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Enumeration reducibility

Let {Wi}i∈ω, {Di}i∈ω be standard listings of the computably
enumerable sets and the finite sets of numbers.

Definition.(Friedberg and Rogers, 1959) We say that Ψ : 2ω → 2ω

is an enumeration operator (or e-operator) iff for some c.e. set Wi

Ψ(B) = {x |(∃D)[〈x ,D〉 ∈ Wi &D ⊆ B]}

for each B ⊆ ω.

If Ψ is defined by means of the c.e. set Wi then we say that i is an
index of Ψ and write Ψ = Ψi .

Definition. For any sets A and B define A is enumeration
reducible to B, written A ≤e B, by A = Ψ(B) for some e-operator
Ψ.
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The enumeration jump

Definition. Given A ⊆ ω, set A+ = A⊕ (ω \ A).

Theorem. For any A,B ⊆ ω,

1 A is c.e. in B iff A ≤e B+.

2 A ≤T B iff A+ ≤e B+.

Definition.(Cooper, McEvoy) Given A ⊆ ω, let
EA = {〈i , x〉|x ∈ Ψi (A)}. Set Je(A) = E+

A .

The enumeration jump Je is monotone and agrees with the Turing
jump JT in the following sense:

Theorem. For any A ⊆ ω, JT (A)+ ≡e Je(A
+).

Definition. A set A is called total iff A ≡e A+.
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The enumeration degrees

Definition. Given a set A, let de(A) = {B ⊆ ω|A ≡e B}.
Let de(A) ≤e de(B) ⇐⇒ A ≤e B.

Denote by De the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0e , where
de(A) ∨ de(B) = de(A⊕ B) and 0e = {W |W is c.e.}.

The Rogers embedding. Define ι : DT → De by
ι(dT (A)) = de(A

+). Then ι is a proper embedding of DT into De .
The enumeration degrees in the range of ι are called total.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ι.
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Degree Spectra

Let A = (N;R1, . . . ,Rk) be a denumerable structure. Enumeration
of A is every total surjective mapping of N onto N.

Given an enumeration f of A and a subset of A of Na, let

f −1(A) = {〈x1, . . . , xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

Set f −1(A) = f −1(R1)⊕ · · · ⊕ f −1(Rk)⊕ f −1(=)⊕ f −1(6=).

Definition.(Richter) The Turing Degree Spectrum of A is the set

DST (A) = {dT (f −1(A)) : f is an one to one enumeration of A)}.

If a is the least element of DST (A), then a is called the degree of A
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Enumeration Degree Spectra

Definition. The e-Degree Spectrum of A is the set

DS(A) = {de(f
−1(A)) : f is an enumeration of A)}.

If a is the least element of DS(A), then a is called the e-degree of
A

Proposition. Let f be an arbitrary enumeration of A. There exists
a bijective enumeration g of A such that g−1(A) ≤e f −1(A).

Corollary. If A has e-degree a then a = de(f
−1(A)) for some one

to one enumeration f of A.

Proposition. If a ∈ DS(A), b is a total e-degree and a ≤e b then
b ∈ DS(A).
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Total structures

Definition. The structure A is called total if for every enumeration
f of A the set f −1(A) is total.

Proposition. If A is a total structure then DS(A) = ι(DST (A)).

Given a structure A = (N,R1, . . . ,Rk), for every j denote by Rc
j

the complement of Rj and let A+ = (N,R1, . . . ,Rk ,Rc
1 , . . . ,Rc

k ).

Proposition. The following are true:

1 ι(DST (A)) = DS(A+).

2 If A is total then DS(A) = DS(A+).
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Clearly if A is a total structure then DS(A) consists of total
degrees. The vice versa is not always true.

Example. Let K be the Kleene’s set and A = (N;GS ,K ), where
GS is the graph of the successor function. Then DS(A) consists of
all total degrees. On the other hand if f = λx .x, then f −1(A) is
an c.e. set. Hence K̄ 6≤e f −1(A). Clearly K̄ ≤e (f −1(A))+. So
f −1(A) is not total.

