Enumeration Degree Spectra of Abstract Structures

Alexandra A. Soskova¹

Faculty of Mathematics and Computer Science Sofia University

August 4, 2010

Outline

- Enumeration degrees
- Degree spectra and co-spectra
- Characterization of the co-spectra
- Representing the countable ideals as co-spectra
- Properties of upwards closed sets of degrees
- Selmans's theorem for degree spectra
- The minimal pair theorem
- Quasi-minimal degrees
- Jump spectra

Definition.(Friedberg and Rogers, 1959) We say that $\Psi : 2^{\omega} \rightarrow 2^{\omega}$ is an *enumeration operator* (or e-operator) iff for some c.e. set W_i

$$\Psi(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \ \& D \subseteq B]\}$$

for each $B \subseteq \omega$.

Definition. For any sets A and B define A is *enumeration* reducible to B, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ .

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$, **a** A is c.e. in B iff $A \leq_e B^+$. **a** $A \leq_T B$ iff $A^+ \leq_e B^+$.

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{ \langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$, **a** A is c.e. in B iff $A \leq_{e} B^{+}$. **a** $A \leq_{T} B$ iff $A^{+} \leq_{e} B^{+}$.

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{ \langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$.

Denote by $\mathcal{D}_{\mathcal{T}}$ the partial ordering of the Turing degrees and by \mathcal{D}_e the partial ordering of the enumeration degrees.

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$.

Denote by $\mathcal{D}_{\mathcal{T}}$ the partial ordering of the Turing degrees and by \mathcal{D}_e the partial ordering of the enumeration degrees.

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$.

Denote by $\mathcal{D}_{\mathcal{T}}$ the partial ordering of the Turing degrees and by \mathcal{D}_e the partial ordering of the enumeration degrees.

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k)$ be a denumerable structure. Enumeration of \mathfrak{A} is every total surjective mapping of \mathbb{N} onto \mathbb{N} .

Given an enumeration f of \mathfrak{A} and a subset of A of \mathbb{N}^a , let

$$f^{-1}(A) = \{ \langle x_1, \ldots, x_a \rangle : (f(x_1), \ldots, f(x_a)) \in A \}.$$

Set
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq)$$
.

Definition.(Richter) The Turing Degree Spectrum of \mathfrak{A} is the set $DS_T(\mathfrak{A}) = \{ d_T(f^{-1}(\mathfrak{A})) : f \text{ is an one to one enumeration of } \mathfrak{A}) \}.$ If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A}

同 ト イヨト イヨト

Definition. The e-Degree Spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A}) \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A}

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one to one enumeration f of \mathfrak{A} .

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

伺下 イヨト イヨト

Definition. The e-Degree Spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A}) \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A}

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one to one enumeration f of \mathfrak{A} .

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

伺 ト イ ヨ ト イ ヨ ト

Definition. The e-Degree Spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A}) \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A}

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one to one enumeration f of \mathfrak{A} .

Proposition. If $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Definition. The structure \mathfrak{A} is called *total* if for every enumeration f of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If \mathfrak{A} is a total structure then $DS(\mathfrak{A}) = \iota(DS_T(\mathfrak{A}))$.

Given a structure $\mathfrak{A} = (\mathbb{N}, R_1, \dots, R_k)$, for every *j* denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (\mathbb{N}, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$.

Proposition. The following are true:

- 2 If \mathfrak{A} is total then $DS(\mathfrak{A}) = DS(\mathfrak{A}^+)$.

Clearly if \mathfrak{A} is a total structure then $DS(\mathfrak{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\overline{K} \leq_e f^{-1}(\mathfrak{A})$. Clearly $\overline{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Clearly if \mathfrak{A} is a total structure then $DS(\mathfrak{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\overline{K} \leq_e f^{-1}(\mathfrak{A})$. Clearly $\overline{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Clearly if \mathfrak{A} is a total structure then $DS(\mathfrak{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene's set and $\mathfrak{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathfrak{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathfrak{A})$ is an c.e. set. Hence $\overline{K} \leq_e f^{-1}(\mathfrak{A})$. Clearly $\overline{K} \leq_e (f^{-1}(\mathfrak{A}))^+$. So $f^{-1}(\mathfrak{A})$ is not total.

