Turing reducibility and Enumeration reducibility

Alexandra A. Soskova ${ }^{1}$
Faculty of Mathematics and Computer Science
Sofia University

August 11, 2010
${ }^{1}$ Supported by BNSF Grant No. D002-258/18.12.08.

Outline

- Relative computability
- Turing reducibility
- Turing jump
- Genericity and forcing
- Jump inversion
- Enumeration reducibility
- Quasi-minimal degree
- Selmans's theorem
- The minimal pair theorem

Enumeration of the partial computable functions

We will consider only partial functions on the set of the natural numbers \mathbb{N}.
Let $\left.\left\{\varphi_{i}^{(n)}\right\}_{i \in \omega},\right\}$ be the standard listings of the Turing computable functions on n arguments. Here i is the code of the Turing machine M_{i} which computes $\varphi_{i}^{(n)}$.

Fact. The Turing computable functions coincides with the μ-recursive ones.

Definition. We say that the function f is μ-recursive (partial recursive) if it can be obtain from the basic O, S, and I_{m}^{n} by the operations superpositions primitive recursion and μ operation appliaied finitely many times.

Denote by $W_{i}^{(n)}=\operatorname{dom}\left(\varphi_{i}^{(n)}\right)$ the r.e (c.e) set -the domain of $\varphi_{i}^{(n)}$. We know that the set is c.e. iff it is a domain of a partial computable function.

Properties of the p.c. functions and c.e. sets

Theorem. (Turing, 1936) There exists a Turing machine U the Universal Turing Machine which if given input (e, x) simulates the eth Turing machine with input x :

$$
U(e, x)=\varphi_{e}(x)
$$

Theorem. [Normal form theorem] There exists a primitive recursive function T_{n} s.t.

Corollary. Normal form of the c.e sets: $W_{e}=\left\{x \mid \exists z\left[T_{1}(e, x, z)=0\right]\right\}$

Properties of the p.c. functions and c.e. sets

Theorem. (Turing, 1936) There exists a Turing machine U the Universal Turing Machine which if given input (e, x) simulates the eth Turing machine with input x :

$$
U(e, x)=\varphi_{e}(x)
$$

Theorem. [Normal form theorem] There exists a primitive recursive function T_{n} s.t.
(1) $\downarrow \varphi_{e}^{(n)}(\bar{x}) \Longleftrightarrow \exists z\left[T_{n}(e, \bar{x}, z)=0\right]$
(2) $\varphi_{e}^{(n)}(\bar{x})=L\left(\mu z\left[T_{n}(e, \bar{x}, z)=0\right]\right)$.

Corollary. Normal form of the c.e sets:
$W_{e}=\left\{x \mid \exists z\left[T_{1}(e, x, z)=0\right]\right\}$.

Definition. Kleene' set $K=\left\{x \mid x \in W_{x}\right\}=\overline{L_{d}}$

Oracle Turing machines

Let $A \subseteq \mathbb{N}$.
Definition. The oracle TM (OTM) with an oracle A is a TM M with a query tape and special states $q_{?} ; q_{Y e s}$ and $q_{N o}$, such that: M runs as a usual TM, but when moving to state $q_{\text {? }}$ the oracle A is consulted with query y (on a separate tape) and if $y \in A, M$ is restarted at state $q_{Y e s}$ else at state $q_{N o}$

Definition. A function ψ is A-Turing computable if ψ is computable by an oracle Turing machine with oracle A.

Definition. A set B is said to be A-Turing computable, or Turing reducible to $A\left(B \leq_{T} A\right)$ if B is A-Turing computable, i.e. the characteristic function c_{B} is A-Turing computable.

Oracle Turing machines

Let $A \subseteq \mathbb{N}$.
Definition. The oracle TM (OTM) with an oracle A is a TM M with a query tape and special states $q_{?} ; q_{Y e s}$ and $q_{N o}$, such that: M runs as a usual TM, but when moving to state $q_{\text {? }}$ the oracle A is consulted with query y (on a separate tape) and if $y \in A, M$ is restarted at state $q_{Y e s}$ else at state $q_{N o}$

Definition. A function ψ is A-Turing computable if ψ is computable by an oracle Turing machine with oracle A.

Definition. A set B is said to be A-Turing computable, or Turing reducible to $A\left(B \leq_{T} A\right)$ if B is A-Turing computable, i.e. the characteristic function c_{B} is A-Turing computable.

Register machines with oracle

Let $A \subseteq \mathbb{N}$.
Definition. Register machines with oracle (RMO): The same as register machines with an additional command $O(n)$ to the basics: $Z(n), S(n), T(m, n), J(m, n, q)$, which asks the oracle with the contents of the nth register. If the oracle says "yes" then it writes 1 in the nth reg otherwise writes 0 .

Proposition. A function ψ is $R M$ computable with an oracle A \Longleftrightarrow it is A - Turing computable.

Definition. A function is p.c in $A \Longleftrightarrow$ it can be obtained from the basic functions O, S, I_{k}^{n} and c_{A} by superposition, primitive recursion and μ-operation, applied finitely many times.

Turing reducibility

Let $A \subseteq \mathbb{N}$.
Denote by φ_{e}^{A} or $\{e\}^{A}$ the Turing computable function by the TM with code e with oracle A.
(1) If A is decidable, then $(\forall B \subseteq \mathbb{N})\left(A \leq_{T} B\right)$, i.e. $c_{A} \leq_{T} B$ for an arbitrary oracle B.
(2) $A \leq_{T} \mathbb{N} \Rightarrow A$ is decidable.

Definition. $A \equiv_{T} B \Longleftrightarrow\left(A \leq_{T} B \& B \leq_{T} A\right)$.

Proposition. $(\forall A \subseteq \mathbb{N})\left(A \equiv{ }_{T} \bar{A}\right)$.

Easy- change only $0 / 1$ in the oracle answers.

m-reducibility

Definition. Let $A, B \subseteq \mathbb{N}$. A is m-reducible to B

$$
A \leq_{m} B \Longleftrightarrow(\exists h \text { - total computable })(x \in A \Longleftrightarrow h(x) \in B)
$$

Proposition. If A is c.e, then $A \leq_{m} K$.

Proof.

$$
g(x, y) \simeq \begin{cases}0 & , x \in A \\ \neg \downarrow & , x \notin A\end{cases}
$$

By S_{n}^{m} theorem, there is a pr. rec function h, s.t.
$\varphi_{h(x)}(y) \simeq g(x, y)$. Then
$x \in A \Longleftrightarrow \downarrow \varphi_{h(x)}(h(x)) \Longleftrightarrow h(x) \in K$.

m-reducibility

Theorem. $\left(S_{n}^{m}\right.$-theorem $)(\forall m)(\forall n)\left(\exists S_{n}^{m}\right)$ a primitive recursive function:

$$
\left.(\forall a)(\forall \bar{x})(\forall \bar{y})(\forall A)\left(\varphi_{\mathrm{a}}^{A,(m+n)}(\bar{x}, \bar{y}) \simeq \varphi_{S_{n}^{m}(a, \bar{x})}^{A,(\bar{y})}\right)\right) .
$$

Proposition. $A \leq_{m} B, B \leq_{m} C \Rightarrow A \leq_{m} C$.

