Enumeration Degree Spectra of Abstract Structures

Alexandra A. Soskova (joint work with Ivan N. Soskov) 1

Faculty of Mathematics and Computer Science Sofia University

July 21, 2010

Outline

- Enumeration degrees
- Degree spectra and co-spectra
- Characterization of the co-spectra
- Representing the countable ideals as co-spectra
- Properties of upwards closed sets of degrees
- Selmans's theorem for degree spectra
- The minimal pair theorem
- Quasi-minimal degrees
- Jump spectra
- ω -degree spectra

Enumeration reducibility

Definition.(Friedberg and Rogers, 1959) We say that $\Psi: 2^{\omega} \to 2^{\omega}$ is an *enumeration operator* (or e-operator) iff for some c.e. set W_i

$$\Psi(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B]\}$$

for each $B \subseteq \omega$.

Definition. For any sets A and B define A is *enumeration* reducible to B, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ .

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$,

- A is c.e. in B iff $A \leq_e B^+$.
- $A \leq_T B \text{ iff } A^+ \leq_e B^+.$

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{\langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$,

- **1** A is c.e. in B iff $A \leq_e B^+$.
- $A \leq_T B \text{ iff } A^+ \leq_e B^+.$

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{\langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

The enumeration degrees

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_{e} the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \vee d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is c.e.}\}.$

The Rogers embedding. Define $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

The enumeration degrees

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_{e} the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \vee d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is c.e.}\}.$

The Rogers embedding. Define $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

The enumeration degrees

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_{e} the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \lor d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is c.e.}\}.$

The Rogers embedding. Define $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

Degree Spectra

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k)$ be a denumerable structure. Enumeration of \mathfrak{A} is every total surjective mapping of \mathbb{N} onto \mathbb{N} .

Given an enumeration f of $\mathfrak A$ and a subset of A of $\mathbb N^a$, let

$$f^{-1}(A) = \{ \langle x_1, \dots, x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}.$$

Set
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq)$$
.

Definition.(Richter) The Turing Degree Spectrum of $\mathfrak A$ is the set

 $DS_T(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) : f \text{ is an one to one enumeration of } \mathfrak{A})\}.$

If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A}

Enumeration Degree Spectra

Definition. The e-Degree Spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A})\}.$$

If ${\bf a}$ is the least element of $DS({\mathfrak A})$, then ${\bf a}$ is called the *e-degree of* ${\mathfrak A}$

Proposition. If $\mathfrak A$ has e-degree $\mathbf a$ then $\mathbf a=d_{\mathbf e}(f^{-1}(\mathfrak A))$ for some one to one enumeration f of $\mathfrak A$.

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Enumeration Degree Spectra

Definition. The e-Degree Spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A})\}.$$

If ${\bf a}$ is the least element of $DS(\mathfrak{A})$, then ${\bf a}$ is called the *e-degree of* \mathfrak{A}

Proposition. If $\mathfrak A$ has e-degree $\mathbf a$ then $\mathbf a = d_e(f^{-1}(\mathfrak A))$ for some one to one enumeration f of $\mathfrak A$.

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Enumeration Degree Spectra

Definition. The e-Degree Spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A})\}.$$

If ${\bf a}$ is the least element of $DS(\mathfrak{A})$, then ${\bf a}$ is called the *e-degree of* \mathfrak{A}

Proposition. If $\mathfrak A$ has e-degree **a** then $\mathbf a=d_e(f^{-1}(\mathfrak A))$ for some one to one enumeration f of $\mathfrak A$.

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_e \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Total structures

Definition. The structure \mathfrak{A} is called *total* if for every enumeration f of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If $\mathfrak A$ is a total structure then $DS(\mathfrak A) = \iota(DS_T(\mathfrak A))$.

Given a structure $\mathfrak{A} = (\mathbb{N}, R_1, \dots, R_k)$, for every j denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (\mathbb{N}, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$.

Proposition. The following are true:

- ② If $\mathfrak A$ is total then $DS(\mathfrak A) = DS(\mathfrak A^+)$.

