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The problem

In this note I. Soskov provides a negative solution to the w-jump
inversion problem for degree spectra of structures.
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Degree spectra

Definition. Let 2 be a countable structure. The spectrum of 2 is
the set of Turing degrees

Sp(2) = {a | a computes the diagram of an isomorphic copy of 2}.

For a < wICK the a-th jump spectrum of 2 is the set
Spa () = {al*) | a € Sp(2)}.

lvan N. Soskov A note on w-jump inversion of degree spectra of structures



The jump inversion theorem

Let a < wEK and A be a countable structure such that all elements
of Sp(2) are above 0(%).
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The jump inversion theorem

Let a < wEK and A be a countable structure such that all elements
of Sp(2) are above 0(%).

Does there exist a structure 9 such that Sp, (M) = Sp(A) 7 |
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The jump inversion theorem - the positive solutions

2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R.
Miller, R. Solomon, Enumerations in computable structure
theory, Annals of Pure and Applied Logic, 136, 219-246.
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The jump inversion theorem - a negative solution

Theorem.[Soskov] There is a structure 2 with
Sp(2) C {b | 0) < b} for which there is no structure MM with
5p., (M) = Sp(2).
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Enumeration reducibility

Definition. Given two sets of natural numbers X and Y, say that
X is enumeration reducible to Y (X <. Y) if for some e,
X = We(Y), ie.

(Vx)(x € X <= (Qv)({x,v) € We AD, CY)).

Definition. Let X =, Y if X <, Y and Y <. X.
The enumeration degree of X is de(X) ={Y C N | X =, Y}.
By De we shall denote the set of all enumeration degrees.
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The enumeration reducibility

Definition. Given a set X C N, denote by XT = X & (N\ X).
A set X is called total iff X = XT.

Theorem. For any sets X and Y:
(i) Xisce inY iff X < YT.
(i) X<t Y ifFXT <. YT,

Theorem.[Selman] X <. Y iff for all total Z

(Y <e Z= X <. 2).
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The enumeration jump

Definition. For any X C N set Jo(X) = {(e, x) | x € We(X)}.
The enumeration jump X' of X is the set Jo(X)™.

o Jr(X)T = (XT).
o X’ ST (X+)/ ST JT(X)
o for total X, X' =1 J7(X).

@ The enumeration jump of an e-degree is always a total degree
and agrees with the Turing jump under the standard
embedding v : Dt — De by o(d7(X)) = de(XT).
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Enumeration reducibility of sequences of sets

Definition. Let X = {X,}n<w and YV = {Y,}n<w be sequences of
sets of natural numbers. Then X is enumeration reducible to )
(X < ) if for all n, X, <¢ Y, uniformly in n. In other words, if
there exists a computable function p such that for all n,

Xo = Wy (Ya)

Definition. Let X = {X,},<. be a sequence of sets of natural
numbers. The jump sequence P(X) = {Pp(X)}n<w of X is
defined by induction:

(i) Po(X) = Xo;
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Enumeration reducibility of sequences of sets

By P.,(X) we shall denote the set @, Pn(X).
Clearly X <. P(X) and hence @, Xy <e Pu(X).

Proposition. For all sequences X of sets of natural numbers the
set P (X) is total.

Proposition. Let X = {X,} <. be a sequence of sets of natural
numbers, M C N and X <, {M(")}KW. Then
P(X) <e {MM} .
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Co-spectra of structures

Definition. Let 90 be a countable structure and a < wK. The
a-th co-spectrum of 9 is the set

Co5pa(M) = {a|a € De A (Vb € Spa(9M))(a <. b)}.

lvan N. Soskov A note on w-jump inversion of degree spectra of structures



2 ¢ definable sets on 91

Definition. Let o < wK. A subset R of N is X¢ definable in 901 i
there exist a computable function ~ taking as values codes of
computable X, infinitary formulas F,(, and finitely many
parameters ti, ..., tm of || such that

XER <= M ’: F'y(x)(tlw--;tm)-

Theorem.[Ash,Knight, Mannase,Slaman] Let o < w1CK. Then

Q /fa <w then a € CoSp,(M) if and only if all elements of a
are Y., | definable in .