Is it true that if DS(A) consists of total degrees then there exists a
total structure B s.t. DS(A) = DS(B)?
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Co-spectra

Definition. Let A be a nonempty set of enumeration degrees the
co-set of A is the set co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

Example. Fix a ∈ De and set Aa = {b ∈ De : a ≤e b}. Then
co(Aa) = {b ∈ De : b ≤e a}.

Definition. Given a structure A, set CS(A) = co(DS(A)).
If a is the greatest element of CS(A) then call a the co-degree of
A.

If A has a degree a then a is also the co-degree of A. The vice
versa is not always true.
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The admissible sets

Definition. A set A of natural numbers is admissible in A if for
every enumeration f of A, A ≤e f −1(A).

Clearly a ∈ CS(A) iff a = de(A) for some admissible set A.
Every finite mapping of N into N is called finite part. We shall
denote finite parts by δ, τ, ρ, etc.
For every finite part τ and natural numbers e, x , let

τ 
 Fe(x) ⇐⇒ x ∈ Ψe(τ
−1(A)) and

τ 
 ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1 Fe(x)).

Given an enumeration f of A, e, x ∈ N, set

f |= Fe(x) ⇐⇒ x ∈ Ψe(f
−1(A)).

Definition. An enumeration f is generic if for every e, x ∈ N,
there exists a τ ⊆ f s.t. τ 
 Fe(x) ∨ τ 
 ¬Fe(x).
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Normal form of the admissible sets

Definition. A set A of natural numbers is forcing definable in the
structure A iff there exist finite part δ and natural number e s.t.

A = {x |(∃τ ⊇ δ)(τ 
 Fe(x))}.

Theorem. Let A ⊆ N and de(B) ∈ DS(A). Then the following are
equivalent:

1 A is admissible.

2 A ≤e f −1(A) for all generic enumerations f of A.

3 A ≤e f −1(A) for all generic enumerations f of A s.t.
(f −1(A))′ ≡e B ′.

4 A is forcing definable.
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Some examples

Example. (Richter 1981) Let A = (N;<) be a linear ordering.
Then DS(A) contains a minimal pair of degrees and hence
CS(A) = {0e}. Clearly 0e is the co-degree of A. Therefore if A

has a degree a, then a = 0e .

Definition. Let n ≥ 0. The n-th jump spectrum of a structure A

is defined by DSn(A) = {a(n)|a ∈ DS(A)}. Set
CSn(A) = co(DSn(A)).

Example. (Knight 1986) Consider again a linear ordering A. Then
CS1(A) consists of all Σ0

2 sets. The co-degree of A is 0′e .

Example. (Slaman 1998,Whener 1998) There exists an A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.
Ivan N. Soskov, Alexandra A.Soskova Enumeration Degree Spectra of Abstract Structures



Some examples

Example. (Richter 1981) Let A = (N;<) be a linear ordering.
Then DS(A) contains a minimal pair of degrees and hence
CS(A) = {0e}. Clearly 0e is the co-degree of A. Therefore if A

has a degree a, then a = 0e .

Definition. Let n ≥ 0. The n-th jump spectrum of a structure A

is defined by DSn(A) = {a(n)|a ∈ DS(A)}. Set
CSn(A) = co(DSn(A)).

Example. (Knight 1986) Consider again a linear ordering A. Then
CS1(A) consists of all Σ0

2 sets. The co-degree of A is 0′e .

Example. (Slaman 1998,Whener 1998) There exists an A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.
Ivan N. Soskov, Alexandra A.Soskova Enumeration Degree Spectra of Abstract Structures



Some examples

Example. (Richter 1981) Let A = (N;<) be a linear ordering.
Then DS(A) contains a minimal pair of degrees and hence
CS(A) = {0e}. Clearly 0e is the co-degree of A. Therefore if A

has a degree a, then a = 0e .

