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Enumeration reducibility

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x ,D〉 ∈W & D ⊆ B)} .

A ≡e B if A ≤e B and B ≤e A.
The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B).
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Selman’s theorem

Equivalently, A ≤e B if there is a single Turing functional which
uniformly, given any enumeration of B, outputs an enumeration of A.

Definition
Given a set A, let E(A) denote the collection of all Turing degrees
computing enumerations of A, called the enumeration cone of A.

Theorem (Selman)
The set A is enumeration reducible to the set B if and only if
E(B) ⊆ E(A).
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The enumeration jump

Definition. Given a set A, denote by A+ = A⊕ (N \ A).

Theorem. For any sets A and B:
1 A is c.e. in B iff A ≤e B+.
2 A ≤T B iff A+ ≤e B+.

Definition. For any set A let KA = {〈i , x〉|x ∈Wi(A)}. Set A′ = K+
A .

Definition. A set A is called total iff A ≡e A+.

Let de(A)′ = de(A′). The enumeration jump is always a total degree
and agrees with the Turing jump under the standard embedding
ι : DT → De by ι(dT (A)) = de(A+).
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Enumeration degree spectra

Let A = (A; R1, . . . ,Rk ) be a countable structure. An enumeration of A
is every total surjective mapping of N onto A.

Given an enumeration f of A and a subset of B of An, let

f−1(B) = {〈x1, . . . , xn〉 | (f (x1), . . . , f (xn)) ∈ B}.

f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=)⊕ f−1( 6=).

Definition. The enumeration degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

If a is the least element of DS(A), then a is called the e-degree of A.
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Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards
with respect to total e-degrees, i.e. if a ∈ DS(A), b is a total e-degree
a ≤e b then b ∈ DS(A).

Let A+ = (A,R1, . . . ,Rk ,Rc
1 , . . . ,R

c
k ).

Proposition.
ι(DST (A)) = DS(A+).

Alexandra A. Soskova (Sofia University) Properties of degree spectra , co-spectra and omega co-spectra 6 / 37



Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards
with respect to total e-degrees, i.e. if a ∈ DS(A), b is a total e-degree
a ≤e b then b ∈ DS(A).

Let A+ = (A,R1, . . . ,Rk ,Rc
1 , . . . ,R

c
k ).

Proposition.
ι(DST (A)) = DS(A+).

Alexandra A. Soskova (Sofia University) Properties of degree spectra , co-spectra and omega co-spectra 6 / 37



Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The
co-set of A is the set co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

Definition. Given a structure A, set CS(A) = co(DS(A)).
If a is the greatest element of CS(A) then we call a the co-degree of A.
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The admissible in A sets

Definition. A set B of natural numbers is admissible in A if for every
enumeration f of A, B ≤e f−1(A).

Clearly a ∈ CS(A) iff a = de(B) for some admissible in A set B.
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The formally definable sets on A

Definition. A Σ+
1 formula with free variables among X1, . . . , Xr is a c.e.

disjunction of existential formulae of the form ∃Y1 . . . ∃Ykθ(Ȳ , X̄ ),
where θ is a finite conjunction of atomic formulae.

Definition. A set B ⊆ N is formally definable on A if there exists a
computable function γ(x), such that

∨
x∈N Φγ(x) is a Σ+

1 formula with
free variables among X1, . . . ,Xr and elements t1, . . . , tr of A such that
the following equivalence holds:

x ∈ B ⇐⇒ A |= Φγ(x)(X1/t1, . . . ,Xr/tr ) .

Theorem. Let B ⊆ N. Then
1 de(B) ∈ CS(A) iff
2 B ≤e f−1(A) for all generic enumerations f of A iff
3 B is formally definable on A.
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Jump spectra and jump co-spectra

Definition. The nth jump spectrum of A is the set

DSn(A) = {de(f−1(A)(n)) : f is an enumeration of A}.

If a is the least element of DSn(A), then a is called the nth jump degree
of A.

Definition. The co-set CSn(A) of the nth jump spectrum of A is called
nth jump co-spectrum of A.
If CSn(A) has a greatest element then it is called the nth jump
co-degree of A.
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Some examples

For every linear ordering DS(A) contains a minimal pair of
degrees [Richter] and hence 0e is the co-degree of A. So, if A has
a degree a, then a = 0e.
For a linear ordering A, CS1(A) consists of all e-degrees of Σ0

2
sets [Knight]. The first co-degree of A is 0′e.
There exists a structure A [Slaman,Whener]

DS(A) = {a : a is total and 0e < a}.