Proof.

Let $x \in A \Longleftrightarrow h(x) \in B$ and $x \in B \Longleftrightarrow g(x) \in C$, where g and h are computable. Then $x \in A \Longleftrightarrow g(h(x)) \in C$, i.e. $A \leq_{m} C$.

Proposition. If $A \leq_{m} B$, then $A \leq_{T} B . \bar{K} \leq_{T} K, \bar{K} \not \leq_{m} K$.

c.e.-reducibility

Definition. A is computable enumerable in B :

$$
A \leq_{\text {c.e. }} B \Longleftrightarrow A=\operatorname{dom}\left(\{a\}^{B}\right)
$$

for some TM with code a.
(1) If A is c.e., then $(\forall B)\left(A \leq_{c . e .} B\right)$.
(2) If $A \leq_{c . e}, \mathbb{N}$, then A is c.e.

Proposition. $A \leq_{m} B, B \leq_{c . e .} C \Rightarrow A \leq_{\text {c.e. }} C$.

Proof.

Let h be a computable: $x \in A \Longleftrightarrow h(x) \in B$ and e : $B=\operatorname{dom}\left(\varphi_{e}^{C}\right)$. Let $g(x) \simeq \varphi_{e}^{C}(h(x))$. Then $x \in A \Longleftrightarrow h(x) \in B \Longleftrightarrow \downarrow g(x)$. Hence $A=\operatorname{dom}(g)$ but $g \leq_{T} C$, then $A \leq_{\text {c.e. }} C$.

c.e.-reducibility

Proposition. $A \leq_{T} B \Rightarrow A \leq_{\text {c.e. }} B$.

Proof.

Let $c_{A}=\{a\}^{B}$. Construct a new TM:
(1) execute $\{a\}^{B}(x)$ with output y
(2) if $y=1$ stop
(3) if $y=0$ infinite loop

c.e.-reducibility

Definition. $W_{a}^{B}=\operatorname{dom}\left(\{a\}^{B}\right), K_{B}=\left\{a \mid a \in W_{a}^{B}\right\}$.
$K_{B} \leq$ c.e. B and $\overline{K_{B}} \not \leq$ c.e. $B, K_{B} \not \leq T B$.
Proposition. $A \leq_{\text {c.e. }} B, B \leq_{T} C \Rightarrow A \leq_{\text {c.e. }} C$.

Proposition. $A \leq_{T} B, B \leq_{T} C \Rightarrow A \leq_{T} C$.
From $A \leq_{c . e .} B, B \leq_{c . e .} C$ it does not follow that $A \leq_{c . e .} C$. Since $\bar{K} \leq_{c . e .} K$ and $K \leq_{c . e .} \emptyset$, $(K$ is c.e. $)$, then $\bar{K} \leq_{c . e .} \emptyset \leq_{T} \mathbb{N}$. Thus \bar{K} is c.e., a contradiction.

Kleene - Post theorem

Proposition.

$$
A \leq_{T} B \Longleftrightarrow A \leq_{c . e .} B \& \bar{A} \leq_{\text {c.e. }} B
$$

Proof.

Let $A \leq_{T} B$. Then $A \leq_{c . e .} B$, and $\bar{A} \leq_{c . e .} B\left(\bar{A} \leq_{T} B\right)$ Let $A \leq_{c . e .} B$ and $\bar{A} \leq_{c . e} . B$. Then there are TM P and Q, such that $\{P\}^{B}=\chi_{A},\{Q\}^{B}=\chi_{\bar{A}}$. Then we construct a TM $P Q$, which computes P and Q with two tapes, step by step, and gives in output 1 if P halts, and 0 if Q ends.

$$
\begin{aligned}
& (\forall x)\left(\downarrow\{P\}^{B}(x) \vee \downarrow\{Q\}^{B}(x)\right) \\
\Rightarrow & \left.(\forall x) \downarrow\{P Q\}^{B}(x)\right) .
\end{aligned}
$$

So $A \leq T B$.

Turing degrees

The relation \equiv_{T} is an equivalence relation.
Definition. The Turing degree of the set A is the equivalence class containing A :

$$
d_{T}(A)=\{B \mid B \equiv T A\} .
$$

Definition. $d_{T}(A) \leq d_{T}(B) \Longleftrightarrow A \leq_{T} B$

The Turing upper semi-lattice

Let D_{T} be the set of all Turing degrees. $\left(D_{T}, \leq\right)$ is a partial order.
Definition.[The \oplus operation - join]
$A \oplus B=\{2 x \mid x \in A\} \cup\{2 x+1 \mid x \in B\}$.
Proposition. $d_{T}(A \oplus B)$ is the least upper bound of $d_{T}(A)$ and $d_{T}(B)$.

Proof.

(1) $x \in A \Longleftrightarrow 2 x \in A \oplus B \Rightarrow A \leq_{m} A \oplus B \Rightarrow A \leq_{T} A \oplus B$, i.e. $A \oplus B$ is a upper bound of A and B.
(2) Let $c_{A}=\{a\}^{C}, c_{B}=\{b\}^{C}$. Then $c_{A \oplus B}$ is comp.rel to C

$$
c_{A \oplus B}(x) \simeq \begin{cases}\varphi_{a}^{C}([x / 2]) & , \text { if } x \text { is odd } \\ \varphi_{b}^{C}([x / 2]) & , \text { if } x \text { is even }\end{cases}
$$

$D_{T}=\left(D_{T}, \leq, \oplus, \mathbf{0}_{T}\right)$ is a upper semi-lattice, where $\mathbf{0}_{T}=d_{T}(\emptyset)=d_{T}(R), R$ - decidable.

Definition. The Turing jump of the set A : $A^{\prime}=K_{A}=\left\{x \mid x \in \operatorname{dom}\left(\varphi_{x}^{A}\right)\right\}$.

Properties of the Turing jump

Proposition.

(1) $K_{A} \leq$ c.e. A;
(2) $B \leq_{\text {c.e. }} A \Rightarrow B \leq_{m} K_{A}$. Hint:

$$
g(x, y) \simeq \begin{cases}0 & , x \in B \\ \neg \downarrow & , x \notin B\end{cases}
$$

By S_{n}^{m} th. $\varphi_{h(x)}^{A}(y) \simeq g(x, y)$. Then
$x \in B \Longleftrightarrow \downarrow \varphi_{h(x)}^{A}(h(x)) \Longleftrightarrow h(x) \in K_{A}$.
(3) $A<{ }_{T} K_{A}$, since $\overline{K^{A}} \not \not_{\text {c.e. }} A$.

