Enumeration Degree Spectra Southern Wisconsin Logic Seminar, 2016

Alexandra A. Soskova¹

Faculty of Mathematics and Informatics Sofia University

¹Supported by NSF award 1101123 Collaboration in Computability and Sofia University Science Fund, 2016

Alexandra A. Soskova (Sofia University)

Enumeration reducibility

Definition. We say that $\Gamma : 2^{\omega} \to 2^{\omega}$ is an *enumeration operator* iff for some c.e. set W_i for each $B \subseteq \omega$

 $\Gamma(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B]\}.$

Definition. The set *A* is *enumeration reducible to* the set *B* ($A \leq_e B$), if $A = \Gamma(B)$ for some e-operator Γ . The enumeration degree of *A* is $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. The set of all enumeration degrees is denoted by \mathcal{D}_e .

・ 国 ト ・ 国 ト ・ 国 ト

The enumeration jump

Definition. Given a set *A*, denote by $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- 2 $A \leq_T B$ iff $A^+ \leq_e B^+$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The enumeration jump

Definition. Given a set *A*, denote by $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- $a \leq_T B \text{ iff } A^+ \leq_e B^+.$

Definition. For any set A let $K_A = \{ \langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition. A set *A* is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

3

(日)

Degree spectra

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every total surjective mapping of ω onto A.

Given an enumeration f of \mathfrak{A} and a subset of B of A^n , let

$$f^{-1}(B) = \{ \langle x_1, \ldots, x_n \rangle \mid (f(x_1), \ldots, f(x_n)) \in B \}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$$

Definition.[Richter] *The Turing degree spectrum of* \mathfrak{A} is the set

 $DS_T(\mathfrak{A}) = \{ d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is a one-to-one enum. of } \mathfrak{A} \}.$

If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A} .

< 日 > < 同 > < 回 > < 回 > < □ > <

Enumeration degree spectra

Definition.[Soskov] *The enumeration degree spectrum of* \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

A (1) > A (2) > A (2) > A

Enumeration degree spectra

Definition.[Soskov] *The enumeration degree spectrum of* \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one-to-one enumeration f of \mathfrak{A} .

< 日 > < 同 > < 回 > < 回 > < □ > <

Total structures

Definition. The structure \mathfrak{A} is called *total* if for every enumeration *f* of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If \mathfrak{A} is a total structure then $DS(\mathfrak{A}) = \iota(DS_T(\mathfrak{A}))$.

A (10) A (10)

Total structures

Definition. The structure \mathfrak{A} is called *total* if for every enumeration *f* of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If \mathfrak{A} is a total structure then $DS(\mathfrak{A}) = \iota(DS_T(\mathfrak{A}))$.

Given a structure $\mathfrak{A} = (A, R_1, \dots, R_k)$, for every *j* denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (A, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$.

Proposition.

- $\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$
- If \mathfrak{A} is total then $DS(\mathfrak{A}) = DS(\mathfrak{A}^+)$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

The partial case

Definition. The partial enumeration degree spectrum of \mathfrak{A} is the set $DS^{p}(\mathfrak{A}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \text{ is a partial enumeration of } \mathfrak{A} \}.$

Lemma. If *f* is a partial enumeration of \mathfrak{A} then dom(*f*) $\leq_{e} f^{-1}(\mathfrak{A})$.

Proposition. The partial enumeration degree spectrum is closed upwards with respect to enumeration degrees, i.e. if $\mathbf{a} \in DS^{p}(\mathfrak{A})$ and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS^{p}(\mathfrak{A})$.

The partial case

Definition. The partial enumeration degree spectrum of \mathfrak{A} is the set $DS^{p}(\mathfrak{A}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \text{ is a partial enumeration of } \mathfrak{A} \}.$

Lemma. If *f* is a partial enumeration of \mathfrak{A} then dom(*f*) $\leq_{e} f^{-1}(\mathfrak{A})$.

