Generalization of the notion of jump sequence of sets for sequences of structures

Alexandra Soskova, Stefan Vatev and Alexander Terziivanov¹

Faculty of Mathematics and Computer Science Sofia University

11 June 2015 Panhellenic Logic Symposium Samos, Greece

¹Supported by Sofia University Science Fund, contract 81/03_04.2015

Alexandra Soskova, Stefan Vatev and AlexandGeneralization of the notion of jump sequence

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:

- The notion of "c.e. in" corresponds to the notion of Σ_1 definability;
- **2** The " Σ_{n+1}^{0} in" sets correspond to the sets definable by means of computable infinitary Σ_{n+1} formulae.

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$$X \leq_{e} Y$$
 if for some $e, X = W_{e}(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$$X \leq_e Y$$
 if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Proposition

X is c.e. in *Y* if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$. *X* is computable in *Y* if and only if $X \oplus \overline{X} \leq_e Y \oplus \overline{Y}$.

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}$ for any $X \subseteq A^a$.
- *f*⁻¹(𝔅) = *f*⁻¹(*R*₁) ⊕ · · · ⊕ *f*⁻¹(*R_k*) computes the positive atomic diagram of an isomorphic copy of 𝔅.

We always consider $\mathfrak{A} = (A; R_1, \overline{R}_1, \dots, R_k, \overline{R}_k).$

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}$ for any $X \subseteq A^a$.
- *f*⁻¹(𝔅) = *f*⁻¹(*R*₁) ⊕ · · · ⊕ *f*⁻¹(*R_k*) computes the positive atomic diagram of an isomorphic copy of 𝔅.

We always consider $\mathfrak{A} = (A; R_1, \overline{R}_1, \dots, R_k, \overline{R}_k)$.

Definition

For every $X \subseteq A$ and f, g enumerations of A let

$$E_X^{f,g} = \{ \langle x, y \rangle \mid f(x) = g(y) \in X \}.$$

同下 イヨト イヨト

Relatively intrinsically c.e. in \mathfrak{A} sets

Definition

A set $R \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} if and only if $f^{-1}(R)$ is c.e. in $f^{-1}(\mathfrak{A})$ for every enumeration f of \mathfrak{A} .

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)

A set $R \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} if and only if R is definable in \mathfrak{A} by means of a computable infinitary Σ_1^c formula with parameters.

Sequences of sets of natural numbers

Definition

A sequence of sets of natural numbers $\mathcal{Y} = \{Y_n\}_{n < \omega}$ is *c.e. in* a set $Z \subseteq \mathbb{N}$ if for every *n*, Y_n is c.e. in $Z^{(n)}$ uniformly in *n*.

同下 4 三下 4 三

Sequences of sets of natural numbers

Definition

A sequence of sets of natural numbers $\mathcal{Y} = \{Y_n\}_{n < \omega}$ is *c.e. in* a set $Z \subseteq \mathbb{N}$ if for every *n*, Y_n is c.e. in $Z^{(n)}$ uniformly in *n*.

Theorem (Selman)

Let $X, Y \subseteq \mathbb{N}$. $X \leq_e Y$ if and only if for every Z, if Y is c.e. in Z then X is c.e. in Z.

伺下 イヨト イヨ

Sequences of sets of natural numbers

Definition

A sequence of sets of natural numbers $\mathcal{Y} = \{Y_n\}_{n < \omega}$ is *c.e. in* a set $Z \subseteq \mathbb{N}$ if for every *n*, Y_n is c.e. in $Z^{(n)}$ uniformly in *n*.

Theorem (Selman)

Let $X, Y \subseteq \mathbb{N}$. $X \leq_e Y$ if and only if for every Z, if Y is c.e. in Z then X is c.e. in Z.

Definition

Given a set *X* of natural numbers and a sequence \mathcal{Y} of sets of natural numbers, let $X \leq_n \mathcal{Y}$ if for all sets $Z \subseteq \mathbb{N}$, \mathcal{Y} is c.e. in *Z* implies *X* is Σ_{n+1}^0 in *Z*.

・ロト ・四ト ・ヨト・

The relation \leq_n

Ash presents a characterization of " \leq_n " using computable infinitary propositional sentences. Soskov and Kovachev give another characterization in terms of enumeration reducibility.

Definition

Let $\mathcal{X} = \{X_n\}_{n < \omega}$. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

(i)
$$\mathcal{P}_0(\mathcal{X}) = X_0;$$

(ii)
$$\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})'_e \oplus X_{n+1}$$
.

The relation \leq_n

Ash presents a characterization of " \leq_n " using computable infinitary propositional sentences. Soskov and Kovachev give another characterization in terms of enumeration reducibility.

