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A parallel between classical computability theory and
effective definability in abstract structures

A close parallel between notions of classical computability theory and
of the theory of effective definability in abstract structures:

1 The notion of “c.e. in” corresponds to the notion of Σ1 definability;
2 The “Σ0

n+1 in” sets correspond to the sets definable by means of
computable infinitary Σn+1 formulae.

Alexandra Soskova, Stefan Vatev and Alexander Terziivanov (Sofia University)Generalization of the notion of jump sequence of sets for sequences of structures 2 / 20



Enumeration reducibility

1 A set X is c.e. in a set Y if X can be enumerated by a computable
in Y function.

2 A set X is enumeration reducible to a set Y if and only if there is
an effective procedure to transform an enumeration of Y to an
enumeration of X .

Definition
X ≤e Y if for some e, X = We(Y ), i.e.

(∀x)(x ∈ X ⇐⇒ (∃v)(〈v , x〉 ∈We ∧ Dv ⊆ Y )).

Proposition

X is c.e. in Y if and only if X ≤e Y ⊕ Y = Y+.
X is computable in Y if and only if X ⊕ X ≤e Y ⊕ Y.
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Abstract structures

Let A = (A; R1, . . . ,Rk ) be a countable abstract structure.

An enumeration f of A is a bijection from N onto A.
f−1(X ) = {〈x1 . . . xa〉 : (f (x1), . . . , f (xa)) ∈ X} for any X ⊆ Aa.
f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk ) computes the positive atomic
diagram of an isomorphic copy of A.

We always consider A = (A; R1, R̄1 . . . ,Rk , R̄k ).

Definition
For every X ⊆ A and f ,g enumerations of A let

E f ,g
X = {〈x , y〉 | f (x) = g(y) ∈ X}.
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Relatively intrinsically c.e. in A sets

Definition
A set R ⊆ A is relatively intrinsically c.e. in A if and only if f−1(R) is
c.e. in f−1(A) for every enumeration f of A.

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)
A set R ⊆ A is relatively intrinsically c.e. in A if and only if R is
definable in A by means of a computable infinitary Σc

1 formula with
parameters.
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Sequences of sets of natural numbers

Definition
A sequence of sets of natural numbers Y = {Yn}n<ω is c.e. in a set
Z ⊆ N if for every n, Yn is c.e. in Z (n) uniformly in n.

Theorem (Selman)
Let X ,Y ⊆ N.
X ≤e Y if and only if for every Z , if Y is c.e. in Z then X is c.e. in Z .

Definition
Given a set X of natural numbers and a sequence Y of sets of natural
numbers, let X ≤n Y if for all sets Z ⊆ N,
Y is c.e. in Z implies X is Σ0

n+1 in Z .
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The relation ≤n

Ash presents a characterization of “≤n” using computable infinitary
propositional sentences. Soskov and Kovachev give another
characterization in terms of enumeration reducibility.

Definition
Let X = {Xn}n<ω. The jump sequence P(X ) = {Pn(X )}n<ω of X is
defined by induction:

(i) P0(X ) = X0;
(ii) Pn+1(X ) = Pn(X )′e ⊕ Xn+1.

Theorem (Soskov)
X ≤n Y if and only if X ≤e Pn(Y).
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Sequences of structures
Now consider a sequence of structures ~A = {An}n<ω, where
An = (An; Rn

1 ,R
n
2 , . . .R

n
mn ). Let A =

⋃
n An.

An enumeration f of ~A is a bijection from N→ A.
Denote by f−1(~A) the sequence
{f−1(An)⊕ f−1(Rn

1) · · · ⊕ f−1(Rn
mn )}n<ω.

Definition

For R ⊆ A we say that R ≤n ~A if for every enumeration f of ~A,
f−1(R) ≤n f−1(~A) i.e. f−1(R) ≤e Pn(f−1(~A)) .

Theorem (Soskov)

For every sequence of structures ~A, there exists a structure M, such
that for each n, the relatively intrinsically Σn+1 sets in M sets coincide
with sets R ≤n ~A.

The structure M is the Marker’s extension of the sequence of
structures ~A.
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Equivalent structures
Definition
We call two structures A and B equivalent: A ≡ B if they have the
same relatively intrinsically c.e. subsets of the common part of the
domains of A and B.