Is it true that if $DS(\mathfrak{A})$ consists of total degrees then there exists a total structure \mathfrak{B} s.t. $DS(\mathfrak{A}) = DS(\mathfrak{B})$?

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees the *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

 $co(\mathcal{A}) = \{\mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$

Example. Fix $\mathbf{a} \in \mathcal{D}_e$ and set $\mathcal{A}_{\mathbf{a}} = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{a} \leq_e \mathbf{b}\}$. Then $co(\mathcal{A}_{\mathbf{a}}) = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{b} \leq_e \mathbf{a}\}.$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

伺下 イヨト イヨト

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees the *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{\mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a})\}.$$

Example. Fix $\mathbf{a} \in \mathcal{D}_e$ and set $\mathcal{A}_{\mathbf{a}} = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{a} \leq_e \mathbf{b}\}$. Then $co(\mathcal{A}_{\mathbf{a}}) = \{\mathbf{b} \in \mathcal{D}_e : \mathbf{b} \leq_e \mathbf{a}\}.$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

Definition. A set A of natural numbers is admissible in \mathfrak{A} if for every enumeration f of \mathfrak{A} , $A \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(A)$ for some admissible in \mathfrak{A} set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

$$\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x)).$$

Definition. An enumeration f is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set A of natural numbers is admissible in \mathfrak{A} if for every enumeration f of \mathfrak{A} , $A \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(A)$ for some admissible in \mathfrak{A} set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

 $\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x)).$

Definition. An enumeration f is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set A of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist finite part δ and natural number *e* s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathfrak{A})$. Then the following are equivalent:

- In A is admissible in \mathfrak{A} .
- A ≤_e f⁻¹(𝔅) for all generic enumerations f of 𝔅. (f⁻¹(𝔅))' ≡_e B'.
- A is forcing definable.

Definition. A set A of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist finite part δ and natural number *e* s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathfrak{A})$. Then the following are equivalent:

- A is admissible in \mathfrak{A} .
- A ≤_e f⁻¹(𝔅) for all generic enumerations f of 𝔅. (f⁻¹(𝔅))' ≡_e B'.
- 3 A is forcing definable.

Some examples

Example. (*Richter 1981*) Let $\mathfrak{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree **a**, then $\mathbf{a} = \mathbf{0}_{e}$.

Alexandra A. Soskova

Some examples

Example. (*Richter 1981*) Let $\mathfrak{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree **a**, then $\mathbf{a} = \mathbf{0}_{e}$.

Definition. Let $n \ge 0$. The *n*-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A})).$

Example. (Knight 1986) Consider again a linear ordering \mathfrak{A} . Then $CS_1(\mathfrak{A})$ consists of all Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Alexandra A. Soskova

Some examples

Example. (Richter 1981) Let $\mathfrak{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. Clearly $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . Therefore if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Definition. Let $n \ge 0$. The *n*-th jump spectrum of a structure \mathfrak{A} is defined by $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}$. Set $CS_n(\mathfrak{A}) = co(DS_n(\mathfrak{A}))$.

Example. (Knight 1986) Consider again a linear ordering \mathfrak{A} . Then $CS_1(\mathfrak{A})$ consists of all Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example. (Slaman 1998, Whener 1998) There exists an \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{\mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a}\}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is total
- If $1 \le n$, then $\mathbf{s}_{G}^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a *G*, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some *G*.

Similar results on algebraic fields: W. Calvert, V. Harizanov and A. Shlapentokh (2007) A. Frolov, I. Kalimullin and R. Miller(2009)

I. Kalimullin: $\exists \mathfrak{A}[DS_T(\mathfrak{A}) = \{\mathbf{x} \mid \mathbf{x} \leq_T \mathbf{b}\}]$ for low **b**.

Alexandra A. Soskova

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_{G} such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is total
- If $1 \le n$, then $\mathbf{s}_{G}^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a *G*, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some *G*.

Similar results on algebraic fields: W. Calvert, V. Harizanov and A. Shlapentokh (2007) A. Frolov, I. Kalimullin and R. Miller(2009)

I. Kalimullin: $\exists \mathfrak{A}[DS_T(\mathfrak{A}) = \{\mathbf{x} \mid \mathbf{x} \not\leq_T \mathbf{b}\}]$ for low **b**.