Monotonicity of the Turing jump

Proposition. $A \leq_{T} B \Longleftrightarrow A^{\prime} \leq_{m} B^{\prime}$.

Proof.

(\Rightarrow) Let $A \leq_{T} B$. We have $A^{\prime} \leq_{c . e .} A$ and then $A^{\prime} \leq_{c . e .} B$. Thus $A^{\prime} \leq_{m} B^{\prime}$ (by (2)).
(\Leftarrow) Let $A^{\prime} \leq_{m} B^{\prime}$. We have $A \leq_{c . e .} A \Rightarrow A \leq_{m} A^{\prime} \leq_{m} B^{\prime}$ and $\bar{A} \leq_{c . e .} A \Rightarrow \bar{A} \leq_{m} A^{\prime} \leq_{m} B^{\prime}$. Then $A \leq_{m} B^{\prime}, \bar{A} \leq_{m} B^{\prime}$, But by (1) $B^{\prime} \leq_{\text {c.e. }} B$ and then $A \leq_{\text {c.e. }} B, \bar{A} \leq_{\text {c.e. }} B$. By Kleene-Post th. $A \leq T B$.

Corollary.[Monotonicity of the jump] $A \leq_{T} B \Rightarrow A^{\prime} \leq_{T} B^{\prime}$.

Definition. $\left(d_{T}(A)\right)^{\prime}=d_{T}\left(A^{\prime}\right)$.
Since $A<{ }_{T} K_{A}$, then $d_{T}(A)<d_{T}\left(A^{\prime}\right)$.

Finite parts

Definition. τ is a finite part, if $\tau:[0 ; n-1] \longrightarrow \mathbb{N}$ is a finite function. denote by $|\tau|=n$ the length of the interval, where τ is defined.

$$
(\tau * a)(x) \simeq(\tau * n \rightarrow a)(x) \simeq \begin{cases}\tau(x) & \text { if } 0 \leq x<n \\ a & \text { if } x=n\end{cases}
$$

If A is a set, we write $\tau \subseteq A$ instead of $\tau \subseteq c_{A}$.

Genericity

Definition. The set A is generic, if for every c.e. set S of finite parts:

$$
(\exists \alpha \subseteq A) \underbrace{(\alpha \in S \vee(\forall \beta \supseteq \alpha)(\beta \notin S))}_{\alpha \text { decides } S}
$$

Equivalently:
Definition. S is dense in A, if $(\forall \alpha \subseteq A)(\exists \beta \in S)(\alpha \subseteq \beta)$. Then A is generic, if any time when S is dense in A, then A meets S, i.e. $(\exists \alpha \subseteq A)(\alpha \in S)$.

Constructing generic sets

The c.e. sets of finite parts we can list in a sequence, and moreover There is a total computable function h, s.t. $S_{e}=W_{h(e)}$. The construction:

- We construct on steps finite parts α_{n}, which will approximate c_{A}.
- We start with $\alpha_{0}=\emptyset$.
- For α_{n+1} we ask if there is an extension of α_{n} in S_{n}. If there is set α_{n+1} to be the least one. If there is not let $\alpha_{n+1}=\alpha_{n}$. It is clear that the construction assures that A is generic.

Generic sets - some Properties

Let A be a generic set.
Proposition. A not a finite set.

Proof.

Assume that it is. $\exists n$, s.t. $x \in A \Rightarrow x<n$. Let
$S=\{\alpha \mid(\exists m>n)(\alpha(m) \simeq 1)\}$ - c.e. Since A is generic then $(\exists \alpha)(\alpha \in S \vee(\forall \beta \supseteq \alpha)(\beta \notin S))$. It is clear that $\alpha \notin S$. Then $(\forall \beta \supseteq \alpha)(\forall m>n)(\beta(m) \nsucceq 1)$, which is impossible. Hence A is infinite.

Generic sets - some Properties

Proposition. If $V \subseteq A$ is c.e., then V is finite.

Proof.

Let $S=\{\alpha \mid(\exists x)(\alpha(x) \simeq 0 \& x \in V)\}$ - c.e. Since A is generic then $\exists \alpha$ s.t. $\alpha \in S \vee(\forall \beta \supseteq \alpha)(\beta \notin S) . \alpha \notin S$. Then
$(\forall \beta \supseteq \alpha)(\forall x)(\beta(x) \simeq 0 \Rightarrow x \notin V)$. Let $n \geq|\alpha|$, then for every $\beta \supseteq \alpha$, with $|\beta|=n, \beta(n)=0$ hence $n \notin V$. Thus V is finite.

Corollary. A is not c.e., since $A \subseteq A$ is infinite.

Generic sets - some Properties

Proposition. If $V \leq_{T} A$ is c.e., then V is decidable.

Proof.

We know $\bar{V} \leq_{T} V \leq_{T} A$, hence there is an a, s.t.
$\bar{V}=\operatorname{dom}\left(\{a\}^{A}\right)$. Let $S=\left\{\alpha \mid(\exists x \in V)\left(\downarrow\{a\}^{\alpha}(x)\right)\right\}$. Since S is c.e. and A generic there is $\alpha \subseteq A$, s.t. $\alpha \in S \vee(\forall \beta \supseteq \alpha)(\beta \notin S)$. If $\alpha \in S$, then $(\exists x \in V)\left(\downarrow\{a\}^{A}(x) \Longleftrightarrow x \in \bar{V}\right)$, a contradiction.
Then $(\forall \beta \supseteq \alpha)(\forall x \in V)\left(\neg \downarrow\{a\}^{\beta}(x)\right)$.

$$
x \in \bar{V} \Longleftrightarrow(\exists \beta \supseteq \alpha)\left(\downarrow\{a\}^{\beta}(x)\right)
$$

i.e. \bar{V} is c.e., V is c.e., therefore V is decidable .

Forcing relation

Definition. A models the formula $F_{e}(x)$:

$$
A \models F_{e}(x) \Longleftrightarrow\{e\}^{A}(x) \Longleftrightarrow x \in W_{e}^{A} .
$$

Definition. The finite part α forces formula $F_{e}(x)$:

$$
\alpha \Vdash F_{e}(x) \Longleftrightarrow \downarrow\{e\}^{\alpha}(x) .
$$

(1) $\alpha \subseteq A \& \alpha \Vdash F_{e}(x) \Rightarrow A \models F_{e}(x)$.
(2) $\alpha \subseteq \beta \& \alpha \Vdash F_{e}(x) \Rightarrow \beta \Vdash F_{e}(x)$.
(3) $A \models F_{e}(x) \Rightarrow(\exists \alpha \subseteq A)\left(\alpha \Vdash F_{e}(x)\right)$

Lemma. The set $\left\{(\alpha, e, x) \mid \alpha \Vdash F_{e}(x)\right\}$ is c.e.

