Degree Spectra and Conservative Extensions of Abstract Structures

Alexandra A. Soskova ¹
joint work with
Ivan N. Soskov and Stefan V. Vatev

Faculty of Mathematics and Computer Science Sofia University

October 7, 2011

Outline

- Degree spectra of structures
- Definability on structures
- Conservative (k, n) Extensions
- Jumps of Structures
- Jump inversion theorem for structures

Degree Spectra

Let $\mathfrak{A} = (A; P_1, \dots, P_k)$ be a denumerable structure. Enumeration of \mathfrak{A} is every one to one mapping of \mathbb{N} onto A.

Given an enumeration f of $\mathfrak A$ and a subset of X of A^a , let

$$f^{-1}(X) = \{\langle x_1, \dots, x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}.$$

Set
$$f^{-1}(\mathfrak{A}) = f^{-1}(P_1) \oplus \cdots \oplus f^{-1}(P_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq)$$
.

Definition.(Richter) *The Degree Spectrum of* $\mathfrak A$ is the set

$$DS_T(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A})\}.$$

Degree Spectra

Definition.(Knight) The n-th jump spectrum of a structure $\mathfrak A$ is the set

$$DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}.$$

Proposition. (Knight) For every automorphically nontrivial structure \mathfrak{A} , $DS_n(\mathfrak{A})$ is an upwards closed set of degrees.

Theorem.(A. Soskova, I. Soskov) Every jump spectrum is a spectrum of a structure, i.e. for every countable structure $\mathfrak A$ there is a structure $\mathfrak B$ such that $DS_1(\mathfrak A) = DS(\mathfrak B)$.

Theorem. (A. Soskova, I. Soskov) Let $\mathfrak A$ and $\mathfrak C$ be countable structures and $DS(\mathfrak A) \subseteq DS_1(\mathfrak C)$. There exists a structure $\mathfrak B$ such that $DS(\mathfrak A) = DS_1(\mathfrak B)$ and $DS(\mathfrak B) \subseteq DS(\mathfrak C)$.

Formally Σ_n^c -definable sets

Let L be the language of \mathfrak{A} . The computable Σ_n^c formulas in L are defined inductively:

- A computable Σ_0^c (Π_0^c) formula is a finitary quantifier-free formula in L.
- A computable $\sum_{n=1}^{c}$ formula $\Phi(\overline{x})$ is a disjunction of c.e. set of formulas of the form

$$(\exists \overline{Y}) \Psi(\overline{X}, \overline{Y})$$

 Ψ is a finite conjunction of Σ_n^c and Π_n^c formulas

• Π_{n+1}^c formulas are the negations of the Σ_{n+1}^c formulas.

Example

Consider $\mathcal{O} = (\mathbb{N}; =)$ and $\mathcal{S} = (\mathbb{N}; G_{Succ}; =)$, where G_{Succ} is the graph of the successor function.

$$DS(\mathcal{O}) = DS(\mathcal{S})$$

The $\Sigma_1^c(\mathcal{O})$ are all finite and co-finite sets of natural numbers. But all c.e. set are formally Σ_1^c definable on \mathcal{S} . So, the structure \mathcal{S} is more powerful than the \mathcal{O} .

Example

Consider $\mathcal{O} = (\mathbb{N}; =)$ and $\mathcal{S} = (\mathbb{N}; G_{Succ}; =)$, where G_{Succ} is the graph of the successor function.

$$DS(\mathcal{O}) = DS(\mathcal{S})$$

The $\Sigma_1^c(\mathcal{O})$ are all finite and co-finite sets of natural numbers. But all c.e. set are formally Σ_1^c definable on \mathcal{S} . So, the structure \mathcal{S} is more powerful than the \mathcal{O} .

Enumerations

Definition. The pair $\alpha=(f_{\alpha},R_{\alpha})$ is an enumeration of the set $X\subseteq A$, if R_{α} is a set of natural numbers, f_{α} is a partial one-to-one mapping of $\mathbb N$ onto X and $\mathrm{dom}(f_{\alpha})=f_{\alpha}^{-1}(X)$ is c.e. in R_{α} . We denote this by $X\leq \alpha$.

