Joint Spectra and Relative Spectra of structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

26 March 2014

Degree spectra

Definition

Let ${\mathfrak A}$ be a countable structure. The spectrum of ${\mathfrak A}$ is the set of Turing degrees

 $\mathrm{Sp}(\mathfrak{A})=\{\boldsymbol{a}\mid\boldsymbol{a}\text{ computes the diagram of an isomorphic copy of }\mathfrak{A}\}.$

Enumeration of a structure

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- let for any $X \subseteq A^a$ $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}.$
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$.

Definition

The spectrum of $\mathfrak A$ is the set $\mathrm{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$

Enumeration of a structure

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- let for any $X \subseteq A^a$ $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}.$
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$.

Definition

The spectrum of $\mathfrak A$ is the set $\operatorname{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$ The k-th jump spectrum of $\mathfrak A$ is the set $\operatorname{Sp}_k(\mathfrak A)=\{\mathbf a^{(k)}\mid \mathbf a\in\operatorname{Sp}(\mathfrak A)\}.$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

The k-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$JSp_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{a}^{(k)} \mid \mathbf{a} \in JSp(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

The k-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$JSp_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)=\{\mathbf{a}^{(k)}\mid \mathbf{a}\in JSp(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$$

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- 2 A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Denote by Y^+ the set $Y \oplus \overline{Y}$.

Proposition

X is c.e. in Y if and only if $X \leq_e Y^+$.

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Definition

 $X \leq_e Y$ if for some $e, X = W_e(Y)$, i.e.

$$(\forall x)(x \in X \iff (\exists v)(\langle v, x \rangle \in W_e \land D_v \subseteq Y)).$$

Denote by Y^+ the set $Y \oplus \overline{Y}$.

Proposition

X is c.e. in Y if and only if $X \leq_e Y^+$.

X is computable in Y if and only if $X^+ \leq_e Y^+$.

Degree structures

- The enumeration degree of set X is $d_e(X) = \{Y \mid X \equiv_e Y\}$.
 - The structure of the enumeration degrees \mathcal{D}_e is an upper semi-lattice with jump operation.
 - The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(X)) = d_e(X^+)$.
- This embedding agrees with the jump operation since $(K^X)^+ \equiv_e (X^+)'$.

Co-spectra of structures

Definition

Let $\mathfrak A$ be a countable structure and $k \in \mathbb N$. The k-th co-spectrum of $\mathfrak A$ is the set

$$CoSp_k(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_e \land (\forall \mathbf{b} \in Sp_k(\mathfrak{A})) (\mathbf{a} \leq_e \mathbf{b}) \}.$$

Definition

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_k\}_{k \le n}$ be a finite sequence of structures.

The k-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{CoJSp}_{k}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{e} \mathbf{x}) \right\}.$$

Co-spectra of structures

Definition

Let $\mathfrak A$ be a countable structure and $k \in \mathbb N$. The k-th co-spectrum of $\mathfrak A$ is the set

$$CoSp_k(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_e \land (\forall \mathbf{b} \in Sp_k(\mathfrak{A})) (\mathbf{a} \leq_e \mathbf{b}) \}.$$

Definition

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_k\}_{k \le n}$ be a finite sequence of structures.

The k-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{CoJSp}_{k}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{e} \mathbf{x}) \right\}.$$

Co-spectra of Joint spectra of structures

For each sequence $\{f_k\}_{k\leq n}$ of enumerations of the structures $\vec{\mathfrak{A}}$ denote by: $\vec{f}^{-1}(\vec{\mathfrak{A}}) = \{f_k^{-1}(\mathfrak{A}_k)\}_{k\leq n}$ and by induction: $\mathcal{P}_0(\vec{f}^{-1}(\vec{\mathfrak{A}})) = f_0^{-1}(\mathfrak{A}_0)$ and $\mathcal{P}_{k+1}(\vec{f}^{-1}(\vec{\mathfrak{A}})) = \mathcal{P}_k(\vec{f}^{-1}(\vec{\mathfrak{A}}))' \oplus f_{k+1}^{-1}(\mathfrak{A}_{k+1})$.

