Properties of degree spectra , co-spectra and omega co-spectra Logic Seminar at Notre Dame University Mary 1st, 2018

Alexandra A. Soskova¹

Faculty of Mathematics and Informatics Sofia University

¹Supported by Bulgarian National Science Fund DN 02/16 /19.12.2016 and NSF grant DMS 1600625/2016

Alexandra A. Soskova (Sofia University) Properties of degree spectra , co-spectra and

Definition $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$

A (10) A (10)

Definition $A \leq_e B$ if there is a c.e. set *W*, such that

$$\mathsf{A} = \mathsf{W}(\mathsf{B}) = \{ \mathsf{x} \mid \exists \mathsf{D}(\langle \mathsf{x}, \mathsf{D}
angle \in \mathsf{W} \And \mathsf{D} \subseteq \mathsf{B}) \}$$
 .

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

< 回 > < 回 > < 回 >

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$\mathsf{A} = \mathsf{W}(\mathsf{B}) = \{ \mathsf{x} \mid \exists \mathsf{D}(\langle \mathsf{x}, \mathsf{D}
angle \in \mathsf{W} \And \mathsf{D} \subseteq \mathsf{B}) \}$$
 .

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.

< 🗇 🕨 < 🖻 🕨

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$\mathsf{A} = \mathsf{W}(\mathsf{B}) = \{ \mathsf{x} \mid \exists \mathsf{D}(\langle \mathsf{x}, \mathsf{D}
angle \in \mathsf{W} \And \mathsf{D} \subseteq \mathsf{B}) \}$$
 .

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

< 回 > < 回 > < 回 >

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$\mathsf{A} = \mathsf{W}(\mathsf{B}) = \{ \mathsf{x} \mid \exists \mathsf{D}(\langle \mathsf{x}, \mathsf{D}
angle \in \mathsf{W} \And \mathsf{D} \subseteq \mathsf{B}) \}$$
 .

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{e}(\emptyset)$, the set of all c.e. sets.

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$oldsymbol{A} = oldsymbol{W}(oldsymbol{B}) = \{oldsymbol{x} \mid \exists oldsymbol{D}(\langle oldsymbol{x}, oldsymbol{D}
angle \in oldsymbol{W} \ \& \ oldsymbol{D} \subseteq oldsymbol{B})\}$$
 .

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{e}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.

イベト イモト イモト

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$oldsymbol{A} = oldsymbol{W}(oldsymbol{B}) = \{oldsymbol{x} \mid \exists oldsymbol{D}(\langle oldsymbol{x}, oldsymbol{D}
angle \in oldsymbol{W} \ \& \ oldsymbol{D} \subseteq oldsymbol{B})\}$$
 .

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{e}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.

イベト イモト イモト

Selman's theorem

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of *B*, outputs an enumeration of *A*.

く 同 ト く ヨ ト く ヨ ト -

Selman's theorem

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of *B*, outputs an enumeration of *A*.

Definition

Given a set A, let $\mathcal{E}(A)$ denote the collection of all Turing degrees computing enumerations of A, called *the enumeration cone of A*.

< 回 > < 回 > < 回 > -

Selman's theorem

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of *B*, outputs an enumeration of *A*.

Definition

Given a set A, let $\mathcal{E}(A)$ denote the collection of all Turing degrees computing enumerations of A, called *the enumeration cone of A*.

Theorem (Selman)

The set A is enumeration reducible to the set B if and only if $\mathcal{E}(B) \subseteq \mathcal{E}(A)$.

< 回 > < 三 > < 三 >

The enumeration jump

Definition. Given a set *A*, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- 2 $A \leq_T B$ iff $A^+ \leq_e B^+$.

A (B) < (

The enumeration jump

Definition. Given a set *A*, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- $a \leq_T B \text{ iff } A^+ \leq_e B^+.$

Definition. For any set A let $K_A = \{ \langle i, x \rangle | x \in W_i(A) \}$. Set $A' = K_A^+$.

