A note on ω -jump inversion of degree spectra of structures

lvan N. Soskov¹

Faculty of Mathematics and Informatics Sofia University

> CiE 2013 04.07.2013 Milan

¹This research was partially supported by Sofia University Science Fund project 44 and a NSF grant DMS-1101123

lvan N. Soskov A note on ω -jump inversion of degree spectra of structures

In this note I. Soskov provides a negative solution to the ω -jump inversion problem for degree spectra of structures.

Definition. Let \mathfrak{A} be a countable structure. The *spectrum* of \mathfrak{A} is the set of Turing degrees

 $Sp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ computes the diagram of an isomorphic copy of } \mathfrak{A} \}.$

For $\alpha < \omega_1^{CK}$ the α -th jump spectrum of \mathfrak{A} is the set $Sp_{\alpha}(\mathfrak{A}) = \{\mathbf{a}^{(\alpha)} \mid \mathbf{a} \in Sp(\mathfrak{A})\}.$

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $Sp(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $Sp_{\alpha}(\mathfrak{M}) = Sp(\mathfrak{A})$?

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $Sp(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $Sp_{\alpha}(\mathfrak{M}) = Sp(\mathfrak{A})$?

2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136, 219-246.

- **2009** *A. Soskova and I. Soskov*, *A jump inversion theorem for the degree spectra, Journal of Logic and Computation,* **19**, 199-215.
- **2009** *A. Montalban*, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.
- 2009 A. I. Stukachev, A Jump Inversion Theorem for the Semilattice of Sigma-Degrees, Siberian Advances in Mathematics, 20, 68–74.

4 B 6 4 B

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136, 219-246.
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, 19, 199-215.
- **2009** *A. Montalban*, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.
- 2009 A. I. Stukachev, A Jump Inversion Theorem for the Semilattice of Sigma-Degrees, Siberian Advances in Mathematics, 20, 68–74.

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136, 219-246.
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, 19, 199-215.
- **2009** *A. Montalban*, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.

2009 A. I. Stukachev, A Jump Inversion Theorem for the Semilattice of Sigma-Degrees, Siberian Advances in Mathematics, 20, 68–74.

A B A A B A

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136, 219-246.
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, 19, 199-215.
- **2009** *A. Montalban*, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.
- 2009 A. I. Stukachev, A Jump Inversion Theorem for the Semilattice of Sigma-Degrees, Siberian Advances in Mathematics, 20, 68–74.

4 3 6 4 3 6

Theorem. [Soskov] There is a structure \mathfrak{A} with $Sp(\mathfrak{A}) \subseteq \{\mathbf{b} \mid \mathbf{0}^{(\omega)} \leq \mathbf{b}\}$ for which there is no structure \mathfrak{M} with $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A}).$

Definition. Given two sets of natural numbers X and Y, say that X is enumeration reducible to Y $(X \leq_e Y)$ if for some e, $X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle x, v \rangle \in W_e \land D_v \subseteq Y)).$$

Definition. Let $X \equiv_e Y$ if $X \leq_e Y$ and $Y \leq_e X$. The enumeration degree of X is $d_e(X) = \{Y \subseteq \mathbb{N} \mid X \equiv_e Y\}$. By D_e we shall denote the set of all enumeration degrees. **Definition.** Given a set $X \subseteq \mathbb{N}$, denote by $X^+ = X \oplus (\mathbb{N} \setminus X)$. A set X is called *total* iff $X \equiv_e X^+$.

Theorem. For any sets X and Y: (i) X is c.e. in Y iff $X \leq_e Y^+$. (ii) $X \leq_T Y$ iff $X^+ \leq_e Y^+$.

Theorem.[Selman] $X \leq_e Y$ iff for all total Z

 $(Y \leq_e Z \Rightarrow X \leq_e Z).$

Definition. For any $X \subseteq \mathbb{N}$ set $J_e(X) = \{ \langle e, x \rangle \mid x \in W_e(X) \}$. The enumeration jump X' of X is the set $J_e(X)^+$.

- $J_T(X)^+ \equiv_e (X^+)'$.
- $X' \leq_T (X^+)' \leq_T J_T(X).$
- for total X, $X' \equiv_T J_T(X)$.
- The enumeration jump of an e-degree is always a total degree and agrees with the Turing jump under the standard embedding ι : D_T → D_e by ι(d_T(X)) = d_e(X⁺).

Definition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ and $\mathcal{Y} = \{Y_n\}_{n < \omega}$ be sequences of sets of natural numbers. Then \mathcal{X} is enumeration reducible to \mathcal{Y} $(\mathcal{X} \leq_e \mathcal{Y})$ if for all $n, X_n \leq_e Y_n$ uniformly in n. In other words, if there exists a computable function μ such that for all n, $X_n = W_{\mu(n)}(Y_n)$.