Forcing relation

Definition.

$$
A \models \neg F_{e}(x) \Longleftrightarrow A \not \models F_{e}(x) \Longleftrightarrow \neg \downarrow\{e\}^{A}(x)
$$

Definition.

$$
\alpha \Vdash \neg F_{e}(x) \Longleftrightarrow(\forall \beta \supseteq \alpha)\left(\beta \nVdash F_{e}(x)\right) .
$$

Theorem. Let A be generic. Then

$$
A \models \neg F_{e}(x) \Longleftrightarrow(\exists \alpha \subseteq A)\left(\alpha \Vdash \neg F_{e}(x)\right)
$$

Compactness

Proof.

(\Leftarrow) Let $\alpha \subseteq A \& \alpha \Vdash \neg F_{e}(x)$.Suppose that $A \not \models \neg F_{e}(x)$, i.e. $A \models F_{e}(x) \Rightarrow(\exists \beta \subseteq A)\left(\beta \Vdash F_{e}(x)\right)$. Let $\gamma=\alpha \cup \beta$. Then $\gamma \supseteq \beta \Rightarrow \gamma \Vdash F_{e}(x)$, but $\gamma \supseteq \alpha, \alpha \Vdash \neg F_{e}(x) \Rightarrow \gamma \nVdash F_{e}(x)$ - a contradiction.
(\Rightarrow) Let $A \models \neg F_{e}(x)$. We search for $\alpha \subseteq A, \alpha \Vdash \neg F_{e}(x)$, i.e. no extension of α does not forces $F_{e}(x)$. A is generic. Indeed suppose that $(\forall \alpha \subseteq A)\left(\alpha \nVdash \neg F_{e}(x)\right) \Longleftrightarrow(\forall \alpha \subseteq A)(\exists \beta \supseteq \alpha)\left(\beta \Vdash F_{e}(x)\right)$. Set $S_{e, x}=\left\{\beta \mid \beta \Vdash F_{e}(x)\right\} . S_{e, x}$ is c.e. and dense in A, then there is $\alpha \subseteq A, \alpha \in S_{e, x} \Longleftrightarrow \alpha \Vdash F_{e}(x) \Rightarrow A \vDash F_{e}(x)$, a contradiction. So, $(\exists \alpha \subseteq A)\left(\alpha \Vdash \neg F_{e}(x)\right)$.

Truth lemma

Corollary.[Truth lemma] If A is generic, then

$$
A \models(\neg) F_{e}(x) \Longleftrightarrow(\exists \alpha \subseteq A)\left(\alpha \Vdash(\neg) F_{e}(x)\right) .
$$

Notice that $\left\{(\alpha, e, x) \mid \alpha \Vdash \neg F_{e}(x)\right\} \leq{ }_{T} \emptyset^{\prime}$.
Corollary. For A generic $A^{\prime} \equiv{ }_{T} A \oplus \emptyset^{\prime}$.

Proof.

(1) A^{\prime} is a upper bound of \emptyset^{\prime} and $A \Rightarrow \emptyset^{\prime} \oplus A \leq_{T} A^{\prime}$.
(2) $A^{\prime}=K_{A}=\left\{x \mid x \in W_{x}^{A}\right\} \leq$ c.e. A, then there is e, s.t. $x \in K_{A} \Longleftrightarrow \downarrow\{e\}^{A}(x) \Longleftrightarrow A \models F_{e}(x) \Longleftrightarrow(\exists \alpha \subseteq$ $A)\left(\alpha \Vdash F_{e}(x)\right) \leq_{T} A \oplus \emptyset^{\prime} . A$ is generic then
$x \in \overline{K_{A}} \Longleftrightarrow \neg \downarrow\{e\}^{A}(x) \Longleftrightarrow A \not \models F_{e}(x) \Longleftrightarrow(\exists \alpha \subseteq$ $A)\left(\alpha \Vdash \neg F_{e}(x)\right) \leq_{T} A \oplus \emptyset^{\prime}$. Thus $K_{A}=A^{\prime} \leq_{T} A \oplus \emptyset^{\prime}$.

Jump inversion theorem

Theorem.[Jump inversion theorem, Fridberg] Let $\emptyset^{\prime} \leq_{T} B$. There exists a generic A, s.t. $A^{\prime} \equiv{ }_{T} B$.

Proof.

We construct A by steps, so that $A \leq_{T} B$ and A - generic. Then $A^{\prime} \equiv T \emptyset \oplus A \Rightarrow A^{\prime} \leq_{T} B$. For the other direction we code B in $A \oplus \emptyset^{\prime}$. On each step n we define a finite part α_{n} of c_{A}. Let $\alpha_{0}=\emptyset$. If α_{n} is constructed then we ask: Is it true that: $\left(\exists \beta \supseteq \alpha_{n}\right)\left(\beta \in S_{n}\right)$?". Since the set $V=\left\{(\alpha, n) \mid(\exists \beta \supseteq \alpha)\left(\beta \in S_{n}\right)\right\}$ is c.e, then $V \leq_{T} K=\emptyset^{\prime}$. If yes, set α_{n}^{*} will be the minimal such β, if no, then $\alpha_{n}^{*}=\alpha_{n}$. Thus assures that A is generic. Set $\alpha_{n+1}=\alpha_{n}^{*} * c_{B}(n)$.

Jump inversion theorem

Proof.

(1) $A \leq_{T} B$. Since $\left|\alpha_{x+1}\right| \geq x, x \in A \Longleftrightarrow x \in \alpha_{x+1}$. But $\alpha_{n} \leq_{T} B \oplus \emptyset^{\prime} \leq_{T} B$.
(2) A is generic, since α_{n}^{*} assures genericity with respect to S_{n}.
(3) $B \leq_{T} A \oplus \emptyset^{\prime}$. We have $k \in B \Longleftrightarrow \alpha_{k+1}\left(\left|\alpha_{k}^{*}\right|\right)=1$. We can construct B repeating the construction, changing $c_{B}(n)$ with $c_{A}\left(\left|\alpha_{n}^{*}\right|\right)$. So, using oracle A and \emptyset^{\prime} we have $B \leq_{T} A \oplus \emptyset^{\prime}$.

Thus A is generic and $A^{\prime} \equiv_{T} B$.

Corollary. There exists A - generic, s.t. $\emptyset \lesseqgtr_{T} A \lesseqgtr_{T} A^{\prime} \equiv_{T} \emptyset^{\prime}$.