Definition. A set *A* is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

イロト イポト イヨト イヨト

Enumeration degree spectra

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every total surjective mapping of \mathbb{N} onto A.

Given an enumeration f of \mathfrak{A} and a subset of B of A^n , let

$$f^{-1}(B) = \{ \langle x_1, \ldots, x_n \rangle \mid (f(x_1), \ldots, f(x_n)) \in B \}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$$

Definition. The enumeration degree spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

< 回 > < 回 > < 回 >

Enumeration degree spectra

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Let
$$\mathfrak{A}^+ = (A, R_1, ..., R_k, R_1^c, ..., R_k^c).$$

Proposition. $\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$

A (10) F (10)

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_{e} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{e} \mathbf{a}) \}.$

A (10) A (10)

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

$$\mathit{co}(\mathcal{A}) = \{ \mathsf{b} : \mathsf{b} \in \mathcal{D}_{e} \ \& \ (\forall \mathsf{a} \in \mathcal{A}) (\mathsf{b} \leq_{e} \mathsf{a}) \}.$$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

周レイモレイモ

The admissible in \mathfrak{A} sets

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

A D A D A D A

The formally definable sets on ${\mathfrak A}$

Definition. A Σ_1^+ formula with free variables among X_1, \ldots, X_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{X})$, where θ is a finite conjunction of atomic formulae.

Definition. A set $B \subseteq \mathbb{N}$ is *formally definable* on \mathfrak{A} if there exists a computable function $\gamma(x)$, such that $\bigvee_{x \in \mathbb{N}} \Phi_{\gamma(x)}$ is a Σ_1^+ formula with free variables among X_1, \ldots, X_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(X_1/t_1, \ldots, X_r/t_r)$$
.

Theorem. Let $B \subseteq \mathbb{N}$. Then

•
$$d_e(B) \in CS(\mathfrak{A})$$
 iff

2 $B \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} iff

3 B is formally definable on \mathfrak{A} .

Jump spectra and jump co-spectra

Definition. The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth jump degree* of \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} . If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth jump co-degree of* \mathfrak{A} .

A (1) > A (2) > A (2) > A

Some examples

- For every linear ordering DS(𝔅) contains a minimal pair of degrees [Richter] and hence **0**_e is the co-degree of 𝔅. So, if 𝔅 has a degree **a**, then **a** = **0**_e.
- For a linear ordering A, CS₁(A) consists of all e-degrees of Σ⁰₂ sets [Knight]. The first co-degree of A is 0'_e.

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly, the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has no degree.

 There is a structure whose spectrum is exactly the non-hyperarithmetical degrees [Greenberg, Motalbán and Slaman]

A special kind of co-degree

Definition. [Knight, Motalbán] A structure \mathfrak{A} has "enumeration degree X" if every enumeration of X computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

周 ト イ ヨ ト イ ヨ ト

A special kind of co-degree

Definition. [Knight, Motalbán] A structure \mathfrak{A} has "enumeration degree X" if every enumeration of X computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

Example. Given $X \subseteq \mathbb{N}$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

A special kind of co-degree

Definition. [Knight, Motalbán] A structure \mathfrak{A} has "enumeration degree X" if every enumeration of X computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

Example. Given $X \subseteq \mathbb{N}$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

Theorem. [A. Montalbán] Let K be Π_2^c class of \exists -atomic structures, i.e. K is the class of structures axiomatized by some Π_2^c sentence and for every structure \mathfrak{A} in K and every tuple $\bar{a} \in |\mathfrak{A}|$ the orbit of \bar{a} is existentially definable (with parameters \bar{a}). Then every structure in K has "enumeration degree" given by its \exists -theory.

Representing the principle countable ideals as co-spectra

Example. Let G be a torsion free abelian group of rank 1. [Coles, Downey, Slaman; Soskov] There exists an enumeration degree s_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq \mathbf{b}\}.$
- The co-degree of G is **s**_G.
- G has a degree iff **s**_G is a total e-degree.

