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Coding and decoding

There are familiar ways of coding one structure in another, and for
coding members of one class of structures in those of another class.

Sometimes the coding is effective.

Assuming this, it is interesting when there is effective decoding, and
and it is also interesting when decoding is very difficult.

We consider some formal notions that describe coding and decoding, and
test the notions in some examples.
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Conventions

1 Languages are computable.

2 Structures have universe ω.

3 We may identify the structure A with D(A).

4 Classes K are closed under isomorphism.
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Borel embedding

Definition (Friedman, Stanley, 1989)

We say that a class K of structures is Borel embeddable in a class of
structures K′, and we write K ≤B K′, if there is a Borel function
Φ : K → K ′ such that for A,B ∈ K , A ∼= B iff Φ(A) ∼= Φ(B).

Note: We have a uniform Borel procedure for coding structures from
structures of class K in structures from K′. As we shall see, there may or
may not be a Borel decoding procedure.
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On top

Theorem

The following classes lie on top under ≤B .

1 undirected graphs (Lavrov,1963; Nies, 1996; Marker, 2002)

2 fields of any fixed characteristic (Friedman-Stanley;
R. Miller-Poonen-Schoutens-Shlapentokh, 2018)

3 2-step nilpotent groups (Mekler, 1981; Mal’tsev, 1949)

4 linear orderings (Friedman-Stanley)
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Graphs ≤B ACF(0)

Example

Let F ∗ be an algebraically closed field with transcendence basis
b0, b1, b2, . . ..
For a graph G , let F (G ) be the subfield generated by the following:

1 bi , for i ∈ G ,

2 elements of acl(bi ),

3
√

d + d ′, where for some i , j joined by an edge in G , d is
inter-algebraic with bi and d ′ is inter-algebraic with bj .

The formulas that define the interpretation are computable Π0
2 or simpler.

Hence, for any F ∼= F (G ), we get a copy of G computable in F ′′.
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Turing computable embeddings

Definition (Calvert,Cummins,Knight,S. Miller, 2004)

We say that a class K is Turing computably embedded in a class K′, and
we write K ≤tc K ′, if there is a Turing operator Φ : K → K ′ such that for
all A,B ∈ K , A ∼= B iff Φ(A) ∼= Φ(B).

The notion of Turing computable embedding captures in a precise way the
idea of uniform effective coding.
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On top

Theorem

The following classes lie on top under ≤tc .

1 undirected graphs

2 fields of any fixed characteristic

3 2-step nilpotent groups

4 linear orderings

The Borel embeddings of Friedman and Stanley, Miller, Poonen,Schoutens
and Shlapentokh, Lavrov, Nies, Marker, Mekler, and Mal’tsev are all, in
fact, Turing computable.
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Directed graphs ≤tc undirected graphs

Example (Marker)

For a directed graph G the undirected graph Θ(G ) consists of the
following:

1 For each point a in G , Θ(G ) has a point ba connected to a triangle.

2 For each ordered pair of points (a; a′) from G , Θ(G ) has a special
point p(a,a′) connected directly to ba and with one stop to b′a .

3 The point p(a,a′) is connected to a square if there is an arrow from a
to a′, and to a pentagon otherwise.

For structures A with more relations, the same idea works.
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Medvedev reducibility

A problem is a subset of 2ω or ωω.
Problem P is Medvedev reducible to problem Q if there is a Turing
operator Φ that takes elements of Q to elements of P.

Definition

We say that A is Medvedev reducible to B, and we write A ≤s B, if there
is a Turing operator that takes copies of B to copies of A.

Supposing that A is coded in B, a Medvedev reduction of A to B
represents an effective decoding procedure.

For classes K and K ′, suppose thatK ≤tc K ′ via Θ. A uniform effective
decoding procedure is a Turing operator Φ s.t. for all A ∈ K , Φ takes
copies of Θ(A) to copies of A.
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Decoding via nice defining formulas

Fact: For Marker’s embedding Θ, we have finitary existential formulas
that, for all directed graphs G , define in Θ(G ) the following.