Proposition. The partial enumeration degree spectrum is closed upwards with respect to enumeration degrees, i.e. if $\mathbf{a} \in DS^{p}(\mathfrak{A})$ and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS^{p}(\mathfrak{A})$.

Theorem.[Kalimullin] For every structure \mathfrak{A} there is a structure $P(\mathfrak{A})$ with $DS^{p}(\mathfrak{A}^{+}) = DS(P(\mathfrak{A}))$.

Kalimullin proved that there is a structure \mathfrak{A} such that $DS^{p}(\mathfrak{A}^{+}) = DS(P(\mathfrak{A})) = \{d_{e}(\mathbf{a}) \mid \mathbf{a} \in D_{e} \& \mathbf{a} > 0_{e}\}.$

э

・ロト ・四ト ・ヨト ・ヨト

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

 $co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_{e} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{e} \mathbf{a}) \}.$

A (10) A (10)

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

 $co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_{e} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{e} \mathbf{a}) \}.$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

A (10) A (10)

The admissible in \mathfrak{A} sets

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

A (1) > A (2) > A (2) > A

Forcing definable in \mathfrak{A} sets

Every finite mapping of ω into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$au \Vdash F_{e}(x) \iff x \in \Gamma_{e}(\tau^{-1}(\mathfrak{A})) \text{ and}$$

 $au \Vdash \neg F_{e}(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_{e}(x)).$

Definition. An enumeration f of \mathfrak{A} is *generic* if for every $e, x \in \omega$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

$$B = \{ x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

< 同 ト く ヨ ト く ヨ ト

Forcing definable in \mathfrak{A} sets

Theorem. Let $B \subseteq \omega$ and $d_e(C) \in DS(\mathfrak{A})$. Then the following are equivalent:

- B is admissible in 𝔄.
- ② $B \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} s.t. $(f^{-1}(\mathfrak{A}))' \equiv_e C'$.
- **3** B is forcing definable on \mathfrak{A} .

A B F A B F

The formally definable sets on ${\mathfrak A}$

Definition. A Σ_1^+ formula with free variables among X_1, \ldots, X_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{X})$, where θ is a finite conjunction of atomic formulae.

Definition. A set $B \subseteq \omega$ is *formally definable* on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \omega} \Phi_{\gamma(x)}$ is a Σ_1^+ formula with free variables among X_1, \ldots, X_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(X_1/t_1, \ldots, X_r/t_r)$$
.

Theorem. Let $B \subseteq \omega$. Then

- **()** B is admissible in \mathfrak{A} ($d_e(B) \in CS(\mathfrak{A})$) iff
- B is forcing definable on A iff
- **3** B is formally definable on \mathfrak{A} .

Jump spectra and jump co-spectra

Definition. The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth jump degree* of \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} . If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth jump co-degree of* \mathfrak{A} .

・ロト ・ 四ト ・ ヨト ・ ヨト …

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

イロト イ理ト イヨト イヨト

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Example.[Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all *e*-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

A special kind of co-degree

Definition. [Knight 98] A structure \mathfrak{A} has "enumeration degree *X*" if every enumeration of *X* computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of *X*.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a} \}.$

Example. Given $X \subseteq \omega$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

・ロト ・ 四ト ・ ヨト ・ ヨト …

A special kind of co-degree

Definition. [Knight 98] A structure \mathfrak{A} has "enumeration degree *X*" if every enumeration of *X* computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of *X*.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

Example. Given $X \subseteq \omega$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

Theorem. [A. Montalban] Let K be Π_2^c class of \exists -atomic structures, i.e. K is the class of structures axiomatized by some Π_2^c sentence and for every structure \mathfrak{A} in K and every tuple $\bar{a} \in |\mathfrak{A}|$ the orbit of \bar{a} is existentially definable (with parameters \bar{a}). Then every structure in K has "enumeration degree" given by its \exists -theory.

Representing the principle countable ideals as co-spectra

Example.[Coles, Downey, Slaman; Soskov] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

Representing the principle countable ideals as co-spectra

Example.[Coles, Downey, Slaman; Soskov] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is **s**_G.
- G has a degree iff **s**_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some *G*.

