ and $\mathcal B$, $\mathcal A$ is effectively interpreted in $\mathcal B$ iff there is a computable functor Φ,Ψ from $\mathcal B$ to $\mathcal A$.

Corollary

If \mathcal{A} is effectively interpreted in \mathcal{B} , then $\mathcal{A} \leq_s \mathcal{B}$.

Example

The usual definition of the ring of integers $\mathbb Z$ involves an interpretation in the semi-ring of natural numbers $\mathbb N$. Let D be the set of ordered pairs (m,n) of natural numbers. We think of the pair (m,n) as representing the integer m-n. We can easily give finitary existential formulas that define ternary relations of addition and multiplication on D, and the complements of these relations, and a congruence relation \sim on D, and the complement of this relation, such that $(D,+,\cdot)/_{\sim}\cong \mathbb Z$.

Coding and Decoding

Proposition (Kalimullin, 2010)

There exist \mathcal{A} and \mathcal{B} such that $\mathcal{A} \leq_s \mathcal{B}$ but \mathcal{A} is not effectively interpreted in \mathcal{B} .

Proposition

If $\mathcal A$ is computable, then it is effectively interpreted in all structures $\mathcal B$.

Proof.

Let $D=\mathcal{B}^{<\omega}$. Let $\bar{b}\sim \bar{c}$ if \bar{b},\bar{c} are tuples of the same length. For simplicity, suppose $\mathcal{A}=(\omega,R)$, where R is binary. If $\mathcal{A}\models R(m,n)$, then $R^*(\bar{b},\bar{c})$ for all \bar{b} of length m and \bar{c} of length n. Thus, $(D,R^*)/_{\sim}\cong\mathcal{A}$.

Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing computable embeddings.

Graphs also lie on top under effective interpretation.

Question: What about linear orderings under effective interpretation?

And under using $L_{\omega_1\omega}$ -formulas?

Interpreting graphs in linear orderings

Proposition

There is a graph G such that for all linear orderings L, $G \not\leq_s L$.

Proof.

Let S be a non-computable set. Let G be a graph such that every copy computes S.

We may take G to be a "daisy" graph", consisting of a center node with a "petal" of length 2n + 3 if $n \in S$ and 2n + 4 if $n \notin S$.

Now, apply:

Proposition (Richter, 1981)

For a linear ordering L, the only sets computable in all copies of L are the computable sets.

Interpreting a graph in the jump of linear ordering

We are identifying a structure $\mathcal A$ with its atomic diagram. We may consider an interpretation of $\mathcal A$ in the jump $\mathcal B'$ of $\mathcal B$. Note that the relations definable in $\mathcal B'$ by computable Σ_1 relations are the ones definable in $\mathcal B$ by computable Σ_2 relations.

Proposition

There is a graph G such that for all linear orderings L, $G \not\leq_s L'$.

Proof.

Let S be a non- Δ_2^0 set. Let G be a graph such that every copy computes S. Then apply:

Proposition (Knight, 1986)

For a linear ordering L, the only sets computable in all copies of L' (or in the jumps of all copies of L), are the Δ_2^0 sets.

Interpreting a graph in the second jump of linear ordering

Proposition

For any set S, there is a linear ordering L such that for all copies of L, the second jump of L computes S.

Proof.

We may take L to be a "shuffle sum" of n+1 for $n\in S\oplus S^c$ and $\omega.$

Proposition

For any graph G, there is a linear ordering L such that $G \leq_s L''$. In fact, G is interpreted in L using computable Σ_3 formulas.

Proof.

Let S be the diagram of a specific copy G_0 of G and let L be a linear order such that $S \leq_s L''$. We have computable functor that takes the second jump of any copy of L to G_0 , and takes all isomorphisms between copies of L to the identity isomorphism on G_0 .

Friedman-Stanley embedding of graphs in orderings

Friedman and Stanley determined a Turing computable embedding $L: G \to L(G)$, where L(G) is a sub-ordering of $\mathbb{Q}^{<\omega}$ under the lexicographic ordering.

- **1** Let $(A_n)_{n\in\omega}$ be an effective partition of $\mathbb Q$ into disjoint dense sets.
- 2 Let $(t_n)_{1 \le n}$ be a list of the atomic types in the language of directed graphs.

