A parallel between classical computability theory and effective definability in abstract structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

July 2014

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:

- The notion of "c.e. in" corresponds to the notion of Σ_1 definability;
- ② The Σ_{n+1}^0 sets correspond to the sets definable by means of computable Σ_{n+1} formulae.

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Proposition

X is c.e. in *Y* if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$.

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Proposition

X is c.e. in Y if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$.

Given a set A can we find a set M such that $X \leq_e A$ if and only if X is c.e. in M?

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- 2 A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Proposition

X is c.e. in Y if and only if $X <_e Y \oplus \overline{Y} = Y^+$.

Given a set A can we find a set M such that $X \leq_e A$ if and only if X is c.e. in M?

There are sets A which are not enumeration equivalent to any set of the form $M \oplus \overline{M}$, so the answer is "No".

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}$ for any $X \subseteq A^a$.
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$ computes the positive atomic diagram of an isomorphic copy of \mathfrak{A} .

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} (X c.e. in \mathfrak{A}) if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}$ for any $X \subseteq A^a$.
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$ computes the positive atomic diagram of an isomorphic copy of \mathfrak{A} .

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} (X c.e. in \mathfrak{A}) if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

By Ash, Knight, Manasse, Slaman and independently Chisholm we have that X is c.e. in $\mathfrak A$ if and only if X is definable in $\mathfrak A$ by means of a computable infinitary Σ_1 formula with parameters.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{\varrho} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{\varrho} f^{-1}(\mathfrak{A})$.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_e \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_e f^{-1}(\mathfrak{A})$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

 $X \leq_{\mathbf{p}} \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters.

Given a structure $\mathfrak{A}=(A;R_1,\ldots R_n)$ let $\mathfrak{A}^+=(A;R_1,\overline{R_1},\ldots R_n,\overline{R_n})$.

Proposition

For every $X \subseteq A$, X c.e. in \mathfrak{A} if and only if $X <_e \mathfrak{A}^+$.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to $\mathfrak A$ $(X \le_e \mathfrak A)$ if for every enumeration f of $\mathfrak A$, $f^{-1}(X) \le_e f^{-1}(\mathfrak A)$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters.

Given a structure $\mathfrak{A}=(A;R_1,\ldots R_n)$ let $\mathfrak{A}^+=(A;R_1,\overline{R_1},\ldots R_n,\overline{R_n})$.

Proposition

For every $X \subseteq A$, X c.e. in $\mathfrak A$ if and only if $X \leq_e \mathfrak A^+$.

Question (1.)

Given a structure \mathfrak{A} , does there exist a structure \mathfrak{M} , such that for all $R \subseteq |\mathfrak{A}|$, $R \leq_e \mathfrak{A}$ if and only if R is relatively intrinsically Σ_1 in \mathfrak{M} ?

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition

- (i) Given a set X of natural numbers and a sequence $\mathcal Y$ of sets of natural numbers, let $X \leq_n \mathcal Y$ if for all sets B, $\mathcal Y$ is c.e. in B implies X is Σ_{n+1}^0 in B;
- (ii) Given sequences $\mathcal X$ and $\mathcal Y$ of sets of natural numbers, say that $\mathcal X$ is ω -enumeration reducible to $\mathcal Y$ ($\mathcal X \leq_\omega \mathcal Y$) if for all sets $\mathcal B$, $\mathcal Y$ is c.e. in $\mathcal B$ implies $\mathcal X$ is c.e. in $\mathcal B$.

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n<\omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n<\omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Theorem (Soskov)

- **1** $X \leq_n \mathcal{Y}$ if and only if $X \leq_e \mathcal{P}_n(\mathcal{Y})$.
- ② $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_n \leq_{e} \mathcal{P}_n(\mathcal{Y})$ uniformly in n.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\dots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\dots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\dots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to R is definable by a computable infinitary formula Σ_{n+1}^+ with predicates only from the first n structures, such that the predicates for the k-th appear for the first time at level k+1 positively.