Definition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ be a sequence of sets of natural numbers. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

(i)
$$\mathcal{P}_0(\mathcal{X}) = X_0;$$

(ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}.$

By $\mathcal{P}_{\omega}(\mathcal{X})$ we shall denote the set $\bigoplus_{n} \mathcal{P}_{n}(\mathcal{X})$. Clearly $\mathcal{X} \leq_{e} \mathcal{P}(\mathcal{X})$ and hence $\bigoplus_{n} X_{n} \leq_{e} \mathcal{P}_{\omega}(\mathcal{X})$.

Proposition. For all sequences \mathcal{X} of sets of natural numbers the set $\mathcal{P}_{\omega}(\mathcal{X})$ is total.

Proposition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ be a sequence of sets of natural numbers, $M \subseteq \mathbb{N}$ and $\mathcal{X} \leq_e \{M^{(n)}\}_{n < \omega}$. Then $\mathcal{P}(\mathcal{X}) \leq_e \{M^{(n)}\}_{n < \omega}$.

Definition. Let \mathfrak{M} be a countable structure and $\alpha < \omega_1^{CK}$. The α -th co-spectrum of \mathfrak{M} is the set

 $CoSp_{\alpha}(\mathfrak{M}) = \{ \mathbf{a} \mid \mathbf{a} \in D_{e} \land (\forall \mathbf{b} \in Sp_{\alpha}(\mathfrak{M})) (\mathbf{a} \leq_{e} \mathbf{b}) \}.$

Definition. Let $\alpha < \omega_1^{CK}$. A subset R of \mathbb{N} is Σ_{α}^c definable in \mathfrak{M} if there exist a computable function γ taking as values codes of computable Σ_{α} infinitary formulas $F_{\gamma(x)}$ and finitely many parameters t_1, \ldots, t_m of $|\mathfrak{M}|$ such that

$$x \in R \iff \mathfrak{M} \models F_{\gamma(x)}(t_1,\ldots,t_m).$$

Theorem.[Ash,Knight,Mannase,Slaman] Let $\alpha < \omega_1^{CK}$. Then

- If α < ω then a ∈ CoSp_α(M) if and only if all elements of a are Σ^c_{α+1} definable in M.
- If ω ≤ α then a ∈ CoSp_α(M) if and only if all elements of a are Σ^c_α definable in M.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem. Let \mathfrak{M} be a countable structure and $\mathbf{a} \in CoSp_{\omega}(\mathfrak{M})$. Then there exists a total enumeration degree \mathbf{b} such that $\mathbf{a} \leq_{e} \mathbf{b}$ and $\mathbf{b} \in CoSp_{\omega}(\mathfrak{M})$,

Proof.

Fix an element R of $\mathbf{a} \in CoSp_{\omega}(\mathfrak{M})$.

R is Σ_{ω}^{c} definable in \mathfrak{M} and hence there exists a computable function γ and parameters t_{1}, \ldots, t_{m} of $|\mathfrak{M}|$ such that

$$x \in R \iff \mathfrak{M} \models F_{\gamma(x)}(t_1,\ldots,t_m).$$

 $F_{\gamma(x)}$ is a c.e. disjunction of computable Σ_{n+1} infinitary formulae. Hence there exists a computable function $\delta(n,x)$ such that for all n and x, $\delta(n,x)$ yields a code of some computable Σ_{n+1} infinitary formula $F_{\delta(n,x)}$ and

$$x \in R \iff (\exists n)(\mathfrak{M} \models F_{\delta(n,x)}(t_1,\ldots,t_m)).$$

Proof.

For each $n \in \mathbb{N}$ denote by

$$R_n = \{x \mid x \in \mathbb{N} \land \mathfrak{M} \models F_{\delta(n,x)}(t_1,\ldots,t_m)\}.$$

Let B be the diagram of some isomorphic copy \mathfrak{B} of \mathfrak{M} on the natural numbers and let κ be an isomorphism from \mathfrak{M} to \mathfrak{B} and $x_1 = \kappa(t_1), \ldots, x_m = \kappa(t_m)$. Then

$$x \in R_n \iff \mathfrak{B} \models F_{\delta(n,x)}(x_1,\ldots,x_m).$$

Hence

$$\mathcal{P}(\{R_n\}_{n<\omega}) \leq_e \{B^{(n)}\}_{n<\omega}$$
 uniformly in *n*.

Thus

$$\mathcal{P}_{\omega}(\{R_n\}_{n<\omega})\leq_e B^{(\omega)}.$$

Proof.