Clearly if $\mathfrak A$ is a total structure then $DS(\mathfrak A)$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\bar{K} \not\leq_e f^{-1}(\mathfrak{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Clearly if $\mathfrak A$ is a total structure then $DS(\mathfrak A)$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\bar{K} \not\leq_e f^{-1}(\mathfrak{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Clearly if $\mathfrak A$ is a total structure then $DS(\mathfrak A)$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\bar{K} \not\leq_e f^{-1}(\mathfrak{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees the *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$$

Example. Fix $\mathbf{a} \in \mathcal{D}_e$ and set $\mathcal{A}_{\mathbf{a}} = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{a} \leq_e \mathbf{b}\}$. Then $co(\mathcal{A}_{\mathbf{a}}) = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{b} \leq_e \mathbf{a}\}$.

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then call **a** the *co-degree* of \mathfrak{A} .

If $\mathfrak A$ has a degree $\mathbf a$ then $\mathbf a$ is also the co-degree of $\mathfrak A$. The vice versa is not always true.

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees the *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A})(\mathbf{b} \leq_e \mathbf{a}) \}.$$

Example. Fix $\mathbf{a} \in \mathcal{D}_e$ and set $\mathcal{A}_{\mathbf{a}} = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{a} \leq_e \mathbf{b}\}$. Then $co(\mathcal{A}_{\mathbf{a}}) = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{b} \leq_e \mathbf{a}\}$.

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then call **a** the *co-degree* of \mathfrak{A} .

If $\mathfrak A$ has a degree $\mathbf a$ then $\mathbf a$ is also the co-degree of $\mathfrak A$. The vice versa is not always true.

The admissible sets

Definition. A set A of natural numbers is admissible in $\mathfrak A$ if for every enumeration f of $\mathfrak A$, $A \leq_e f^{-1}(\mathfrak A)$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_{\mathbf{e}}(A)$ for some admissible in \mathfrak{A} set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathfrak{A})) \text{ and }$$

 $\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x)).$

Definition. An enumeration f is *generic* if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

The admissible sets

Definition. A set A of natural numbers is admissible in $\mathfrak A$ if for every enumeration f of $\mathfrak A$, $A \leq_e f^{-1}(\mathfrak A)$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(A)$ for some admissible in \mathfrak{A} set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

 $\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x)).$

Definition. An enumeration f is *generic* if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Normal form of the admissible sets

Definition. A set A of natural numbers is *forcing definable in the structure* $\mathfrak A$ iff there exist finite part δ and natural number e s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathfrak{A})$. Then the following are equivalent:

- A is admissible in Ω.
- ② $A \leq_{e} f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} s.t. $(f^{-1}(\mathfrak{A}))' \equiv_{e} B'$.
- A is forcing definable.

Normal form of the admissible sets

Definition. A set A of natural numbers is forcing definable in the structure $\mathfrak A$ iff there exist finite part δ and natural number e s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathfrak{A})$. Then the following are equivalent:

- lacktriangle A is admissible in \mathfrak{A} .
- ② $A \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} s.t. $(f^{-1}(\mathfrak{A}))' \equiv_e B'$.
- A is forcing definable.

Some examples

Example. (Richter 1981) Let $\mathfrak{A}=(\mathbb{N};<)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A})=\{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Definition. Let $n \ge 0$. The n-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A}))$.

Example. (Knight 1986) Consider again a linear ordering $\mathfrak A$. Then $CS_1(\mathfrak A)$ consists of all Σ_2^0 sets. The first jump co-degree of $\mathfrak A$ is $\mathbf 0'_e$.

Example. (Slaman 1998, Whener 1998) There exists an $\mathfrak A$ s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_{e} < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Some examples

Example. (Richter 1981) Let $\mathfrak{A}=(\mathbb{N};<)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A})=\{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Definition. Let $n \ge 0$. The n-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A}))$.

Example. (Knight 1986) Consider again a linear ordering $\mathfrak A$. Then $CS_1(\mathfrak A)$ consists of all Σ_2^0 sets. The first jump co-degree of $\mathfrak A$ is $\mathbf 0'_e$.