Proposition

For any set $X \subseteq \mathbb{N}$ the following equivalence holds

$$d_e(X) \in \operatorname{CoJSp}_k(\vec{\mathfrak{A}}) \iff X \leq_e \mathcal{P}_k(\vec{f}^{-1}(\vec{\mathfrak{A}})) \text{ for every }$$

sequence $\{f_k\}_{k \leq n}$ of enumerations of $\vec{\mathfrak{A}}$.

Corollary

For $k \leq n$:

$$CoJSp_k(\vec{\mathfrak{A}}) = CoJSp_k(\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_k).$$

The Normal Form Theorem

Definition

The set $X \subseteq \mathbb{N}$ is *formally k-definable* on $\vec{\mathfrak{A}} = \{\mathfrak{A}_k\}_{k \leq n}$ if there exists a computable sequence $\{\Phi^{\gamma(x)}(W_1,\ldots,W_r)\}$ of Σ_k^+ formulae and parameters t_1,\ldots,t_r such that:

$$x \in X \iff \vec{\mathfrak{A}} \models \Phi^{\gamma(x)}(W_1/t_1,\ldots,W_r/t_r).$$

- $\bullet \ \Sigma_0^+ : \exists \overline{Y^0}(\beta_1 \& \ldots \& \beta_k) ;$
- Σ_{k+1}^+ : c.e. disjunction of formulae of the form $\exists \, \bar{Y}^0 \dots \exists \, \bar{Y}^{k+1} \Phi(\bar{X}^0, \dots, \bar{X}^{k+1}, \, \bar{Y}^0, \dots, \bar{Y}^{k+1})$ where Φ is a finite conjunction of Σ_k^+ formulae and negations of Σ_k^+ formulae with free variables among $\bar{Y}^0 \dots \bar{Y}^k, \, \bar{X}^0 \dots \bar{X}^k$ and atoms of \mathcal{L}_{k+1} with variables among $\bar{X}^{k+1}, \, \bar{Y}^{k+1}$;

Theorem

 $d_{e}(X) \in CoJSp_{k}(\vec{\mathfrak{A}})$ if and only if X is formally k-definable on $\vec{\mathfrak{A}}$.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

The k-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_k(\vec{\mathfrak{A}}) = {\mathbf{a}^{(k)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of $\vec{\mathfrak{A}}$ is the following set of enumeration degrees:

$$\text{CoRSp}(\vec{\mathfrak{A}}) = \{ \textbf{b} \in \mathcal{D}_{\textbf{e}} \mid (\forall \textbf{a} \in \text{RSp}(\vec{\mathfrak{A}})) (\textbf{b} \leq \textbf{a}) \}.$$

The Relative kth co-spectrum of $\vec{\mathfrak{A}}$ is

$$CoRSp_{k}(\vec{\mathfrak{A}}) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in RSp_{k}(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of $\vec{\mathfrak{A}}$ is the following set of enumeration degrees:

$$CoRSp(\vec{\mathfrak{A}}) = \{ \mathbf{b} \in \mathcal{D}_{\mathbf{e}} \mid (\forall \mathbf{a} \in RSp(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

The Relative kth co-spectrum of $\vec{\mathfrak{A}}$ is

$$CoRSp_k(\vec{\mathfrak{A}}) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in RSp_k(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

Proposition

$$CoRSp_k(\vec{\mathfrak{A}}) = CoRSp_k(\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_k).$$

Relative Co-spectra

Let f be an enumeration of A. Denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_k)\}_{k \leq n}$.

Theorem

For every $X \subseteq \mathbb{N}$, the following are equivalent:

- 2 $X \leq_{\mathrm{e}} \mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))$, for every enumeration f of A.

The Normal Form Theorem

The set $X \subseteq \mathbb{N}$ is *formally k-definable* on $\vec{\mathfrak{A}}$ if there exists a computable sequence $\{\Phi^{\gamma(x)}(W_1,\ldots,W_r)\}$ of Σ_k^+ formulae and elements t_1,\ldots,t_r of A such that:

$$x \in A \iff (\vec{\mathfrak{A}}) \models \Phi^{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r).$$

- $\bullet \ \Sigma_0^+ : \exists \overline{Y}(\beta_1 \& \ldots \& \beta_k) ;$
- Σ_{k+1}^+ : c.e. disjunction of $(\exists \overline{Y})\Phi(\overline{X}, \overline{Y})$, $\Phi = (\phi_1 \& \ldots \& \phi_l \& \beta)$.