Representing countable ideals as co-spectra

Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree \mathbf{s}_G such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is total
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a *G*, s.t. $\mathbf{s}_G = \mathbf{d}$. Hence every principle ideal of enumeration degrees is CS(G) for some *G*.

Similar results on algebraic fields: W. Calvert, V. Harizanov and A. Shlapentokh (2007) A. Frolov, I. Kalimullin and R. Miller(2009)

I. Kalimullin: $\exists \mathfrak{A}[DS_{\mathcal{T}}(\mathfrak{A}) = \{\mathbf{x} \mid \mathbf{x} \not\leq_{\mathcal{T}} \mathbf{b}\}]$ for low **b**.

Alexandra A. Soskova

Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i+1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

Definition. Consider a subset \mathcal{A} of \mathcal{D}_e . Say that \mathcal{A} is *upwards closed* if for every $\mathbf{a} \in \mathcal{A}$ all total degrees greater than \mathbf{a} are contained in \mathcal{A} .

Let \mathcal{A} be an upwards closed set of degrees. Note that if $\mathcal{B} \subseteq \mathcal{A}$, then $co(\mathcal{A}) \subseteq co(\mathcal{B})$.

Proposition. (Selman Theorem) Let $A_t = \{ \mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total} \}$. Then $co(A) = co(A_t)$.

Proposition. (high jumps) Let **b** be an arbitrary enumeration degree and n > 0. Set $A_{\mathbf{b},n} = \{\mathbf{a} : \mathbf{a} \in A \& \mathbf{b} \leq_e \mathbf{a}^{(n)}\}$. Then $co(A) = co(A_{\mathbf{b},n})$.

Theorem. (low jumps) Let \mathfrak{A} be a structure, $1 \le n$ and $\mathbf{c} \in DS_n(\mathfrak{A})$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example.(Upwards closed set for which the Theorem is not true) Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

 $\mathcal{D} = \{ \mathbf{a} : d_e(A) \leq_e \mathbf{a} \} \cup \{ \mathbf{a} : d_e(B) \leq_e \mathbf{a} \}.$

Set $\mathcal{A} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

• $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.

• $d_e(B) \leq d_e(A)$ and hence $d_e(B) \notin co(\mathcal{D})$.

伺 ト イ ヨ ト イ ヨ ト

Theorem. (low jumps) Let \mathfrak{A} be a structure, $1 \le n$ and $\mathbf{c} \in DS_n(\mathfrak{A})$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example. (Upwards closed set for which the Theorem is not true) Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$$

Set $\mathcal{A} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

• $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.

• $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

伺 ト イ ヨ ト イ ヨ ト

Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree **b** there exists a structure $\mathfrak{A}_{\mathbf{b}}$ s. t. $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x}\}$. Hence

Corollary. (Rozinas) For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

Not every upwards closed set of enumeration degrees has a minimal pair:

An upwards closed set with no minimal pair

Alexandra A. Soskova Enumeration Degree Spectra of Abstract Structures

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \not\in co(\mathcal{A}).$
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. If **q** is quasi-minimal with respect to A, then **q** is an upper bound of co(A).

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Corollary. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree **q** s.t.

1 If $\mathbf{a} \in I$ then $\mathbf{a} <_e \mathbf{q}$.

2 If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base B of A such that all elements of B are total. Then A has a least element.

Corollary. A total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

- - E - - E

Corollary. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree **q** s.t.

• If $\mathbf{a} \in I$ then $\mathbf{a} <_e \mathbf{q}$.

2 If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base B of A such that all elements of B are total. Then A has a least element.

Corollary. A total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

An upwards closed set with no quasi-minimal degree

Definition. The *n*-th jump spectrum of a structure \mathfrak{A} is the set

$$DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} | \mathbf{a} \in DS(\mathfrak{A})\}.$$

If **a** is the least element of $DS_n(\mathfrak{A})$ then **a** is called *n*-th jump degree of \mathfrak{A} .

Proposition. For every \mathfrak{A} , $DS_1(\mathfrak{A}) \subseteq DS(\mathfrak{A})$.

Is it true that for every \mathfrak{A} , $DS_1(\mathfrak{A}) \subset DS(\mathfrak{A})$? Probably the answer is "no".

.

