A parallel between classical computability theory and effective definability in abstract structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science
Sofia University

July 2014

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:
(1) The notion of "c.e. in" corresponds to the notion of Σ_{1} definability;
(2) The Σ_{n+1}^{0} sets correspond to the sets definable by means of computable Σ_{n+1} formulae.

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$X \leq_{e} Y$ if for some $e, X=W_{e}(Y)$, i.e.

$$
(\forall x)\left(x \in X \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \wedge D_{v} \subseteq Y\right)\right) .
$$

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$X \leq_{e} Y$ if for some $e, X=W_{e}(Y)$, i.e.

$$
(\forall x)\left(x \in X \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \wedge D_{v} \subseteq Y\right)\right)
$$

Proposition

X is c.e. in Y if and only if $X \leq_{e} Y \oplus \bar{Y}=Y^{+}$.

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$X \leq_{e} Y$ if for some $e, X=W_{e}(Y)$, i.e.

$$
(\forall x)\left(x \in X \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \wedge D_{v} \subseteq Y\right)\right)
$$

Proposition

X is c.e. in Y if and only if $X \leq_{e} Y \oplus \bar{Y}=Y^{+}$.
Given a set A can we find a set M such that $X \leq_{e} A$ if and only if X is c.e. in M?

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

$X \leq_{e} Y$ if for some $e, X=W_{e}(Y)$, i.e.

$$
(\forall x)\left(x \in X \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \wedge D_{v} \subseteq Y\right)\right)
$$

Proposition

X is c.e. in Y if and only if $X \leq_{e} Y \oplus \bar{Y}=Y^{+}$.
Given a set A can we find a set M such that $X \leq_{e} A$ if and only if X is c.e. in M ?

There are sets A which are not enumeration equivalent to any set of the form $M \oplus \bar{M}$, so the answer is "No".

Abstract structures

Let $\mathfrak{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in X\right\}$ for any $X \subseteq A^{a}$.
- $f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)$ computes the positive atomic diagram of an isomorphic copy of \mathfrak{A}.

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in $\mathfrak{A}(X$ c.e. in $\mathfrak{A})$ if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

Abstract structures

Let $\mathfrak{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in X\right\}$ for any $X \subseteq A^{a}$.
- $f^{-1}(\mathfrak{R})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)$ computes the positive atomic diagram of an isomorphic copy of \mathfrak{A}.

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in $\mathfrak{A}(X$ c.e. in $\mathfrak{A})$ if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

By Ash, Knight, Manasse, Slaman and independantly Chisholm we have that X is c.e. in \mathfrak{A} if and only if X is definable in \mathfrak{A} by means of a computable infinitary Σ_{1} formula with parameters.

Relatively intrinsically enumeration reducible

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $\left(X \leq_{e} \mathfrak{A}\right.$) if for every enumeration f of $\mathfrak{A}, f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

Relatively intrinsically enumeration reducible

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $\left(X \leq_{e} \mathfrak{A}\right)$ if for every enumeration f of $\mathfrak{A}, f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.
$X \leq_{e} \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_{1} formula with parameters.

Relatively intrinsically enumeration reducible

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $\left(X \leq_{e} \mathfrak{A}\right)$ if for every enumeration f of $\mathfrak{A}, f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.
$X \leq_{e} \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_{1} formula with parameters.
Given a structure $\mathfrak{A}=\left(A ; R_{1}, \ldots R_{n}\right)$ let $\mathfrak{A}^{+}=\left(A ; R_{1}, \overline{R_{1}}, \ldots R_{n}, \overline{R_{n}}\right)$.

Proposition

For every $X \subseteq A, X$ c.e. in \mathfrak{A} if and only if $X \leq_{e} \mathfrak{A}^{+}$.

Relatively intrinsically enumeration reducible

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} ($X \leq_{e} \mathfrak{A}$) if for every enumeration f of $\mathfrak{A}, f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.
$X \leq_{e} \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_{1} formula with parameters.
Given a structure $\mathfrak{A}=\left(A ; R_{1}, \ldots R_{n}\right)$ let $\mathfrak{A}^{+}=\left(A ; R_{1}, \overline{R_{1}}, \ldots R_{n}, \overline{R_{n}}\right)$.