Representing the principle countable ideals as co-spectra

Example. Let G be a torsion free abelian group of rank 1. [Coles, Downey, Slaman; Soskov] There exists an enumeration degree s_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq \mathbf{b}\}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is a total e-degree.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some *G*.

Representing non-principle countable ideals as co-spectra

Theorem.[Soskov] Every countable ideal is the co-spectrum of a structure.

Proof.

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; G_f; \sigma),$

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Spectra with a countable base

Definition. Let $\mathcal{B}\subseteq\mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

不得る 不良る 不良る

Spectra with a countable base

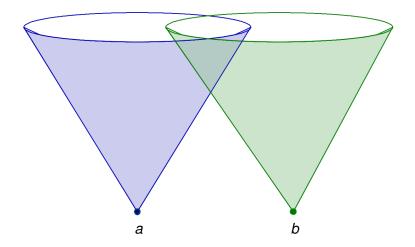
Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. A structure \mathfrak{A} has e-degree if and only if $DS(\mathfrak{A})$ has a countable base.

周 ト イ ヨ ト イ ヨ ト

An upwards closed set of degrees which is not a degree spectra of a structure



- The class of PA degrees is not the degree spectrum of any structure [Andrews,Miller].
- The upward closure of the set of 1-random degrees is not the spectrum of a structure [Andrews,Miller].
- A degree spectrum is never the Turing-upward closure of *F_σ* set of reals in ω^ω, unless it is enumeration cone [Montalbàn]

通 ト イ ヨ ト イ ヨ ト -

The minimal pair theorem

Theorem. Let $\mathbf{c} \in DS_n(\mathfrak{A})$. There exist total $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ such that, $\mathbf{f}^{(n)} = \mathbf{g}^{(n)} \leq \mathbf{c}$ and $CS_k(\mathfrak{A}) = co(\{\mathbf{f}^{(k)}, \mathbf{g}^{(k)}\})$ for every $k \leq n-2$.

Notice that for every enumeration degree **b** there exists a structure $\mathfrak{A}_{\mathbf{b}}$ such that $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x}\}$. Hence

Corollary.[*Rozinas*] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

1 If
$$\mathbf{a} \in I$$
 then $\mathbf{a} <_{e} \mathbf{q}$.

2 If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

< ロ > < 同 > < 回 > < 回 >

Jumps of quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist uncountably many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Proposition. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[*McEvoy*] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

< 回 > < 三 > < 三 >

Proposition.[*Jockusch*] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to $DS(\mathfrak{A})$ degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

< 回 > < 回 > < 回 >

Every jump spectrum is the spectrum of a structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Every jump spectrum is the spectrum of a structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Let $K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_{e}(x)) \}.$ Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem. $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

Theorem. [Soskov, AS] $\alpha = 1$. If $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$ then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{A})$.

Method: Marker's extensions.

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

Theorem. [Soskov, AS] $\alpha = 1$. If $DS(\mathfrak{A}) \subseteq DS_1(\mathfrak{B})$ then there exists a structure \mathfrak{C} such that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{A})$.

Method: Marker's extensions.

Remark. If a structure \mathfrak{B} has the property $DS(\mathfrak{A}) = DS_1(\mathfrak{B})$, then it follows that $DS(\mathfrak{C}) \subseteq DS(\mathfrak{B})$.

2009 Montalban Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.

2009 Stukachev A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 – 190

Jump inversion theorem for ordinals

 The jump inversion theorem holds for successor ordinals [Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006; Vatev,2013]

通 とう きょう うちょう

Jump inversion theorem for ordinals

- The jump inversion theorem holds for successor ordinals [Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006; Vatev,2013]
- The jump inversion theorem does not hold for $\alpha = \omega$. [Soskov 2013]

Every member of $\mathbf{a} \in CS_{\omega}(\mathfrak{M})$ is bounded by a total degree **b**, which is also a member of $CS_{\omega}(\mathfrak{M})$.