Definition. The pair $\alpha=(f_{\alpha},R_{\alpha})$ is an *enumeration* of $\mathfrak A$ if α is an enumeration of A and $f_{\alpha}^{-1}(\mathfrak A)$ is computable in R_{α} . We denote this by $\mathfrak A \leq \alpha$.

For an enumeration $\alpha = (f_{\alpha}, R_{\alpha})$ of \mathfrak{A} we denote by $\alpha^{(n)} = (f_{\alpha}, R_{\alpha}^{(n)}).$

Reformulation

The Degree Spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{ d_T(R_\alpha) \mid \mathfrak{A} \leq \alpha \}.$$

Theorem. (Ash, Knigh, Manasse, Slaman, Chisholm) For every set $X \subseteq A$,

$$X \in \Sigma_{n+1}^{c}(\mathfrak{A}) \leftrightarrow (\forall \alpha)[\mathfrak{A} \leq \alpha \to X \leq \alpha^{(n)}].$$

Conservative (k, n) Extensions

Let $\alpha = (f_{\alpha}, R_{\alpha})$ and $\beta = (f_{\beta}, R_{\beta})$ be enumerations of the structures \mathfrak{A} and \mathfrak{B} respectively. We write $\alpha < \beta$ if

- (i) $R_{\alpha} \leq_{T} R_{\beta}$ and
- (ii) the set $E(f_{\alpha}, f_{\beta}) = \{(x, y) \mid x \in Dom(f_{\alpha}) \& y \in Dom(f_{\beta}) \& f_{\alpha}(x) = f_{\beta}(y)\}$ is c.e. in R_{β} .

Conservative (k, n) Extensions

Definition. Let $\mathfrak A$ and $\mathfrak B$ be countable structures, possibly with different signatures and $A\subseteq B$.

- (i) $\mathfrak{A} \leq_n^k \mathfrak{B}$ iff for every enumeration β of \mathfrak{B} there exists an enumeration α of \mathfrak{A} such that $\alpha^{(k)} \leq \beta^{(n)}$.
- (ii) $\mathfrak{A} \geq_n^k \mathfrak{B}$ iff for every enumeration α of \mathfrak{A} there exists an enumeration β of \mathfrak{B} such that $\beta^{(n)} \leq \alpha^{(k)}$.
- (iii) $\mathfrak{A} \equiv_n^k \mathfrak{B}$ if $\mathfrak{A} \leq_n^k \mathfrak{B}$ and $\mathfrak{A} \geq_n^k \mathfrak{B}$. We shall say that \mathfrak{B} is a (k, n)-conservative extension of \mathfrak{A} .

Note that the relation \equiv_n^k is not symmetric.

Conservative (k, n) Extensions and Degree Spectra

Proposition. Let $\mathfrak A$ and $\mathfrak B$ be countable structures with $A\subseteq B$.

- (i) If $\mathfrak{A} \leq_n^k \mathfrak{B}$ then $DS_n(\mathfrak{B}) \subseteq DS_k(\mathfrak{A})$;
- (ii) If $\mathfrak{A} \geq_n^k \mathfrak{B}$ then $DS_k(\mathfrak{A}) \subseteq DS_n(\mathfrak{B})$;
- (iii) If $\mathfrak{A} \equiv_n^k \mathfrak{B}$ then $DS_k(\mathfrak{A}) = DS_n(\mathfrak{B})$;

Corollary.

- (i) k = 1, n = 0: If $\mathfrak{A} \equiv_0^1 \mathfrak{B}$ then $DS_1(\mathfrak{A}) = DS(\mathfrak{B})$.
- (ii) k = 0, n = 1: If $\mathfrak{A} \equiv_1^0 \mathfrak{B}$ then $DS(\mathfrak{A}) = DS_1(\mathfrak{B})$.