Proposition

 $d_{\mathrm{e}}(X) \in \mathrm{CoRSp}_{k}(\vec{\mathfrak{A}})$ if and only if X is formally k-definable on $\vec{\mathfrak{A}}$.

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$.

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

For every $\vec{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\vec{\mathfrak{A}}) = \operatorname{CoRSp}(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $\operatorname{CoJSp}_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq \operatorname{CoRSp}_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let $\mathfrak{A}_0 = (\mathbb{N}, L, R)$, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \dots, j_i, \dots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

• $d_e(M) \notin \operatorname{CoJSp}_1(\mathfrak{A}_0, \mathfrak{A}_1)$.

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. However at the next levels we can have a difference: there are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Example: Let
$$\mathfrak{A}_0 = (\mathbb{N}, L, R)$$
, $L(\langle i, j \rangle, \langle i+1, j \rangle)$, $R(\langle i, j \rangle, \langle i, j+1 \rangle)$.

Let M be a set which is Σ_3^0 , but not Σ_2^0 . Fix an enumeration of the elements of M, $M = \{j_0, \ldots, j_i, \ldots\}$.

Finally let $\mathfrak{A}_1 = (\mathbb{N}, P)$, where $P(\langle i, j_i \rangle) \iff j_i \in M$.

- $d_e(M) \notin \text{CoJSp}_1(\mathfrak{A}_0, \mathfrak{A}_1)$.
- $d_e(M) \in \text{CoRSp}_1(\mathfrak{A}_0, \mathfrak{A}_1)$, since if $t_0 = \langle 0, 0 \rangle$,

$$j \in M \iff \exists Y_0 \dots \exists Y_i \exists Z_0 \dots \exists Z_j (Y_0 = t_0 \& L(Y_0, Y_1) \& \dots \& L(Y_{i-1}, Y_i) \& Y_i = Z_0 \& R(Z_0, Z_1) \& \dots \& R(Z_{j-1}, Z_j) \& P(Z_j)).$$

Minimal Pair Theorem

Theorem

For any finite sequence of structures $\vec{\mathfrak{A}}$, there exist Turing degrees \mathbf{f} and \mathbf{g} in $\mathrm{RSp}(\vec{\mathfrak{A}})$, such that for any enumeration degree \mathbf{a} and each k < n:

$$\mathbf{a} \leq \mathbf{f^{(k)}} \& \mathbf{a} \leq \mathbf{g^{(k)}} \Rightarrow \mathbf{a} \in CoRSp_k(\vec{\mathfrak{A}}).$$

Quasi-Minimal Degree

Definition (Soskov)

An enumeration degree $\mathbf{q_0}$ is quasi-minimal with respect to $\mathrm{Sp}(\mathfrak{A})$ if

- $q_0 \notin CoSp(\mathfrak{A});$
- for any Turing degree **a**: $\iota(\mathbf{a}) \ge \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{Sp}(\mathfrak{A})$ and $\iota(\mathbf{a}) \le \mathbf{q_0} \Rightarrow \iota(\mathbf{a}) \in \mathrm{CoSp}(\mathfrak{A})$.

Quasi-Minimal Degree

Definition (Soskov)

An enumeration degree $\mathbf{q_0}$ is *quasi-minimal with respect to* $\mathrm{Sp}(\mathfrak{A})$ if

- $q_0 \notin CoSp(\mathfrak{A});$
- for any Turing degree **a**: $\iota(\mathbf{a}) \ge \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{Sp}(\mathfrak{A})$ and $\iota(\mathbf{a}) \le \mathbf{q_0} \Rightarrow \iota(\mathbf{a}) \in \mathrm{CoSp}(\mathfrak{A})$.

Theorem

For any finite sequence of structures $\vec{\mathfrak{A}}$ there exists an enumeration degree \mathbf{q} such that:

- $\mathbf{0}$ $\mathbf{q} \notin CoRSp(\tilde{\mathfrak{A}})$;
- ② If **a** is a Turing degree and $\iota(\mathbf{a}) \geq \mathbf{q}$, then $\mathbf{a} \in \mathrm{RSp}(\widetilde{\mathfrak{A}})$;
- **③** If **a** is a Turing degree and $\iota(\mathbf{a}) \leq \mathbf{q}$, then $\iota(\mathbf{a}) \in \operatorname{CoRSp}(\vec{\mathfrak{A}})$.