Definition

For a graph G, the elements of L(G) are the finite sequences $r_0q_1r_1\ldots r_{n-1}q_nr_nk\in\mathbb{Q}^{<\omega}$ such that for i< n, $r_i\in A_0$, $r_n\in A_1$, and for some $a_1,\ldots,a_n\in G$, satisfying t_m , $q_i\in A_{a_i}$ and k< m.

No uniform interpretation of G in L(G)

Theorem

There are not $L_{\omega_1\omega}$ formulas that, for all graphs G, interpret G in L(G).

The idea of Proof: We may think of an ordering as a directed graph. It is enough to show the following.

Proposition

- 1 ω_1^{CK} is not interpreted in $L(\omega_1^{CK})$ using computable infinitary formulas.
- 2 For all X, ω_1^X is not interpreted in $L(\omega_1^X)$ using X-computable infinitary formulas.

Proof of (1)

The Harrison ordering H has order type $\omega_1^{CK}(1+\eta)$. It has a computable copy.

Let I be the initial segment of H of order type ω_1^{CK} . Thinking of H as a directed graph, we can form the linear ordering L(H). We consider $L(I) \subseteq L(H)$.

Proposition (Main)

There do not exist computable infinitary formulas that define an interpretation of H in L(H) and an interpretation of I in L(I).

To prove (1), we suppose that there are computable infinitary formulas interpreting ω_1^{CK} in $L(\omega_1^{CK})$. Using Barwise Compactness theorem, we get essentially H and I with these formulas interpreting H in L(H) and I in L(I).

Conjecture

We believe that Friedman and Stanley did the best that could be done.

Conjecture. For any Turing computable embedding Θ of graphs in orderings, there do not exist $L_{\omega_1\omega}$ formulas that, for all graphs G, define an interpretation of G in $\Theta(G)$.

M. Harrison-Trainor and A. Montlbán came to a similar result very recently by a totally different construction. Their result is that there exist structures which cannot be computably recovered from their tree of tuples. They proved:

- There is a structure A with no computable copy such that T(A) has a computable copy.
- 2 For each computable ordinal α there is a structure \mathcal{A} such that the Friedman and Stanley Borel interpretation L(A) is computable but Ahas no Δ_{α}^{0} copy.

Mal'tsev embedding of fields in groups,1960

If F is a field, we denote by H(F) the multiplicative group of matrices of kind

$$h(a,b,c) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

where $a, b, c \in F$. Note that h(0, 0, 0) = 1. Groups of kind H(F) are known as Heisenberg groups.

Theorem (Mal'tsev,1960)

There is a copy of F defined in H(F) with parameters.

Definition of F in H(F)

Let u, v be a non-commuting pair in H(F).

Then $(D, +, \cdot_{(u,v)})$ is a copy of F, where

- **1** D is the group center $-x \in D \iff [x, u] = 1$ and [x, v] = 1,
- 2 x + y = z if x * y = z, where * is the group operation,
- ① $x \cdot_{(u,v)} y = z$ if there exist x', y' such that [x', u] = [y', v] = 1, [x', v] = x, [u, y'] = y, and [x', y'] = z.

Here $[x, y] = x^{-1}y^{-1}xy$.

Definability: We have finitary existential formulas that define D and the relation + and its complement. For any non-commuting pair (u, v), we have finitary existential formulas, with parameters (u, v) that define the relation \cdot and its complement.

(ロト 4륜 > 4분 > 4분 > - 분 - 9Q@

Natural isomorphisms

For a non-commuting pair (u, v), where $u = h(u_1, u_2, u_3)$ and $v = h(v_1, v_2, v_3)$, let

$$\Delta_{(u,v)} = \left| \begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right|$$

Theorem

The function f that takes $x \in F$ to $h(0, 0, \Delta_{(u,v)} \cdot_F x)$ is an isomorphism.

Morozov's isomorphism

Lemma (Morozov)

Let (u,v) and (u',v') be non-commuting pairs in G=H(F). Let $F_{(u,v)}$ and $F_{(u',v')}$ be the copies of F defined in G with these pairs of parameters. There is an isomorphism g from $F_{(u,v)}$ onto $F_{(u',v')}$ defined in G by an existential formula with parameters u,v,u',v'.