Enumeration reducibility

Definition. The operator $\Gamma: 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}}$ is an enumeration operator, if:
(1) $x \in \Gamma(A) \Longleftrightarrow(\exists D \subseteq A)(x \in \Gamma(D) \& D$ - finite) (Γ is compact),
(2) There is a total computable function h, s.t. $\Gamma\left(W_{a}\right)=W_{h(a)}$ (Γ is effective).

Definition. The set A is enumeration reducible to B :

$$
A \leq_{e} B \Longleftrightarrow(\exists \Gamma \text { - e-operator })(A=\Gamma(B))
$$

Proposition. $A \leq_{e} B, B \leq_{e} C \Rightarrow A \leq_{e} C$.

Enumeration operator

Proposition. 「 is e-operator \Longleftrightarrow there exists c.e. W, s.t.:

$$
\Gamma(A)=\left\{x \mid(\exists v)\left(\langle x, v\rangle \in W \& D_{v} \subseteq A\right)\right\}
$$

Proof.

(\Leftarrow) Let $x \in \Gamma(A) \Longleftrightarrow(\exists v)\left(\langle x, v\rangle \in W \& D_{v} \subseteq A\right)$.
(1) (compact)

$$
x \in \Gamma(A) \Rightarrow(\exists v)\left(\langle v, x\rangle \in W \& D_{v} \subseteq A\right) \Rightarrow x \in \Gamma(D)
$$

(2) (monotone).
(3) (effective) $x \in \Gamma\left(W_{a}\right) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W \& D_{v} \subseteq W_{a}\right)$.

$$
R=\{(a, x) \mid \underbrace{(\exists v)\left(\langle v, x\rangle \in W \&\left(\forall y \in D_{v}\right)\left(y \in W_{a}\right)\right)}_{\text {c.e. condition }}\} .
$$

$$
\begin{aligned}
& \text { Let } R=W_{e}, h(a)=S_{1}^{1}(e, a) . \\
& x \in \Gamma\left(W_{a}\right) \Longleftrightarrow(a, x) \in R \Longleftrightarrow x \in W_{h(a)} .
\end{aligned}
$$

Enumeration operator

Proof.

(\Rightarrow) Let Γ is compact and effective. Then

$$
\begin{aligned}
x \in \Gamma(A) & \Longleftrightarrow(\exists D-\text { finite })(D \subseteq A \& x \in \Gamma(D)) \\
& \Longleftrightarrow(\exists v)\left(D_{v} \subseteq A \& x \in \Gamma\left(D_{v}\right)\right) \\
& \Longleftrightarrow(\exists v)\left(D_{v} \subseteq A \& x \in \Gamma\left(W_{\lambda(v)}\right)\right) \\
\text { (effective) } & \Longleftrightarrow(\exists v)\left(D_{v} \subseteq A \& x \in W_{h(\lambda(v))}\right) \\
& \Longleftrightarrow(\exists v)\left(D_{v} \subseteq A \&\langle x, v\rangle \in W\right), \\
\text { where } W & =\left\{\langle x, v\rangle \mid x \in W_{h(\lambda(v))}\right\} .
\end{aligned}
$$

Examples

$A \leq_{e} B$ if there exists an effective procedure that, given any enumeration of B, computes an enumeration A.

Example

- $A \leq_{e} A$ via the c.e. set $W=\{\langle n,\{n\}\rangle \mid n \in \mathbb{N}\}$.
- If A is c.e. and B is any set, then $A \leq_{e} B$ via the c.e. set $W=\{\langle n, \emptyset\rangle \mid n \in A\}$.
- If f is computable and $A=f^{-1}(B)$ (i.e. $A \leq_{m} B$), then $A \leq_{e} B$ via the c.e. set $W=\{\langle n,\{f(n)\}\rangle \mid n \in s t N\}$.
- More generally, if A is c.e in $B, A=\left\{x \mid \varphi_{e}^{B}(x) \downarrow\right\}$ then $A \leq_{e} B \oplus \bar{B}$ via the

$$
W=\left\{\langle x, D \oplus E\rangle \mid \varphi_{e}^{D}(x) \downarrow \& Q^{-}\left(\varphi_{e}^{D}, x\right)=E\right\} .
$$

$\langle f\rangle$ denotes the graph of the function f, i.e
$\langle f\rangle=\{\langle x, y\rangle \mid f(x)=y\}$.

Example

If f is total, then $\langle\bar{f}\rangle \leq_{e}\langle f\rangle$ via the set

$$
W=\{\langle\langle x, y\rangle,\{\langle x, z\rangle\}\rangle \mid y \neq z\} .
$$

- Y is total if $\bar{Y} \leq_{e} Y . X \oplus \bar{X}$ is total for any X and if f is total then $\langle f\rangle$ is total.
- If Y is total then, for any $X: X \leq_{e} Y \Longleftrightarrow X$ is c.e. in Y.
- Consequence $A \leq_{T} B \Longleftrightarrow A \oplus \bar{A} \leq_{e} B \oplus \bar{B}$.

Enumeration reducibility of functions

Definition. $\varphi \leq_{e} \psi \Longleftrightarrow\langle\varphi\rangle \leq_{e}\langle\psi\rangle$.
Proposition. $\varphi \leq_{T} \psi \Rightarrow \varphi \leq_{e} \psi$.

Proof.

Let $\varphi \leq_{T} \psi$ and $\{e\}^{\psi}=\varphi$. We look for a c.e. W :

$$
x \in \Gamma(\langle\psi\rangle)=\langle\varphi\rangle \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W \&\left\langle\theta_{v}\right\rangle \subseteq\langle\psi\rangle\right),
$$

Let $W=\left\{\langle\langle x, y\rangle, v\rangle \mid\{e\}^{\theta_{v}}(x) \simeq y\right\} . W$ is c.e.

$$
\begin{aligned}
\langle x, y\rangle \in \Gamma(\langle\psi\rangle) & \Longleftrightarrow(\exists v)\left(\{e\}^{\theta_{v}}(x) \simeq y \&\left\langle\theta_{v}\right\rangle \subseteq\langle\psi\rangle\right) \\
& \Longleftrightarrow\{e\}^{\psi}(x) \simeq y \\
& \Longleftrightarrow \varphi(x) \simeq y \\
& \Longleftrightarrow\langle x, y\rangle \in\langle\varphi\rangle .
\end{aligned}
$$

Enumeration reducibility of functions

The enumeration reducibility is weaker than Turing reducibility.
We will prove that $c_{K} \leq_{e} \chi_{\bar{K}}$, but $c_{K} \not \leq T \chi_{\bar{K}}$.
(1) Suppose that $c_{K} \leq_{T} \chi_{\bar{K}}$. Then there is an e, s.t. $\{e\}^{\chi_{\bar{K}}}=c_{K}$ - total. But $\downarrow \chi_{\bar{K}}(x) \simeq y \Longleftrightarrow y=1$. Swich all oracle questions with 1 . Then we can compute c_{K}, a contradiction.
(2) Let

$$
\begin{aligned}
W= & \left\{\langle\langle x, 0\rangle, v\rangle \mid x \in \mathbb{N} \& D_{v}=\{\langle x, 1\rangle\}\right\} \cup \\
& \left\{\langle\langle x, 1\rangle, v\rangle \mid x \in K \& D_{v}=\emptyset\right\} .
\end{aligned}
$$

Then W defines an e-operator and $W\left(\chi_{\bar{K}}\right)=c_{K}$.