Let $\mathcal{X} = \{X_n\}_{n < \omega}$ and $\mathcal{Y} = \{Y_n\}_{n < \omega}$ be some sequences of sets of natural numbers.

Definition

The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(\mathcal{X}) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Definition

We say that $\mathcal{X} \leq_{\omega} \mathcal{Y} \iff (\forall n)(X_n \leq_e \mathcal{P}_n(\mathcal{Y}) \text{ uniformly in } n)$.

$$\mathcal{X} \equiv_{\omega} \mathcal{Y} \iff \mathcal{X} \leq_{\omega} \mathcal{Y} \& \mathcal{Y} \leq_{\omega} \mathcal{X}.$$

Theorem (Selman)

 $X \leq_{e} Y$ if and only if for every Z, if Y is c.e. in Z then X is c.e. in Z.

Theorem (Selman)

 $X \leq_e Y$ if and only if for every Z, if Y is c.e. in Z then X is c.e. in Z.

Definition

A sequence of sets $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set $Z \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $Z^{(n)}$ uniformly in n.

Theorem (Selman)

 $X \leq_e Y$ if and only if for every Z, if Y is c.e. in Z then X is c.e. in Z.

Definition

A sequence of sets $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set $Z \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $Z^{(n)}$ uniformly in n.

Theorem (Soskov)

 $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every set of natural numbers Z, if \mathcal{Y} is c.e. in Z then \mathcal{X} is c.e. in Z.

Degree structures

• The ω -enumeration degree of a sequence \mathcal{X} is $d_{\omega}(\mathcal{X}) = \{\mathcal{Y} = \{Y_n\}_{n < \omega} \mid \mathcal{X} \equiv_{\omega} \mathcal{Y}\}$

The structure of the ω -enumeration degrees \mathcal{D}_{ω} is an upper semi-lattice with jump operation.

The enumeration degrees are embedded in to the ω -enumeration degrees by: $\kappa(d_e(X)) = d_\omega(\{X^{(n)}\}_{n<\omega})$.

$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$

 There are sets X which are not enumeration equivalent to any set of the form Y⁺.

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\qquad \qquad \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n < \omega}.$

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\qquad \qquad \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

Sequences with this property are called *almost zero*.

$$\mathcal{D}_{\mathcal{T}}\subset\mathcal{D}_{\mathsf{e}}\subset\mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\qquad \qquad \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

Sequences with this property are called almost zero.

To make $\mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq \{W_e^{[n]}(\emptyset^{(n)})\}_{n<\omega}$, where $W_e^{[n]}$ is the n-th column of W_e .

$$\mathcal{D}_{\mathcal{T}}\subset\mathcal{D}_{\mathsf{e}}\subset\mathcal{D}_{\omega}$$

- There are sets X which are not enumeration equivalent to any set of the form Y^+ .
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\triangleright \mathcal{R} \not <_{\omega} \{\emptyset^{(n)}\}_{n < \omega}$

Sequences with this property are called *almost zero*.

To make $\mathcal{R} \not\leq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$ it is sufficient to ensure $\mathcal{R} \neq \{W_{\mathbf{A}}^{[n]}(\emptyset^{(n)})\}_{n < \omega}$, where $W_{\mathbf{A}}^{[n]}$ is the *n*-th column of $W_{\mathbf{A}}$.

$$R_n = \left\{ \begin{array}{ll} \{1\}, & \text{ if } 0 \in W_n^{[n]}(\emptyset^{(n)}); \\ \{0\}, & \text{ otherwise.} \end{array} \right..$$

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

The *n*-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$JSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in JSp(\vec{\mathfrak{A}})}.$$

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f_n^{-1}(\mathfrak{A}_n) = f_n^{-1}(A_n) \oplus f_n^{-1}(R_1^n) \oplus \cdots \oplus f_n^{-1}(R_{m_n}^n)$$
.

