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Outline

I Enumeration of a structure
I Degree spectra and co-spectra
I Relatively α-intrinsic sets
I Relative spectra of structures
I Normal Form Theorem
I The connection with the Joint Spectra
I The Minimal pair theorem
I Quasi-minimal degrees
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Enumeration of a structure

Let A = (N; R1, . . . , Rk ,=, 6=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I for any A ⊆ Na let
f−1(A) = {〈x1 . . . xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=)⊕ f−1(6=).
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Degree spectra of structures

Definition
I The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

Definition
I The Co-spectrum of A is the set

CS(A) = {b : (∀a ∈ DS(A))(b ≤ a)}.
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Examples

1981 (Richter) Let A = (N;<,=, 6=) be a linear ordering.
I DS(A) contains a minimal pair of degrees,

CS(A) = {0e}.
I If DS(A) has a least element a, then a = 0e.

1986 (Knight) Consider a linear ordering A.
I CS1(A) consists of all Σ0

2 sets. The co-degree of A is
0′e.

1990 (Ash, Jockush, Knight)
1992 (Downey, Knight)

For every α <ωCK
1 there exists a linear ordering A

with α-th jump degree 0(α)
e and with no β jump

degree for β < α.
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Examples

1998 (Slaman, Wehner)
DS(A) = {a : a is total and 0e < a}, CS(A) = {0e}.

I DS(A) has not a least element.
1998 (Coles, Downey, Slaman) Every principle ideal of

enumeration degrees is a CS(A) for some torsion
free abelian group A.

2002 (Soskov) Every countable ideal is a CS(A) for some
A.
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Definition
Let A ⊆ De. Then A is upwards closed if

a ∈ A, b is total and a ≤ b ⇒ b ∈ A.

The Degree spectra are upwards closed.
I General properties of upwards closed sets of

degrees.
I Specific properties:

I the Minimal pair type theorem;
I the existence of Quasi-minimal degree.
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Relatively α-intrinsic sets

1989 (Ash, Knight, Manasse, Slaman, Chisholm).
I The set A is relatively α-intrinsic on A if for every

enumeration f of A the set f−1(A) ≤e f−1(A)(α), α <
ωCK

1 .
2002 (Soskov, Baleva)

I Let {Bα}α≤ζ be a sequence of subsets of N and ζ <
ωCK

1 .
I Add each set Bα to the structure A as a new

predicate which is relatively α-intrinsic on A.
I Restrict the class of all enumerations of A to the

class of those enumerations f of A for which
f−1(Bα) ≤e f−1(A)(α).



Properties of
Relative Spectra

Alexandra A.
Soskova

DEGREE
SPECTRA OF
STRUCTURES
DEGREE SPECTRA OF
STRUCTURES

RELATIVELY
α-INTRINSIC SETS

RELATIVE
SPECTRA OF
STRUCTURES
RELATIVE SPECTRA OF
STRUCTURES

THE CONNECTION WITH
JOINT SPECTRA

PROPERTIES OF
RELATIVE
SPECTRA
MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGREE

Relative Spectra of Structures

Let A1, . . . ,An be arbitrary abstract structures on N,
k ≤ n.
An enumeration f of A is k-acceptable with respect to the
structures A1, . . . , Ak , if

f−1(A1) ≤e (f−1(A))′, . . . , f−1(Ak ) ≤e (f−1(A))(k).

Denote by Ek the class of all k -acceptable enumerations.
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Definition
The Relative spectrum of the structure A with respect to
A1, . . . , An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) | f ∈ En}

Proposition
The Relative spectrum RS(A,A1, . . . , An) is upwards
closed.
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Let k ≤ n. The k th Jump Relative spectrum of A with
respect to A1, . . . ,An is the set

RSk (A,A1, . . . ,An) = {a(k) | a ∈ RS(A,A1, . . . ,An)}.

Proposition
The kth Jump Relative spectrum RSk (A,A1, . . . An) is
upwards closed.
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Relative Co-spectra of Structures

Definition
The Relative co-spectrum of A with respect to
A1, . . . ,An, is the co-set of RS(A,A1, . . . ,An), i.e.

CRS(A,A1, . . . ,An) = {b | (∀a ∈ RS(A,A1, . . . ,An))(b ≤ a)}.

Let k ≤ n. The Relative k th co-spectrum of A with
respect to A1, . . . ,An, is the co-set of RSk (A,A1, . . . ,An),
i.e.

CRSk (A,A1 . . .An) = {b | (∀a ∈ RSk (A,A1 . . .An))(b ≤ a)}.
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The jump set

The jump set P f
k of A with respect to A1, . . . ,An :

1. P f
0 = f−1(A).

2. P f
k+1 = (P f

k )′ ⊕ f−1(Ak+1).