Example. (Slaman 1998, Whener 1998) There exists an $\mathfrak A$ s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_{e} < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Some examples

Example. (Richter 1981) Let $\mathfrak{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Definition. Let $n \ge 0$. The n-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A}))$.

Example. (Knight 1986) Consider again a linear ordering $\mathfrak A$. Then $CS_1(\mathfrak A)$ consists of all Σ_2^0 sets. The first jump co-degree of $\mathfrak A$ is $\mathbf 0'_e$.

Example. (Slaman 1998, Whener 1998) There exists an $\mathfrak A$ s.t.

$$DS(\mathfrak{A}) = \{a : a \text{ is total and } \mathbf{0}_e < a\}.$$

Clearly the structure $\mathfrak A$ has co-degree $oldsymbol{0}_{\mathrm{e}}$ but has not a degree.

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is total
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G.

Similar results on algebraic fields: W. Calvert, V. Harizanov and A. Shlapentokh (2007) A. Frolov, I. Kalimullin and R. Miller(2009)

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is total
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G.

Similar results on algebraic fields:

W. Calvert, V. Harizanov and A. Shlapentokh (2007)

A. Frolov, I. Kalimullin and R. Miller (2009)

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is total
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some G.

Similar results on algebraic fields:

W. Calvert, V. Harizanov and A. Shlapentokh (2007)

A. Frolov, I. Kalimullin and R. Miller (2009)

I. Kalimullin: $\exists \mathfrak{A}[DS_{T}(\mathfrak{A}) = \{\mathbf{x} \mid \mathbf{x} \nleq_{T} \mathbf{b}\}]$ for low **b**.

200

Representing non-principle countable ideals as co-spectra

Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k\}.$$

Then
$$CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$$

General Properties of Upwards Closed Sets

Definition. Consider a subset \mathcal{A} of \mathcal{D}_e . Say that \mathcal{A} is *upwards closed* if for every $\mathbf{a} \in \mathcal{A}$ all total degrees greater than \mathbf{a} are contained in \mathcal{A} .

Let \mathcal{A} be an upwards closed set of degrees. Note that if $\mathcal{B} \subseteq \mathcal{A}$, then $co(\mathcal{A}) \subseteq co(\mathcal{B})$.

Proposition.(Selman) Let $A_t = \{a : a \in A \& a \text{ is total}\}$. Then $co(A) = co(A_t)$.

Proposition. Let **b** be an arbitrary enumeration degree and n > 0. Set $\mathcal{A}_{\mathbf{b},n} = \{\mathbf{a} : \mathbf{a} \in \mathcal{A} \ \& \ \mathbf{b} \leq_{e} \ \mathbf{a}^{(n)}\}$. Then $co(\mathcal{A}) = co(\mathcal{A}_{\mathbf{b},n})$.

Specific Properties of Degree Spectra

Theorem. Let $\mathfrak A$ be a structure, $1 \le n$ and $\mathbf c \in DS_n(\mathfrak A)$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$D = \{ \mathbf{a} : d_e(A) \leq_e \mathbf{a} \} \cup \{ \mathbf{a} : d_e(B) \leq_e \mathbf{a} \}.$$

Set $A = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

- $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

Specific Properties of Degree Spectra

Theorem. Let $\mathfrak A$ be a structure, $1 \le n$ and $\mathbf c \in DS_n(\mathfrak A)$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$$

Set $A = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_{\mathbf{e}}(B)' \}.$

- $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

The minimal pair theorem

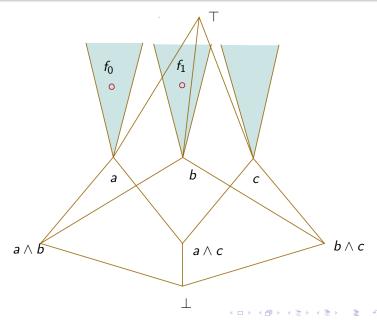
Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree \mathbf{a} there exists a structure $\mathfrak{A}_{\mathbf{a}}$ s. t. $DS(\mathfrak{A}_{\mathbf{a}}) = \{\mathbf{x} \in \mathcal{D}_{\mathcal{T}} | \mathbf{a} <_{e} \mathbf{x} \}$. Hence

Corollary. (Rozinas) For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

Not every upwards closed set of enumeration degrees has a minimal pair:

An upwards closed set with no minimal pair



The Quasi-minimal degree

Definition. Let $\mathcal A$ be a set of enumeration degrees. The degree $\mathbf q$ is quasi-minimal with respect to $\mathcal A$ if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If a is total and $a \ge q$, then $a \in A$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. If \mathbf{q} is quasi-minimal with respect to \mathcal{A} , then \mathbf{q} is an upper bound of $co(\mathcal{A})$.