1 the set of points ba connected to a triangle,

2 the set of ordered pairs such that the special point p(a,a′) is part of a
square,

3 the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
part of a pentagon.

This guarantees a uniform effective procedure that, for any copy of Θ(G ),
computes a copy of G . We have uniform effective decoding.
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Effective interpretability

Definition (Harrison-Trainor, Melnikov, R. Miller, Montlbán)

A structure A = (A,Ri ) is effectively interpreted in a structure B if there
is a set D ⊆ B<ω and relations ∼ and R∗i on D, such that

1 (D,R∗i )/∼ ∼= A,

2 there are computable Σ1-formulas with no parameters defining a set
D ⊆ B<ω and relations (¬) ∼ and (¬)R∗i in B (effectively
determined).

Example

The usual definition of the ring of integers Z involves an interpretation in
the semi-ring of natural numbers N. Let D be the set of ordered pairs
(m, n) of natural numbers. We think of the pair (m, n) as representing the
integer m − n. We can easily give finitary existential formulas that define
ternary relations of addition and multiplication on D, and the
complements of these relations, and a congruence relation ∼ on D, and
the complement of this relation, such that (D,+, ·)/∼ ∼= Z.
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Computable functor

Definition (Harrison-Trainor, Melnikov, R. Miller and Montalbán)

A computable functor from B to A is a pair of Turing operators Φ,Ψ such
that Φ takes copies of B to copies of A and Ψ takes isomorphisms
between copies of B to isomorphisms between the corresponding copies of
A, so as to preserve identity and composition.

More precisely, Ψ is defined on triples (B1, f ,B2), where B1,B2 are copies
of B with B1

∼=f B2.
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Equivalence

The main result gives the equivalence of the two definitions.

Theorem (H-TMMM, 2017)

For structures A and B, A is effectively interpreted in B iff there is a
computable functor Φ,Ψ from B to A.

Note: In the proof, it is important that D consist of tuples of arbitrary
arity.

Corollary

If A is effectively interpreted in B, then A ≤s B.
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Coding and Decoding

Proposition (Kalimullin, 2010)

There exist A and B such that A ≤s B but A is not effectively interpreted
in B.
There exist A and B such that A is effectively interpreted in (B, b̄) but A
is not effectively interpreted in B.

Proposition

If A is computable, then it is effectively interpreted in all structures B.

Proof.

Let D = B<ω. Let b̄ ∼ c̄ if b̄, c̄ are tuples of the same length. For
simplicity, suppose A = (ω,R), where R is binary. If A |= R(m, n), then
R∗(b̄, c̄) for all b̄ of length m and c̄ of length n. Thus,
(D,R∗)/∼ ∼= A.
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Parameters needed

Proposition

Suppose B ≤s A. Then uniformly in a notation for α, the Σc
α-theory of B

is enumeration reducible to the Σc
α-theory of A.

We have {A} ≤tc {B}.

Example (Knight)

Let B = B1 + {b}+ B2, where, for a set S that is not Σ0
3,

B1 = σ(S ∪ {ω}), and B2 is the shuffle sum of ω ∪ {ω}. Without loss, we
suppose that 1 ∈ S . The orderings B and B2 satisfy the same Σ3

sentences—B ≤3 B2 and B2 ≤3 B. From an enumeration of the
computable (or even finitary) Σ3 formulas true of b, we can enumerate the
set S . Since S is not Σ0

3, it is not enumeration reducible to the Σc
3 theory

of B2, so it is not enumeration reducible to the Σc
3 theory of B. Therefore,

(B, b) 6≤s B.
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Borel interpretability

Harrison-Trainor, Miller and Montlbán, 2018, defined Borel versions of the
notion of effective interpretation and computable functor.

Definition
1 For a Borel interpretation of A = (A,Ri ) in B the set D ⊆ B<ω the

relations ∼ and R∗i on D, are definable by formulas of Lω1ω.