Enumeration degrees

Definition. $A \equiv_{e} B \Longleftrightarrow A \leq_{e} B \& B \leq_{e} A$.
\equiv_{e} is an equvalence relation, and teh classes of equvalences we call enumeration degrees.

Definition. Enumertion degree of A is the class of equvalence of A with respect to \equiv_{e} :

$$
d_{e}(A)=\left\{B \mid B \equiv_{e} A\right\} .
$$

Definition. $d_{e}(A) \leq d_{e}(B) \Longleftrightarrow A \leq_{e} B$
Denote by D_{e} the set of all enumeration degrees. $\left(D_{e}, \leq\right)$ is a partial ordered set. The operation \oplus gives a least upper bound of two e. degrees.

Proposition. $d_{e}(A \oplus B)$ is the least upper bound of $d_{e}(A) d_{e}(B)$.

Proof.

(1) $x \in A \Longleftrightarrow 2 x \in A \oplus B \Rightarrow A \leq_{m} A \oplus B \Rightarrow A \leq_{T} A \oplus B \Rightarrow$ $A \leq_{e} A \oplus B$. And $x \in B \Longleftrightarrow 2 x+1 \in A \oplus B \Rightarrow B \leq_{e} A \oplus B$, i.e. $A \oplus B$ is a upper bound of A and B.
(2) Let $A \leq_{e} C, B \leq_{e} C$, i.e. $A=W^{\prime}(C), B=W^{\prime \prime}(C)$. Let $W=\left\{\langle x, v\rangle \mid\left(\exists v^{\prime} v^{\prime \prime}\right)\left(\left\langle x, v^{\prime}\right\rangle \in W^{\prime}\right) \&\left(\left\langle x, v^{\prime \prime}\right\rangle \in W^{\prime \prime}\right) \& D_{v}=\right.$ $\left.D_{v^{\prime}} \oplus D_{v^{\prime \prime}}\right\} . W$ is c.e.. And $W(C)=A \oplus B$, i.e. $C \leq_{e} A \oplus B$.

Denote by $0_{e}=\{W \mid W$ is c.e. $\}, 0_{e} \leq a$ for an arbitrary a. . $D_{e}=\left(D_{e}, 0_{e}, \oplus, \leq\right)$ is a upper semi-lattice.

Total enumeration degrees
A is total, if $A \equiv{ }_{e} A \oplus \bar{A}=A^{+}$.

Proposition.

(1) $A^{++} \equiv{ }_{e} A^{+}$, i.e.. A^{+}is total.
(2) $A^{+} \equiv_{e}\left\langle c_{A}\right\rangle$.
(3) A is total $\Longleftrightarrow A \equiv_{e}\left\langle\chi_{A}\right\rangle$.
(9) If f is total, then $\langle f\rangle$ is total.

Every decidable set is total. K is not total since $\bar{K} \not \mathbb{K}_{e} K$.
Definition. $a \in D_{e}$ is total, if there is a total $A \in a$.
Remark 0_{e} is total e-degree, but $K \in 0_{e}$ is not total.

Rogers embeding

The total degrees in D_{e} form an upper semi-lattice isomorphic to D_{T}.

Definition.[Rogers, Michael] $\varkappa: D_{T} \rightarrow D_{e}$ is Rogers embedding, defined as $\varkappa\left(d_{T}(A)\right)=d_{e}\left(A^{+}\right)$.

Proposition.

(1) (correctness) $A \equiv_{T} B \Longleftrightarrow A^{+} \equiv_{e} B^{+}$;
(2) Range $(\varkappa)=$ Tot $=\{a \mid a$ is total e-degree $\}$. Indeed if $A \in a \in$ Tot, then since $A \equiv{ }_{e} A^{+}$we have $A^{+} \in a \Rightarrow \varkappa\left(d_{T}(A)\right)=a$ and thus $a \in$ Range (\varkappa). But if $a \in \operatorname{Range}(\varkappa)$, then $a=d_{e}\left(A^{+}\right) \Rightarrow a \in$ Tot.
(3) (injective) Let $\varkappa\left(d_{T}(A)\right)=\varkappa\left(d_{T}(B)\right) \Rightarrow A^{+} \equiv_{e} B^{+} \Rightarrow A \equiv_{T}$ $B \Rightarrow d_{T}(A)=d_{T}(B)$.
(9) (isomorphic embeding)

$$
A \leq_{T} B \Rightarrow \varkappa\left(d_{T}(A)\right)=A^{+} \leq_{e} B^{+}=\varkappa\left(d_{T}(B)\right) .
$$

Forcing

So, \varkappa is an isomrphic embedding of D_{T} in the total degrees in D_{e}. To see that it is strong embeding: Range $(\varkappa)=\operatorname{Tot} \subsetneq D_{e}$, we have to show that there are nontotal degrees.

Definition.

$$
\begin{aligned}
A \models_{e} F_{a}(x, y) & \Longleftrightarrow\langle x, y\rangle \in W_{a}(A), \\
\alpha \vdash_{e} F_{a}(x, y) & \Longleftrightarrow\langle x, y\rangle \in W_{a}\left(\alpha^{+}\right), \text {where } \alpha^{+}=\{x \mid \alpha(x) \simeq 1\} .
\end{aligned}
$$

Properties:

(1) $\alpha \subseteq A \& \alpha \Vdash_{e} F_{a}(x, y) \Rightarrow A=_{e} F_{a}(x, y)$ (monotonicity).
(2) $\alpha \subseteq \beta \& \alpha \Vdash_{e} F_{a}(x, y) \Rightarrow \beta \Vdash_{e} F_{a}(x, y)$, since $\alpha^{+} \subseteq \beta^{+}$;
(3) $A \neq{ }_{e} F_{a}(x, y) \Rightarrow(\exists \alpha \subseteq A)\left(\alpha \Vdash_{e} F_{a}(x, y)\right)$ (compactness)

Proposition. Let A be generic and $\varphi \leq_{e} A$. There exists a computable function ψ, s.t. $\varphi \subseteq \psi$.