- Set $\mathbf{b} = d_e(\mathcal{P}_{\omega}(\{R_n\}_{n < \omega})).$
 - $\mathbf{b} \in CoSp_{\omega}(\mathfrak{M});$
 - **b** is a total degree;
 - $\mathbf{a} \leq_e \mathbf{b}$:

A negative solution for the ω -jump inversion problem

- Let Y be a set which is quasi-minimal above $\emptyset^{(\omega)}$, i.e. $\emptyset^{(\omega)} <_e Y$ and if X is a total set and $X \leq_e Y$ then $X \leq_e \emptyset^{(\omega)}$, e.g. $Y = \emptyset^{(\omega)} \oplus G$, where G is one-generic relatively $\emptyset^{(\omega)}$.
- $d_e(Y)$ does not contain any total set.
- Let $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$. Then $Sp(\mathfrak{A}) \subseteq \{ \mathbf{b} \mid \mathbf{0}^{(\omega)} \leq_T \mathbf{b} \}.$
- Assume that there exists a countable structure M such that Sp_ω(M) = Sp(A). Then CoSp_ω(M) = CoSp(A).
- Hence there exists a total degree **b** in $CoSp(\mathfrak{A})$ such that $d_e(Y) \leq \mathbf{b} \leq d_e(Y)$.

A contradiction.

Theorem. If Y is quasi-minimal above $\emptyset^{(\omega)}$ and \mathfrak{A} is a structure with $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$ then there is no structure \mathfrak{M} with $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A})$.

A negative solution for the ω -jump inversion problem

- Let Y be a set which is quasi-minimal above Ø^(ω), i.e.
 Ø^(ω) <_e Y and if X is a total set and X ≤_e Y then X ≤_e Ø^(ω), e.g. Y = Ø^(ω) ⊕ G, where G is one-generic relatively Ø^(ω).
- $d_e(Y)$ does not contain any total set.
- Let $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$. Then $Sp(\mathfrak{A}) \subseteq \{ \mathbf{b} \mid \mathbf{0}^{(\omega)} \leq_T \mathbf{b} \}.$
- Assume that there exists a countable structure \mathfrak{M} such that $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A})$. Then $CoSp_{\omega}(\mathfrak{M}) = CoSp(\mathfrak{A})$.
- Hence there exists a total degree b in CoSp(𝔅) such that d_e(Y) ≤ b ≤ d_e(Y). A contradiction.

Theorem. If Y is quasi-minimal above $\emptyset^{(\omega)}$ and \mathfrak{A} is a structure with $CoSp(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \leq_e d_e(Y)\}$ then there is no structure \mathfrak{M} with $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A})$.

Consider a non-trivial group $G \subseteq Q$. For every $a \neq 0$ element of G and every prime number p set

 $h_p(a) = \begin{cases} k & \text{if } k \text{ is the greatest number such that } p^k | a \text{ in } G, \\ \infty & \text{if } p^k | a \text{ in } G \text{ for all } k. \end{cases}$

Let p_0, p_1, \ldots be the standard enumeration of the prime numbers and set

$$S_{a}(G) = \{ \langle i, j \rangle : j \leq h_{p_{i}}(a) \}.$$

If a and b are non-zero elements of G, then $S_a(G) \equiv_e S_b(G)$. Denote by $\mathbf{d}_G = d_e(S_a(G))$, for some non-zero element a of G.

A structure \mathfrak{A} with $CoSp(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \leq_e d_e(Y)\}$

Proposition.[Coles, Downey and Slaman] $Sp(G) = \{ \mathbf{b} \mid \mathbf{b} \text{ is total } \& \mathbf{d}_G \leq_e \mathbf{b} \}.$

Corollary.
$$CoSp(G) = \{a \mid a \leq_e d_G\}$$
.

Proof.

Clearly $\mathbf{a} \in CoSp(G)$ if and only if for all total \mathbf{b} , $\mathbf{d}_G \leq_e \mathbf{b} \Rightarrow \mathbf{a} \leq_e \mathbf{b}$. According Selman's Theorem the last is equivalent to $\mathbf{a} \leq_e \mathbf{d}_G$. \Box

A structure \mathfrak{A} with $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$

Consider the set

$$S = \{ \langle i, j \rangle : (j = 0) \lor (j = 1 \& i \in Y) \}.$$

Clearly $S \equiv_e Y$. Let G be the least subgroup of Q containing the set

$$\{1/p_i^j:\langle i,j\rangle\in S\}.$$

Then $1 \in G$ and $S_1(G) = S$. So, $d_G = d_e(Y)$.

Theorem. $CoSp(G) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}.$

 Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable structures.
 Ann. Pure Appl. Logic 42 (1989) 195–205

 Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.:
 Enumerations in computable structure theory.
 Annals of Pure and Applied Logic 136 (2005) 219–246

🔋 Soskov I. N.,

Degree spectra and co-spectra of structures. Ann. Univ. Sofia **96** (2003) 45–68

📄 Soskova, A., Soskov, I.:

A jump inversion theorem for the degree spectra. Journal of Logic and Computation **19** (2009) 199–215 Thank you!

글 🕨 🛛 글