Proposition

For every $X \subseteq A, X$ c.e. in \mathfrak{A} if and only if $X \leq_{e} \mathfrak{A}^{+}$.
Question (1.)
Given a structure \mathfrak{A}, does there exist a structure \mathfrak{M}, such that for all $R \subseteq|\mathfrak{A}|, R \leq_{e} \mathfrak{A}$ if and only if R is relatively intrinsically Σ_{1} in \mathfrak{M} ?

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

$X \leq_{e} A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

$X \leq_{e} A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition

(i) Given a set X of natural numbers and a sequence \mathcal{Y} of sets of natural numbers, let $X \leq_{n} \mathcal{Y}$ if for all sets B, \mathcal{Y} is c.e. in B implies X is Σ_{n+1}^{0} in B;
(ii) Given sequences \mathcal{X} and \mathcal{Y} of sets of natural numbers, say that \mathcal{X} is ω-enumeration reducible to $\mathcal{Y}\left(\mathcal{X} \leq_{\omega} \mathcal{Y}\right)$ if for all sets B, \mathcal{Y} is c.e. in B implies \mathcal{X} is c.e. in B.

Sequences of sets

Ash presents a characterization of " \leq_{n} " and " \leq_{ω} " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X})=\left\{\mathcal{P}_{n}(\mathcal{X})\right\}_{n<\omega}$ of \mathcal{X} is defined by induction:
(i) $\mathcal{P}_{0}(\mathcal{X})=X_{0}$;
(ii) $\mathcal{P}_{n+1}(\mathcal{X})=\mathcal{P}_{n}(\mathcal{X})^{\prime} \oplus X_{n+1}$.

Sequences of sets

Ash presents a characterization of " \leq_{n} " and " \leq_{ω} " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X})=\left\{\mathcal{P}_{n}(\mathcal{X})\right\}_{n<\omega}$ of \mathcal{X} is defined by induction:
(i) $\mathcal{P}_{0}(\mathcal{X})=X_{0}$;
(ii) $\mathcal{P}_{n+1}(\mathcal{X})=\mathcal{P}_{n}(\mathcal{X})^{\prime} \oplus X_{n+1}$.

Theorem (Soskov)

(1) $X \leq_{n} \mathcal{Y}$ if and only if $X \leq_{e} \mathcal{P}_{n}(\mathcal{Y})$.
(2) $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_{n} \leq_{e} \mathcal{P}_{n}(\mathcal{Y})$ uniformly in n.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$. $f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_{n} \overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $f^{-1}(R) \leq_{n} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to R is definable by a computable infinitary formula Σ_{n+1}^{+}with predicates only from the first n structures, such that the predicates for the k-th appear for the first time at level $k+1$ positively.

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$. $f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$. $f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

A sequence $\left\{Y_{n}\right\}$ of subsets of A is (relatively intrinsically) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $\left\{f^{-1}\left(Y_{n}\right)\right\} \leq_{\omega} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

A sequence $\left\{Y_{n}\right\}$ of subsets of A is (relatively intrinsically) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $\left\{f^{-1}\left(Y_{n}\right)\right\} \leq_{\omega} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to Y_{n} is uniformly in n definable by a computable Σ_{n+1}^{+}formula: a computable infinitary formula with predicates only from the first n structures, such that the predicates for the k-th appear for the first time at level $k+1$ positively.

Questions 2. and 3.

Question (2.)

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$, does there exist a structure \mathfrak{M}, such that the Σ_{n+1} definable in \mathfrak{M} sets coincide with sets $R \leq_{n} \mathfrak{\mathfrak { A }}$?

Question (3.)

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$, does there exist a structure \mathfrak{M}, such that for every sequence \mathcal{X} of subsets of $A=\bigcup_{n} A_{n}$, $\mathcal{X} \leq_{\omega} \mathfrak{A}$ if and only if \mathcal{X} c.e. in \mathfrak{M} ? Here \mathcal{X} c.e. in \mathfrak{M} if for each enumeration f of $\mathfrak{M}, f^{-1}\left(X_{n}\right)$ is c.e. in $f^{-1}(\mathfrak{M})^{(n)}$ uniformly in n .

Joint Spectra

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A})=\left\{\mathbf{a} \mid(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}$.

Joint Spectra

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A})=\left\{\mathbf{a} \mid(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}$. The k-th jump spectrum of \mathfrak{A} is the $\operatorname{set}_{\operatorname{Sp}_{k}(\mathfrak{A})}=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A})\right\}$.