Definition

Given a sequence of structures ~A = {Ai}i<ω the n-th polynomial of ~A is
a structure Pn(~A) defined inductively:

P0(~A) = A0,
Pn+1(~A) = Pn(~A)′ ⊕ An+1.

Here the jump of a structure is appropriately defined.

Theorem

For every sequence of structures ~A, there exists a structure M such
that for every n we have Pn(~A) ≡M(n).
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The Moschovakis extension
Let A = (A; R1, . . . ,Rk ).

Let 0̄ 6∈ A. Set A0 = A ∪ {0̄}.
Let 〈., .〉 be a pairing function: each element of A0 is not a pair.
Let A? be the least set containing A0 and closed under 〈., .〉.
0∗ = 0̄, (n + 1)∗ = 〈0̄,n∗〉.
The set of all n∗ we denote by N∗.
The decoding functions: L(〈s, t〉) = s & R(〈s, t〉) = t ,
L(0̄) = R(0̄) = 0? (∀t ∈ A)[L(t) = R(t) = 1?].

Definition
The Moschovakis extension of A is the structure

A? = (A?; A0,R∗1, . . . ,R
∗
k ,G〈.,.〉,GL,GR).

R∗i (t) ⇐⇒ (∃a1 ∈ A) . . . (∃ari ∈ A)(t = 〈a1, . . . ,ari 〉 &
Ri(a1, . . . ,ari )).
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The set KA

A new predicate KA (analogue of Kleene’s set).
For e, x ∈ N and finite part τ , let

τ  Fe(x)↔ x ∈W τ−1(A)
e

τ  ¬Fe(x)↔ (∀ρ ⊇ τ)(ρ 6 Fe(x))

KA = {〈δ∗,e∗, x∗〉 : (∃τ ⊇ δ)(τ  Fe(x))}.

A′ = (A?,KA), A(n+1) = (A(n))′.

Proposition
For every R ⊆ A we have

R is relatively intrinsically c.e. on A′ iff R is relatively intrinsically
Σ2 on A.
R is relatively intrinsically c.e. on A(n) iff R is relatively intrinsically
Σn+1 on A.
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The jump structure A′

A′ = (A?,KA).

Proposition
For every enumeration f of A there exists an enumeration g of A′, such
that

1 g−1(A′) ≤T (f−1(A))′T ;
2 E f ,g

A is c.e. in (f−1(A))′T .

Proposition
For every enumeration g of A′ there exists an enumeration f of A, such
that

1 (f−1(A))′T ≤T g−1(A′);
2 E f ,g

A is c.e. in g−1(A′).
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The nth polynomial of a sequence of structures
Definition
Let A = (A; R1, . . . ,Rk ) and B = (B; P1, . . . ,Pm) are structures and
A ∩ B = ∅. The join of A and B we call the structure
A⊕B = (A ∪ B; A,B,R1, . . . ,Rk ,P1, . . . ,Pm).

Definition

Let ~A = {Ai}i∈ω be a sequence of structures with disjoint domains
Ai ∩ Aj = ∅ for i 6= j . The nth polynomial of ~A we call the structure
Pn(~A), defined inductively:

1 P0(~A) = A0

2 Pn+1(~A) = (Pn(~A))′ ⊕ An+1.

Our goal is to prove that if M(~A) is the Marker’s extension of the
sequence ~A then

(∀n ∈ N)(M(~A)(n) ≡ Pn(~A)).
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The definability in Pn(~A)
If f is an enumeration of ~A denote by f−1(~A) the sequence
{f−1(An)⊕ f−1(Rn

1) · · · ⊕ f−1(Rn
mn )}n<ω.

Denote by An
0 =

⋃n
i=0 Ai .

Proposition

For every enumeration f of ~A and each n ∈ N there exists an
enumeration g of Pn(~A) such that:

1 g−1(Pn(~A)) ≤T Pn(f−1(~A)),
2 E f ,g

An
0

is c.e. in Pn(f−1(~A)).