Clearly, the structure A has co-degree 0e but has no degree.
There is a structure whose spectrum is exactly the
non-hyperarithmetical degrees [Greenberg, Motalbán and Slaman]
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A special kind of co-degree
Definition. [Knight, Motalbán] A structure A has “enumeration degree
X ” if every enumeration of X computes a copy of A, and every copy of
A computes an enumeration of X .

In our terms this can be formulated as A+ has a co-degree de(X ) and
DS(A) = {a | a is total and de(X ) ≤ a}.

Example. Given X ⊆ N, consider the group GX =
⊕

i∈X Zpi , where pi
is the ith prime number. Then GX has “enumeration degree X”: We can
easily build GX out of an enumeration of X , and for the other direction,
we have that n ∈ X if and only if there exists g ∈ GX of order pn.

Theorem. [A. Montalbán] Let K be Πc
2 class of ∃-atomic structures, i.e.

K is the class of structures axiomatized by some Πc
2 sentence and for

every structure A in K and every tuple ā ∈ |A| the orbit of ā is
existentially definable (with parameters ā). Then every structure in K
has “enumeration degree” given by its ∃-theory.
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Representing the principle countable ideals as
co-spectra

Example. Let G be a torsion free abelian group of rank 1. [Coles,
Downey, Slaman; Soskov] There exists an enumeration degree sG
such that

DS(G) = {b : b is total and sG ≤ b}.
The co-degree of G is sG.
G has a degree iff sG is a total e-degree.

For every d ∈ De there exists a G, s.t. sG = d.

Corollary. Every principle ideal of enumeration degrees is CS(G) for
some G.
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Representing non-principle countable ideals as
co-spectra

Theorem.[Soskov] Every countable ideal is the co-spectrum of a
structure.

Proof.
Let B0, . . . ,Bn, . . . be a sequence of sets of natural numbers. Set
A = (N; Gf ;σ),

f (〈i ,n〉) = 〈i + 1,n〉;
σ = {〈i ,n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I(de(B0), . . . ,de(Bn), . . . )
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Spectra with a countable base

Definition. Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem. A structure A has e-degree if and only if DS(A) has a
countable base.
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An upwards closed set of degrees which is not a
degree spectra of a structure

a b
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Other examples

The class of PA degrees is not the degree spectrum of any
structure [Andrews,Miller].
The upward closure of the set of 1-random degrees is not the
spectrum of a structure [Andrews,Miller].
A degree spectrum is never the Turing-upward closure of Fσ set of
reals in ωω, unless it is enumeration cone [Montalbàn]

Alexandra A. Soskova (Sofia University) Properties of degree spectra , co-spectra and omega co-spectra 17 / 37



The minimal pair theorem

Theorem. Let c ∈ DSn(A). There exist total f,g ∈ DS(A) such that,
f(n) = g(n) ≤ c and CSk (A) = co({f(k),g(k)}) for every k ≤ n − 2.

Notice that for every enumeration degree b there exists a structure Ab
such that DS(Ab) = {x ∈ DT |b <e x}. Hence

Corollary.[Rozinas] For every b ∈ De there exist total f,g below b′′

which are a minimal pair over b.
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The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree q is
quasi-minimal with respect to A if:

q 6∈ co(A).
If a is total and a ≥ q, then a ∈ A.
If a is total and a ≤ q, then a ∈ co(A).

Theorem. For every structure A there exists a quasi-minimal with
respect to DS(A) degree.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of
enumeration degrees. There exists an enumeration degree q s.t.

1 If a ∈ I then a <e q.
2 If a is total and a ≤e q then a ∈ I.
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Jumps of quasi-minimal degrees

Proposition. For every countable structure A there exist uncountably
many quasi-minimal degrees with respect to DS(A).

Proposition. The first jump spectrum of every structure A consists
exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[McEvoy] For every total e-degree a ≥e 0′e there is a
quasi-minimal degree q with q′ = a.
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Splitting a total set

Proposition.[Jockusch] For every total e-degree a there are
quasi-minimal degrees p and q such that a = p ∨ q.

Proposition. For every element a of the jump spectrum of a structure
A there exists quasi-minimal with respect to DS(A) degrees p and q
such that a = p ∨ q.
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Every jump spectrum is the spectrum of a structure

Let A = (A; R1, . . . ,Rn).
Let 0̄ 6∈ A. Set A0 = A ∪ {0̄}. Let 〈., .〉 be a pairing function s.t. none of
the elements of A0 is a pair and A∗ be the least set containing A0 and
closed under 〈., .〉. Let L and R be the decoding functions.

Definition. Moschovakis’ extension of A is the structure

A∗ = (A∗,R1, . . . ,Rn,A0,G〈.,.〉,GL,GR).

Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ  Fe(x))}.
Set A′ = (A∗,KA,A∗ \ KA).

Theorem. DS1(A) = DS(A′).
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The jump inversion theorem

Let α < ωCK
1 and A be a countable structure such that all elements of

DS(A) are above 0(α).
Does there exist a structure M such that DSα(M) = DS(A)?

Theorem. [Soskov, AS] α = 1. If DS(A) ⊆ DS1(B) then there exists a
structure C such that DS(C) ⊆ DS(B) and DS1(C) = DS(A).

Method: Marker’s extensions.

Remark. If a structure B has the property DS(A) = DS1(B), then it
follows that DS(C) ⊆ DS(B).

2009 Montalbàn Notes on the jump of a structure, Mathematical Theory
and Computational Practice, 372–378.

2009 Stukachev A jump inversion theorem for the semilattices of
Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6,
182 – 190
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Jump inversion theorem for ordinals

The jump inversion theorem holds for successor ordinals
[Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006;
Vatev,2013]

The jump inversion theorem does not hold for α = ω.
[Soskov 2013]

Every member of a ∈ CSω(M) is bounded by a total degree b, which is
also a member of CSω(M).
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Strong jump inversion

If a set Y computes a copy of A′ then its degree is in DS1(A) since
DS1(A) = DS(A′).
This means that there is a set X such that X ′ ≡ Y and the degree of X
computes a copy of A, i.e. it is in DS(A).

Definition. A structure A admits a strong jump inversion if for every set
X if X ′ computes a copy of A′ then X computes a copy of A.
Equivalently, if A has a copy low over X , (the atomic diagram of the
copy), then A has a computable in X copy.

Proposition. Let DS(A) = DS1(B) .
There exists a structure C such that DS(C) ⊆ DS(B) and
DS1(C) = DS(A) (by JIT)
If B admits a strong jump inversion then for every structure D with
DS1(D) = DS(A) =⇒ DS(D) ⊆ DS(B).
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Strong jump inversion
Every Boolean algebra admits strong jump inversion [Downey and
Jockusch]
There are linear orderings with no computable copy [Jockusch
and Soare]

Some sufficient model theoretic conditions, expressed in terms of
saturation and enumeration properties of sets of types with
formulas of low complexity which guarantee strong jump inversion:
[Calvert, Frolov, Harizanov, Knight, McCoy, AS and Vatev]

Linear orderings with bounded size of the maximal discrete chains
and each element lies in such a chain;
Linear orderings A for which the quotient A/∼ is dense and every
infinite interval has arbitrary large finite successor chains;
Abelian p groups of length ω such that the divisible part has
infinite dimension;
Equivalence structures with infinitely many infinite classes;
Some special trees.
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ω-Enumeration Degrees

Uniform reducibility on sequences of sets.
For the sequence of sets of natural numbers B = {Bn}n<ω call the
jump class of B the set

JB = {dT(X ) | (∀n)(Bn is c.e. in X (n) uniformly in n)} .

Definition. A ≤ω B (A is ω-enumeration reducible to B) if JB ⊆ JA

A ≡ω B if JA = JB.
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ω-Enumeration Degrees

The relation ≤ω induces a partial ordering of Dω with least
element 0ω = dω(∅ω), where ∅ω is the sequence with all members
equal to ∅.
Dω is further an upper semi-lattice, with least upper bound
induced by A⊕ B = {An ⊕ Bn}n<ω.
If A ⊆ N denote by A ↑ ω = {A, ∅, ∅, . . . }.
The mapping κ(de(A)) = dω(A ↑ ω) gives an isomorphic
embedding of De to Dω, where A ↑ ω = {A, ∅, ∅, . . . }.
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ω-Enumeration Degrees

Let B = {Bn}n<ω.
The jump sequence P(B) = {Pn(B)}n<ω:

1 P0(B) = B0

2 Pn+1(B) = (Pn(B))′ ⊕ Bn+1

Definition. A is enumeration reducible B (A ≤e B) iff An ≤e Bn
uniformly in n.

Theorem.[Soskov, Kovachev] A ≤ω B ⇐⇒ A ≤e P(B).
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ω-Enumeration Jump

Definition. The ω-enumeration jump of A is A′ = {Pn+1(A)}n<ω

J ′A = {a′ | a ∈ JA}.
The jump is monotone and agrees with the enumeration jump.
Soskov and Ganchev: Strong jump inversion theorem: for a(n) ≤ b
there exists a least x ≥ a such that x(n) = b. So, every degree x in
the range of the jump operator has a least jump invert.
Soskov and Ganchev: if we add a predicate for the jump operator
to the language of partial orders then the natural copy of the
enumeration degrees in the omega enumeration degrees
becomes first order definable.
The two structures have the same automorphism group.
Ganchev and Sariev: The jump operator in the upper semi-lattice
of the ω-enumeration degrees is first order definable.
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ω- Degree Spectra

Let A = (N; R1, . . . ,Rk ,=, 6=) be an abstract structure and
B = {Bn}n<ω be a fixed sequence of subsets of N.
The enumeration f of the structure A is acceptable with respect to B, if
for every n,

f−1(Bn) ≤e f−1(A)(n) uniformly in n.