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\begin{array}{ll}
\operatorname{JSp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots,\right. & \left.\mathfrak{A}_{n}\right)= \\
& \left\{\mathbf{a}: \mathbf{a} \in \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in \operatorname{Sp}\left(\mathfrak{A}_{n}\right)\right\} .
\end{array}
$$

Joint Spectra

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A})=\left\{\mathbf{a} \mid(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}$. The k-th jump spectrum of \mathfrak{A} is the set $\operatorname{Sp}_{k}(\mathfrak{A})=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A})\right\}$.

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\begin{array}{ll}
\operatorname{JSp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots,\right. & \left.\mathfrak{A}_{n}\right)= \\
& \left\{\mathbf{a}: \mathbf{a} \in \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in \operatorname{Sp}\left(\mathfrak{A}_{n}\right)\right\} .
\end{array}
$$

Proposition

The joint spectrum of $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ is the set
$\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\left(\exists\left\{f_{k}\right\}_{k \leq n}\right)(\forall k \leq n)\left(f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right.\right.$ is c.e. in $\left.\left.B^{(k)}\right)\right\}$.

Co-spectra of structures

Definition

Let \mathfrak{A} be a countable structure and $k \in \mathbb{N}$. The k-th co-spectrum of \mathfrak{A} is the set

$$
\operatorname{CoSp}_{k}(\mathfrak{A l})=\left\{\mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{e} \wedge\left(\forall \mathbf{b} \in \operatorname{Sp}_{k}(\mathfrak{A})\right)\left(\mathbf{a} \leq_{e} \mathbf{b}\right)\right\} .
$$

Definition

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of structures.
The k-th co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{e} \mathbf{x}\right)\right\},
$$

where

$$
\operatorname{JSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{JSp}(\overrightarrow{\mathfrak{A}})\right\} .
$$

Co-spectra of Joint spectra of structures

Proposition

For any set $X \subseteq \mathbb{N}$ the following equivalence holds

$$
d_{e}(X) \in \operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}}) \Longleftrightarrow \quad X \leq_{e} \mathcal{P}_{k}\left(\vec{f}_{\rightarrow}^{-1}(\overrightarrow{\mathfrak{A}})\right) \text { for every }
$$

sequence $\vec{f}=\left\{f_{k}\right\}_{k \leq n}$ of enumerations of $\overrightarrow{\mathfrak{A}}$

Proposition

 $d_{e}(X) \in \operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}})$ iff there exists a computable sequence of Σ_{k+1}^{+} formulae $\left\{\Phi^{\gamma(x)}\left(W_{1}, \ldots, W_{r}\right)\right\}$ and parameters t_{1}, \ldots, t_{r} s.t.: $x \in X \Longleftrightarrow(\overrightarrow{\mathfrak{A}}) \models \Phi^{\gamma(x)}\left(W_{1} / t_{1}, \ldots, W_{r} / t_{r}\right)$.
Relative Spectra of Structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_{k} A_{k}$.

Definition

The relative spectrum of $\overrightarrow{\mathfrak{A}}$ is
$\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid(\exists f\right.$ enumeration of $A)(\forall k \leq n)\left(f^{-1}\left(\mathfrak{A}_{k}\right)\right.$ is c.e. in $\left.B^{(k)}\right)$ where $f^{-1}\left(\mathfrak{A}_{k}\right)=f^{-1}\left(A_{k}\right) \oplus f^{-1}\left(R_{1}^{k}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{k}}^{k}\right)$.

Relative Spectra of Structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_{k} A_{k}$.

Definition

The relative spectrum of $\overrightarrow{\mathfrak{A}}$ is
$\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid(\exists f\right.$ enumeration of $A)(\forall k \leq n)\left(f^{-1}\left(\mathfrak{A}_{k}\right)\right.$ is c.e. in $\left.B^{(k)}\right)$ where $f^{-1}\left(\mathfrak{A}_{k}\right)=f^{-1}\left(A_{k}\right) \oplus f^{-1}\left(R_{1}^{k}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{k}}^{k}\right)$.
The k-th jump spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{RSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\right\} .
$$

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the following set of enumeration degrees:

$$
\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{b} \in \mathcal{D}_{e} \mid(\forall \mathbf{a} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a})\right\}
$$

