Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGREE

Properties of Relative Spectra

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

Logic Colloquium 2006 Nijmegen

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Outline

- Enumeration of a structure
- Degree spectra and co-spectra
- Relatively α-intrinsic sets
- Relative spectra of structures
- Normal Form Theorem
- The connection with the Joint Spectra
- The Minimal pair theorem
- Quasi-minimal degrees

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Enumeration of a structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES THE CONNECTION WITH

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGF

Degree spectra of structures

Definition

The Degree spectrum of A is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

Definition

The Co-spectrum of 𝔄 is the set

 $CS(\mathfrak{A}) = \{ \mathbf{b} : (\forall \mathbf{a} \in DS(\mathfrak{A})) (\mathbf{b} \leq \mathbf{a}) \}.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES

 $\begin{array}{c} \text{RELATIVELY} \\ \alpha \text{-INTRINSIC SETS} \end{array}$

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Examples

1981 (Richter) Let $\mathfrak{A} = (\mathbb{N}; <, =, \neq)$ be a linear ordering.

- ► DS(𝔅) contains a minimal pair of degrees, CS(𝔅) = {0_e}.
- If $DS(\mathfrak{A})$ has a least element **a**, then **a** = **0**_{*e*}.
- 1986 (Knight) Consider a linear ordering \mathfrak{A} .
 - CS₁(𝔅) consists of all Σ⁰₂ sets. The co-degree of 𝔅 is 0'_e.
- 1990 (Ash, Jockush, Knight)
- 1992 (Downey, Knight) For every $\alpha < \omega_1^{CK}$ there exists a linear ordering \mathfrak{A} with α -th jump degree $\mathbf{0}_e^{(\alpha)}$ and with no β jump degree for $\beta < \alpha$.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES

RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

Examples

1998 (Slaman, Wehner) $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}, CS(\mathfrak{A}) = \{ \mathbf{0}_e \}.$

- DS(A) has not a least element.
- 1998 (Coles, Downey, Slaman) Every principle ideal of enumeration degrees is a CS(\mathfrak{A}) for some torsion free abelian group \mathfrak{A} .
- 2002 (Soskov) Every countable ideal is a $CS(\mathfrak{A})$ for some \mathfrak{A} .

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES

RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Definition

Let $\mathcal{A} \subseteq \mathcal{D}_e$. Then \mathcal{A} is *upwards closed* if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

The Degree spectra are upwards closed.

- General properties of upwards closed sets of degrees.
- Specific properties:
 - the Minimal pair type theorem;
 - the existence of Quasi-minimal degree.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES

 $\begin{array}{c} \text{RELATIVELY} \\ \alpha \text{-INTRINSIC SETS} \end{array}$

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

QUASI-MINIMAL DEGREE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Relatively α -intrinsic sets

1989 (Ash, Knight, Manasse, Slaman, Chisholm).

► The set *A* is *relatively* α *-intrinsic on* \mathfrak{A} if for every enumeration *f* of \mathfrak{A} the set $f^{-1}(A) \leq_{e} f^{-1}(\mathfrak{A})^{(\alpha)}$, $\alpha < \omega_{1}^{CK}$.

2002 (Soskov, Baleva)

► Let $\{B_{\alpha}\}_{\alpha \leq \zeta}$ be a sequence of subsets of \mathbb{N} and $\zeta < \omega_1^{CK}$.

- Add each set B_α to the structure A as a new predicate which is relatively α-intrinsic on A.
- ▶ Restrict the class of all enumerations of \mathfrak{A} to the class of those enumerations *f* of \mathfrak{A} for which $f^{-1}(B_{\alpha}) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(\alpha)}$.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES DEGREE SPECTRA OF STRUCTURES

 $\substack{ \mathsf{RELATIVELY} \\ \alpha\text{-INTRINSIC SETS} }$

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Relative Spectra of Structures

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be arbitrary abstract structures on \mathbb{N} , k < n.