Definition

Let $\mathcal{X} = \{X_n\}_{n < \omega}$. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

(i)
$$\mathcal{P}_0(\mathcal{X}) = X_0;$$

(ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})'_{\boldsymbol{e}} \oplus X_{n+1}$

Theorem (Soskov)

 $X \leq_n \mathcal{Y}$ if and only if $X \leq_e \mathcal{P}_n(\mathcal{Y})$.

< 回 > < 回 > < 回 >

Now consider a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

< 回 > < 回 > < 回 > -

Now consider a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$ i.e. $f^{-1}(R) \leq_e \mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}}))$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. Denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$ i.e. $f^{-1}(R) \leq_e \mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}}))$.

Theorem (Soskov)

For every sequence of structures $\vec{\mathfrak{A}}$, there exists a structure \mathfrak{M} , such that for each *n*, the relatively intrinsically Σ_{n+1} sets in \mathfrak{M} sets coincide with sets $R \leq_n \vec{\mathfrak{A}}$.

The structure \mathfrak{M} is the Marker's extension of the sequence of structures $\vec{\mathfrak{A}}$.

Equivalent structures

Definition

We call two structures \mathfrak{A} and \mathfrak{B} equivalent: $\mathfrak{A} \equiv \mathfrak{B}$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of \mathfrak{A} and \mathfrak{B} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivalent structures

Definition

We call two structures \mathfrak{A} and \mathfrak{B} equivalent: $\mathfrak{A} \equiv \mathfrak{B}$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of \mathfrak{A} and \mathfrak{B} .

Definition

Given a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_i}_{i < \omega}$ the *n*-th polynomial of $\vec{\mathfrak{A}}$ is a structure $\mathfrak{P}_n(\vec{\mathfrak{A}})$ defined inductively:

•
$$\mathfrak{P}_0(\vec{\mathfrak{A}}) = \mathfrak{A}_0,$$

• $\mathfrak{P}_{n+1}(\vec{\mathfrak{A}}) = \mathfrak{P}_n(\vec{\mathfrak{A}})' \oplus \mathfrak{A}_{n+1}.$

Here the jump of a structure is appropriately defined.

A (1) > A (2) > A (2) > A

Equivalent structures

Definition

We call two structures \mathfrak{A} and \mathfrak{B} equivalent: $\mathfrak{A} \equiv \mathfrak{B}$ if they have the same relatively intrinsically c.e. subsets of the common part of the domains of \mathfrak{A} and \mathfrak{B} .

Definition

Given a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_i}_{i < \omega}$ the *n*-th polynomial of $\vec{\mathfrak{A}}$ is a structure $\mathfrak{P}_n(\vec{\mathfrak{A}})$ defined inductively:

•
$$\mathfrak{P}_0(\mathfrak{A}) = \mathfrak{A}_0,$$

• $\mathfrak{P}_{n+1}(\mathfrak{A}) = \mathfrak{P}_n(\mathfrak{A})' \oplus \mathfrak{A}_{n+1}.$

Here the jump of a structure is appropriately defined.

Theorem

For every sequence of structures $\vec{\mathfrak{A}}$, there exists a structure \mathfrak{M} such that for every *n* we have $\mathfrak{P}_n(\vec{\mathfrak{A}}) \equiv \mathfrak{M}^{(n)}$.

The Moschovakis extension

Let $\mathfrak{A} = (A; R_1, \ldots, R_k).$

- Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$.
- Let $\langle ., . \rangle$ be a pairing function: each element of A_0 is not a pair.
- Let A^* be the least set containing A_0 and closed under $\langle ., . \rangle$.
- $0^* = \overline{0}, (n+1)^* = \langle \overline{0}, n^* \rangle.$ The set of all n^* we denote by N^* .
- The decoding functions: $L(\langle s, t \rangle) = s \& R(\langle s, t \rangle) = t$, $L(\bar{0}) = R(\bar{0}) = 0^* \quad (\forall t \in A)[L(t) = R(t) = 1^*].$

The Moschovakis extension

Let $\mathfrak{A} = (A; R_1, \ldots, R_k).$

- Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$.
- Let $\langle ., . \rangle$ be a pairing function: each element of A_0 is not a pair.
- Let A^* be the least set containing A_0 and closed under $\langle ., . \rangle$.
- $0^* = \overline{0}, (n+1)^* = \langle \overline{0}, n^* \rangle.$ The set of all n^* we denote by N^* .
- The decoding functions: $L(\langle s, t \rangle) = s \& R(\langle s, t \rangle) = t$, $L(\bar{0}) = R(\bar{0}) = 0^* \quad (\forall t \in A)[L(t) = R(t) = 1^*].$

