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The enumeration degrees

Definition
A ≤e B if there is a c.e. set W, such that

A = W(B) = {x | ∃D(〈x,D〉 ∈ W & D ⊆ B)} .

A ≡e B if A ≤e B and B ≤e A.

The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B).

The enumeration jump: de(A)′ = de(KA ⊕ KA), where
KA = {〈e, x〉 | x ∈ We(A)}.
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Selman’s theorem

Equivalently, A ≤e B if there is a single Turing functional which uniformly,
given any enumeration of B, outputs an enumeration of A.

Definition
Given a set A, let E(A) denote the collection of all Turing degrees computing
enumerations of A, called the enumeration cone of A.

Theorem (Selman)
The set A is enumeration reducible to the set B if and only if E(B) ⊆ E(A).
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What connects DT and De

Proposition

A ≤T B⇔ A⊕ A ≤e B⊕ B.

A set A is total if its positive membership information already suffices to
determine its negative membership information, i.e. if A ≤e A, or equivalently
A ≡e A⊕ A. An enumeration degree is total if it contains a total set.

Within the enumeration degrees, the total degrees are an embedded copy of
the Turing degrees DT via ι : A→ A⊕ A. The embedding ι preserves the
order, the least upper bound and the jump operation.
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Motivation from symbolic dynamics by Emmanuel Jeandel

Definition
A subshift is a closed subset X ⊆ 2ω such that if aα ∈ X then α ∈ X.

X is minimal if there is no Y ⊂ X, such that Y is a subshift.

The language of X is the set
LX = {σ ∈ 2<ω | ∃α ∈ X(σ is a subword of α)}.
LX is the set of forbidden words.

1 If X is minimal and σ ∈ LX then for every α ∈ X, σ is a subword of α.
So every element of X can enumerate the set LX .

2 If we can enumerate LX then we can compute a member of X.
3 The Turing degrees that compute elements of X are exactly the degrees

that contain enumerations of LX .
4 (Jaendel) If we can enumerate the set of forbidden words LX then we can

enumerate LX . So, LX ≤e LX .
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Total and cototal

Definition
A set A is cototal if A ≤e A. A degree a is cototal if it contains a cototal set.

For every set A the set A⊕ A is cototal.
So, every total enumeration degree is cototal.

The cototal enumeration degrees form a proper substructure of De closed
under least upper bound and the enumeration jump operator.

The name “total” is coming of the following fact: given a total function
f , the set G(f ) = {〈n, f (n)〉 | n ∈ ω} is a total set.

Equivalently, given a total function f , the graph-complement G(f ) is
cototal.

If an enumeration degree contains a set of the form G(f ), then we call it
graph-cototal.

So, every total enumeration degree is graph-cototal, and every
graph-cototal degree is cototal.
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Three definitions

Definition
A set A is cototal if A ≤e A. A degree a is cototal if it contains a cototal set.

Definition
(Solon) A set A is graph-cototal if A ≡e Gf for some total function f . A
degree a is graph-cototal if it contains a graph-cototal set.

Definition
(Solon) A set A is weakly cototal if A is in a total e-degree. A degree a is
weakly cototal if it contains a weakly cototal set.

It is clear that every cototal degree is weakly cototal, since if A ≤e A, then A is
a total set.

total⇒ graph-cototal⇒ cototal⇒ weakly cototal.
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Σ0
2 enumeration degrees

Proposition

Σ0
2 enumeration degrees are cototal.

Let A be Σ0
2. Consider the set KA =

⊕
e<ω Γe(A). Then A ≡e KA and

KA =
⊕
e<ω

Γe(A) ≥e K ≥e A ≡e KA.

Proposition

Σ0
2 e-degrees are graph-cototal.

Corollary
Graph-cototal does not imply total.
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Unique correct axiom

Theorem
An e-degree a is graph-cototal if and only if a contains a cototal set A, such
that for some enumeration operator Γ, we have that A = Γ(A) and for every
n ∈ A there is a unique axiom 〈n,D〉 ∈ Γ such that D ⊆ A.