2 For a Borel functor from B to A, the operators Φ and Ψ are Borel.

Their main result gives the equivalence of the two definitions.

Theorem

A structure A is interpreted in B using Lω1ω-formulas iff there is a Borel
functor Φ,Ψ from B to A.
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Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing computable
embeddings.

Graphs also lie on top under effective interpretation.

Question: What about linear orderings under effective interpretation?

And under using Lω1ω-formulas?
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Interpreting graphs in linear orderings

Proposition (Knight-S.-Vatev)

There is a graph G such that for all linear orderings L, G 6≤s L.

Proof.

Let S be a non-computable set. Let G be a graph such that every copy
computes S .
We may take G to be a “daisy” graph”, consisting of a center node with a
“petal” of length 2n + 3 if n ∈ S and 2n + 4 if n /∈ S .
Now, apply:

Proposition (Richter)

For a linear ordering L, the only sets computable in all copies of L are the
computable sets.
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Interpreting a graph in the jump of linear ordering
We are identifying a structure A with its atomic diagram. We may
consider an interpretation of A in the jump B′ of B. Note that the
relations definable in B′ by computable Σ1 relations are the ones definable
in B by computable Σ2 relations.

Proposition (Knight-S.-Vatev)

There is a graph G such that for all linear orderings L, G 6≤s L′.

Proof.

Let S be a non-∆0
2 set. Let G be a graph such that every copy computes

S . Then apply:

Proposition (Knight, 1986)

For a linear ordering L, the only sets computable in all copies of L′ (or in
the jumps of all copies of L), are the ∆0

2 sets.
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Interpreting a graph in the second jump of linear ordering

Proposition

For any set S , there is a linear ordering L such that for all copies of L, the
second jump computes S .

Proof.

We may take L to be a “shuffle sum” of n + 1 for n ∈ S ⊕ Sc and ω.

Proposition

For any graph G , there is a linear ordering L such that G ≤s L′′. In fact,
G is interpreted in L using computable Σ3 formulas.

Proof.

Let S be the diagram of a specific copy G0 of G and let L be a linear order
such that S ≤s L′′. We have computable functor that takes the second
jump of any copy of L to G0, and takes all isomorphisms between copies of
L to the identity isomorphism on G0.
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Friedman-Stanley embedding of graphs in orderings

Friedman and Stanley determined a Turing computable embedding
L : G → L(G ), where L(G ) is a sub-ordering of Q<ω under the
lexicographic ordering.

1 Let (An)n∈ω be an effective partition of Q into disjoint dense sets.

2 Let (tn)1≤n be a list of the atomic types in the language of directed
graphs.

Definition

For a graph G , the elements of L(G ) are the finite sequences
r0q1r1 . . . rn−1qnrnk ∈ Q<ω such that for i < n, ri ∈ A0, rn ∈ A1, and for
some a1, . . . , an ∈ G , satisfying tm, qi ∈ Aai and k < m.

Alexandra A. Soskova ( Joint work with J. Knight and S. Vatev)Coding in graphs and linear orderings 22 / 37



Properties of L(G )

Definition

Let b = r0q1r1 . . . rn−1qnrnk ∈ L(G ), and let ā be the tuple in G such that
qi ∈ Aai . Then we say that b mentions ā.

Lemma

Suppose b ∈ L(G ) mentions ā. Then b lies in maximal discrete interval of
some finite size m ≥ 1.

Note that if b mentions ā of length n, then b has length 2n + 2.

Lemma

If b ∈ L(G ) has length 2n + 2, then there is an infinite interval around b
that consists entirely of elements of length at least 2n + 2.

Lemma

Let b < b′ in L(G ), and let d be an element of [b, b′] of minimum length.
If d mentions c̄ , then all elements of [b, b′] mention extensions of c̄ .
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No uniform interpretation of G in L(G )

Theorem (Knight-S.-Vatev, HarrisonTrainor-Montlbán)

There are no Lω1ω formulas that, for all graphs G , interpret G in L(G ).