Representing non-principle countable ideals as co-spectra

Theorem.[Soskov] Every countable ideal is the co-spectrum of a structure.

Proof.

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; G_f; \sigma),$

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

(日)

Spectra with a countable base

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spectra with a countable base

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. A structure \mathfrak{A} has e-degree if and only if $DS(\mathfrak{A})$ has a countable base.

Suppose that the sequence of e-degrees $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$. Assume that no \mathbf{b}_i is an e-degree of \mathfrak{A} . Then for every $i, \mathbf{b}_i \notin CS(\mathfrak{A})$. Let $B_i \in \mathbf{b}_i$ for every $i \in \omega$. Then all the sets B_i have no forcing normal form.

We can construct a generic enumeration f of \mathfrak{A} , omitting all B_i , i.e. $B_i \not\leq_e f^{-1}(\mathfrak{A})$. This contradicts with fact that $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$.

イロト イポト イヨト イヨト

An upwards closed set of degrees which is not a degree spectra of a structure

The minimal pair theorem

Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree **b** there exists a structure $\mathfrak{A}_{\mathbf{b}}$ s. t. $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x}\}$. Hence

Corollary.[*Rozinas*] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

一日

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

1 If
$$\mathbf{a} \in I$$
 then $\mathbf{a} <_e \mathbf{q}$.

2 If a is total and $a \leq_e q$ then $a \in I$.

< ロ > < 同 > < 回 > < 回 >

Properties of the quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist uncountably many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Proof.

Suppose that all quasi-minimal degrees with respect to $DS(\mathfrak{A})$ are $\mathbf{q}_0, \mathbf{q}_1, \ldots, \mathbf{q}_n, \ldots$ and let $X_i \in \mathbf{q}_i$, for all $i \in \omega$. Then all \mathbf{q}_i are not in $CS(\mathfrak{A})$ and hence every X_i is not forcing definable on \mathfrak{A} . We could build a partial generic enumeration f of \mathfrak{A} such that $X_i \not\leq_e f^{-1}(\mathfrak{A})$. Thus $d_e(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to $DS(\mathfrak{A})$ and not in $\{\mathbf{q}_i\}$.

・日・ ・ ヨ ・ ・ ヨ ・

Jumps of quasi-minimal degrees

Lemma. Let $\mathbf{a} \in DS_1(\mathfrak{A})$ and g be an enumeration of \mathfrak{A} such that $g^{-1}(\mathfrak{A})' \in \mathbf{a}$. There exists a partial generic enumeration f such that $f^{-1}(\mathfrak{A})' \equiv_e g^{-1}(\mathfrak{A})'$.

Proposition. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[*McEvoy*] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to \mathfrak{A} degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, \dots, R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Let
$$\mathcal{K}_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash \mathcal{F}_{e}(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, \mathcal{K}_{\mathfrak{A}}, \mathcal{A}^* \setminus \mathcal{K}_{\mathfrak{A}}).$

Theorem.

• The structure \mathfrak{A}' is total.

 $IS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

Alexandra A. Soskova (Sofia University)

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

周 ト イ ヨ ト イ ヨ ト

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

向下 イヨト イヨト

The Jump Inversion Theorem

Consider two structures \mathfrak{A} and \mathfrak{B} . Suppose that

 $DS(\mathfrak{B})_t = \{ \mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total} \} \subseteq DS_1(\mathfrak{A}).$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extensions.

< 回 > < 回 > < 回 > -

The Jump Inversion Theorem

Consider two structures \mathfrak{A} and \mathfrak{B} . Suppose that

 $DS(\mathfrak{B})_t = \{ \mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total} \} \subseteq DS_1(\mathfrak{A}).$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extensions.

Corollary. Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C} such that $DS(\mathfrak{B}) = DS(\mathfrak{C})$.

э

イロト イポト イヨト イヨト

The jump inversion theorem

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

一日

The jump inversion theorem

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark.