Definition. Let n ≥ 0. The n-th jump spectrum of a structure A

is defined by DSn(A) = {a(n)|a ∈ DS(A)}. Set
CSn(A) = co(DSn(A)).

Example. (Knight 1986) Consider again a linear ordering A. Then
CS1(A) consists of all Σ0

2 sets. The co-degree of A is 0′e .

Example. (Slaman 1998,Whener 1998) There exists an A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.
Ivan N. Soskov, Alexandra A.Soskova Enumeration Degree Spectra of Abstract Structures



Representing countable ideals as co-spectra

Example.(based on Coles, Dawney, Slaman - 1998) Let G be a
torsion free Abelian group of rank 1, i.e. G is a subgroup of Q.
Let a 6= 0 ∈ G and let p be a prime number.
Let hp(a) be the greatest k s.t. (∃x ∈ G )(pk .x = a). Let

χ(a) = (hp0(a), hp1(a), . . . ) and

Sa = {〈i , j〉 : j ≤ the i-th member of χ(a)}.

For a, b 6= 0 ∈ G, Sa ≡e Sb.
Set sG = de(Sa). Then DS(G ) = {b : b is total and sG ≤e b}.

The co-degree of G is sG .

G has a degree iff sG is total

If 1 ≤ n, then s
(n)
G is the n-th jump degree of G.

For every d ∈ De there exists a G, s.t. sG = d. Hence every
principle ideal of enumeration degrees is CS(G ) for some G.

Ivan N. Soskov, Alexandra A.Soskova Enumeration Degree Spectra of Abstract Structures



Representing non-principle countable ideals as co-spectra

Example. Let B0, . . . ,Bn, . . . be a sequence of sets of natural
numbers. Set A = (N; f ;σ),

f (〈i , n〉) = 〈i + 1, n〉;
σ = {〈i , n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I (de(B0), . . . , de(Bn), . . . )
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General Properties of Upwards Closed Sets

Definition. Consider a subset A of De . Say that A is upwards
closed if for every a ∈ A all total degrees greater than a are
contained in A.

Let A be an upwards closed set of degrees.
Note that if B ⊆ A, then co(A) ⊆ co(B).

Proposition.(Selman) Let At = {a : a ∈ A & a is total}. Then
co(A) = co(At).

Proposition. Let b be an arbitrary enumeration degree and n > 0.
Set Ab,n = {a : a ∈ A & b ≤e a(n)}. Then co(A) = co(Ab,n).
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Selman’s Theorem for Degree Spectra

Theorem. Let A be a structure, 1 ≤ n and c ∈ DSn(A). Then

CS(A) = co({b ∈ DS(A) : b(n) = c}).

Example.(Upwards closed set for which the Theorem is not true)

Let B 6≤e A and A 6≤e B ′. Let

D = {a : de(A) ≤e a} ∪ {a : de(B) ≤e a}.

Set A = {a : a ∈ D & a′ = de(B)′}.

de(B) is the least element of A and hence de(B) ∈ co(A).

de(B) 6≤ de(A) and hence de(B) 6∈ co(D).
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The minimal pair theorem

Theorem. Let c ∈ DS2(A). There exist f,g ∈ DS(A) s.t. f,g are
total, f′′ = g′′ = c and CS(A) = co({f,g}).

Notice that for every enumeration degree a there exists a structure
Aa s. t. DS(A) = {x ∈ DT |a <e x}. Hence

Corollary. (Rozinas) For every b ∈ De there exist total f, g below
b′′ which are a minimal pair over b.

Not every upwards closed set of enumeration degrees has a
minimal pair:
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An upwards closed set with no minimal pair

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

>

⊥
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The Quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree q
is quasi-minimal with respect to A if:

q 6∈ co(A).

If a is total and a ≥ q, then a ∈ A.

If a is total and a ≤ q, then a ∈ co(A).