Conservative (k, n) Extensions and Definability

Theorem. Let for $\mathfrak A$ and $\mathfrak B$: $A\subseteq B$. For all $k,n\in\mathbb N$,

- (i) if $\mathfrak{A} \leq_n^k \mathfrak{B}$ then $(\forall X \subseteq A)[X \in \Sigma_{k+1}^c(\mathfrak{A}) \to X \in \Sigma_{n+1}^c(\mathfrak{B})]$;
- (ii) if $\mathfrak{A} \geq_n^k \mathfrak{B}$ then $(\forall X \subseteq A)[X \in \Sigma_{n+1}^c(\mathfrak{B}) \to X \in \Sigma_{k+1}^c(\mathfrak{A})]$;
- (iii) if $\mathfrak{A} \equiv_n^k \mathfrak{B}$ then $(\forall X \subseteq A)[X \in \Sigma_{k+1}^c(\mathfrak{A}) \leftrightarrow X \in \Sigma_{n+1}^c(\mathfrak{B})]$.

Conservative (k, n) Extensions and Definability

The opposite direction is not always true:

Example.

Consider $\mathcal{O}_A = (A; =)$ and take $\mathfrak{A} = \mathfrak{B} = \mathcal{O}_A$.

For every natural number n,

 $X \subseteq A$ is $\Sigma_n^c(\mathcal{O}_A)$ iff X is a finite or co-finite subset of A.

Therefore $\Sigma_1^c(\mathcal{O}_A) = \Sigma_n^c(\mathcal{O}_A)$ and

$$(\forall n)(\forall X \subseteq A)[X \in \Sigma_{n+1}^c(\mathcal{O}_A) \to X \in \Sigma_1^c(\mathcal{O}_A)].$$

But $(\forall n)[\mathcal{O}_A \leq_0^n \mathcal{O}_A]$ is evidently not true.

Moschovakis' extension

```
Let \mathfrak{A}=(A;P_1,\ldots,P_k) and \bar{0}\not\in A.

Set A_0=A\cup\{\bar{0}\}.

Let \langle .,.\rangle be a pairing function s.t. none of the elements of A is a pair and A^* be the least set containing A_0 and closed under \langle .,.\rangle.

Let 0^*=\bar{0} and (n+1)^*=\langle \bar{0},n^*\rangle,\ \mathbb{N}^*=\{n^*\mid n\in\mathbb{N}\}.

The decoding functions: L(\langle s,t\rangle)=s\ \&\ R(\langle s,t\rangle)=t

L(\bar{0})=R(\bar{0})=0^*\ (\forall t\in A)[L(t)=R(t)=1^*].
```

Moschovakis' extension

Definition. *Moschovakis' extension* of $\mathfrak A$ is the structure

$$\mathfrak{A}^{\star} = (A^{\star}, P_1, \dots, P_k, A_0, G_{\langle \dots \rangle}, G_L, G_R).$$

Proposition. $\mathfrak{A} \equiv_n^n \mathfrak{A}^*$ for every $n \in \mathbb{N}$.

Proposition. For every two structures \mathfrak{A} , \mathfrak{B} with $A \subseteq B$ and natural numbers n, k $\mathfrak{A} \equiv_n^k \mathfrak{B}$ iff $\mathfrak{A}^* \equiv_n^k \mathfrak{B}^*$.

Conservative (k, n) Extensions and Definability

Theorem.(S. Vatev)

Let $\mathfrak A$ and $\mathfrak B$ be countable structures with $A^\star\subseteq B$ and $k,n\in\mathbb N$. If $(\forall X\subseteq A^\star)[X\in\Sigma_{k+1}^c(\mathfrak A^\star)\to X\in\Sigma_{n+1}^c(\mathfrak B)]$ then $\mathfrak A\le_n^k\mathfrak B$.