2009 Montalban, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.

2009 Stukachev, A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 – 190

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Jump inversion for a successor ordinal

Theorem.[Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006] Let α be a computable successor ordinal and \mathfrak{B}_1 and \mathfrak{B}_2 in \mathcal{L} are computable and α -friendly structures and such that

- \mathfrak{B}_1 and \mathfrak{B}_2 satisfy the same Σ_β sentences of \mathcal{L} for each $\beta < \alpha$,
- each \mathfrak{B}_i satisfies some Σ_{α}^c sentence that is not true in the other.

Then there is a graph \mathfrak{N} built from the sequences which strongly encodes the initial predicates of \mathfrak{A} and \mathfrak{N} has an *X* computable copy iff \mathfrak{A} has a $\Delta^0_{\alpha}(X)$ computable copy.

イロト イ理ト イヨト イヨト

Jump inversion for a successor ordinal

Theorem.[Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006] Let α be a computable successor ordinal and \mathfrak{B}_1 and \mathfrak{B}_2 in \mathcal{L} are computable and α -friendly structures and such that

• \mathfrak{B}_1 and \mathfrak{B}_2 satisfy the same Σ_β sentences of \mathcal{L} for each $\beta < \alpha$,

• each \mathfrak{B}_i satisfies some Σ_{α}^c sentence that is not true in the other.

Then there is a graph \mathfrak{N} built from the sequences which strongly encodes the initial predicates of \mathfrak{A} and \mathfrak{N} has an X computable copy iff \mathfrak{A} has a $\Delta_{\alpha}^{0}(X)$ computable copy.

S. Vatev using this idea proved:

Theorem.[S. Vatev,2013] For every computable successor ordinal $\alpha \geq 2$ and a countable structure \mathfrak{A} such that $DS(\mathfrak{A}) \subseteq \{\mathbf{a} \mid \mathbf{0}^{(\alpha)} \leq_T \mathbf{a}\}$ there is a structure \mathfrak{N} such that:

• $DS_{\alpha}(\mathfrak{N}) = DS(\mathfrak{A});$

•
$$(\forall X \subseteq A)[X \in \Sigma_{\alpha+1}^{c}(\mathfrak{N}) \iff X \in \Sigma_{1}^{c}(\mathfrak{A})].$$

The jump inversion theorem - a negative solution

Theorem.[Soskov 2013] There is a structure \mathfrak{A} with $DS(\mathfrak{A}) \subseteq \{\mathbf{b} \mid \mathbf{0}^{(\omega)} \leq \mathbf{b}\}$ for which there is no structure \mathfrak{M} with $DS_{\omega}(\mathfrak{M}) = DS(\mathfrak{A})$.

A D A D A D A

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-th jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure \mathfrak{B} satisfying:

- **()** $DS(\mathfrak{B})$ has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- Solution 3 Solution 3

э

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-th jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure \mathfrak{B} satisfying:

- $DS(\mathfrak{B})$ has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **③** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

() B is quasi-minimal above $\mathbf{0}^{(n)}$.

2
$$B' \equiv_e \mathbf{0}^{(n+1)}.$$

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{ \mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

э

Applications

Let $n \ge 0$. There exists a total structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = \{\mathbf{a} \mid \mathbf{0}^{(n)} <_e \mathbf{a}\}.$ It is sufficient to construct a structure \mathfrak{B} such that the elements of $DS(\mathfrak{B})$ are exactly the total e-degrees greater than $\mathbf{0}^{(n)}$. This could be done by Whener's construction using a special family of sets:

Theorem. Let $n \ge 0$. There exists a family \mathcal{F} of sets of natural numbers s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a computable in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no such U c.e. in $\mathbf{0}^{(n)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Degree spectra

- Questions:
 - ► Describe the sets of Turing degrees (enumeration degrees) which are equal to DS(𝔅) for some structure 𝔅.
 - Is the set of all Muchnik degrees containing some degree spectra definable in the lattice of the Muchnik degrees?