Nontotal degrees

Proof.

Let A be a generic and $\varphi \leq_{e} A,\langle\varphi\rangle=W_{a}(A)$. Then $\langle x, y\rangle \in\langle\varphi\rangle \Longleftrightarrow A \models_{e} F_{a}(x, y)$. Consider
$S=\left\{\alpha \mid(\exists x)\left(\exists y_{1}\right)\left(\exists y_{2}\right)\left(\alpha \Vdash_{e} F_{a}\left(x, y_{1}\right) \& \alpha \Vdash_{e} F_{a}\left(x, y_{2}\right) \& y_{1} \neq\right.\right.$ $\left.\left.y_{2}\right)\right\}$.
There is $\alpha \subseteq A, \alpha \notin S$ and then $(\forall \beta \supseteq \alpha)(\beta \notin S)$. Define $\psi(x) \simeq y \Longleftrightarrow(\exists \beta \supseteq \alpha)\left(\beta \Vdash_{e} F_{a}(x, y)\right) . \psi$ is a function and ψ is computable.
Let $\varphi(x) \simeq y$. Then
$A \models_{e} F_{a}(x, y) \Rightarrow(\exists \beta \supseteq \alpha)\left(\beta \Vdash_{e} F_{a}(x, y)\right) \Rightarrow \psi(x) \simeq y$.
Thus $\varphi \subseteq \psi$.

Corollary. $d_{e}(A)$ is nontotal for A-generic.

Corollary. If A is generic, X total and $X \leq_{e} A$, then $X \leq_{e} \emptyset$.

Quasi-minimal degree

Definition. A is quasi-minimal if
(1) $A \not \leq_{e} \emptyset$;
(2) If $X \leq_{e} A$ and X is total, then $X \leq_{e} \emptyset$.

From the previous Proposition:
Proposition. Each generic set is quasi-minimal.

Regular enumerations

Definition. Let $B \subseteq \mathbb{N}$. The total function $f: \mathbb{N} \longrightarrow \mathbb{N}$ is regular enumeration of B, if $f(2 \mathbb{N}+1)=B$.

If $B=\emptyset$, we consider enumerations of $\mathbb{N}=\bar{\emptyset} \equiv_{e} \emptyset$.
If f is a regular enumeration of B then

$$
\chi_{B}(x) \simeq \operatorname{sg}(\mu n[x=f(2 n+1)]) .
$$

And $c_{B} \leq_{T} f$, then $B \leq_{e} f$.
Definition. B-regular finite part is a function
$\tau:[0 ; 2 q+1] \longrightarrow \mathbb{N}$, s.t.

$$
2 x+1 \in \operatorname{dom}(\tau) \Rightarrow \tau(2 x+1) \in B
$$

If τ is a B-regular finite part, then

$$
(\exists f \supseteq \tau)(f \text { is a reg. enum of } B) .
$$

Forcing

Definition.

$$
\begin{aligned}
f \models F_{e}(x) & \Longleftrightarrow x \in W_{e}(\langle f\rangle), \\
\tau \Vdash F_{e}(x) & \Longleftrightarrow x \in W_{e}(\langle\tau\rangle) .
\end{aligned}
$$

$$
\tau \Vdash F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle x, v\rangle \in W_{e} \& D_{v} \subseteq\langle\tau\rangle\right),
$$

So $S_{\tau}=\left\{\langle e, x\rangle \mid \tau \Vdash F_{e}(x)\right\}$ is c.e..
Properties:
(1) $\tau \subseteq f \& \tau \Vdash F_{e}(x) \Rightarrow f \models F_{e}(x)$
(2) $\tau \subseteq \rho \& \tau \Vdash F_{e}(x) \Rightarrow \rho \Vdash F_{e}(x)$
(3) $f \models F_{e}(x) \Rightarrow(\exists \tau \subseteq f)\left(\tau \Vdash F_{e}(x)\right)$

Regular enumerations

Proposition. Let $A \not \varliminf_{e} B$. There exists a regular enumeration f of B, s.t. $A \not \leq_{e} f$.

Proof.
We construct a sequence of B regular finite parts

$$
\tau_{0} \subseteq \tau_{1} \subseteq \cdots \subseteq \tau_{q} \subseteq \ldots
$$

Let $\tau_{0}(0)=0, \tau_{0}(1)=z_{0} \in B$. If τ_{q} is constructed:

1. $q=2 e$. Let $z_{0}=\mu z\left[z \in B \& z \notin \tau_{q}(2 \mathbb{N}+1)\right]$. Set
$\tau_{q+1}=\tau_{q} * 0 * z_{0}$.
2. $q=2 e+1$.

$$
\begin{gathered}
C=\left\{x \mid\left(\exists \rho \supseteq \tau_{q}\right)(\rho \text { is a B-regular finite part \& }\right. \\
\left.\left.\rho\left(\left|\tau_{q}\right|\right)=x \& \rho \Vdash F_{e}\left(\left|\tau_{q}\right|\right)\right)\right\} .
\end{gathered}
$$

Since $C \leq{ }_{e} B$, then $C \neq A$.

Regular enumerations

Proof.

2 (a). $(\exists x)(x \in C \& x \notin A)$. Then τ_{q+1} is the minimal ρ from C.
2 (b). $(\exists x)(x \notin C \& x \in A)$. Then $\tau_{q+1}=\tau_{q} * x * z_{0}$ for some $z_{0} \in B$.
Let $f=\bigcup_{q} \tau_{q}$ - a regular enumerartion of B.
Suppose that $A \leq_{e} f$, i.e. $A=W_{e}(\langle f\rangle)$. Then $f^{-1}(A)=\{x \mid f(x) \in A\} \leq_{e} f$ and there is e, s.t. $n \in f^{-1}(A) \Longleftrightarrow f \vDash F_{e}(n)$.
Consider the step $q=2 e+1$. Let $n=\left|\tau_{q}\right|=2 q+1$.
Case1. $n \in f^{-1}(A) \Rightarrow f(n) \in A \Rightarrow\left(\exists \rho \supseteq \tau_{q}\right)\left(\rho \Vdash F_{e}(n) \& \rho(n)=\right.$ $f(n) \in A$). Then $f(n) \in C \cap A, A$ contradiction.
Case 2. $n \notin f^{-1}(A) \Rightarrow f(n) \notin A \Rightarrow\left(\forall \rho \supseteq \tau_{q}\right)\left(\rho \nVdash F_{e}(n) \& \rho(n)=\right.$ $f(n) \notin A)$, then $f(n) \notin C$ - a contradiction.
So, $A \not \not_{e} f$.

Theorem.[Selman]

$$
A \leq_{e} B \Longleftrightarrow(\forall X-t o t a l)\left(B \leq_{e} X \Rightarrow A \leq_{e} X\right)
$$

Proof.