The *n*-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$JSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in JSp(\vec{\mathfrak{A}})}.$$

If $\vec{\mathfrak{A}}$ and $\vec{\mathfrak{A}}^*$ are such that for every $n \mathfrak{A}_n \cong \mathfrak{A}_n^*$ then $JSp(\vec{\mathfrak{A}}) = JSp(\vec{\mathfrak{A}}^*)$.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{ d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

The n-th relative spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

where
$$f^{-1}(\mathfrak{A}_n) = f^{-1}(A_n) \oplus f^{-1}(R_1^n) \oplus \cdots \oplus f^{-1}(R_{m_n}^n)$$
.

The n-th relative spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_n(\vec{\mathfrak{A}}) = {\mathbf{a}^{(n)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$OCoSp(\vec{\mathfrak{A}}) = \left\{ \boldsymbol{a} \in \mathcal{D}_{\omega} \mid \forall \boldsymbol{x} \in RSp(\vec{\mathfrak{A}}) (\boldsymbol{a} \leq_{\omega} \boldsymbol{x}) \right\}.$$

For any enumeration f of A denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$: $d_{\omega}(\mathcal{X}) \in \text{OCoSp}(\vec{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}$, for every enumeration f of A.

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

For any enumeration f of A denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$: $d_{\omega}(\mathcal{X}) \in \mathrm{OCoSp}(\vec{\mathfrak{A}})$ iff $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}$, for every enumeration fof A.

Proposition

 $d_{\omega}(\mathcal{X}) \in OCoSp(\vec{\mathfrak{A}})$ iff there exists a computable sequence $\{\Phi^{\gamma(n,x)}(W_1,\ldots,W_r)\}\$ of Σ_n^+ formulae and elements t_1,\ldots,t_r of A s.t.: $x \in X_n \iff (\vec{\mathfrak{A}}) \models \Phi^{\gamma(n,x)}(W_1/t_1,\ldots,W_r/t_r).$

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, ..., X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_n} \rightarrow X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \dots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n [M_n(\bar{a}, x_0, \dots x_n)].$$

For
$$\mathfrak{A} = (A; R_1, R_2, \dots R_m)$$
 and $\mathfrak{B} = (B; P_1, P_2, \dots P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots R_m, P_1, P_2, \dots P_k)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$
Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, and $A=\bigcup_n A_n.$

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

• For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- **②** For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- **②** For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \nleq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

- ② \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$

Example: Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a sequence of sets and $\vec{\mathfrak{A}}$ the sequence of structures:

- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$

Example: Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a sequence of sets and $\vec{\mathfrak{A}}$ the sequence of structures:

- $\bullet \ \mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$

Example: Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a sequence of sets and $\vec{\mathfrak{A}}$ the sequence of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n.

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the *n*-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the *n*-th co-degree of \mathfrak{M} .

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

•
$$\operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$$

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

•
$$\operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$$

Consider the *almost zero* sequence \mathcal{R} :

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

•
$$\operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$$

Consider the *almost zero* sequence \mathcal{R} :

• $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_e^{(n)}$.

Example: continued

Definition

The least element of $\operatorname{Sp}_n(\mathfrak{M})$ if it exists is the n-th jump degree of \mathfrak{M} . The greatest element of $\operatorname{CoSp}_n(\mathfrak{M})$ if it exists is the n-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}_e'$ but not always a degree or a jump degree.

• $\operatorname{CoSp}_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e \mathcal{P}_n(\mathcal{R}) \}.$

Consider the *almost zero* sequence \mathcal{R} :

- $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n. Hence the n-th co-degree of \mathfrak{M} is $\mathbf{0}_e^{(n)}$.
- ② $\mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}$. Hence \mathfrak{M} has no n-th jump degree for any n.

Generalized Goncharov and Khoussainov Lemma

Proposition

Let $n \ge 0$ and R be a $\Sigma_{n+1}^0(B)$ set with an infinite computable subset. Then there exists functions $k_0 \dots k_n$ such that the graph of k_n is computable in B, uniformly in an index for R and n and

 $k_0:R\to\mathbb{N}$.