Theorem. For every structure $\mathfrak A$ there exists a quasi-minimal with respect to $DS(\mathfrak A)$ degree.

Corollary. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree \mathbf{q} s.t.

- If $a \in I$ then $a <_e q$.
- ② If **a** is total and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{q}$ then $\mathbf{a} \in I$.

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base \mathcal{B} of A such that all elements of \mathcal{B} are total. Then A has a least element.

Corollary. A total structure $\mathfrak A$ has a degree if and only if $DS(\mathfrak A)$ has a countable base

Corollary. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree \mathbf{q} s.t.

- If $a \in I$ then $a <_e q$.
- ② If \mathbf{a} is total and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{q}$ then $\mathbf{a} \in I$.

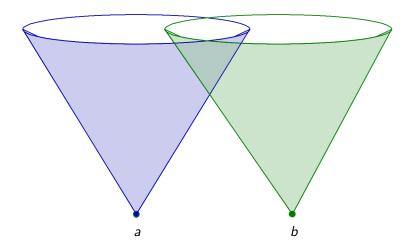
Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base \mathcal{B} of A such that all elements of \mathcal{B} are total. Then A has a least element.

Corollary. A total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

An upwards closed set with no quasi-minimal degree



Jump spectra

Definition. The n-th jump spectrum of a structure $\mathfrak A$ is the set

$$DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)}|\mathbf{a} \in DS(\mathfrak{A})\}.$$

If **a** is the least element of $DS_n(\mathfrak{A})$ then **a** is called *n*-th jump degree of \mathfrak{A} .

Proposition. For every \mathfrak{A} , $DS_1(\mathfrak{A}) \subseteq DS(\mathfrak{A})$.

Is it true that for every \mathfrak{A} , $DS_1(\mathfrak{A}) \subset DS(\mathfrak{A})$? Probably the answer is "no".

Every jump spectrum is spectrum of a total structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_n)$.

Let $\bar{0} \not\in \mathbb{N}$. Set $\mathbb{N}_0 = \mathbb{N} \cup \{\bar{0}\}$. Let $\langle .,. \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and N^* be the least set containing \mathbb{N}_0 and closed under $\langle .,. \rangle$.

Definition. *Moschovakis' extension* of $\mathfrak A$ is the structure

$$\mathfrak{A}^* = (\mathbb{N}^*, R_1, \ldots, R_n, \mathbb{N}_0, G_{\langle \cdot, \cdot, \rangle}).$$

Proposition. $DS(\mathfrak{A}) = DS(\mathfrak{A}^*)$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_{e}(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, \mathbb{N}^* \setminus K_{\mathfrak{A}}).$

Theorem.

- ① The structure \mathfrak{A}' is total.

Every jump spectrum is spectrum of a total structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_n)$.

Let $\bar{0} \not\in \mathbb{N}$. Set $\mathbb{N}_0 = \mathbb{N} \cup \{\bar{0}\}$. Let $\langle .,. \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and N^* be the least set containing \mathbb{N}_0 and closed under $\langle .,. \rangle$.

Definition. *Moschovakis' extension* of $\mathfrak A$ is the structure

$$\mathfrak{A}^* = (\mathbb{N}^*, R_1, \dots, R_n, \mathbb{N}_0, G_{\langle .,. \rangle}).$$

Proposition. $DS(\mathfrak{A}) = DS(\mathfrak{A}^*)$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, \mathbb{N}^* \setminus K_{\mathfrak{A}}).$

Theorem.