Proposition

For every $X \subseteq \mathbb{N}$, the following are equivalent:
(1) $d_{\mathrm{e}}(X) \in \operatorname{CoRSp}_{k}(\overrightarrow{\mathfrak{A}})$.
(2) $X \leq_{\mathrm{e}} \mathcal{P}_{k}\left(f^{-1}(\overrightarrow{\mathfrak{A}})\right)$, for every enumeration f of A.
(3) there exists a computable sequence of Σ_{k+1}^{+}formulae $\left\{\Phi^{\gamma(x)}\left(W_{1}, \ldots, W_{r}\right)\right\}$ and parameters t_{1}, \ldots, t_{r} from A s.t.: $x \in X \Longleftrightarrow(\overrightarrow{\mathfrak{A}}) \models \Phi^{\gamma(x)}\left(W_{1} / t_{1}, \ldots, W_{r} / t_{r}\right)$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.
However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.
However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Example: Let $\mathfrak{A}_{0}=(\mathbb{N}, L, R), L(\langle i, j\rangle,\langle i+1, j\rangle), R(\langle i, j\rangle,\langle i, j+1\rangle)$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Example: Let $\mathfrak{A}_{0}=(\mathbb{N}, L, R), L(\langle i, j\rangle,\langle i+1, j\rangle), R(\langle i, j\rangle,\langle i, j+1\rangle)$.
Let M be a set which is Σ_{3}^{0}, but not Σ_{2}^{0}. Fix an enumeration of the elements of $M, M=\left\{j_{0}, \ldots, j_{i}, \ldots\right\}$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Example: Let $\mathfrak{A}_{0}=(\mathbb{N}, L, R), L(\langle i, j\rangle,\langle i+1, j\rangle), R(\langle i, j\rangle,\langle i, j+1\rangle)$. Let M be a set which is Σ_{3}^{0}, but not Σ_{2}^{0}. Fix an enumeration of the elements of $M, M=\left\{j_{0}, \ldots, j_{i}, \ldots\right\}$.
Finally let $\mathfrak{A}_{1}=(\mathbb{N}, P)$, where $P\left(\left\langle i, j_{i}\right\rangle\right) \Longleftrightarrow j_{i} \in M$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Example: Let $\mathfrak{A}_{0}=(\mathbb{N}, L, R), L(\langle i, j\rangle,\langle i+1, j\rangle), R(\langle i, j\rangle,\langle i, j+1\rangle)$. Let M be a set which is Σ_{3}^{0}, but not Σ_{2}^{0}. Fix an enumeration of the elements of $M, M=\left\{j_{0}, \ldots, j_{i}, \ldots\right\}$.
Finally let $\mathfrak{A}_{1}=(\mathbb{N}, P)$, where $P\left(\left\langle i, j_{i}\right\rangle\right) \Longleftrightarrow j_{i} \in M$.

- $d_{e}(M) \notin \operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Example: Let $\mathfrak{A}_{0}=(\mathbb{N}, L, R), L(\langle i, j\rangle,\langle i+1, j\rangle), R(\langle i, j\rangle,\langle i, j+1\rangle)$. Let M be a set which is Σ_{3}^{0}, but not Σ_{2}^{0}. Fix an enumeration of the elements of $M, M=\left\{j_{0}, \ldots, j_{i}, \ldots\right\}$.
Finally let $\mathfrak{A}_{1}=(\mathbb{N}, P)$, where $P\left(\left\langle i, j_{i}\right\rangle\right) \Longleftrightarrow j_{i} \in M$.

- $d_{e}(M) \notin \operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$.
- $d_{e}(M) \in \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$, since if $t_{0}=\langle 0,0\rangle$,

$$
\begin{aligned}
j \in & M \Longleftrightarrow \exists Y_{0} \ldots \exists Y_{i} \exists Z_{0} \ldots \exists Z_{j}\left(Y_{0}=t_{0} \& L\left(Y_{0}, Y_{1}\right) \& \ldots \&\right. \\
& \left.L\left(Y_{i-1}, Y_{i}\right) \& Y_{i}=Z_{0} \& R\left(Z_{0}, Z_{1}\right) \& \ldots \& R\left(Z_{j-1}, Z_{j}\right) \& P\left(Z_{j}\right)\right) .
\end{aligned}
$$

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{aligned}
\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & \left(\exists\left\{f_{n}\right\}_{n<\omega} \text { enumerations of } \overrightarrow{\mathfrak{A}}\right) \\
& \left.(\forall n)\left(f_{n}^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{aligned}
$$

where $f_{n}^{-1}\left(\mathfrak{A}_{n}\right)=f_{n}^{-1}\left(A_{n}\right) \oplus f_{n}^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f_{n}^{-1}\left(R_{m_{n}}^{n}\right)$.