Goal:
Cototal does not imply graph-cototal.

Alexandra A. Soskova ( Sofia University) Cototal enumeration degrees and the skip operator 9 / 33



Maximal independent sets

Definition
Let G = (N,E) be a graph and S ⊆ N.

1 S is an independent set for G if i 6= j are in S then (i, j) /∈ E.
2 An independent set is maximal if it has no proper independent superset,

i.e. for every element i /∈ S there is a j ∈ S such that (i, j) ∈ E.

If S is a maximal independent set for G, then S can enumerate its complement:
i ∈ S iff there is a j 6= i such that (i, j) ∈ E and j ∈ S.

Theorem
Every cototal degree contains the complement of maximal independent set for
ω<ω.
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Cototal degree not graph-cototal

Theorem
There is a cototal dregee which is not graph-cototal.

We build the complement of a maximal independent set for the graph
G = (ω<ω; E).
Our other condition on the set is that it is not enumeration equivalent to a
graph-cototal set.
Infinite injury ∅′′′ relative to ∅′.
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Maximal antichains

Proposition

If C is a maximal antichain on ω<ω, then C ≤e C, i.e. C is cototal.

To determine if a string σ ∈ ω<ω is in C, we wait for some element
comparable but not equal to σ to enter C. Since C is an antichain, we only
identify elements of C in this way. And by maximality, if σ ∈ C then
something comparable but not equal to σ must eventually enter C.

Theorem (McCarthy)
Every cototal degree contains the complement of a maximal antichain in ω<ω.

Theorem (McCarthy)
If A is cototal, then A ≡e LX for some minimal subshift X.
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Uniformly e-pointed trees

Definition
A tree T ⊆ 2<ω is e-pointed if it has no dead ends and every infinite path
f ∈ [T] enumerates T .

Theorem (Montalbán)
A degree spectrum is never the Turing-upward closure of an Fσ set of reals in
ωω, unless it is an enumeration-cone.

Theorem (McCarthy)
An e-degree is cototal if and only if it contains a (uniformly) e-pointed tree.
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Joins of nontrivial K-pairs

Definition
A K-pair is a pair of sets {A,B} for which there is a c.e. set W such that
A× B ⊆ W and A× B ⊆ W.

Proposition (Kalimullin)
Let {A,B} be a K-pair. If A and B are not c.e. then:

1 A ≤e B and A ≤e ∅′ ⊕ B.
2 B ≤e A and B ≤e ∅′ ⊕ A.

Proposition
If {A,B} is a nontrivial K-pair then A⊕ B is cototal.

Proof: A⊕ B ≤e B⊕ A ≡e A⊕ B.
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Computable metric spaces

J. Miller introduced the continuous degrees Dr to compare the complexity of
points in computable metric spaces.

Definition
A computable metric space is a metric spaceM together with a countable
dense sequence QM = {qMn }n∈ω on which the metric is computable (as a
function ω2 → R).

Examples:

R with QR = Q.

The Hilbert cube [0, 1]ω with the metric
d(α, β) =

∑
n∈ω |α(n)− β(n)|/2n

and Q[0,1]ω the sequences of rationals in [0, 1] with finite support.
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Continuous degrees

Definition
A name of a point x ∈M is a function λ that maps positive rationals ε > 0 to
natural numbers so that dM(x, qMλ(ε)) < ε.

Definition (J. Miller)
For two points x and y in a computable metric space we say that x ≤r y if
every name of y computes a name of x uniformly. This reducibility induces
the continuous degrees.

Alexandra A. Soskova ( Sofia University) Cototal enumeration degrees and the skip operator 16 / 33



Continuous degrees

The continuous degrees embed into De. In fact, DT ⊂ Dr ⊂ De.

For α ∈ [0, 1]ω, let

Cα =
⊕
i∈ω
{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} .

Enumerating Cα is as hard as computing a name for α. So α 7→ Cα induces
an embedding of the continuous degrees into the enumeration degrees.

Proposition
Continuous degrees are cototal.