- The structure \mathfrak{A}' is total.
- $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

The Jump Inversion Theorem

Consider two structures $\mathfrak A$ and $\mathfrak B$. Suppose that

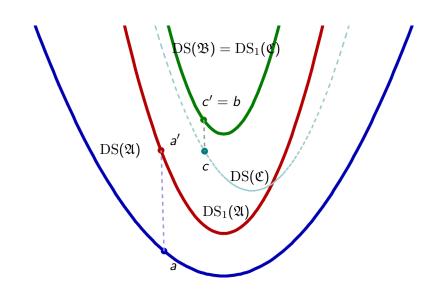
$$DS(\mathfrak{B})_t = \{\mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total}\} \subseteq DS_1(\mathfrak{A}).$$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extentions.

Corollary. Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C}' such that $DS(\mathfrak{B}) = DS(\mathfrak{C}')$.



Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark. Similar results

A. Montalban (2009) different approach with complete set of 11; formulas.

A. Stukachev (2009) for Σ reducibility with Marker's extentions

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark. Similar results

A. Montalban (2009) different approach with complete set of Π_n^c formulas.

A. Stukachev (2009) for Σ reducibility with Marker's extentions.

Applications

Example. (Ash, Jockush, Knight and Downey) Let $n \ge 0$. There exists a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a n+1-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure $\mathfrak B$ satisfying:

- **1** DS(B) has not least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **3** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- ① B is quasi-minimal above $\mathbf{0}^{(n)}$.
- $B' \equiv_e \mathbf{0}^{(n+1)}$

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} | d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Applications

Example. (Ash, Jockush, Knight and Downey) Let $n \ge 0$. There exists a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a n+1-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure $\mathfrak B$ satisfying:

- DS(B) has not least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **3** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- **1** B is quasi-minimal above $\mathbf{0}^{(n)}$.
- **2** $B' \equiv_e \mathbf{0}^{(n+1)}$.

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} | d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Applications

Let $n \ge 0$. There exists a total structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = \{\mathbf{a} | \mathbf{0}^{(n)} <_e \mathbf{a} \}.$

It is sufficient to construct a structure \mathfrak{B} such that the elements of $DS(\mathfrak{B})$ are exactly the total e-degrees greater than $\mathbf{0}^{(n)}$.

This is done by Whener's construction using a special family of sets:

Theorem. Let $n \ge 0$. There exists a family \mathcal{F} of sets of natural numbers s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a recursive in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no c.e. in $\mathbf{0}^{(n)}$ such U.

Relative Spectra

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be given structures.

Definition. The relative spectrum $\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1\ldots,\mathfrak{A}_n)$ of the structure \mathfrak{A} with respect to $\mathfrak{A}_1,\ldots,\mathfrak{A}_n$ is the set

$$\begin{cases} d_{\mathrm{e}}(f^{-1}(\mathfrak{A})) \mid & f \text{ is an enumeration of } \mathfrak{A} \& \\ (\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(k)}). \end{cases}$$

It turns out that almost all properties of the degree spectra remain true for the relative spectra.

Uniform reducibility on sequences of sets

Let $\mathcal S$ be the set of all sequences of sets of natural numbers. For $\mathcal B=\{B_n\}_{n<\omega}\in\mathcal S$ call the jump class of $\mathcal B$ the set

$$J_{\mathcal{B}} = \{d_{\mathbb{T}}(X) \mid (\forall n)(B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n)\}$$
.

 ${\mathcal A}$ is ω -enumeration reducible to ${\mathcal B}$ (${\mathcal A} \leq_{\omega} {\mathcal B}$) if $J_{\mathcal B} \subseteq J_{\mathcal A}$ ${\mathcal A} \equiv_{\omega} {\mathcal B}$ if $J_{\mathcal A} = J_{\mathcal B}$.

ω -Enumeration Degrees

Let
$$\mathcal{B} = \{B_n\}_{n < \omega} \in \mathcal{S}$$
.

Definition. A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:

1
$$\mathcal{P}_0(\mathcal{B}) = B_0$$

$$2 \mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$$

Theorem.[Soskov, Kovachev] $A \leq_{\omega} B$, if $A_n \leq_{e} \mathcal{P}_n(\mathcal{B})$ uniformly in n.