(\Rightarrow) From the transitivity of \leq_{e}.
(\Leftarrow) Suppose that $A \not \AA_{e} B$. Then we construct a B-regular enumeration f, s.t. $A \not \leq_{e}\langle f\rangle$, but $\langle f\rangle$ is total and $B \leq_{e}\langle f\rangle$, a contradiction.

Corollary. If $a, b \in D_{e}$, then

$$
a \leq b \Longleftrightarrow(\forall x-\text { total })(b \leq x \Rightarrow a \leq x)
$$

Minimal pair

Definition. The sets F and G form a minimal pair for B, if
(1) $B \lesseqgtr_{e} F, B \lesseqgtr_{e} G$;
(2) $A f_{e} F, A \int_{e} G \Rightarrow A \leq_{e} B$,
i.e. B is an greatest lower bound for F and G.

Definition. We call f generic regular enumeration of B, if f is a regular enumeration of B and for every $S \leq_{e} B$, containing only B regular fnite parts.

$$
(\exists \tau \subseteq f)(\tau \in S \vee(\forall \rho \supseteq \tau)(\rho \notin S))
$$

Proposition.

Let $B \subseteq \mathbb{N}$, and $\left\{A_{n}\right\}$ is a sequence of sets, s.t. $(\forall n)\left(A_{n} \not Z_{e} B\right)$. Then there exists a generic regular enumeration f of B, s.t. $(\forall n)\left(A_{n} \not \leq_{e} f\right)$.

Minimal pair

Proof.

We construct a monotone incresing sequence of B-regular finite parts $\tau_{q}:[0 ; 2 q+1] \longrightarrow \mathbb{N}$. Let $\tau_{0}(0)=\tau_{0}(1)=b_{0} \in B$. Suppose that we have constructed τ_{q}.

1. $q=3 e$. Set $\tau_{q+1}=\tau_{q} * 0 * b$, where b is the first nonenumerated element of B.
2. $q=3 e+1$. Genericity of f. Consider $S_{e}=W_{e}(B) \cap R_{B}$, $R_{B}=\{\tau \mid \tau$ is B-reg fin part $\}$. Let τ_{q+1} be the least $\tau \supseteq \tau_{q}$, $\tau \in S_{e}$, if there is. If not $\tau_{q+1}=\tau_{q}$.
3. $q=3 e+2$. Let $e=\langle n, k\rangle$. we will assure $f^{-1}\left(A_{n}\right) \neq W_{k}(\langle f\rangle) .\left(\Longrightarrow f^{-1}\left(A_{n}\right) \not \leq_{e} f\right.$ and $\left.A_{n} \not \leq_{e} f\right)$.

Minimal pair

Proof.

$$
n_{q}=\left|\tau_{q}\right|
$$

$$
C_{q}=\{x \mid x\left(\exists \tau \supseteq \tau_{q}\right)(\underbrace{\tau \text { is } B \text {-reg.fin, part })}_{\leq_{e} B} \& \underbrace{\tau\left(n_{q}\right) \simeq x}_{\text {effective }} \& \underbrace{\tau \Vdash F_{k}\left(n_{q}\right)}_{\text {effective }}\}
$$

$C_{q} \leq_{e} B$ and then $C_{q} \neq A_{n}$.
3.(a) $(\exists x)\left(x \in C_{q} \& x \notin A_{n}\right)$. We get the minimal such $x \tau_{q+1}$ teh minimal such τ.
3.(b) $(\exists x)\left(x \notin C_{q} \& x \in A_{n}\right) . \tau_{q+1}=\tau_{q} * x * b$, where $b \in B$.

Define f as follows:

$$
f(n) \simeq x \Longleftrightarrow(\exists q)\left(\tau_{q}(n) \simeq x\right)
$$

Minimal pair

Proof.

By construction f is generic regular enumeration of B. We will show that $f^{-1}\left(A_{n}\right) \not \mathbb{K}_{e} f$.
Suppose $f^{-1}\left(A_{n}\right) \equiv_{e} W_{k}(\langle f\rangle)$ for some n and k. Consider step $q=3\langle n, k\rangle+2$. We know $f\left(n_{q}\right) \simeq x \in A_{n} \triangle C_{q}$.

1. $x \in C_{q} \& x \notin A_{n}$. Then
$f \models F_{k}\left(n_{q}\right) \Rightarrow n_{q} \in f^{-1}\left(A_{n}\right) \Rightarrow f\left(n_{q}\right)=x \in A_{n}$ - a contradiction.
2. $x \notin C_{q} \& x \in A_{n}$. Then
$n_{q} \in f^{-1}(A) \Rightarrow\left(\exists \tau \supseteq \tau_{q}\right)\left(\tau\left(n_{q}\right) \simeq x \& \tau \Vdash F_{k}\left(n_{q}\right)\right) \Rightarrow x \in C_{q}$ - a contr.
Then $f^{-1}\left(A_{n}\right) \not \leq_{e} f \Rightarrow A_{n} \not \leq_{e} f$.

Minimal pai theorem

Theorem. Let $B \subseteq \mathbb{N}$. There is a minimal pair F and G for B.

Proof.

Let f be an arbitrary generic regular enumeration of B. Let $\left\{A_{n}\right\}$ is a sequence of those sets that $\leq_{e} f$ and $\mathbb{L}_{e} B$ (countable). By the last proposition we can construct g, such that g is generic and $(\forall n)\left(A_{n} \not Z_{e} g\right)$. Set $F=\langle f\rangle, G=\langle g\rangle$. By the next lemma since $\langle f\rangle,\langle g\rangle$ are generic regular enumerations of $B B \jmath_{e} F, B \jmath_{e} G$. Let $A \leq_{e} F, A \leq_{e} G$. Then $A \notin\left\{A_{n}\right\}$, otherwise $A \not \AA_{e} G$. Since $A \notin\left\{A_{n}\right\}$, then $A \leq_{e} B$.

Lemma. If is generic regular enumaration of B, then $f \not \leq_{e} B$.

Proof.

Suppose that $f \leq_{e} B$. Consider

$$
S=\{\tau \text { - B-regular finite part } \mid(\exists x)(\downarrow \tau(x) \& \tau(x) \nsucceq f(x))\}
$$

$S \leq_{e} B \oplus\langle f\rangle$, but $\langle f\rangle \leq_{e} B \Rightarrow S \leq_{e} B$. By genericity of f we have

$$
(\exists \tau \subseteq f)(\underbrace{\tau \in S}_{\tau \nsubseteq f} \vee \underbrace{(\forall \rho \supseteq \tau)(\rho \notin S)}_{\text {not true } f \nsupseteq \rho \supseteq \tau})
$$

In both cases we have a contradiction.