The idea of Proof by Knight-S.-Vatev: We may think of an ordering as
a directed graph. It is enough to show the following.

Proposition

A ωCK
1 is not interpreted in L(ωCK

1 ) using computable infinitary
formulas.

B For all X , ωX
1 is not interpreted in L(ωX

1 ) using X -computable
infinitary formulas.
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Proof of A
The Harrison ordering H has order type ωCK

1 (1 + η). It has a computable
copy.

Let I be the initial segment of H of order type ωCK
1 . Thinking of H as a

directed graph, we can form the linear ordering L(H). We consider
L(I ) ⊆ L(H).

Lemma

L(I ) is a computable infinitary elementary substructure of L(H).

Proposition (Main)

There do not exist computable infinitary formulas that define an
interpretation of H in L(H) and an interpretation of I in L(I ).

To prove A, we suppose that there are computable infinitary formulas
interpreting ωCK

1 in L(ωCK
1 ). Using Barwise Compactness theorem, we get

essentially H and I with these formulas interpreting H in L(H) and I in
L(I ).
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Proof of the Proposition(Main)

Lemma

1 For any b̄ ∈ L(I ), and c ∈ L(I ) there is an automorphism of L(I )
taking b̄ to a tuple b̄′ entirely to the right of c .

2 For any b̄ ∈ L(I ), and c ∈ L(I ) there is also an automorphism taking
b̄ to a tuple b̄′′ entirely to the left of c .

Lemma

Suppose that we have computable Σγ formulas D, <© and ∼, defining an
interpretation of H in L(H) and I in L(I ). Then in DL(I ) there is a fixed n,
and there are n-tuples, all satisfying the same Σγ formulas, and
representing arbitrarily large ordinals α < ωCK

1 .

We arrive at a contradiction by producing tuples b̄, b̄′, c̄ in DL(I ), b̄ and b̄′

are automorphic, b̄, c̄ and c̄ , b̄′ satisfy the same Σγ formulas, and the
ordinal represented by b̄ and b̄′ is smaller than that represented by c̄ .
Then b̄, c̄ should satisfy <©, while c̄ , b̄′ should not.
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Conjecture

We believe that Friedman and Stanley did the best that could be done.

Conjecture. For any Turing computable embedding Θ of graphs in
orderings, there do not exist Lω1ω formulas that, for all graphs G , define
an interpretation of G in Θ(G ).

M. Harrison-Trainor and A. Montlbán came to a similar result recently by
a totally different construction. Their result is that there exist structures
which cannot be computably recovered from their tree of tuples. They
proved :

1 There is a structure A with no computable copy such that T (A) has
a computable copy.

2 For each computable ordinal α there is a structure A such that the
Friedman and Stanley Borel interpretation L(A) is computable but A
has no ∆0

α copy.
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Mal’tsev embedding of fields in groups

If F is a field, we denote by H(F ) the multiplicative group of matrices of
kind

h(a, b, c) =

 1 a b
0 1 c
0 0 1


where a, b, c ∈ F . Note that h(0, 0, 0) = 1.
Groups of kind H(F ) are known as Heisenberg groups.

Theorem (Mal’tsev)

There is a copy of F defined in H(F ) with parameters.
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Definition of F in H(F )

Let u, v be a non-commuting pair in H(F ).
Then (D,+, ·(u,v)) is a copy of F , where

1 D is the group center – x ∈ D ⇐⇒ [x , u] = 1 and [x , v ] = 1,

2 x + y = z if x ∗ y = z , where ∗ is the group operation,

3 x ·(u,v) y = z if there exist x ′, y ′ such that
[x ′, u] = [y ′, v ] = 1, [x ′, v ] = x , [u, y ′] = y , and [x ′, y ′] = z .

Here [x , y ] = x−1y−1xy .