An enumeration f of \mathfrak{A} is **k-acceptable** with respect to the structures $\mathfrak{A}_1, \ldots, \mathfrak{A}_k$, if

$$f^{-1}(\mathfrak{A}_1) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))', \ldots, f^{-1}(\mathfrak{A}_k) \leq_{\mathrm{e}} (f^{-1}(\mathfrak{A}))^{(k)}.$$

Denote by \mathcal{E}_k the class of all k-acceptable enumerations.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Properties of Relative Spectra

Alexandra A. Soskova

RELATIVE SPECTRA OF STRUCTURES

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA

MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

Definition

The Relative spectrum of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)=\{d_{\mathrm{e}}(f^{-1}(\mathfrak{A}))\mid f\in\mathcal{E}_n\}$$

Proposition

The Relative spectrum $RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ is upwards closed.

・ロト・西ト・田・・田・ ひゃぐ

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA

QUASI-MINIMAL DEGREE

Let $k \leq n$. The *k*th Jump Relative spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$\mathrm{RS}_{k}(\mathfrak{A},\mathfrak{A}_{1},\ldots,\mathfrak{A}_{n})=\{\mathbf{a}^{(\mathbf{k})}\mid \mathbf{a}\in\mathrm{RS}(\mathfrak{A},\mathfrak{A}_{1},\ldots,\mathfrak{A}_{n})\}.$$

Proposition

The kth Jump Relative spectrum $RS_k(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ is upwards closed.

・ロト・日本・日本・日本・日本

Relative Co-spectra of Structures

Definition

The Relative co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of $RS(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

 $\operatorname{CRS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}.$

Let $k \leq n$. The Relative *k*th co-spectrum of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, is the co-set of $RS_k(\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e.

$$\operatorname{CRS}_k(\mathfrak{A},\mathfrak{A}_1\ldots\mathfrak{A}_n) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in \operatorname{RS}_k(\mathfrak{A},\mathfrak{A}_1\ldots\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}$$

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

▲□▶▲□▶▲□▶▲□▶ = のへぐ

The jump set

The jump set \mathcal{P}_k^f of \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$: 1. $\mathcal{P}_0^f = f^{-1}(\mathfrak{A})$. 2. $\mathcal{P}_{k+1}^f = (\mathcal{P}_k^f)' \oplus f^{-1}(\mathfrak{A}_{k+1})$.

Theorem

For every $A \subseteq \mathbb{N}$ and $k \leq n$, the following are equivalent:

- 1. $d_{e}(A) \in \operatorname{CRS}_{k}(\mathfrak{A}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}).$
- A ≤_e P^f_k, for every k-acceptable enumeration f of 𝔄 with respect to 𝔄₁,..., 𝔅_k.

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

The Normal Form Theorem

The set *A* is *formally k*-*definable* on \mathfrak{A} with respect to $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ if there exists a recursive sequence $\{\Phi^{\gamma(x)}(W_1, \ldots, W_r)\}$ of Σ_k^+ formulae and elements t_1, \ldots, t_r of \mathbb{N} such that: $x \in A \iff (\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) \models \Phi^{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r).$ $\blacktriangleright \Sigma_0^+ : (\exists \overline{Y})(\beta_1 \& \ldots \& \beta_k);$ $\vdash \Sigma_{k+1}^+$: c.e. disjunction of $(\exists \overline{Y})\Phi(\overline{X}, \overline{Y}),$ $\Phi = (\phi_1 \& \ldots \& \phi_l \& \beta).$

Theorem

 $d_{e}(A) \in \operatorname{CRS}_{k}(\mathfrak{A}, \mathfrak{A}_{1}, \dots, \mathfrak{A}_{n})$ if and only if A is formally *k*-definable on \mathfrak{A} with respect to $\mathfrak{A}_{1}, \dots, \mathfrak{A}_{n}$.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

・ロト・日本・日本・日本・日本

The connection with the Joint Spectra

Definition

The Joint spectrum of $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$DS(\mathfrak{A},\mathfrak{A}_1 \quad,\ldots,\mathfrak{A}_n) = \\ \{\mathbf{a} : \mathbf{a} \in DS(\mathfrak{A}), \mathbf{a}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{a}^{(n)} \in DS(\mathfrak{A}_n)\}.$$

1.
$$CS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = CRS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n).$$