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{aligned}
\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & \left(\exists\left\{f_{n}\right\}_{n<\omega} \text { enumerations of } \overrightarrow{\mathfrak{A}}\right) \\
& \left.(\forall n)\left(f_{n}^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{aligned}
$$

where $f_{n}^{-1}\left(\mathfrak{A}_{n}\right)=f_{n}^{-1}\left(A_{n}\right) \oplus f_{n}^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f_{n}^{-1}\left(R_{m_{n}}^{n}\right)$.
The n-th jump spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{JSp}_{n}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(n)} \mid \mathbf{a} \in \operatorname{JSp}(\overrightarrow{\mathfrak{A}})\right\}
$$

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{array}{ll}
\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & \left(\exists\left\{f_{n}\right\}_{n<\omega} \text { enumerations of } \overrightarrow{\mathfrak{A}}\right) \\
& \left.(\forall n)\left(f_{n}^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{array}
$$

where $f_{n}^{-1}\left(\mathfrak{A}_{n}\right)=f_{n}^{-1}\left(A_{n}\right) \oplus f_{n}^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f_{n}^{-1}\left(R_{m_{n}}^{n}\right)$.
The n-th jump spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{JSp}_{n}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(n)} \mid \mathbf{a} \in \operatorname{JSp}(\overrightarrow{\mathfrak{A}})\right\} .
$$

[^0]
Spectra of sequences of structures

Let $A=\bigcup_{n} A_{n}$.

Definition

The Relative spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{array}{ll}
\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & (\exists f \text { enumeration of } A) \\
& \left.(\forall n)\left(f^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{array}
$$

where $f^{-1}\left(\mathfrak{A}_{n}\right)=f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)$.

Spectra of sequences of structures

Let $A=\bigcup_{n} A_{n}$.

Definition

The Relative spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{array}{ll}
\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & (\exists f \text { enumeration of } A) \\
& \left.(\forall n)\left(f^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{array}
$$

where $f^{-1}\left(\mathfrak{A}_{n}\right)=f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)$.
The n-th relative spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{RSp}_{n}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(n)} \mid \mathbf{a} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\right\}
$$

Spectra of sequences of structures

Let $A=\bigcup_{n} A_{n}$.

Definition

The Relative spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{array}{ll}
\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & (\exists f \text { enumeration of } A) \\
& \left.(\forall n)\left(f^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{array}
$$

where $f^{-1}\left(\mathfrak{A}_{n}\right)=f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)$.
The n-th relative spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{RSp}_{n}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(n)} \mid \mathbf{a} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\right\}
$$

Omega enumeration co-spectra

Definition

The ω-enumeration relative Co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{\omega} \mathbf{x}\right)\right\}
$$

Omega enumeration co-spectra

Definition

The ω-enumeration relative Co -spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{\omega} \mathbf{x}\right)\right\} .
$$

For any enumeration f of A denote by $f^{-1}(\overrightarrow{\mathfrak{A}})=\left\{f^{-1}\left(\mathfrak{A}_{n}\right)\right\}_{n<\omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$: $d_{\omega}(\mathcal{X}) \in \operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega}\left\{\mathcal{P}_{k}\left(f^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}_{k<\omega}$, for every enumeration f of A.

Omega enumeration co-spectra

Definition

The ω-enumeration relative Co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{\omega} \mathbf{x}\right)\right\}
$$

For any enumeration f of A denote by $f^{-1}(\overrightarrow{\mathfrak{A}})=\left\{f^{-1}\left(\mathfrak{A}_{n}\right)\right\}_{n<\omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$: $d_{\omega}(\mathcal{X}) \in \operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega}\left\{\mathcal{P}_{k}\left(f^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}_{k<\omega}$, for every enumeration f of A.