ω -Enumeration Degrees

$$\begin{split} &d_{\omega}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\} \\ &\mathcal{D}_{\omega} = \{d_{\omega}(\mathcal{B}) \mid \mathcal{B} \in \mathcal{S}\}. \\ &\textit{If } A \subseteq \mathbb{N} \textit{ denote by } A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}. \\ &\textit{For every } A, B \subseteq \mathbb{N}: \end{split}$$

$$A \leq_{\mathrm{e}} B \iff A \uparrow \omega \leq_{\omega} B \uparrow \omega.$$

The mapping $\kappa(d_{\mathrm{e}}(A)) = d_{\omega}(A \uparrow \omega)$ gives an isomorphic embedding of \mathcal{D}_{e} to \mathcal{D}_{ω} .

ω -Enumeration Jump

Definition. For every $A \in S$ the ω -enumeration jump of A is $A' = \{\mathcal{P}_{n+1}(A)\}_{n < \omega}$

Let
$$d_{\omega}(\mathcal{A})' = d_{\omega}(\mathcal{A}')$$
.

$$\mathcal{A}^{(k)} = \{ \mathcal{P}_{n+k}(\mathcal{A}) \}_{n < \omega} \text{ for each } k.$$

$$d_{\omega}(\mathcal{A})^{(k)} = d_{\omega}(\mathcal{A}^{(k)}).$$

ω - Degree Spectra

Let $\mathcal{B} = \{B_n\}_{n < \omega}$ be a fixed sequence of sets.

Definition. The enumeration f of the structure $\mathfrak A$ is acceptable with respect to $\mathcal B$, if for every n,

$$f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$$
 uniformly in n .

Denote by $\mathcal{E}(\mathfrak{A},\mathcal{B})$ - the class of all acceptable enumerations.

Definition. The ω - degree spectrum of $\mathfrak A$ with respect to $\mathcal B = \{B_n\}_{n<\omega}$ is the set

$$DS(\mathfrak{A},\mathcal{B}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}). \}$$

ω - Degree Spectra

It is easy to find a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $\mathrm{DS}(\mathfrak A,\mathcal B) \neq \mathrm{DS}(\mathfrak A).$

The notion of the ω -degree spectrum is a generalization of the relative spectrum: $\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)=\mathrm{DS}(\mathfrak{A},\mathcal{B})$, where $\mathcal{B}=\{B_k\}_{k<\omega}$

- $B_0 = \emptyset$,
 - B_k is the positive diagram of the structure \mathfrak{A}_k , $k \leq n$
 - $B_k = \emptyset$ for all k > n.

ω - Degree Spectra and Jump Spectra

Proposition. $DS(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total e-degrees.

Definition. The kth ω -jump spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$\mathrm{DS}_k(\mathfrak{A},\mathcal{B}) = \{\mathbf{a^{(k)}} \mid \mathbf{a} \in \mathrm{DS}(\mathfrak{A},\mathcal{B})\}.$$

Proposition. $DS_k(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total e-degrees.

ω -Co-Spectra

For every $A \subseteq \mathcal{D}_{\omega}$ let $co(A) = \{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in A)(\mathbf{b} \leq_{\omega} \mathbf{a})\}.$

Definition. The ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS(\mathfrak{A}, \mathcal{B}) = co(DS(\mathfrak{A}, \mathcal{B})).$$

Definition. The kth ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS_k(\mathfrak{A}, \mathcal{B}) = co(DS_k(\mathfrak{A}, \mathcal{B})).$$

Properties of the co-sets of omega degrees of upwards closed sets

Let $\mathcal{A}\subseteq\mathcal{D}_e$ be an upwards closed set with respect to total e-degrees.

Proposition.
$$co(A) = co(\{a : a \in A \& a \text{ is total}\}).$$

Corollary.

$$CS(\mathfrak{A}, \mathcal{B}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}, \mathcal{B}) \& \mathbf{a} \text{ is a total e-degree}\}).$$

Negative results (Stefan Vatev)

Let $\mathcal{A} \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees and k > 0.