Definition

The Moschovakis extension of \mathfrak{A} is the structure

$$\mathfrak{A}^{\star} = (A^{\star}; A_0, R_1^{\star}, \ldots, R_k^{\star}, G_{\langle .,. \rangle}, G_L, G_R).$$

$$\begin{array}{l} R_i^*(t) \iff (\exists a_1 \in A) \dots (\exists a_{r_i} \in A)(t = \langle a_1, \dots, a_{r_i} \rangle \& \\ R_i(a_1, \dots, a_{r_i})). \end{array}$$

The set $K^{\mathfrak{A}}$

A new predicate $K^{\mathfrak{A}}$ (analogue of Kleene's set). For $e, x \in \mathbb{N}$ and finite part τ , let

$$\tau \Vdash F_{e}(x) \leftrightarrow x \in W_{e}^{\tau^{-1}(\mathfrak{A})}$$
$$\tau \Vdash \neg F_{e}(x) \leftrightarrow (\forall \rho \supseteq \tau)(\rho \nvDash F_{e}(x))$$

$$\mathcal{K}^{\mathfrak{A}} = \{ \langle \delta^*, \boldsymbol{e}^*, \boldsymbol{x}^* \rangle : (\exists \tau \supseteq \delta) (\tau \Vdash \mathcal{F}_{\boldsymbol{e}}(\boldsymbol{x})) \}.$$

$$\mathfrak{A}' = (\mathfrak{A}^{\star}, K^{\mathfrak{A}}), \ \mathfrak{A}^{(n+1)} = (\mathfrak{A}^{(n)})'.$$

Proposition

For every $R \subseteq A$ we have

- R is relatively intrinsically c.e. on 𝔄' iff R is relatively intrinsically Σ₂ on 𝔄.
- *R* is relatively intrinsically c.e. on $\mathfrak{A}^{(n)}$ iff *R* is relatively intrinsically Σ_{n+1} on \mathfrak{A} .

The jump structure \mathfrak{A}'

$$\mathfrak{A}' = (\mathfrak{A}^{\star}, K^{\mathfrak{A}}).$$

Proposition

For every enumeration f of ${\mathfrak A}$ there exists an enumeration g of ${\mathfrak A}',$ such that

2
$$E_A^{f,g}$$
 is c.e. in $(f^{-1}(\mathfrak{A}))'_T$.

Proposition

For every enumeration g of \mathfrak{A}' there exists an enumeration f of $\mathfrak{A},$ such that

$$(f^{-1}(\mathfrak{A}))'_T \leq_{\mathrm{T}} g^{-1}(\mathfrak{A}');$$

$$earrow E_A^{f,g} \text{ is c.e. in } g^{-1}(\mathfrak{A}').$$

The *n*th polynomial of a sequence of structures

Definition

Let $\mathfrak{A} = (A; R_1, \ldots, R_k)$ and $\mathfrak{B} = (B; P_1, \ldots, P_m)$ are structures and $A \cap B = \emptyset$. The join of \mathfrak{A} and \mathfrak{B} we call the structure $\mathfrak{A} \oplus \mathfrak{B} = (A \cup B; A, B, R_1, \ldots, R_k, P_1, \ldots, P_m)$.

Definition

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_i}_{i \in \omega}$ be a sequence of structures with disjoint domains $A_i \cap A_j = \emptyset$ for $i \neq j$. The nth polynomial of $\vec{\mathfrak{A}}$ we call the structure $\mathfrak{P}_n(\vec{\mathfrak{A}})$, defined inductively:

$$\mathfrak{P}_{n+1}(\mathfrak{\vec{\mathfrak{A}}}) = (\mathfrak{P}_n(\mathfrak{\vec{\mathfrak{A}}}))' \oplus \mathfrak{A}_{n+1}.$$

Our goal is to prove that if $\mathfrak{M}(\vec{\mathfrak{A}})$ is the Marker's extension of the sequence $\vec{\mathfrak{A}}$ then

$$(\forall n \in \mathbb{N})(\mathfrak{M}(\mathfrak{A})^{(n)} \equiv \mathfrak{P}_n(\mathfrak{A})).$$

< 回 > < 回 > < 回 > -

The definability in $\mathfrak{P}_n(\vec{\mathfrak{A}})$

If *f* is an enumeration of $\vec{\mathfrak{A}}$ denote by $f^{-1}(\vec{\mathfrak{A}})$ the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}$. Denote by $A_0^n = \bigcup_{i=0}^n A_i$.