Proposition

$d_{\omega}(\mathcal{X}) \in \operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})$ iff there exists a computable sequence $\left\{\Phi^{\gamma(n, x)}\left(W_{1}, \ldots, W_{r}\right)\right\}$ of Σ_{n+1}^{+}formulae and elements t_{1}, \ldots, t_{r} of A s.t.: $x \in X_{n} \Longleftrightarrow(\overrightarrow{\mathfrak{A}}) \models \Phi^{\gamma(n, x)}\left(W_{1} / t_{1}, \ldots, W_{r} / t_{r}\right)$.

The Question 4.

Question (4.)

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$,
(1) does there exist a structure \mathfrak{M}, such that $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}(\mathfrak{M})$?
(2) does there exist a structure \mathfrak{M}, such that $\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}(\mathfrak{M})$?

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \exists x_{2} \in X_{2}\left[\left(\bar{a}, x_{0}, x_{1}, x_{2}\right) \in G_{h_{2}}\right] \Longleftrightarrow \ldots$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$.
Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \exists x_{2} \in X_{2}\left[\left(\bar{a}, x_{0}, x_{1}, x_{2}\right) \in G_{h_{2}}\right] \Longleftrightarrow \ldots$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \ldots \exists x_{n} \in X_{n}\left[M_{n}\left(\bar{a}, x_{0}, \ldots x_{n}\right)\right]$.

Marker's extensions

$$
\begin{aligned}
& \text { For } \mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right) \text { and } \mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right) \text { let } \\
& \mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right) \text {. }
\end{aligned}
$$

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.
(3) Set $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ to be $\bigcup_{n} \mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)$ with one additional predicate for A.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.
(3) Set $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ to be $\bigcup_{n} \mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)$ with one additional predicate for A.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ there is an enumeration g of $\overrightarrow{\mathfrak{A}}$:
(1) $\mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \leq_{e}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(n)}$ uniformly in n;
(2) $\bigoplus_{n} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \leq_{T}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(\omega)}$.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ there is an enumeration g of $\overrightarrow{\mathfrak{A}}$:
(1) $\mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{l}})\right) \leq_{e}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(n)}$ uniformly in n;
(2) $\oplus_{n} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \leq_{T}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(\omega)}$.

Theorem

Let g be an enumeration of $\overrightarrow{\mathfrak{A}}$ and $\mathcal{Y} \not \not_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$:
(1) $\oplus_{n} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \equiv_{e}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))\right)^{(\omega)}$.
(2) \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{l}}))$.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ there is an enumeration g of $\overrightarrow{\mathfrak{A}}$:
(1) $\mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \leq_{e}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(n)}$ uniformly in n;
(2) $\oplus_{n} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \leq_{T}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))^{+}\right)^{(\omega)}$.

Theorem

Let g be an enumeration of $\overrightarrow{\mathfrak{A}}$ and $\mathcal{Y} \not \not_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$:
(1) $\oplus_{n} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right) \equiv_{e}\left(f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{A}}))\right)^{(\omega)}$.
(2) \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\overrightarrow{\mathfrak{l}}))$.

Theorem

A sequence \mathcal{Y} of subsets of A is (r.i.) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if and only if \mathcal{Y} is (r.i) c.e. in $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.

Generalized Goncharov and Khoussainov Lemma

Proposition

Let $n \geq 0$ and R be a $\sum_{n+1}^{0}(B)$ set with an infinite computable subset. Then there exists bijections k_{0}, \ldots, k_{n} such that the graph of k_{n} is computable in B, uniformly in an index for R and n and $k_{0}: R \rightarrow \mathbb{N}$.
$k_{1}: \mathbb{N}^{2} \backslash G_{k_{0}} \rightarrow \mathbb{N} \ldots$ $k_{n}: \mathbb{N}^{n+1} \backslash G_{k_{n-1}} \rightarrow \mathbb{N}$.

Lemma (Soskov, M. Soskova)
Let R be $\Sigma_{2}^{0}(X)$ and $S \subseteq R$ be infinite and computable. There exists a bijection $k: R \rightarrow \mathbb{N}$ such that $\mathbb{N}^{2} \backslash G_{k}$ is $\Sigma_{1}^{0}(X)$ and has an infinite computable subset.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Example

Let $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ be a seq. of sets. Dfeine $\overrightarrow{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$;
- $\mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$ for $n \geq 1$.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Example

Let $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ be a seq. of sets. Dfeine $\overrightarrow{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$;
- $\mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$ for $n \geq 1$.