$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$$
, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$$
, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Definition

A sequence $\{Y_n\}$ of subsets of A is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}})$.

$$\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega},$$
 where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\ldots R_{m_n}^n).$ Let $A=\bigcup_n A_n.$ $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\cdots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}.$

Definition

A sequence $\{Y_n\}$ of subsets of A is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to Y_n is uniformly in n definable by a computable Σ_{n+1}^+ formula: a computable infinitary formula with predicates only from the first n structures, such that the predicates for the k-th appear for the first time at level k+1 positively.

Questions 2. and 3.

Question (2.)

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that the Σ_{n+1} definable in \mathfrak{M} sets coincide with sets $R \leq_n \vec{\mathfrak{A}}$?

Question (3.)

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that for every sequence \mathcal{X} of subsets of $A = \bigcup_n A_n$, $\mathcal{X} \leq_{\omega} \vec{\mathfrak{A}}$ if and only if \mathcal{X} c.e. in \mathfrak{M} ?

Here \mathcal{X} c.e. in \mathfrak{M} if for each enumeration f of \mathfrak{M} , $f^{-1}(X_n)$ is c.e. in $f^{-1}(\mathfrak{M})^{(n)}$ uniformly in n.

Joint Spectra

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A}) = \{ \mathbf{a} \mid (\exists f) (d_T(f^{-1}(\mathfrak{A})) \leq_T \mathbf{a}) \}.$

Joint Spectra

Definition

The spectrum of $\mathfrak A$ is the set $\mathrm{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$ The k-th jump spectrum of $\mathfrak A$ is the set $\mathrm{Sp}_k(\mathfrak A)=\{\mathbf a^{(k)}\mid \mathbf a\in \mathrm{Sp}(\mathfrak A)\}.$

Let $\mathfrak{A}_0, \dots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

Joint Spectra

Definition

The spectrum of $\mathfrak A$ is the set $\operatorname{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$ The k-th jump spectrum of $\mathfrak A$ is the set $\operatorname{Sp}_k(\mathfrak A)=\{\mathbf a^{(k)}\mid \mathbf a\in\operatorname{Sp}(\mathfrak A)\}.$

Let $\mathfrak{A}_0, \dots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

Proposition

The joint spectrum of $\vec{\mathfrak{A}} = \{\mathfrak{A}_k\}_{k \leq n}$ is the set $JSp(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists \{f_k\}_{k \leq n})(\forall k \leq n)(f_k^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}.$

Co-spectra of structures

Definition

Let $\mathfrak A$ be a countable structure and $k \in \mathbb N$. The k-th co-spectrum of $\mathfrak A$ is the set

$$\operatorname{CoSp}_k(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_e \land (\forall \mathbf{b} \in \operatorname{Sp}_k(\mathfrak{A})) (\mathbf{a} \leq_e \mathbf{b}) \}.$$

Definition

Let $\vec{\mathfrak{A}} = {\{\mathfrak{A}_k\}_{k \leq n}}$ be a finite sequence of structures.

The k-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{CoJSp}_{k}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{e} \mathbf{x}) \right\},\,$$

where

$$JSp_k(\vec{\mathfrak{A}}) = {\mathbf{a}^{(k)} \mid \mathbf{a} \in JSp(\vec{\mathfrak{A}})}.$$

Co-spectra of Joint spectra of structures

Proposition

For any set $X \subseteq \mathbb{N}$ the following equivalence holds

$$d_e(X) \in \operatorname{CoJSp}_k(\vec{\mathfrak{A}}) \iff X \leq_e \mathcal{P}_k(\vec{f}^{-1}(\vec{\mathfrak{A}})) \text{ for every}$$

$$\text{sequence } \vec{f} = \{f_k\}_{k \leq n} \text{ of enumerations of } \vec{\mathfrak{A}}.$$

Proposition

 $d_e(X) \in \operatorname{CoJSp}_k(\vec{\mathfrak{A}})$ iff there exists a computable sequence of Σ_{k+1}^+ formulae $\{\Phi^{\gamma(x)}(W_1,\ldots,W_r)\}$ and parameters t_1,\ldots,t_r s.t.: $x \in X \iff (\vec{\mathfrak{A}}) \models \Phi^{\gamma(x)}(W_1/t_1,\ldots,W_r/t_r).$