Denote by E(A,B) - the class of all acceptable enumerations.

Definition. The ω- degree spectrum of A with respect to B = {Bn}n<ω
is the set

DS(A,B) = {de(f−1(A)) | f ∈ E(A,B)}

Proposition. DS(A,B) is upwards closed with respect to total
e-degrees.
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ω-Co-Spectra

For every A ⊆ Dω let co(A) = {b | b ∈ Dω & (∀a ∈ A)(b ≤ω a)}.

Definition. The ω-co-spectrum of A with respect to B is the set

CS(A,B) = co(DS(A,B)).

Proposition.[Selman] For A ⊆ De we have that
co(A) = co({a : a ∈ A & a is total}).

Corollary. CS(A,B) = co({a | a ∈ DS(A,B) & a is a total e-degree}).
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Minimal pair theorem

Theorem. For every structure A and every sequence B there exist
total enumeration degrees f and g in DS(A,B) such that for every
ω-enumeration degree a and k ∈ N:

a ≤ω f(k) & a ≤ω g(k) ⇒ a ∈ CSk (A,B) .
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Quasi-Minimal Degree

Theorem. For every structure A and every sequence B, there exists
F ⊆ N, such that q = dω(F ↑ ω) and:

1 q 6∈ CS(A,B);
2 If a is a total e-degree and a ≥ω q then a ∈ DS(A,B)

3 If a is a total e-degree and a ≤ω q then a ∈ CS(A,B).
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Countable ideals of ω-enumeration degrees
I = CS(A,B) is a countable ideal.
CS(A,B) = I(fω) ∩ I(gω) where I(fω) and I(gω) are the principal
ideals of ω-enumeration degrees with greatest elements fω = κ(f)
and gω = κ(g), the images of f and g under the embedding κ of
De in Dω.
Denote by I(k) - the least ideal, containing all k th ω-jumps of the
elements of I.

Proposition. [Ganchev] I = I(fω) ∩ I(gω) =⇒ I(k) = I(f(k)ω ) ∩ I(g(k)
ω ) for

every k.

I(f(k)ω ) ∩ I(g(k)
ω ) = CSk (A,B) for each k .

Thus I(k) = CSk (A,B).

Corollary. CSk (A,B) is the least ideal containing all kth ω-jumps of the
elements of CS(A,B).
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Countable ideals of ω-enumeration degrees
There is a countable ideal I of ω-enumeration degrees for which there
is no structure A and sequence B such that I = CS(A,B).

Consider A = {0ω,0ω ′,0′′ω, . . . ,0
(n)
ω , . . . };

I = I(dω(A)) = {a | a ∈ Dω & (∃n)(a ≤ω 0(n)
ω )}

Assume that there is a structure A and a sequence B such that
I = CS(A,B)
Then there is a minimal pair f and g for DS(A,B), so
I(n) = I(f(n)ω ) ∩ I(g(n)

ω ) for each n.
But fω ≥ 0(n)

ω and gω ≥ 0(n)
ω for each n.

If F ∈ f and G ∈ g then F ≥T ∅(n) and G ≥T ∅(n) for every n .
Then by Enderton and Putnam [1970], Sacks [1971] F ′′ ≥T ∅(ω)

and G′′ ≥ ∅(ω) and hence f′′ ≥T 0(ω)
T and g′′ ≥T 0(ω)

T .
Then κ(ι(0(ω)

T )) ∈ I(f′′ω) ∩ I(g′′ω).
But κ(ι(0(ω)

T )) /∈ I′′ since all elements of I′′ are bounded by 0(k+2)
ω

for some k .
Hence I′′ 6= I(f′′ω) ∩ I(g′′ω). A contradiction.
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Degree spectra

Questions:
I Describe the sets of enumeration degrees which are equal to

DS(A) for some structure A.
I For a countable ideal I ⊆ Dω if there is an exact pair then are there

a structure A and a sequence B so that CS(A,B) = I?
I Is it true that for every structure A and every sequence B there

exists a structure B such that CSω(B) = CS(A,B)? The answer is
yes, Soskov (2013), using Marker’s extentions
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