Proposition

For every enumeration f of $\vec{\mathfrak{A}}$ and each $n \in \mathbb{N}$ there exists an enumeration g of $\mathfrak{P}_n(\vec{\mathfrak{A}})$ such that:

■
$$g^{-1}(\mathfrak{P}_n(\vec{\mathfrak{A}})) \leq_{\mathrm{T}} \mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}})),$$

■ $E_{\mathcal{A}_n^n}^{f,g}$ is c.e. in $\mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}})).$

Proposition

For every enumeration g of $\mathfrak{P}_n(\vec{\mathfrak{A}})$ there exists an enumeration f of the set A_0^n such that:

•
$$\mathcal{P}_n(f^{-1}(\vec{\mathfrak{A}})) \leq_{\mathrm{T}} g^{-1}(\mathfrak{P}_n(\vec{\mathfrak{A}})),$$

• $E_{\mathcal{A}_n^n}^{g,f}$ is c.e. in $g^{-1}(\mathfrak{P}_n(\vec{\mathfrak{A}})).$

The connection between \leq_n and $\mathfrak{P}_n(\vec{\mathfrak{A}})$

Theorem

Let $n \in \mathbb{N}$ and $R \subseteq \bigcup_{i=0}^{n} A_i$. The following equivalence is true: *R* is relatively intrinsically c.e. in $\mathfrak{P}_n(\mathfrak{A}) \iff R \leq_n \mathfrak{A}$.

Marker's extensions Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Alexandra Soskova, Stefan Vatev and AlexandGeneralization of the notion of jump sequence

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then:

 $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$

一日

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$

通 ト イ ヨ ト イ ヨ ト

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$

э

伺 ト イ ヨ ト イ ヨ ト ー

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n[M_n(\bar{a}, x_0, \dots x_n)].$

Marker's extensions Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

Alexandra Soskova, Stefan Vatev and AlexandGeneralization of the notion of jump sequence

э

イロト イポト イヨト イヨト

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

• For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n \}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n \}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n \}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Theorem (Soskov)

For each $n \in \mathbb{N}$ and every $R \subseteq A$ $R \leq_n \vec{\mathfrak{A}}$ iff R is relatively intrinsically Σ_{n+1} in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Theorem (Soskov)

For each $n \in \mathbb{N}$ and every $R \subseteq A$ $R \leq_n \vec{\mathfrak{A}}$ iff R is relatively intrinsically Σ_{n+1} in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Proposition (Vatev)

R is relatively intrinsically Σ_{n+1} in $\mathfrak{M}(\mathfrak{A})$ iff *R* is relatively intrinsically *c.e.* in $\mathfrak{M}(\mathfrak{A})^{(n)}$.

Theorem

$$\mathfrak{P}_n(\vec{\mathfrak{A}}) \equiv \mathfrak{M}(\vec{\mathfrak{A}})^{(n)}$$
 for every $n \in \mathbb{N}$.

Strong reducibility of structures

Definition

Let \mathfrak{A} and \mathfrak{B} be countable structures and $A \subseteq B$. The structure \mathfrak{A} is *strong reducible* in the structure $\mathfrak{B} : \mathfrak{A} \leq \mathfrak{B}$ if the following conditions hold:

• for each enumeration g of \mathfrak{B} there is an enumeration f of \mathfrak{A} , such that $f^{-1}(\mathfrak{A}) \leq_{\mathrm{T}} g^{-1}(\mathfrak{B})$ and

2 the set
$$E_A^{g,f}$$
 is c.e. in $g^{-1}(\mathfrak{B})$.

Proposition

If $\mathfrak{A} \leq \mathfrak{B}$ then for all $R \subseteq A$ if R is definable by means of an infinitary Σ_1^c formula in \mathfrak{A} then R is definable by Σ_1^c formula in \mathfrak{B}

Image: A image: A

Strong reducibility of structures

Theorem (Terziivanov)

For every sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_i}_{i \in \omega}$, where $\mathfrak{A}_i = (A_i; R_{1,i}, \dots, R_{m_i,i})$ with disjoint domains and each $n \in \mathbb{N}$,

 $\mathfrak{P}_n(\mathfrak{A}) \leq \mathfrak{M}(\mathfrak{A})^{(n)}.$

The question here when the opposite is true?

C. Ash, J. Knight, M. Manasse, T. Slaman Generic copies of countable structures. *Annals of Pure and Applied Logic* bf 42 (1989), 195 - 205.

🔋 J. Chisholm

Effective model theory vs. recursive model theory. The Journal of Symbolic Logic bf 55 (1990), no. 3, 1168 - 1191.

🔋 I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, 23 (6), (2013) 1335–1367.

🔒 A. A. Terziivanov

Some applications of effective properties of Marker's Extensions. Master thesis, Sofia university, 2014.

S. Vatev

Conservative Extensions of Abstract Structures. Lecture Notes in Computer Science, **6735**, CiE2011, 300 - 309.

A (1) > A (1) > A