Corollary. For any two countable structures \mathfrak{A} , \mathfrak{B} with $A \subseteq B$ and $n, k \in \mathbb{N}$,

$$\mathfrak{A} \leq_n^k \mathfrak{B} \leftrightarrow (\forall X \subseteq A^*)[X \in \Sigma_{k+1}^c(\mathfrak{A}^*) \to X \in \Sigma_{n+1}^c(\mathfrak{B}^*)].$$

The set $K^{\mathfrak{A}}$

A new predicate $K_{\mathfrak{A}}$ (analogue of Kleene's set). For $e, x \in \mathbb{N}$ and finite part τ , let

$$\tau \Vdash F_e(x) \leftrightarrow x \in W_e^{\tau^{-1}(\mathfrak{A})}$$

$$\tau \Vdash \neg F_e(x) \leftrightarrow (\forall \rho \supseteq \tau)(\rho \not\Vdash F_e(x))$$

$$K^{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

$$\mathfrak{A}' = (\mathfrak{A}^*, K^{\mathfrak{A}}).$$

Theorem. $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$.

Proposition. $\mathfrak{A} \equiv_0^1 \mathfrak{A}'$.

The Forcing Relation

For every $e, x, n \in \mathbb{N}$ and for every finite part $\tau : \mathbb{N} \to A$, we define the forcing relations \Vdash_n :

$$\tau \Vdash_{0} F_{e}(x) \qquad \leftrightarrow \qquad x \in W_{e}^{\tau^{-1}(\mathfrak{A})}$$

$$\tau \Vdash_{n+1} F_{e}(x) \qquad \leftrightarrow \qquad (\exists v)[\langle x, v \rangle \in W_{e} \& (\forall u \in D_{v})[(u = \langle e_{u}, x_{u}, 1 \rangle \& \tau \Vdash_{n} F_{e_{u}}(x_{u})) \lor (u = \langle e_{u}, x_{u}, 0 \rangle \& \tau \Vdash_{n} \neg F_{e_{u}}(x_{u}))]],$$

$$\tau \Vdash_{n} \neg F_{e}(x) \qquad \leftrightarrow \qquad (\forall \rho \supseteq \tau)(\rho \not\Vdash_{n} F_{e}(x)).$$

The set $K_n^{\mathfrak{A}}$

Definition.

$$K_n^{\mathfrak{A}} = \{ \langle \delta, e, x \rangle \mid (\exists \tau \supseteq \delta) [\tau \Vdash_n F_e(x)] \}.$$

Proposition.(S. Vatev)

- (i) $K_n^{\mathfrak{A}} \in \Sigma_{n+1}^c(\mathfrak{A}^\star)$ and $A^\star \setminus K_n^{\mathfrak{A}} \in \Sigma_{n+2}^c(\mathfrak{A}^\star)$.
- (ii) $K_n^{\mathfrak{A}} \notin \Sigma_n^c(\mathfrak{A}^*)$.

Jumps of Structures

Definition. For every natural number n, we define the n-th jump of the structure $\mathfrak A$ in the following way:

$$\mathfrak{A}^{(0)} = \mathfrak{A}$$
 and $\mathfrak{A}^{(n+1)} = (\mathfrak{A}^{\star}, K_n^{\mathfrak{A}}).$

Jumps of Structures

Proposition. For every $\mathfrak A$ and natural number n,

- (i) $\mathfrak{A} \equiv_0^n \mathfrak{A}^{(n)}$;
- (ii) $\mathfrak{A}^{(n)} \leq_0^0 \mathfrak{A}^{(n+1)}$ and $\mathfrak{A}^{(n)} \not\equiv_0^0 \mathfrak{A}^{(n+1)}$.

Since $\mathfrak{A} \equiv_n^k \mathfrak{B}$ implies $DS_k(\mathfrak{A}) = DS_n(\mathfrak{B})$, we get the following.

Corollary. For every \mathfrak{A} , $DS(\mathfrak{A}^{(n)}) = DS_n(\mathfrak{A})$.