 $k_1: \mathbb{N}^2 \setminus G_{k_0} \to \mathbb{N} \dots$

 $k_n: \mathbb{N}^{n+1} \setminus G_{k_{n-1}} \to \mathbb{N}.$

Lemma (Soskov, M. Soskova)

Let R be $\Sigma^0_2(X)$ and $S \subseteq R$ be infinite and computable. There exists a bijection $k : R \to \mathbb{N}$ such that $\mathbb{N}^2 \setminus G_k$ is $\Sigma^0_1(X)$ and has an infinite computable subset.

Main theorem

Denote by $J_{\mathbf{S}}(\vec{\mathfrak{A}}) = \{\{f_n^{-1}(\mathfrak{A}_n)\}_{n<\omega} \mid f_n \text{ is an enumeration of } A_n\}$ and $R_{\mathbf{S}}(\vec{\mathfrak{A}}) = \{\{f^{-1}(\mathfrak{A}_n)\}_{n<\omega} \mid f \text{ is an enumeration of } A\}.$

Theorem (Soskov)

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$ be a sequence of structures.

- There exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \mathcal{Y}) \in \operatorname{Rs}(\vec{\mathfrak{A}}))(\mathcal{Y} \text{ is c.e. in } B) \right\}.$
- ② There exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \mathcal{Y} \in \operatorname{JSp}(\vec{\mathfrak{A}}))(\mathcal{Y} \text{ is c.e. in } B) \right\}.$

Corollary

For a finite sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_k\}_{k < n}$:

- There exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = JSp(\vec{\mathfrak{A}})$.
- ② There exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = RSp(\vec{\mathfrak{A}})$.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

• Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \Big\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \Big\}.$

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_T(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_T(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

$$\mathcal{R} \leq_{\omega} \mathcal{Q} \iff \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\} \supseteq \{d_{\mathcal{T}}(B) \mid \mathcal{Q} \text{ is c.e. in } B\} \iff \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) \supseteq \operatorname{Sp}(\mathfrak{M}_{\mathcal{Q}}).$$
 Let $\mu(d_{\omega}(\mathcal{R})) = \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}).$

Let $JS(\vec{\mathfrak{A}}) = \{ \{g_n^{-1}(\mathfrak{A}_n)\}_{n < \omega} \mid g_n \text{ is an enumeration of } A_n \}.$

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \{d_T(B) \mid (\exists \{Y_n\}_{n < \omega} \in \operatorname{JS}(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n)\}.$

Let $JS(\vec{\mathfrak{A}}) = \{ \{g_n^{-1}(\mathfrak{A}_n)\}_{n < \omega} \mid g_n \text{ is an enumeration of } A_n \}.$

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \{d_T(B) \mid (\exists \{Y_n\}_{n < \omega} \in \operatorname{JS}(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n)\}.$

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Let $JS(\vec{\mathfrak{A}}) = \{\{g_n^{-1}(\mathfrak{A}_n)\}_{n<\omega} \mid g_n \text{ is an enumeration of } A_n\}.$

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \{d_T(B) \mid (\exists \{Y_n\}_{n < \omega} \in \operatorname{JS}(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n)\}.$

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Let $JS(\vec{\mathfrak{A}}) = \{ \{g_n^{-1}(\mathfrak{A}_n)\}_{n<\omega} \mid g_n \text{ is an enumeration of } A_n \}.$

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \{d_T(B) \mid (\exists \{Y_n\}_{n<\omega} \in \operatorname{JS}(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n)\}.$

$$\operatorname{Sp}(\mathfrak{M})\subseteq\operatorname{Sp}(\mathfrak{A}_0),\,\operatorname{Sp}_1(\mathfrak{M})\subseteq\operatorname{Sp}(\mathfrak{A}_1),\,\ldots,\,\operatorname{Sp}_n(\mathfrak{M})\subseteq\operatorname{Sp}(\mathfrak{A}_n)\ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)

There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M}) = \{\mathbf{b} \mid \forall n (\mathbf{b}^{(n)} > \mathbf{0}^{(n)})\}.$

Co-spectra of joint spectra of structures.

Ann. Univ. Sofia, 96 (2004) 35-44.

I. N. Soskov

Degree spectra and co-spectra of structures.

Ann. Univ. Sofia, 96 (2004) 45-68.

A. A. Soskova

Relativized degree spectra.

Journal of Logic and Computation, 17 (2007) 1215–1234.

I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, **23** (6), (2013) 1335–1367.