Q /fw < «a then a € CoSp,(IM) if and only if all elements of a
are X5, definable in 9.
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A property of the w co-spectra

Theorem. Let M be a countable structure and a € CoSp,,(IMN).

Then there exists a total enumeration degree b such thata <. b
and b € CoSp,,(9M),
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A property of the w co-spectra

Proof.

Fix an element R of a € CoSp,,(IMN).
R is XS definable in 9t and hence there exists a computable
function v and parameters ti, ..., t, of |9 such that

XxXE€R <= ME F(tr,. ., tm)

Fy(x) is a c.e. disjunction of computable 1 infinitary formulae.
Hence there exists a computable function 6(n, x) such that for all n
and x, 0(n, x) yields a code of some computable ¥, infinitary
formula Fj(, ») and

x€R = (Eln)(im ): Fg(n,X)(tl, 500 tm)).

O
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A property of the w co-spectra

For each n € N denote by

R, = {X ‘ x e NAIM ’: F5(n7x)(tl,... 5 tm)}.

Let B be the diagram of some isomorphic copy 8 of 9 on the
natural numbers and let x be an isomorphism from 91 to 8 and
x1 = K(t1),...,Xm = K(tm). Then

xXER, < ‘B ): Fg(n’x)(Xl,...,Xm).

Hence
P{Rn}ncw) <e {B(”)}Kw uniformly in n.

Thus
Pu({Rn}n<w) <e BYW.
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A property of the w co-spectra

Set b = de(Pu({Rn}n<w))-

e b € CoSp,(M);
@ b is a total degree;
@ a<.b:
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A negative solution for the w-jump inversion problem

o Let Y be a set which is quasi-minimal above (), j.e.
@) <. Y and if X is a total set and X <. Y then X <. ),
eg Y= 0@ @ G, where G is one-generic relatively P),

e d.(Y) does not contain any total set.
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A negative solution for the w-jump inversion problem

@ Let Y be a set which is quasi-minimal above P je.
@) <. Y and if X is a total set and X <. Y then X <. ),
eg. Y =0® @ G, where G is one-generic relatively ((“").

e d.(Y) does not contain any total set.

o Let CoSp(A) ={a|a <. d.(Y)}. Then
Sp(2) C {b] 0) <7 b}.

@ Assume that there exists a countable structure 9 such that
Spw(9) = Sp(A). Then CoSp,,(9M) = CoSp(A).

@ Hence there exists a total degree b in CoSp(2l) such that
de(Y) < b < de(Y).
A contradiction.

Theorem. If Y is quasi-minimal above 0“) and 2 is a structure
with CoSp(2l) = {a | a <. de(Y)} then there is no structure M
with Sp,(91) = Sp(A).
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A structure 2 with CoSp(2() = {a | a <. de(Y)}

Consider a non-trivial group G C Q.
For every a # 0 element of G and every prime number p set

ho(a) = k  if k is the greatest number such that pk|a in G,
PR)Z oo ifpklain G for all k.

Let pg, p1,... be the standard enumeration of the prime numbers
and set

Sa(G) = {(i,J) :J < hp(a)}-

If a and b are non-zero elements of G, then 5;(G) =¢ Sp(G).
Denote by dg = de(S2(G)), for some non-zero element a of G.
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A structure 2 with CoSp(2() = {a | a <. de(Y)}

Proposition.[Coles, Downey and Slaman]
Sp(G) = {b | b is total & dg <. b}. ’

Corollary. CoSp(G) ={a|a <.dg}. )

Clearly a € CoSp(G) if and only if for all total b,
dg <eb=a<.b.
According Selman’s Theorem the last is equivalent to a <. dg. [
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A structure 2 with CoSp(2() = {a | a <. de(Y)}

Consider the set
S={(i):((=0)V(i=1&iecV)}

Clearly S =. Y.
Let G be the least subgroup of Q containing the set

{1/p}: (i.j) € S}.
Then1l € G and 51(G) = S. So, dg = de(Y).

Theorem. CoSp(G) ={a|a <¢ d.(Y)}. |
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Thank you!
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