Since every enumeration g of $\overrightarrow{\mathfrak{A}}$ is computable from $g^{-1}\left(G_{s}\right)$, we have that $\mathcal{P}_{n}(\mathcal{R}) \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)$ uniformly in n.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Example

Let $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ be a seq. of sets. Dfeine $\overrightarrow{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$;
- $\mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$ for $n \geq 1$.

Since every enumeration g of $\overrightarrow{\mathfrak{A}}$ is computable from $g^{-1}\left(G_{s}\right)$, we have that $\mathcal{P}_{n}(\mathcal{R}) \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)$ uniformly in n.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid \mathcal{Y} \leq_{\omega} \mathcal{R}\right\}$.

Example: continued

Definition

The least element of $\mathrm{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example: continued

Definition

The least element of $\operatorname{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_{e}$ and first co-degree $\mathbf{0}_{e}^{\prime}$ but not always a degree or a jump degree.

Example: continued

Definition

The least element of $\mathrm{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_{\boldsymbol{e}}$ and first co-degree $\mathbf{0}_{e}^{\prime}$ but not always a degree or a jump degree.

- $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.

Example: continued

Definition

The least element of $\mathrm{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_{\boldsymbol{e}}$ and first co-degree $\mathbf{0}_{e}^{\prime}$ but not always a degree or a jump degree.

- $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.

Consider the almost zero sequence \mathcal{R} :

Example: continued

Definition

The least element of $\operatorname{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_{e}$ and first co-degree $\mathbf{0}_{e}^{\prime}$ but not always a degree or a jump degree.

- $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.

Consider the almost zero sequence \mathcal{R} :
(1) $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_{e}^{(n)}$.

Example: continued

Definition

The least element of $\mathrm{Sp}_{n}(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M}. The greatest element of $\operatorname{CoSp}_{n}(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M}.

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_{e}$ and first co-degree $\mathbf{0}_{e}^{\prime}$ but not always a degree or a jump degree.

- $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.

Consider the almost zero sequence \mathcal{R} :
(1) $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_{e}^{(n)}$.
(2) $\mathcal{R} \not \not_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$. Hence \mathfrak{M} has no n-th jump degree for any n.

The positive answers of Soskov for the questions

 Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}, A=\bigcup_{n}\left|\mathfrak{A}_{n}\right|$ and $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ the Marker's extension of $\overrightarrow{\mathfrak{A}}$.
Theorem

For every structure $\mathfrak{A}, R \subseteq|\mathfrak{A}|, R \leq_{e} \mathfrak{A}$ if and only if R is relatively intrinsically Σ_{1} in \mathfrak{M}. Take $\mathfrak{A}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ where $\mathfrak{A}_{0}=\mathfrak{A}$ and $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.

Theorem

For every $R \subseteq A, R \leq_{n} \overrightarrow{\mathfrak{A}} \Longleftrightarrow R$ is relatively intrinsically Σ_{n+1} in \mathfrak{M}.

Theorem

For every sequence \mathcal{R} of subsets of $A, \mathcal{R} \leq_{\omega} \overrightarrow{\mathfrak{A}} \Longleftrightarrow \mathcal{R} \leq_{\text {c.e. }} \mathfrak{M}$.
Theorem
(1) There is a structure \mathfrak{M}_{1} with $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}\left(\mathfrak{M}_{1}\right)$.
(2) There is a structure \mathfrak{M}_{2} with $\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}\left(\mathfrak{M}_{2}\right)$.

Degree structures

- The enumeration degree of set X is $d_{e}(X)=\left\{Y \mid X \equiv_{e} Y\right\}$.

The structure of the enumeration degrees \mathcal{D}_{e} is an upper semi-lattice with jump operation.
The Turing degrees are embedded in to the enumeration degrees by: $\iota\left(d_{T}(X)\right)=d_{e}\left(X^{+}\right)$.

- This embedding agrees with the jump operation since $\left(K^{X}\right)^{+} \equiv_{e}\left(X^{+}\right)^{\prime}$.