Note that $\Delta_{(u,v)}$ is the multiplicative identity in $F_{(u,v)}$. Let $g(x) = y \iff x = \Delta_{(u,v)} \cdot_{(u',v')} y$.

Computable functor

Theorem

There is a computable functor Φ , Ψ from H(F) to F.

- For $G \cong H(F)$, $\Phi(G)$ is the copy of F obtained by taking the first non-commuting pair (u, v) in G and forming $(D; +; \cdot_{(u,v)})$.
- Take (G_1, f, G_2) , where $G_i = H(F)$, and $G_1 \cong_f G_2$. Let (u, v), (u', v') be the first non-commuting pairs in G_1, G_2 , respectively.
 - Let h be the isomorphism from $F_{(f(u),f(v))}$ onto $F_{(u',v')}$ defined in G_2 with parameters f(u), f(v), u', v'.
 - ▶ Let f' be the restriction of f to the center of G_1 .
 - ▶ Then $\Psi(G_1, f, G_2) = h \circ f'$.

Finitely existential interpretation and generalizing

Corollary (Alvir, Calvert, Harizanov, Knight, Miller, Morozov, S, Weisshaar, 2019)

F is effectively interpreted in H(F).

 $(u, v, x) \sim (u', v', x')$ holds if Morozov's isomorphism from $F_{(u,v)}$ to $F_{(u',v')}$ takes x to x'.

Proposition

Suppose A has a copy $A_{\bar{b}}$ defined in (B, \bar{b}) , using computable Σ_1 formulas, where the orbit of \bar{b} is defined by a computable Σ_1 formula $\varphi(\bar{x})$. Suppose also that there is a computable Σ_1 formula $\psi(\bar{b}, \bar{b}', u, v)$ that, for any tuples \bar{b} , \bar{b}' satisfying $\varphi(\bar{x})$, defines a specific isomorphism $f_{\bar{b}\ \bar{b}'}$ from $\mathcal{A}_{\bar{b}}$ onto $\mathcal{A}_{\bar{b}'}$. We suppose that for each \bar{b} satisfying φ , $f_{\bar{b}\ \bar{b}}$ is the identity isomorphism, and for any \bar{b} , \bar{b}' , and \bar{b}'' satisfying φ , $f_{\bar{b}',\bar{b}''} \circ f_{\bar{b},\bar{b}'} = f_{\bar{b},\bar{b}''}$. Then there is an effective interpretation of \mathcal{A} in \mathcal{B} .

$SL_2(C)$

Let *C* be an algebraically closed field of characteristic 0 and of infinite transcendence degree.

We consider $SL_2(C)$ for the group of 2×2 matrices over C with determinant 1.

Proposition

F is interpreted in $SL_2(F)$ with parameters.

Let A be the set of matrices of form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$.

Let M be the set of matrices of form $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$.

$SL_2(C)$

Let T consist of the pairs (X, Y) such that $X \in A$ and $Y \in M$ and Y has a square root Z such that $Z * P * Z^{-1} = X$.

For $(X, Y) \in T$, we define addition and multiplication relations as follows:

- **1** $(X, Y) \oplus (X', Y') = (U, V)$ if X * X' = U and $(U, V) \in T$,
- **2** $(X, Y) \otimes (X', Y') = (U, V)$ if Y * Y' = V and $(U, V) \in T$.

We define the set T with parameters.

Possibly, we can show model completeness of the theory of $SL_2(C)$.

This, together with the result, according to Pillay, saying that C is interpreted in $SL_2(C)$ by elementary first order formulas with no parameters, we could show that it is interpreted with existential formulas.

□ > 4個 > 4 = > 4 = > = 9 < ○</p>

- W. Calvert, D. Cummins, J. F. Knight, and S. Miller Comparing classes of finite structures Algebra and Logic, vo. 43(2004), pp. 374-392.
- H. Friedman and L. Stanley
 A Borel reducibility theory for classes of countable structures

 JSL, vol. 54(1989), pp. 894-914.
- J. Knight, A. Soskova, and S. Vatev Coding in graphs and linear orderings https://arxiv.org/abs/1903.06948
- M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán Computable functors and effective interpretability, *JSL*, vol. 82(2017), pp. 77-97.

THANK YOU