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

The k-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_k(\vec{\mathfrak{A}}) = {\mathbf{a}^{(k)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of $\vec{\mathfrak{A}}$ is the following set of enumeration degrees:

$$CoRSp(\vec{\mathfrak{A}}) = \{ \mathbf{b} \in \mathcal{D}_{\mathbf{e}} \mid (\forall \mathbf{a} \in RSp(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

Proposition

For every $X \subseteq \mathbb{N}$, the following are equivalent:

- \bullet $d_{e}(X) \in CoRSp_{k}(\vec{\mathfrak{A}}).$
- $X <_{e} \mathcal{P}_{k}(f^{-1}(\vec{\mathfrak{A}}))$, for every enumeration f of A.
- **1** there exists a computable sequence of Σ_{k+1}^+ formulae $\{\Phi^{\gamma(x)}(W_1,\ldots,W_r)\}$ and parameters t_1,\ldots,t_r from A s.t.: $x \in X \iff (\vec{\mathfrak{A}}) \models \Phi^{\gamma(x)}(W_1/t_1, \dots, W_r/t_r).$

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

• $d_e(M) \notin \text{CoJSp}_1(\mathfrak{A}_0, \mathfrak{A}_1)$.

The connection between the co-spectra of the Joint Spectra and Relative Spectra

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let
$$\mathfrak{A}_0 = (\mathbb{N}, L, R)$$
, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \ldots, j_i, \ldots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

- $d_e(M) \notin CoJSp_1(\mathfrak{A}_0, \mathfrak{A}_1)$.
- $d_e(M) \in \text{CoRSp}_1(\mathfrak{A}_0, \mathfrak{A}_1)$, since if $t_0 = \langle 0, 0 \rangle$,

$$j \in M \iff \exists Y_0 \dots \exists Y_i \exists Z_0 \dots \exists Z_j (Y_0 = t_0 \& L(Y_0, Y_1) \& \dots \& L(Y_{i-1}, Y_i) \& Y_i = Z_0 \& R(Z_0, Z_1) \& \dots \& R(Z_{j-1}, Z_j) \& P(Z_j)).$$

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

The *n*-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$JSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in JSp(\vec{\mathfrak{A}})}.$$

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

The *n*-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$JSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in JSp(\vec{\mathfrak{A}})}.$$

If $\vec{\mathfrak{A}}$ and $\vec{\mathfrak{A}}^*$ are such that for every $n \mathfrak{A}_n \cong \mathfrak{A}_n^*$ then $JSp(\vec{\mathfrak{A}}) = JSp(\vec{\mathfrak{A}}^*)$.

Let $A = \bigcup_n A_n$.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

Let $A = \bigcup_n A_n$.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{ d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

The *n*-th relative spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Let $A = \bigcup_n A_n$.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{ d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

The *n*-th relative spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

Omega enumeration co-spectra

Definition

The $\omega\text{-enumeration relative Co-spectrum of }\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

For any enumeration f of A denote by $f^{-1}(\tilde{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$: $d_{\omega}(\mathcal{X}) \in \text{OCoSp}(\vec{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}$, for every enumeration f of A.

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$OCoSp(\vec{\mathfrak{A}}) = \left\{ \boldsymbol{a} \in \mathcal{D}_{\omega} \mid \forall \boldsymbol{x} \in RSp(\vec{\mathfrak{A}}) (\boldsymbol{a} \leq_{\omega} \boldsymbol{x}) \right\}.$$

For any enumeration f of A denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$: $d_{\omega}(\mathcal{X}) \in OCoSp(\vec{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}$, for every enumeration fof A.

Proposition

 $d_{\omega}(\mathcal{X}) \in OCoSp(\vec{\mathfrak{A}})$ iff there exists a computable sequence $\{\Phi^{\gamma(n,x)}(W_1,\ldots,W_r)\}\$ of Σ_{n+1}^+ formulae and elements t_1,\ldots,t_r of A s.t.: $x \in X_n \iff (\vec{\mathfrak{A}}) \models \Phi^{\gamma(n,x)}(W_1/t_1,\ldots,W_r/t_r).$

The Question 4.

Question (4.)