- 2. There are structures \mathfrak{A} and \mathfrak{A}_1 , for which $CS_1(\mathfrak{A}, \mathfrak{A}_1) \neq CRS_1(\mathfrak{A}, \mathfrak{A}_1)$.
- 3. The difference:
 - ► $A \leq_{e} \mathcal{P}(f^{-1}(\mathfrak{A}), f_{1}^{-1}(\mathfrak{A}_{1}), \dots, f_{n}^{-1}(\mathfrak{A}_{n}))$ for every enumerations f of \mathfrak{A} , f_{1} of $\mathfrak{A}_{1}, \dots, f_{n}$ of \mathfrak{A}_{n} .
 - ► in the normal form (𝔄, 𝔄₁...,𝔄ₙ) as a many-sorted structure with separated sorts.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES DEGREE SPECTRA OF STRUCTURES RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

Minimal Pair Theorem

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$, there exist enumeration degrees **f** and **g** in RS($\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$), such that for any enumeration degree **a** and each $k \leq n$:

$$\mathbf{a} \leq \mathbf{f}^{(\mathbf{k})} \ \& \ \mathbf{a} \leq \mathbf{g}^{(\mathbf{k})} \Rightarrow \mathbf{a} \in \operatorname{CRS}_k(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n).$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA

MINIMAL PAIR THEOREM

Quasi-Minimal Degree

Definition (Soskov)

An enumeration degree q_0 is *quasi-minimal with respect to* $\mathrm{DS}(\mathfrak{A})$ if

- ▶ $\mathbf{q}_0 \notin \mathrm{CS}(\mathfrak{A});$
- ▶ for any total enumeration degree **a**: **a** ≥ **q**₀ ⇒ **a** ∈ DS(𝔅) and **a** ≤ **q**₀ ⇒ **a** ∈ CS(𝔅).

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ there exists an enumeration degree **q** such that:

- 1. $\mathbf{q} \notin CRS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n);$
- 2. If **a** is a total degree and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$;
- 3. If **a** is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in CRS(\mathfrak{A}, \mathfrak{A}_1 \dots \mathfrak{A}_n)$.

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Quasi-Minimal Degree

Definition (Soskov)

An enumeration degree q_0 is *quasi-minimal with respect* to $\mathrm{DS}(\mathfrak{A})$ if

- ▶ $\mathbf{q}_0 \notin \mathrm{CS}(\mathfrak{A});$
- ▶ for any total enumeration degree **a**: **a** ≥ **q**₀ ⇒ **a** ∈ DS(𝔅) and **a** ≤ **q**₀ ⇒ **a** ∈ CS(𝔅).

Theorem

For any structures $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ there exists an enumeration degree **q** such that:

- 1. $q \notin CRS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n);$
- 2. If **a** is a total degree and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$;
- 3. If **a** is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in CRS(\mathfrak{A}, \mathfrak{A}_1 \dots \mathfrak{A}_n)$.

Properties of Relative Spectra

> Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α -INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM

Relative degree spectra

- The Minimal pair theorem.
- ► The Quasi-minimal degree.

- Questions:
 - Find other specific properties of Relative spectra of structures?
 - For any structures 𝔄,𝔄₁,...,𝔄_n, does there exist a structure 𝔅 such that DS(𝔅) = RS(𝔅,𝔅₁,...,𝔅_n)?

Properties of Relative Spectra

Alexandra A. Soskova

DEGREE SPECTRA OF STRUCTURES

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM QUASI-MINIMAL DEGREE

- C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures. Ann. Pure Appl. Logic 42 : 195–205 1989.
- J. Chisholm, Effective model theory vs. recursive model theory *J. Symbolic Logic*, 55:1168–1191 1990.
- I. N. Soskov and V. Baleva Ash's Theorem for abstract structures. Proceedings of Logic Colloquium'2002, 2002.

I. N. Soskov,

Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, 96:45–68, 2003.

Alexandra A. Soskova

DEGREE SPECTRA OF

DEGREE SPECTRA OF STRUCTURES RELATIVELY α-INTRINSIC SETS

RELATIVE SPECTRA OF STRUCTURES

RELATIVE SPECTRA OF STRUCTURES

THE CONNECTION WITH JOINT SPECTRA

PROPERTIES OF RELATIVE SPECTRA MINIMAL PAIR THEOREM