The Jump Inversion Theorem

Theorem. Let \mathfrak{A} and \mathfrak{C} be countable structures and $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{C})$. There exists a structure $\mathfrak{B} = \mathfrak{A}^{\exists \forall} \oplus \mathfrak{C}$ such that $DS(\mathfrak{A}) = DS_1(\mathfrak{B})$ and $DS(\mathfrak{B}) \subseteq DS(\mathfrak{C})$.

Remark. Similar results by:

- A. Montalban (2009) by different approach with complete set of Π_n^c formulas.
- A. Stukachev (2009) for Σ reducibility with Marker's extentions.

Stukachev proves an analogue of this theorem for the semilattices of Σ -degrees of structures with arbitrary cardinalities.

Theorem.(Stukachev) Let $\mathfrak A$ be a structure such that $\mathbf 0' \leq_{\mathbf \Sigma} \mathfrak A$. There exists a structure $\mathfrak B$ such that $\mathfrak A \equiv_{\mathbf \Sigma} \mathfrak B'$.

We can prove a similar to Stukachev's result.

The Jump Inversion Theorem

Proposition. If $\mathcal{O}_A \leq_0^1 \mathfrak{A}$, then $\mathfrak{A} \equiv_1^0 \mathfrak{A}^{\exists \forall}$.

Theorem. Let $\mathcal{O}_A \leq_0^k \mathfrak{A}$ for some $k \in \mathbb{N}$. There exists a structure $\mathfrak{B} = \mathfrak{A}^{\exists \forall}$ such that $\mathfrak{A} \equiv_0^0 \mathfrak{B}^{(k)}$.

Remark. Note that $\mathcal{O}_A \leq_0^k \mathfrak{A}$ iff the elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(k)}$.

The Jump Inversion Theorem

Proposition. Let $\mathcal{O}_A \leq_0^k \mathfrak{A}$ for some $k \in \mathbb{N}$. There exists a structure \mathfrak{B} such that for every $n \in \mathbb{N}$, $\mathfrak{A} \equiv_k^n \mathfrak{B}^{(n)}$.

Corollary. Let $\mathcal{O}_A \leq_0^k \mathfrak{A}$ for some $k \in \mathbb{N}$. There exists a countable structure \mathfrak{B} such that

$$(\forall n \in \mathbb{N})(\forall X \subseteq A)[X \in \Sigma_{n+1}^{c}(\mathfrak{A}) \leftrightarrow X \in \Sigma_{k+1}^{c}(\mathfrak{B}^{(n)})].$$

Corollary. If $\mathcal{O}_A \leq_0^k \mathfrak{A}$ for some $k \in \mathbb{N}$ then for each $n \in \mathbb{N}$, there is a structure \mathfrak{B} such that

$$(\forall X\subseteq A)[X\in \Sigma_{n+1}^c(\mathfrak{A})\leftrightarrow X\in \Sigma_{k+1}^c(\mathfrak{B})].$$

Some problems

- The definition of $\mathfrak{A} \equiv_n^k \mathfrak{B}$ is not symmetric since we suppose that $A \subseteq B$. How to define the similar relation more symmetric and for arbitrary \mathfrak{A} and \mathfrak{B} ?
- How to relativize the Jump Inversion Theorem for structures?
- The Jump inversion Theorem for structures for arbitrary constructive ordinal α .

Thank you!

- Ash, C., Knight, J., Manasse, M., Slaman, T.:, Generic Copies of Countable Structures, Annals of Pure and Applied Logic, vol. 42 (1989), pp. 195 – 205
- Chisholm, J.:
 Effective Model Theory vs. Recursive Model Theory,
 The Journal of Symbolic Logic, vol. 55, No. 3 (1990), pp.
 1168 1191
- Soskova, A., Soskov, I.:

 A Jump Inversion Theorem for the Degree Spectra,

 Journal of Logic and Computation, vol. 19, 199–215 (2009)
- Vatev, S.: Conservative Extensions of Abstract Structures, to appear in LNCS.