Given a sequence of structures $\vec{\mathfrak{A}}$,

- **1** does there exist a structure \mathfrak{M} , such that $JSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M})$?
- ② does there exist a structure \mathfrak{M} , such that $RSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M})$?

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_n} \rightarrow X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a},x_0) \in G_{h_0}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \dots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \dots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n [M_n(\bar{a}, x_0, \dots x_n)].$$

For
$$\mathfrak{A} = (A; R_1, R_2, \dots R_m)$$
 and $\mathfrak{B} = (B; P_1, P_2, \dots P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots R_m, P_1, P_2, \dots P_k)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$
Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, and $A=\bigcup_n A_n.$

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

• For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , $\dots R_{m_n}^n$ with disjoint companions.
- Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , $\dots R_{m_n}^n$ with disjoint companions.
- Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

- $\bullet \ \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}})) \leq_e (f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))^+)^{(n)} \ \textit{uniformly in } n;$

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \nleq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

- ② \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \nleq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

- ② \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

Theorem

A sequence $\mathcal Y$ of subsets of A is (r.i.) ω -enumeration reducible to $\vec{\mathfrak A}$ if and only if $\mathcal Y$ is (r.i) c.e. in $\mathfrak M(\vec{\mathfrak A})$.

Generalized Goncharov and Khoussainov Lemma

Proposition

Let $n \ge 0$ and R be a $\Sigma_{n+1}^0(B)$ set with an infinite computable subset. Then there exists bijections k_0, \ldots, k_n such that the graph of k_n is computable in B, uniformly in an index for R and n and

 $k_0:R\to\mathbb{N}$.

 $k_1: \mathbb{N}^2 \setminus G_{k_0} \to \mathbb{N} \dots$

 $k_n: \mathbb{N}^{n+1} \setminus G_{k_{n-1}} \to \mathbb{N}.$

Lemma (Soskov, M. Soskova)

Let R be $\Sigma^0_2(X)$ and $S \subseteq R$ be infinite and computable. There exists a bijection $k : R \to \mathbb{N}$ such that $\mathbb{N}^2 \setminus G_k$ is $\Sigma^0_1(X)$ and has an infinite computable subset.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \ \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$
- $② \text{ OCoSp}(\mathfrak{M}) = \left\{ d_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \right\}.$

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$
- $② OCoSp(\mathfrak{M}) = \Big\{ d_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \Big\}.$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Dfeine $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$
- $② OCoSp(\mathfrak{M}) = \Big\{ d_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \Big\}.$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Dfeine $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \left\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \right\}.$
- $② OCoSp(\mathfrak{M}) = \left\{ d_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \right\}.$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Dfeine $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n.

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

$$\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$$

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

•
$$\operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$$

Consider the *almost zero* sequence \mathcal{R} :

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

 $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$

Consider the *almost zero* sequence \mathcal{R} :

• $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_e^{(n)}$.

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Example

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

 $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$

Consider the *almost zero* sequence \mathcal{R} :

- $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_e^{(n)}$.
- ② $\mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$. Hence \mathfrak{M} has no n-th jump degree for any n.

The positive answers of Soskov for the questions

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}$, $A = \bigcup_n |\mathfrak{A}_n|$ and $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$ the Marker's extension of $\vec{\mathfrak{A}}$.

Theorem

For every structure \mathfrak{A} , $R \subseteq |\mathfrak{A}|$, $R \leq_{e} \mathfrak{A}$ if and only if R is relatively intrinsically Σ_1 in \mathfrak{M} . Take $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ where $\mathfrak{A}_0 = \mathfrak{A}$ and $\mathfrak{M}=\mathfrak{M}(\mathfrak{A}).$

Theorem

For every $R \subseteq A$, $R \leq_n \vec{\mathfrak{A}} \iff R$ is relatively intrinsically Σ_{n+1} in \mathfrak{M} .

Theorem

For every sequence \mathcal{R} of subsets of A, $\mathcal{R} \leq_{\omega} \vec{\mathfrak{A}} \iff \mathcal{R} \leq_{c.e.} \mathfrak{M}$.

Theorem

- There is a structure \mathfrak{M}_1 with $JSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M}_1)$.
- 2 There is a structure \mathfrak{M}_2 with $RSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M}_2)$.