Theorem. If q is quasi-minimal with respect to A, then q is an
upper bound of co(A).

Theorem. For every structure A there exists a quasi-minimal with
respect to DS(A) degree.

Ivan N. Soskov, Alexandra A.Soskova Enumeration Degree Spectra of Abstract Structures



Corollary.(Slaman and Sorbi) Let I be a countable ideal of
enumeration degrees. There exist an enumeration degree q s.t.

1 If a ∈ I then a <e q.

2 If a is total and a ≤e q then a ∈ I .

Definition. Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem. Let A be an upwards closed set of degrees possessing a
quasi-minimal degree. Suppose that there exists a countable base
B of A such that all elements of B are total. Then A has a least
element.

Corollary. A total structure A has a degree if and only if DS(A)
has a countable base.
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An upwards closed set with no quasi-minimal degree

a b
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Jump spectra

Definition. The n-th jump spectrum of a structure A is the set

DSn(A) = {a(n)|a ∈ DS(A)}.

If a is the least element of DSn(A) then a is called n-th jump
degree of A.

Proposition. For every A, DS1(A) ⊆ DS(A).

Is it true that for every A, DS1(A) ⊂ DS(A)? Probably the answer
is ”no”.
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Every jump spectrum is spectrum of a total structure

Let A = (N;R1, . . . ,Rn).
Let 0̄ 6∈ N. Set N0 = N ∪ {0̄}. Let 〈., .〉 be a pairing function s.t.
none of the elements of N0 is a pair and N∗ be the least set
containing N0 and closed under 〈., .〉.

Definition. Moschovakis’ extension of A is the structure

A∗ = (N∗,R1, . . . ,Rn, N0,G〈.,.〉).

Proposition. DS(A) = DS(A∗)

Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ 
 Fe(x))}.
Set A′ = (A∗,KA, N∗ \ KA).

Theorem.

1 The structure A′ is total.

2 DS1(A) = DS(A′).
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The Jump Inversion Theorem

Consider two structures A and B. Suppose that

DS(B)t = {a|a ∈ DS(B) and a is total} ⊆ DS1(A).

Theorem. There exists a structure C s.t. DS(C) ⊆ DS(A) and
DS1(C) = DS(B)t .

Corollary. Let DS(B) ⊆ DS1(A). Then there exists a structure C

s.t. DS(C) ⊆ DS(A) and DS(B) = DS1(C).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0′. Then there exists a total structure C′ such
that DS(B) = DS(C′).
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Theorem. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There
exists a structure C s.t. DSn(C) = DS(B).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0(n). Then there exists a total structure C s.t.
DSn(C) = DS(B).
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Applications

Example. Let n ≥ 0. There exists a total structure C s.t. C has a
n + 1-th jump degree 0(n+1) but has no k-th jump degree for
k ≤ n.
It is sufficient to construct a structure B satisfying:

1 DS(B) has not least element.

2 0(n+1) is the least element of DS1(B).

3 All elements of DS(B) are total and above 0(n).

Consider a set B satisfying:

1 B is quasi-minimal above 0(n).

2 B ′ ≡e 0(n+1).

Let G be a subgroup of the additive group of the rationales s.t.
SG ≡e B. Recall that DS(G ) = {a|de(SG ) ≤e a and a is total}
and de(SG )′ is the least element of DS1(G ).
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Applications

Let n ≥ 0. There exists a total structure C such that
DSn(C) = {a|0(n) <e a}.
It is sufficient to construct a structure B such that the elements of
DS(B) are exactly the total e-degrees greater than 0(n).
This is done by Whener’s construction using a special family of
sets:

Theorem. Let n ≥ 0. There exists a family F of sets of natural
number s.t. for every X strictly above 0(n) there exists a recursive
in X set U satisfying the equivalence:

F ∈ F ⇐⇒ (∃a)(F = {x |(a, x) ∈ U}).

But there is no c.e. in 0(n) such U.
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Thank you!
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