Degree structures

- The ω-enumeration degree of a sequence \mathcal{X} is $d_{\omega}(\mathcal{X})=\left\{\mathcal{Y}=\left\{Y_{n}\right\}_{n<\omega} \mid \mathcal{X} \equiv_{\omega} \mathcal{Y}\right\}$
The structure of the ω-enumeration degrees \mathcal{D}_{ω} is an upper semi-lattice with jump operation.
The enumeration degrees are embedded in to the ω-enumeration degrees by: $\kappa\left(d_{e}(X)\right)=d_{\omega}\left(\left\{X^{(n)}\right\}_{n<\omega}\right)$.
$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$
- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.

$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \not \leq_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.

$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \not \leq_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.

To make $\mathcal{R} \not Z_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq\left\{W_{e}^{[n]}\left(\emptyset^{(n)}\right)\right\}_{n<\omega}$, where $W_{e}^{[n]}$ is the n-th column of W_{e}.

$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \not \not_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.

To make $\mathcal{R} \not Z_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq\left\{W_{e}^{[n]}\left(\emptyset^{(n)}\right)\right\}_{n<\omega}$, where $W_{e}^{[n]}$ is the n-th column of W_{e}.

$$
R_{n}= \begin{cases}\{1\}, & \text { if } 0 \in W_{n}^{[n]}\left(\emptyset^{(n)}\right) \\ \{0\}, & \text { otherwise }\end{cases}
$$

this property are called almost zero.

$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \not \not_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.

To make $\mathcal{R} \not Z_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq\left\{W_{e}^{[n]}\left(\emptyset^{(n)}\right)\right\}_{n<\omega}$, where $W_{e}^{[n]}$ is the n-th column of W_{e}.

$$
R_{n}= \begin{cases}\{1\}, & \text { if } 0 \in W_{n}^{[n]}\left(\emptyset^{(n)}\right) \\ \{0\}, & \text { otherwise }\end{cases}
$$

this property are called almost zero.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure \vec{A} obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that

$$
\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}}) \text { is c.e. in } B\right)\right\} .
$$

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq \omega g^{-1}(\overrightarrow{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that

$$
\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}}) \text { is c.e. in } B\right)\right\} .
$$

- $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid \mathcal{R}\right.$ is c.e. in $\left.B\right\}$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that

$$
\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}}) \text { is c.e. in } B\right)\right\} .
$$

- $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid \mathcal{R}\right.$ is c.e. in $\left.B\right\}$.

Then

$$
\begin{aligned}
& \quad \mathcal{R} \leq_{\omega} \mathcal{X} \\
& \left\{d_{T}(B) \mid \mathcal{R} \text { is c.e. in } B\right\} \supseteq\left\{d_{T}(B) \mid \mathcal{X} \text { is c.e. in } B\right\} \\
& \\
& \operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right) \supseteq \operatorname{Sp}\left(\mathfrak{M}_{\mathcal{X}}\right) \\
& \text { Let } \mu\left(d_{\omega}(\mathcal{R})\right)=\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right) .
\end{aligned}
$$

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$
Apply this to the sequence $\overrightarrow{\mathfrak{A}}$, where \mathfrak{A}_{n} is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$
Apply this to the sequence $\overrightarrow{\mathfrak{A}}$, where \mathfrak{A}_{n} is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)
There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M})=\left\{\mathbf{b} \mid \forall n\left(\mathbf{b}^{(n)}>\mathbf{0}^{(n)}\right)\right\}$.

國 A. A. Soskova and I. N. Soskov
Co-spectra of joint spectra of structures.
Ann. Univ. Sofia, 96 (2004) 35-44.
I. N. Soskov

Degree spectra and co-spectra of structures.
Ann. Univ. Sofia, 96 (2004) 45-68.
固 A. A. Soskova
Relativized degree spectra.
Journal of Logic and Computation, 17 (2007) 1215-1234.
I. N. Soskov

Effective properties of Marker's Extensions. Journal of Logic and Computation, 23 (6), (2013) 1335-1367.

[^0]: If $\overrightarrow{\mathfrak{A}}$ and $\overrightarrow{\mathfrak{A}}^{*}$ are such that for every $n \mathfrak{A}_{n} \cong \mathfrak{A}_{n}^{*}$ then $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\operatorname{JSp}\left(\overrightarrow{\mathfrak{A}}^{*}\right)$.