Definability: We have finitary existential formulas that define D and the
relation + and its complement. For any non-commuting pair (u, v), we
have finitary existential formulas, with parameters (u, v) that define the
relation · and its complement.
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Natural isomorphisms

For a non-commuting pair (u, v), where u = h(u1, u2, u3) and
v = h(v1, v2, v3), let

∆(u,v) =

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣
Theorem (Morozov)

The function f that takes x ∈ F to h(0, 0,∆(u,v) ·F x) is an isomorphism.
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Morozov’s isomorphism

Lemma

Let (u, v) and (u′, v ′) be non-commuting pairs in G = H(F ). Let F(u,v)

and F(u′,v ′) be the copies of F defined in G with these pairs of parameters.
There is an isomorphism g from F(u,v) onto F(u′,v ′) defined in G by an
existential formula with parameters u, v , u′, v ′.

Note that ∆(u,v) is the multiplicative identity in F(u,v).
Let g(x) = y ⇐⇒ x = ∆(u,v) ·(u′,v ′) y .
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Computable functor

Theorem

There is a computable functor Φ,Ψ from H(F ) to F .

For G ∼= H(F ), Φ(G ) is the copy of F obtained by taking the first
non-commuting pair (u, v) in G and forming (D; +; ·(u,v)).

Take (G1, f ,G2), where Gi = H(F ), and G1
∼=f G2. Let (u, v), (u′, v ′)

be the first non-commuting pairs in G1,G2, respectively.
I Let h be the isomorphism from F(f (u),f (v)) onto F(u′,v ′) defined in G2

with parameters f (u), f (v), u′, v ′.
I Let f ′ be the restriction of f to the center of G1.
I Then Ψ(G1, f ,G2) = h ◦ f ′.
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Finitely existential interpretation and generalizing

Corollary (Alvir,Calvert,Harizanov,Knight,Miller,Morozov,S,Weisshaar)

F is effectively interpreted in H(F ).

(u, v , x) ∼ (u′, v ′, x ′) holds if Morozov’s isomorphism from F(u,v) to
F(u′,v ′) takes x to x ′.

Proposition

Suppose A has a copy Ab̄ defined in (B, b̄), using computable Σ1

formulas, where the orbit of b̄ is defined by a computable Σ1 formula
ϕ(x̄). Suppose also that there is a computable Σ1 formula ψ(b̄, b̄′, u, v)
that, for any tuples b̄, b̄′ satisfying ϕ(x̄), defines a specific isomorphism
fb̄,b̄′ from Ab̄ onto Ab̄′ . We suppose that for each b̄ satisfying ϕ, fb̄,b̄ is

the identity isomorphism, and for any b̄, b̄′, and b̄′′ satisfying ϕ,
fb̄′,b̄′′ ◦ fb̄,b̄′ = fb̄,b̄′′ . Then there is an effective interpretation of A in B.
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SL2(C )

Let C be an algebraically closed field of characteristic 0 and of infinite
transcendence degree.
We consider SL2(C ) for the group of 2× 2 matrices over C with
determinant 1.

Proposition

F is interpreted in SL2(F ) with parameters.

Let A be the set of matrices of form

(
1 a
0 1

)
.

Let M be the set of matrices of form

(
a 0
0 a−1

)
.
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SL2(C )

Let T consist of the pairs (X ,Y ) such that X ∈ A and Y ∈ M and Y has
a square root Z such that Z ∗ P ∗ Z−1 = X .
For (X ,Y ) ∈ T , we define addition and multiplication relations as follows:

1 (X ,Y )⊕ (X ′,Y ′) = (U,V ) if X ∗ X ′ = U and (U,V ) ∈ T ,

2 (X ,Y )⊗ (X ′,Y ′) = (U,V ) if Y ∗ Y ′ = V and (U,V ) ∈ T .

We define the set T with parameters.
Possibly, we can show model completeness of the theory of SL2(C ).
This, together with the result, according to Pillay, saying that C is
interpreted in SL2(C ) by elementary first order formulas with no
parameters, we could show that it is interpreted with existential formulas.
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Thank you for your deep contributions to logic!

Happy anniversary!
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