Every jump spectrum is spectrum of a total structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_n)$. Let $\overline{0} \notin \mathbb{N}$. Set $\mathbb{N}_0 = \mathbb{N} \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and N^* be the least set containing \mathbb{N}_0 and closed under $\langle ., . \rangle$.

Definition. Moschovakis' extension of \mathfrak{A} is the structure

 $\mathfrak{A}^* = (\mathbb{N}^*, R_1, \ldots, R_n, \mathbb{N}_0, G_{\langle \ldots \rangle}).$

Proposition. $DS(\mathfrak{A}) = DS(\mathfrak{A}^*)$

Let $K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$ Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, \mathbb{N}^* \setminus K_{\mathfrak{A}}).$

Theorem.

1 The structure \mathfrak{A}' is total.

 $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

Every jump spectrum is spectrum of a total structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_n)$. Let $\overline{0} \notin \mathbb{N}$. Set $\mathbb{N}_0 = \mathbb{N} \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and N^* be the least set containing \mathbb{N}_0 and closed under $\langle ., . \rangle$.

Definition. Moschovakis' extension of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (\mathbb{N}^*, R_1, \ldots, R_n, \mathbb{N}_0, G_{\langle \ldots \rangle}).$$

Proposition. $DS(\mathfrak{A}) = DS(\mathfrak{A}^*)$

Let
$$\mathcal{K}_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, \mathcal{K}_{\mathfrak{A}}, \mathbb{N}^* \setminus \mathcal{K}_{\mathfrak{A}}).$

Theorem.

- **1** The structure \mathfrak{A}' is total.
- $OS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

The Jump Inversion Theorem

Consider two structures ${\mathfrak A}$ and ${\mathfrak B}.$ Suppose that

 $DS(\mathfrak{B})_t = \{ \mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total} \} \subseteq DS_1(\mathfrak{A}).$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extensions.

Corollary. Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C}' such that $DS(\mathfrak{B}) = DS(\mathfrak{C}')$.

・ 同・ ・ ラ・・・

P

- ▲ 문 ▶ - ▲ 문 ▶

æ

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark. Similar results A. Montalban (2009) different approach with complete set of Π_n^c formulas.

A. Stukachev (2009) for Σ reducibility with Marker's extentions.

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark. Similar results A. Montalban (2009) different approach with complete set of Π_n^c formulas.

A. Stukachev (2009) for Σ reducibility with Marker's extentions.

Applications

Example. (Ash, Jockush, Knight and Downey) Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-st jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure \mathfrak{B} satisfying:

- $DS(\mathfrak{B})$ has not least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **③** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- B is quasi-minimal above 0⁽ⁿ⁾
- $B' \equiv_e \mathbf{0}^{(n+1)}$

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} | d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

ъ

< 日 > < 同 > < 三 > < 三 >

Applications

Example. (Ash, Jockush, Knight and Downey) Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-st jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure \mathfrak{B} satisfying:

- $DS(\mathfrak{B})$ has not least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **3** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

1 B is quasi-minimal above $\mathbf{0}^{(n)}$.

$$a B' \equiv_e \mathbf{0}^{(n+1)}$$

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} | d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

・ロト ・同ト ・ヨト ・ヨト

-

Let $n \ge 0$. There exists a total structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = \{\mathbf{a} | \mathbf{0}^{(n)} <_e \mathbf{a}\}.$ It is sufficient to construct a structure \mathfrak{B} such that the elements of $DS(\mathfrak{B})$ are exactly the total e-degrees greater than $\mathbf{0}^{(n)}$. This is done by Whener's construction using a special family of sets:

Theorem. Let $n \ge 0$. There exists a family \mathcal{F} of sets of natural numbers s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a recursive in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no c.e. in $\mathbf{0}^{(n)}$ such U.

- Questions:
 - Jump Inversion theorem for infinite recursive ordinal α ?
 - Is it true that for every structure \mathfrak{A} and every sequence \mathcal{B} there exists a structure \mathfrak{B} such that $DS(\mathfrak{B}) = DS(\mathfrak{A}, \mathcal{B})$?
 - If for a countable ideal I ⊆ D_ω there is an exact pair then are there a structure 𝔄 and a sequence 𝔅 so that CS(𝔅,𝔅) = I?

Thank you!

<ロ> (日) (日) (日) (日) (日)

æ