Strong jump inversion

If a set Y computes a copy of \mathfrak{A}' then its degree is in $DS_1(\mathfrak{A})$ since $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$. This means that there is a set X such that $X' \equiv Y$ and the degree of X computes a copy of \mathfrak{A} , i.e. it is in $DS(\mathfrak{A})$.

Definition. A structure \mathfrak{A} admits a strong jump inversion if for every set *X* if *X'* computes a copy of \mathfrak{A}' then *X* computes a copy of \mathfrak{A} . Equivalently, if \mathfrak{A} has a copy low over *X*, (the atomic diagram of the copy), then \mathfrak{A} has a computable in *X* copy.

Proposition. Let $DS(\mathfrak{A}) = DS_1(\mathfrak{B})$.

- There exists a structure 𝔅 such that DS(𝔅) ⊆ DS(𝔅) and DS₁(𝔅) = DS(𝔅) (by JIT)
- If \mathfrak{B} admits a strong jump inversion then for every structure \mathfrak{D} with $DS_1(\mathfrak{D}) = DS(\mathfrak{A}) \Longrightarrow DS(\mathfrak{D}) \subseteq DS(\mathfrak{B}).$

Strong jump inversion

- Every Boolean algebra admits strong jump inversion [Downey and Jockusch]
- There are linear orderings with no computable copy [Jockusch and Soare]

A (10) A (10)

Strong jump inversion

- Every Boolean algebra admits strong jump inversion [Downey and Jockusch]
- There are linear orderings with no computable copy [Jockusch and Soare]
- Some sufficient model theoretic conditions, expressed in terms of saturation and enumeration properties of sets of types with formulas of low complexity which guarantee strong jump inversion: [Calvert, Frolov, Harizanov, Knight, McCoy, AS and Vatev]
- Linear orderings with bounded size of the maximal discrete chains and each element lies in such a chain;
- Linear orderings \mathfrak{A} for which the quotient $\mathfrak{A}/_{\sim}$ is dense and every infinite interval has arbitrary large finite successor chains;
- Abelian *p* groups of length ω such that the divisible part has infinite dimension;
- Equivalence structures with infinitely many infinite classes;
- Some special trees.

ω -Enumeration Degrees

- Uniform reducibility on sequences of sets.
- For the sequence of sets of natural numbers B = {B_n}_{n<ω} call the jump class of B the set

$$J_{\mathcal{B}} = \{ d_{\mathrm{T}}(X) \mid (\forall n) (B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n) \}$$

Definition. $A \leq_{\omega} B$ (A is ω -enumeration reducible to B) if $J_B \subseteq J_A$

• $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $J_{\mathcal{A}} = J_{\mathcal{B}}$.

通 ト イ ヨ ト イ ヨ ト -

ω -Enumeration Degrees

- The relation ≤_ω induces a partial ordering of D_ω with least element **0**_ω = d_ω(Ø_ω), where Ø_ω is the sequence with all members equal to Ø.
- \mathcal{D}_{ω} is further an upper semi-lattice, with least upper bound induced by $\mathcal{A} \oplus \mathcal{B} = \{A_n \oplus B_n\}_{n < \omega}$.
- If $A \subseteq \mathbb{N}$ denote by $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.
- The mapping κ(d_e(A)) = d_ω(A ↑ ω) gives an isomorphic embedding of D_e to D_ω, where A ↑ ω = {A, Ø, Ø, ... }.

ω -Enumeration Degrees

Let $\mathcal{B} = \{B_n\}_{n < \omega}$. The jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$: 1 $\mathcal{P}_0(\mathcal{B}) = B_0$ 2 $\mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$

Definition. A is enumeration reducible \mathcal{B} ($A \leq_e \mathcal{B}$) iff $A_n \leq_e B_n$ uniformly in n.