Cα ≡e Bα =
⊕

i∈ω {q ∈ Q | q ≤ α(i)} ⊕ {q ∈ Q | q ≥ α(i)}.
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Points in arbitrary topological spaces

Kihara and Pauly extend Miller’s idea to points in arbitrary represented
topological spaces.
They noticed that the total degrees are the enumeration degrees of
neighborhood bases of points in (sufficiently effective) countable dimensional
separable metric spaces.

Definition
A represented countably based space is a pair (X , β) of a second-countable
space X and an enumeration β = {βe}e∈ω of a countable open subbases of X .
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Points in arbitrary topological spaces

One can identify a point x in a represented space (X , β) with the coded
neighborhood filter Nbaseβ(x) = {e ∈ ω | x ∈ βe}. Any enumeration of
Nbaseβ(x) is called a β-name of x.

Definition
We say that x ∈ X is computable if x has a computable name, that is,
Nbaseβ(x) is c.e.
The X -degrees are DX = {dege(NbaseX (x)) | x ∈ X}.

Theorem (Kihara and Miller)
An e-degree is cototal if and only if it is an X -degree of a computable Gδ

space X .

There exists a decidable, computable Gδ space X such that the
X -degrees are exactly the cototal e-degrees.
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The skip operator

Recall that KA =
⊕

e Γe(A).

Proposition

If A ≤e B then KA ≤1 KB.

Definition
The skip of A is the set A♦ = KA. The skip of a degree a is a♦ = de(A♦).

Proposition

A degree a is cototal if and only if a ≤ a♦ if and only if a♦ = a′.

⇒ A ≤e A ≤e A♦

⇐ KA ≡e A ≤e A♦ = KA.
Recall that A′ = KA ⊕ KA.
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Skip inversion
Theorem
Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We build A so that:
1 S ≤e A.
2 KA ≤e S.

We first build a table Â with one empty box in each column as a set c.e. in ∅′.
The set of empty boxes will be computable from ∅′.
Then A = Â ∪

{
〈n, s〉 | n ∈ S

}
.

Note! S ≤e A⊕ ∅′. So if we start out with an S that is not total set but belongs
to a total degree then the degree of A is not cototal. But A ≡e KA and
KA = A♦ ≡e S has a total degree and so A is in a weakly cototal degree.

Corollary
Weakly cototal does not imply cototal.
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Π0
2-sets and above

Theorem
Let n ≥ 2. For any Π0

n set S ≥ ∅′, there is a Σ0
n set A such that A♦ ≡e S.

Furthermore, for any Σ0
n set S ≥ ∅′, there is a Π0

n set A such that A♦ ≡e S.

We know that every Σ0
2 set has a graph cototal degree.

Proposition

There are Π0
2-sets that do not even have cototal enumeration degree.

But every Π0
2-set has weakly cototal degree.

A ≡e A⊕ K ⇒ A⊕ K ≡e A⊕ K ≡e K ∈ 0′e.

There are ∆0
3-sets that are not even weakly cototal degree.
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Skip iteration
We can define the iterated skip operator of an enumeration degree a by:

a〈0〉 = a
a〈n+1〉 = (a〈n〉)♦.

This iterated skip can exhibit exotic behavior:

Theorem
For all enumeration degrees, a ≤ a♦♦ and a♦ ≥ 0′, but not always a ≤ a♦.

A ≤1 A♦ ⇒ A ≤1 A♦ ≤1 A♦♦.

By Knaster-Tarski’s fixed point theorem:

Theorem
There is an enumeration degree a such that a = a♦♦.

A ⊆ B⇒ KA ⊆ KB ⇒ KA ⊇ KB ⇒ KKA
⊇ KKB

⇒
KKA
⊆ KKB

.
Any such enumeration degree lies above all total hyperarithmetic enumeration
degrees.
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Iterating the skip

0e

a

0′e

a♦
0′e

a♦♦
0′′′e

a〈3〉
...