Theorem
For every A ⊆ N and k ≤ n, the following are equivalent:

1. de(A) ∈ CRSk (A,A1, . . . ,An).
2. A ≤e P f

k , for every k-acceptable enumeration f of A

with respect to A1, . . . , Ak .
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The Normal Form Theorem

The set A is formally k-definable on A with respect to
A1, . . . ,An if there exists a recursive sequence
{Φγ(x)(W1, . . . , Wr )} of Σ+

k formulae and elements
t1, . . . , tr of N such that:
x ∈ A ⇐⇒ (A,A1, . . . ,An) |= Φγ(x)(W1/t1, . . . , Wr/tr ).

I Σ+
0 : (∃Y )(β1 & . . . & βk ) ;

I Σ+
k+1: c.e. disjunction of (∃Y )Φ(X , Y ),

Φ = (φ1 & . . . & φl & β).

Theorem
de(A) ∈ CRSk (A,A1, . . . ,An) if and only if A is formally
k-definable on A with respect to A1, . . . ,An.
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The connection with the Joint Spectra

Definition
The Joint spectrum of A,A1, . . . ,An is the set

DS(A,A1 , . . . ,An) =

{a : a ∈ DS(A), a′ ∈ DS(A1), . . . , a(n) ∈ DS(An)}.

1. CS(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).
2. There are structures A and A1, for which

CS1(A,A1) 6= CRS1(A,A1).
3. The difference:

I A ≤e P(f−1(A), f−1
1 (A1), . . . , f−1

n (An)) for every
enumerations f of A, f1 of A1,. . . , fn of An.

I in the normal form (A,A1 . . . , An) — as a
many-sorted structure with separated sorts.
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Minimal Pair Theorem

Theorem
For any structures A,A1, . . . ,An, there exist enumeration
degrees f and g in RS(A,A1, . . . ,An), such that for any
enumeration degree a and each k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CRSk (A,A1, . . . ,An).



Properties of
Relative Spectra

Alexandra A.
Soskova

DEGREE
SPECTRA OF
STRUCTURES
DEGREE SPECTRA OF
STRUCTURES

RELATIVELY
α-INTRINSIC SETS

RELATIVE
SPECTRA OF
STRUCTURES
RELATIVE SPECTRA OF
STRUCTURES

THE CONNECTION WITH
JOINT SPECTRA

PROPERTIES OF
RELATIVE
SPECTRA
MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGREE

Quasi-Minimal Degree

Definition (Soskov)
An enumeration degree q0 is quasi-minimal with respect
to DS(A) if

I q0 6∈ CS(A);
I for any total enumeration degree a: a ≥ q0 ⇒

a ∈ DS(A) and a ≤ q0 ⇒ a ∈ CS(A).

Theorem
For any structures A,A1, . . . , An there exists an
enumeration degree q such that:

1. q 6∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then

a ∈ RS(A,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then

a ∈ CRS(A,A1 . . .An).
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Quasi-Minimal Degree

Definition (Soskov)
An enumeration degree q0 is quasi-minimal with respect
to DS(A) if

I q0 6∈ CS(A);
I for any total enumeration degree a: a ≥ q0 ⇒

a ∈ DS(A) and a ≤ q0 ⇒ a ∈ CS(A).

Theorem
For any structures A,A1, . . . , An there exists an
enumeration degree q such that:

1. q 6∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then

a ∈ RS(A,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then

a ∈ CRS(A,A1 . . .An).
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Relative degree spectra

I The Minimal pair theorem.
I The Quasi-minimal degree.

I Questions:
I Find other specific properties of Relative spectra of

structures?
I For any structures A,A1, . . . ,An, does there exist a

structure B such that DS(B) = RS(A,A1, . . . ,An)?



Properties of
Relative Spectra

Alexandra A.
Soskova

DEGREE
SPECTRA OF
STRUCTURES
DEGREE SPECTRA OF
STRUCTURES

RELATIVELY
α-INTRINSIC SETS

RELATIVE
SPECTRA OF
STRUCTURES
RELATIVE SPECTRA OF
STRUCTURES

THE CONNECTION WITH
JOINT SPECTRA

PROPERTIES OF
RELATIVE
SPECTRA
MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGREE

C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman,
Generic copies of countable structures.
Ann. Pure Appl. Logic 42 : 195–205 1989.

J. Chisholm,
Effective model theory vs. recursive model theory
J. Symbolic Logic, 55:1168–1191 1990.

I. N. Soskov and V. Baleva
Ash’s Theorem for abstract structures.
Proceedings of Logic Colloquium’2002, 2002.

I. N. Soskov,
Degree spectra and co-spectra of structures.
Ann. Univ. Sofia, 96:45–68, 2003.


	DEGREE SPECTRA OF STRUCTURES
	DEGREE SPECTRA OF STRUCTURES
	RELATIVELY -INTRINSIC SETS

	RELATIVE SPECTRA OF STRUCTURES
	RELATIVE SPECTRA OF STRUCTURES
	THE CONNECTION WITH JOINT SPECTRA

	PROPERTIES OF RELATIVE SPECTRA
	MINIMAL PAIR THEOREM
	QUASI-MINIMAL DEGREE