Theorem.[Soskov, Kovachev] $A \leq_{\omega} B \iff A \leq_{e} P(B)$.

A (10) A (10)

ω -Enumeration Jump

Definition. The ω -enumeration jump of \mathcal{A} is $\mathcal{A}' = \{\mathcal{P}_{n+1}(\mathcal{A})\}_{n < \omega}$

•
$$J'_{\mathcal{A}} = \{ \mathbf{a}' \mid \mathbf{a} \in J_{\mathcal{A}} \}.$$

- The jump is monotone and agrees with the enumeration jump.
- Soskov and Ganchev: Strong jump inversion theorem: for a⁽ⁿ⁾ ≤ b there exists a *least* x ≥ a such that x⁽ⁿ⁾ = b. So, every degree x in the range of the jump operator has a least jump invert.
- Soskov and Ganchev: if we add a predicate for the jump operator to the language of partial orders then the natural copy of the enumeration degrees in the omega enumeration degrees becomes first order definable.
- The two structures have the same automorphism group.
- Ganchev and Sariev: The jump operator in the upper semi-lattice of the ω -enumeration degrees is first order definable.

イロト イポト イヨト イヨト

ω - Degree Spectra

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be an abstract structure and $\mathcal{B} = \{B_n\}_{n < \omega}$ be a fixed sequence of subsets of \mathbb{N} . The enumeration *f* of the structure \mathfrak{A} is *acceptable with respect to* \mathcal{B} , if for every *n*,

$$f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$$
 uniformly in *n*.

Denote by $\mathcal{E}(\mathfrak{A}, \mathcal{B})$ - the class of all acceptable enumerations.

Definition. The ω - degree spectrum of \mathfrak{A} with respect to $\mathcal{B} = \{B_n\}_{n < \omega}$ is the set

$$\mathrm{DS}(\mathfrak{A},\mathcal{B}) = \{ d_{\mathrm{e}}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}) \}$$

Proposition. $DS(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total *e-degrees.*

ω -Co-Spectra

For every $\mathcal{A} \subseteq \mathcal{D}_{\omega}$ let $co(\mathcal{A}) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition. The ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} is the set

 $CS(\mathfrak{A}, \mathcal{B}) = co(DS(\mathfrak{A}, \mathcal{B})).$

3

ω -Co-Spectra

For every $\mathcal{A} \subseteq \mathcal{D}_{\omega}$ let $co(\mathcal{A}) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition. The ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} is the set

 $\mathrm{CS}(\mathfrak{A},\mathcal{B})=co(\mathrm{DS}(\mathfrak{A},\mathcal{B})).$

Proposition.[Selman] For $A \subseteq D_e$ we have that $co(A) = co(\{\mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total}\}).$

Corollary. $CS(\mathfrak{A}, \mathcal{B}) = co(\{a \mid a \in DS(\mathfrak{A}, \mathcal{B}) \& a \text{ is a total e-degree}\}).$

Minimal pair theorem

Theorem. For every structure \mathfrak{A} and every sequence \mathcal{B} there exist total enumeration degrees **f** and **g** in $DS(\mathfrak{A}, \mathcal{B})$ such that for every ω -enumeration degree **a** and $k \in \mathbb{N}$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)} \& \mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$$

Quasi-Minimal Degree

Theorem. For every structure \mathfrak{A} and every sequence \mathcal{B} , there exists $F \subseteq \mathbb{N}$, such that $\mathbf{q} = d_{\omega}(F \uparrow \omega)$ and:

- $\mathbf{q} \notin \mathrm{CS}(\mathfrak{A}, \mathcal{B});$
- 2 If **a** is a total e-degree and $\mathbf{a} \ge_{\omega} \mathbf{q}$ then $\mathbf{a} \in DS(\mathfrak{A}, \mathcal{B})$
- If **a** is a total e-degree and $\mathbf{a} \leq_{\omega} \mathbf{q}$ then $\mathbf{a} \in CS(\mathfrak{A}, \mathcal{B})$.