Figure: Iterated skips of a degree
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Zig-zag
If a〈n〉 is not cototal for every n:

a

a♦

a♦♦

a〈3〉

Figure: Iterated skips of a degree: the zig-zag
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Generic sets

Definition
Let G and X be sets of natural numbers. G is 1- generic relative to 〈X〉 if and
only if for every W ⊆ 2<ω such that W ≤e X:

(∃σ � G)[σ ∈ W ∨ (∀τ � σ)[τ /∈ W]].

Proposition
If G is 1-generic relative to 〈X〉 then:

G is 1-generic relative to 〈X〉.
(G⊕ X)♦ = G⊕ X′.

If G is arithmetically generic, i.e. G is 1-generic relative to 〈∅(n)〉, for every n,
then the skips of G and G form a double helix.

If n is odd then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).
If n is even then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).
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Double zig-zag

g

g♦

g♦♦

g〈3〉

g

g♦

g♦♦

g〈3〉

Figure: Iterated skips of a degrees of an arithmetically generic set and its
complement: double zig-zag
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Skips of nontrivial K-pairs

Proposition

If {A,B} is a non-trivial K-pair then A♦ ≡e B⊕ ∅′.
If {A,B} is a non-trivial K-pair relative to 〈X〉 then (A⊕ X)♦ ≤e B⊕ X♦.
The oracle X is of cototal degree iff we have equivalence above for every
nontrivial K-pair relative to 〈X〉.

If {A,B} is a non-trivial K-pair relative to ∅(n) for every n then the iterate
skips of A and B form a double zig-zag.

if n is odd then A〈n〉 ≡e B⊕ ∅(n) and B〈n〉 ≡e A⊕ ∅(n), and

if n is even then A〈n〉 ≡e A⊕ ∅(n) and B〈n〉 ≡e B⊕ ∅(n).
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Skips of nontrivial K-pairs

Proposition

If {A,B} is a non-trivial K-pair then A♦ ≡e B⊕ ∅′.
If {A,B} is a non-trivial K-pair relative to 〈X〉 then (A⊕ X)♦ ≤e B⊕ X♦.
The oracle X is of cototal degree iff we have equivalence above for every
nontrivial K-pair relative to 〈X〉.
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Skip iterations

Theorem (Ganchev, Sorbi)
For every enumeration degree x > 0e, there is a degree a ≤ x such that a is
half of a nontrivial K-pair and such that a′ = x′.

A′ ≡e A⊕ A♦ ≡e A⊕ B⊕ ∅′ ≡e B⊕ B♦ ≡e B′.

Proposition
If x is high (x′ = 0′′):

b♦ < b′ = b♦♦ < b′′ = b〈3〉 < · · · < b(n) = b〈n+1〉 < . . .

If x is intermediate:

b♦ < b′ < b♦♦ < b′′ < b〈3〉 < · · · < b(n) < b〈n+1〉 < . . .
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The cototal degrees are dense

Corollary
The relation

SK =
{

(a, a♦) | a is half of a nontrivial K-pair
}

is first-order definable in De.

Question: Is the skip operator definable in De?
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Good e-degrees

Definition (Lachlan, Shore)
A uniformly computable sequence of finite sets {As}s<ω is a good
approximation to a set A if:
G1(∀n)(∃s)(A � n ⊆ As ⊆ A)
G2(∀n)(∃s)(∀t > s)(At ⊆ A⇒ A � n ⊆ At).

An enumeration degree is good if it contains a set with a good approximation.

Good e-degrees cannot be tops of empty intervals.

Total enumeration degrees and enumeration degrees of n-c.e.a. sets are
good.
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The cototal degrees are dense

Theorem (Harris; Miller, M. Soskova)
The good enumeration degrees are exactly the cototal enumeration degrees.

If A has a good approximation then

A ≤e {〈x, s〉 | (∀t > s)(At ⊆ A⇒ x ∈ A)} ≤e A♦.

Every uniformly e-pointed tree has a good approximation.

Theorem (Miller, M. Soskova)
The cototal enumeration degrees are dense.

If V <e U are cototal and U has a good approximation they build Θ such that
Θ(U) is the complement of a maximal independent set and

V <e Θ(U)⊕ V <e U.
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