Proposition

For every enumeration g of Pn(~A) there exists an enumeration f of the
set An

0 such that:
1 Pn(f−1(~A)) ≤T g−1(Pn(~A)),
2 Eg,f

An
0

is c.e. in g−1(Pn(~A)).
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The connection between ≤n and Pn(~A)

Theorem
Let n ∈ N and R ⊆

⋃n
i=0 Ai . The following equivalence is true:

R is relatively intrinsically c.e. in Pn(~A) ⇐⇒ R ≤n ~A.
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Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An. Let R ⊆ Am.

The n-th Marker’s extension Mn(R) of R
Let X0,X1, . . .Xn be new infinite disjoint countable sets - companions
to Mn(R).
Fix bijections: h0 : R → X0
h1 : (Am × X0) \Gh0 → X1 . . .
hn : (Am × X0 × X1 · · · × Xn−1) \Ghn−1 → Xn

Let Mn = Ghn and Mn(R) = (A ∪ X0 ∪ · · · ∪ Xn; X0,X1, . . .Xn,Mn).

If n is even then:
ā ∈ R ⇐⇒ ∃x0 ∈ X0[(ā, x0) ∈ Gh0 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1[(ā, x0, x1) /∈ Gh1 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1∃x2 ∈ X2[(ā, x0, x1, x2) ∈ Gh2 ] ⇐⇒ . . .

∃x0 ∈ X0∀x1 ∈ X1 . . . ∃xn ∈ Xn[Mn(ā, x0, . . . xn)].
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Alexandra Soskova, Stefan Vatev and Alexander Terziivanov (Sofia University)Generalization of the notion of jump sequence of sets for sequences of structures 16 / 20



Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An. Let R ⊆ Am.

The n-th Marker’s extension Mn(R) of R
Let X0,X1, . . .Xn be new infinite disjoint countable sets - companions
to Mn(R).
Fix bijections: h0 : R → X0
h1 : (Am × X0) \Gh0 → X1 . . .
hn : (Am × X0 × X1 · · · × Xn−1) \Ghn−1 → Xn

Let Mn = Ghn and Mn(R) = (A ∪ X0 ∪ · · · ∪ Xn; X0,X1, . . .Xn,Mn).

If n is even then:
ā ∈ R ⇐⇒ ∃x0 ∈ X0[(ā, x0) ∈ Gh0 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1[(ā, x0, x1) /∈ Gh1 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1∃x2 ∈ X2[(ā, x0, x1, x2) ∈ Gh2 ] ⇐⇒ . . .

∃x0 ∈ X0∀x1 ∈ X1 . . . ∃xn ∈ Xn[Mn(ā, x0, . . . xn)].
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Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An.

1 For every n construct the n-th Markers’s extensions of An, Rn
1 ,

. . . Rn
mn with disjoint companions.

2 For every n let Mn(An) = Mn(An) ∪Mn(Rn
1) ∪ · · · ∪Mn(Rn

mn ).
3 Set M(~A) to be

⋃
n Mn(An) with one additional predicate for A.

Theorem (Soskov)
For each n ∈ N and every R ⊆ A
R ≤n ~A iff R is relatively intrinsically Σn+1 in M(~A).

Proposition (Vatev)

R is relatively intrinsically Σn+1 in M(~A) iff R is relatively intrinsically
c.e. in M(~A)(n).

Theorem

Pn(~A) ≡M(~A)(n) for every n ∈ N.
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Strong reducibility of structures

Definition
Let A and B be countable structures and A ⊆ B. The structure A is
strong reducible in the structure B : A ≤ B if the following conditions
hold:

1 for each enumeration g of B there is an enumeration f of A, such
that f−1(A) ≤T g−1(B) and

2 the set Eg,f
A is c.e. in g−1(B).

Proposition
If A ≤ B then for all R ⊆ A if R is definable by means of an infinitary
Σc

1 formula in A then R is definable by Σc
1 formula in B
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Strong reducibility of structures

Theorem (Terziivanov)

For every sequence of structures ~A = {Ai}i∈ω, where
Ai = (Ai ; R1,i , . . . ,Rmi ,i) with disjoint domains and each n ∈ N,

Pn(~A) ≤M(~A)(n).

The question here when the opposite is true?
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