Countable ideals of ω -enumeration degrees

- $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal.
- CS(𝔄, 𝔅) = I(𝑘_ω) ∩ I(𝑘_ω) where I(𝑘_ω) and I(𝑘_ω) are the principal ideals of ω-enumeration degrees with greatest elements 𝑘_ω = κ(𝑘) and 𝑘_ω = κ(𝑘), the images of 𝑘 and 𝑘 under the embedding κ of 𝔅_θ in 𝔅_ω.
- Denote by *I*^(k) the least ideal, containing all *k*th ω-jumps of the elements of *I*.

Proposition. [Ganchev] $I = I(\mathbf{f}_{\omega}) \cap I(\mathbf{g}_{\omega}) \Longrightarrow I^{(k)} = I(\mathbf{f}_{\omega}^{(k)}) \cap I(\mathbf{g}_{\omega}^{(k)})$ for every *k*.

Corollary. $CS_k(\mathfrak{A}, \mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

Countable ideals of ω -enumeration degrees

There is a countable ideal *I* of ω -enumeration degrees for which there is no structure \mathfrak{A} and sequence \mathcal{B} such that $I = CS(\mathfrak{A}, \mathcal{B})$.

- Consider $\mathcal{A} = \{\mathbf{0}_{\omega}, \mathbf{0}_{\omega}', \mathbf{0}_{\omega}'', \dots, \mathbf{0}_{\omega}^{(n)}, \dots\};$
- $I = I(d_{\omega}(\mathcal{A})) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} \leq_{\omega} \mathbf{0}_{\omega}^{(n)}) \}$
- Assume that there is a structure 𝔅 and a sequence 𝔅 such that
 I = CS(𝔅, 𝔅)
- Then there is a minimal pair **f** and **g** for $DS(\mathfrak{A}, \mathcal{B})$, so $I^{(n)} = I(\mathbf{f}_{\omega}^{(n)}) \cap I(\mathbf{g}_{\omega}^{(n)})$ for each *n*.
- But $\mathbf{f}_{\omega} \geq \mathbf{0}_{\omega}^{(n)}$ and $\mathbf{g}_{\omega} \geq \mathbf{0}_{\omega}^{(n)}$ for each *n*.
- If $F \in \mathbf{f}$ and $G \in \mathbf{g}$ then $F \ge_T \emptyset^{(n)}$ and $G \ge_T \emptyset^{(n)}$ for every n.
- Then by Enderton and Putnam [1970], Sacks [1971] $F'' \ge_T \emptyset^{(\omega)}$ and $G'' \ge \emptyset^{(\omega)}$ and hence $\mathbf{f}'' \ge_T \mathbf{0}_T^{(\omega)}$ and $\mathbf{g}'' \ge_T \mathbf{0}_T^{(\omega)}$.
- Then $\kappa(\iota(\mathbf{0}_T^{(\omega)})) \in I(\mathbf{f}_{\omega}'') \cap I(\mathbf{g}_{\omega}'')$.
- But κ(ι(**0**^(ω)_T)) ∉ I" since all elements of I" are bounded by **0**^(k+2)_ω for some k.
- Hence $I'' \neq I(\mathbf{f}''_{\omega}) \cap I(\mathbf{g}''_{\omega})$. A contradiction.

Degree spectra

- Questions:
 - ► Describe the sets of enumeration degrees which are equal to DS(𝔅) for some structure 𝔅.
 - For a countable ideal *I* ⊆ D_ω if there is an exact pair then are there a structure 𝔄 and a sequence 𝔅 so that CS(𝔅, 𝔅) = *I*?
 - Is it true that for every structure A and every sequence B there exists a structure B such that CS_ω(B) = CS(A, B)? The answer is yes, Soskov (2013), using Marker's extentions

A D A D A D A