There exists $\mathbf{b} \in \mathcal{D}_e$ such that

$$co(\mathcal{A}) \neq co(\{\mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{b} \leq \mathbf{a}^{(k)}\}).$$

Let n > 0. There is a structure \mathfrak{A} , a sequence \mathcal{B} and $\mathbf{c} \in \mathrm{DS}_n(\mathfrak{A},\mathcal{B})$ such that

$$CS(\mathfrak{A}, \mathcal{B}) \neq co(\{\mathbf{a} \in DS(\mathfrak{A}, \mathcal{B}) \mid \mathbf{a}^{(n)} = \mathbf{c}\}).$$

Minimal pair theorem

Theorem. For every structure $\mathfrak A$ and every sequence $\mathcal B \in \mathcal S$ there exist total enumeration degrees $\mathbf f$ and $\mathbf g$ in $\mathrm{DS}(\mathfrak A,\mathcal B)$ such that for every ω -enumeration degree $\mathbf a$ and $k \in \mathbb N$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)} \ \& \ \mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}) \ .$$

Countable ideals of ω -enumeration degrees

Corollary. $CS_k(\mathfrak{A}, \mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

- $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal;
- $CS(\mathfrak{A}, \mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g});$
- $I^{(k)}$ the least ideal, containing all kth ω -jumps of the elements of I;
- (Hristo Ganchev) $I = I(\mathbf{f}) \cap I(\mathbf{g}) \Longrightarrow I^{(k)} = I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)})$ for every k;
- $I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}) = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$ for each k
- Thus $I^{(k)} = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$.

Countable ideals of ω -enumeration degrees

There is a countable ideal I of ω -enumeration degrees for which there is no structure $\mathfrak A$ and sequence $\mathcal B$ such that $I=\mathrm{CS}(\mathfrak A,\mathcal B)$.

- $A = \{0, 0', 0'', \dots, 0^{(n)}, \dots\};$
- $I = I(A) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} \leq_{\omega} \mathbf{0}^{(n)}) \}$ a countable ideal generated by A.
- Assume that there is a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $I=\mathrm{CS}(\mathfrak A,\mathcal B)$
- Then there is a minimal pair \mathbf{f} and \mathbf{g} for $\mathrm{DS}(\mathfrak{A},\mathcal{B})$, so $I^{(n)} = I(\mathbf{f}^{(n)}) \cap I(\mathbf{g}^{(n)})$ for each n.
- $\mathbf{f} \geq \mathbf{0}^{(n)}$ and $\mathbf{g} \geq \mathbf{0}^{(n)}$ for each n.
- Then by Enderton and Putnam [1970], Sacks [1971]: $\mathbf{f}'' \geq \mathbf{0}^{(\omega)}$ and $\mathbf{g}'' \geq \mathbf{0}^{(\omega)}$.
- Hence $I'' \neq I(\mathbf{f}'') \cap I(\mathbf{g}'')$. A contradiction.

Quasi-Minimal Degree

Theorem. For every structure $\mathfrak A$ and every sequence $\mathcal B$, there exists $F \subseteq \mathbb N$, such that $\mathbf q = d_\omega(F \uparrow \omega)$ and:

- ② If **a** is a total e-degree and **a** \geq_{ω} **q** then **a** $\in \mathrm{DS}(\mathfrak{A},\mathcal{B})$
- **1** If **a** is a total e-degree and $\mathbf{a} \leq_{\omega} \mathbf{q}$ then $\mathbf{a} \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$.

ω -degree spectra

- Questions:
 - Is it true that for every structure $\mathfrak A$ and every sequence $\mathcal B$ there exists a structure $\mathfrak B$ such that $\mathrm{DS}(\mathfrak B)=\mathrm{DS}(\mathfrak A,\mathcal B)$?
 - If for a countable ideal $I \subseteq \mathcal{D}_{\omega}$ there is an exact pair then are there a structure \mathfrak{A} and a sequence \mathcal{B} so that $\mathrm{CS}(\mathfrak{A},\mathcal{B}) = I$?

Thank you!