Degree structures

- The enumeration degree of set X is $d_e(X) = \{Y \mid X \equiv_e Y\}$. The structure of the enumeration degrees \mathcal{D}_e is an upper
 - The structure of the enumeration degrees \mathcal{D}_e is an upper semi-lattice with jump operation.
 - The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(X)) = d_e(X^+)$.
- This embedding agrees with the jump operation since $(K^X)^+ \equiv_e (X^+)'$.

Degree structures

• The ω -enumeration degree of a sequence \mathcal{X} is $d_{\omega}(\mathcal{X}) = \{\mathcal{Y} = \{Y_n\}_{n < \omega} \mid \mathcal{X} \equiv_{\omega} \mathcal{Y}\}$

The structure of the ω -enumeration degrees \mathcal{D}_{ω} is an upper semi-lattice with jump operation.

The enumeration degrees are embedded in to the ω -enumeration degrees by: $\kappa(d_e(X)) = d_\omega(\{X^{(n)}\}_{n<\omega})$.

$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$

• There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.

$$\mathcal{D}_{\mathcal{T}}\subset\mathcal{D}_{\mathsf{e}}\subset\mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\blacktriangleright \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\blacktriangleright \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

To make $\mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq \{W_e^{[n]}(\emptyset^{(n)})\}_{n<\omega}$, where $W_e^{[n]}$ is the *n*-th column of W_e .

$$\mathcal{D}_{\mathcal{T}}\subset\mathcal{D}_{\mathsf{e}}\subset\mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - $\triangleright \mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\triangleright \mathcal{R} \not<_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

To make $\mathcal{R} \not\leq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq \{W_{\mathbf{A}}^{[n]}(\emptyset^{(n)})\}_{n < \omega}$, where $W_{\mathbf{A}}^{[n]}$ is the *n*-th column of $W_{\mathbf{e}}$.

$$R_n = \begin{cases} \{1\}, & \text{if } 0 \in W_n^{[n]}(\emptyset^{(n)}); \\ \{0\}, & \text{otherwise.} \end{cases}.$$

this property are called *almost zero*.

$$\mathcal{D}_{\mathcal{T}}\subset\mathcal{D}_{\mathsf{e}}\subset\mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form $Y \oplus \bar{Y}$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - $\triangleright \mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\triangleright \mathcal{R} \not<_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

To make $\mathcal{R} \not\leq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq \{W_{\mathbf{A}}^{[n]}(\emptyset^{(n)})\}_{n < \omega}$, where $W_{\mathbf{A}}^{[n]}$ is the *n*-th column of $W_{\mathbf{e}}$.

$$R_n = \begin{cases} \{1\}, & \text{if } 0 \in W_n^{[n]}(\emptyset^{(n)}); \\ \{0\}, & \text{otherwise.} \end{cases}.$$

this property are called *almost zero*.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

• Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \Big\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \Big\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_T(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- There is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \Big\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \Big\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

Then

$$\mathcal{R} \leq_{\omega} \mathcal{X} \iff \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\} \supseteq \{d_{\mathcal{T}}(B) \mid \mathcal{X} \text{ is c.e. in } B\} \iff \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) \supseteq \operatorname{Sp}(\mathfrak{M}_{\mathcal{X}}) \qquad .$$

Let
$$\mu(d_{\omega}(\mathcal{R})) = \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}).$$

Spectrum with all non low_n degrees for each n

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

Spectrum with all non low_n degrees for each n

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Spectrum with all non *low_n* degrees for each *n*

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Spectrum with all non low_n degrees for each n

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)

There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M}) = \{\mathbf{b} \mid \forall n (\mathbf{b}^{(n)} > \mathbf{0}^{(n)})\}.$

Co-spectra of joint spectra of structures.

Ann. Univ. Sofia, 96 (2004) 35-44.

I. N. Soskov

Degree spectra and co-spectra of structures.

Ann. Univ. Sofia, 96 (2004) 45-68.

A. A. Soskova

Relativized degree spectra.

Journal of Logic and Computation, 17 (2007) 1215–1234.

I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, 23 (6), (2013) 1335-1367.