1 Computability theory

1.1 Intuitive idea of computability and Church Thesis

The surest recipe for non computer scientist to be horrified:
A hot debate over the right program language
\square All program languages and machine models are „equally powerful"
\square In every model there are the same non computable problems

The computability in the intuitive sense

$f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is called(partial) function.
f is computable if
\exists an effective procedure(=algorithm) which computes f.
effective procedure = Java-program (, ..., "appropriate" program
language)
Input: $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$
Output: $f\left(x_{1}, \ldots, x_{k}\right)$
program halts in finitely many steps in case of $\left(x_{1}, \ldots, x_{k}\right) \in$ domain of f.
infinite loop otherwise.

Examples

input n
repeat
until false
computes the total not defined function Ω
$f_{\pi}(n)= \begin{cases}1 & \text { if } n \text { is an initial segment in the decimal representation of } \pi . \\ 0 & \text { otherwise }\end{cases}$
f_{π} is computable:
Use large number arithmetic, and apply an appropriate approximations "large enough".

Example

$f(n)= \begin{cases}1 & \text { if } n \times{ }^{\prime} 7^{\prime} \text { appears somewhere in the decimal representation of } \pi \\ 0 & \text { otherwise }\end{cases}$
Is f computable? Yes !
If $\forall n: n \times{ }^{\prime} 7^{\prime}$ occurs: $\forall n: f(n)=1$
If ' 7 ' occurs maximum n_{0} times somewhere:

$$
\longrightarrow f(n)= \begin{cases}1 & \text { if } n \leq n_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Church-Turing thesis

Functions computable by Turing machine are exactly those computable in the intuitive sense.
Not a proposition but everybody accepted.

The reasons

\square All known computable models are weaker or equivalent.
this we can prove
\square All „intuitive" computable known function are Turing-computable.

Deterministic Turing machines (DTM)

$T=(Q, \Sigma, \Gamma, \delta, s, F):$
$\square Q$ states, Σ input alphabet
$\square \Gamma$ tape alphabet,
$\sqcup \notin \Sigma$: blank symbol, $\Sigma \cup\{\sqcup\} \subseteq \Gamma$
$\square \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, N\}$,
Eingabe $w \varepsilon \Sigma^{*}$ Ausgabe
transition function;
$\square s \in Q$, initial state
$\square F \subseteq Q$, final states

Configuration of a TM

$w, v \in \Gamma^{*}, a \in \Gamma, q \in Q$

Functionality of DTM

$$
\begin{aligned}
& \begin{aligned}
\delta(q, b)= & \left(q^{\prime}, b^{\prime}, N\right) \\
& \vdash \quad w a\left(q^{\prime}\right) b^{\prime} c v
\end{aligned} \\
& \begin{aligned}
\delta(q, b)= & \left(q^{\prime}, b^{\prime}, L\right) \\
\vdash & w\left(q^{\prime}\right) a b^{\prime} c v
\end{aligned} \\
& \delta(q, b)=\left(q^{\prime}, b^{\prime}, R\right) \\
& w a(q) b c v \quad \vdash \quad w^{\prime} b^{\prime}\left(q^{\prime}\right) c v
\end{aligned}
$$

The transition function δ has three issues:
\square New state
like FA
\square New tape symbol - overwrites the old symbol in head position
\square Moving directions of the head

Nondeterministic Turing machines (NTM)

$T=(Q, \Sigma, \Gamma, \delta, s, F):$
$\square Q$, states
$\square \Sigma$, input alphabet
$\square \Gamma$ tape alphabet, $\sqcup \notin \Sigma$: blank symbol, $\Sigma \cup\{\sqcup\} \subseteq \Gamma$

$\square \delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R, N\}}$,
transition function;
$\square s \in Q$, initial state
$\square F \subseteq Q$, final states

How NTM works?

T accepts $w \Leftrightarrow$
$\exists \alpha, \beta \in \Gamma^{*}, f \in F:(s) w \vdash^{*} \alpha f \beta$
$L(T):=\left\{w \in \Sigma^{*}: T\right.$ accepts $\left.w\right\}$.
The difference between DMT versus NTM:
δ defines the transitions between configurations versus
δ admits between configurations .

Turing machines as acceptors

$T=(Q, \Sigma, \Gamma, \delta, s, F)$.
$L(T)$?

Definition:

T accepts $w \Leftrightarrow$
$\exists \alpha, \beta \in \Gamma^{*}, f \in F:(s) w \vdash^{*} \alpha f \beta$
Eingabe $w \varepsilon \Sigma^{*}$ Ausgabe
(\exists a sequence of (by δ admitted)
configuration transitions
$(s) w \rightarrow \cdots \rightarrow x(f) y$ with $f \in F$.)
$L(T):=\left\{w \in \Sigma^{*}: T\right.$ accepts $\left.w\right\}$.

Decidable languages

A language $L \subseteq \Sigma^{*}$ is decidable if there is a TM T s.t. $L(T)=L$ and T stops on every input:
$\square \forall w\left(w \in L \Rightarrow(s) w \vdash^{*} x(f) y\right)$ for some $f \in F$
$\square \forall w\left(w \notin L \Rightarrow(s) w \vdash^{*} x(q) y\right)$ for some $q \notin F$ (Error)

Example: $\left\{0^{n} 1^{n}: n \geq 0\right\}$.

Properties of the decidable sets

Proposition: $A, B \subseteq \Sigma^{*}$ decidable \Rightarrow
$A \cup B$,
$A \cap B$,
$A \backslash B$,
$A \cdot B$,
A^{*} are decidable.
Examples: Σ^{*}, \emptyset,
Every finite set is definable.

Turing machines compute functions

$T=(Q, \Sigma, \Gamma, \delta, s, F)$ computes the partial function $f_{T}: \Sigma^{*} \rightarrow \Gamma^{*} \Leftrightarrow$
$f_{T}(w):= \begin{cases}v & \text { if } T \text { halts by input of } w \text { w } \\ & ((s) w \Rightarrow u(q) v), q \in F \\ \perp=(\text { not defined }) & \text { otherwise }\end{cases}$
g is Turing computable $\Leftrightarrow \exists T: f_{T}=g$
Remark: when $g(x)=\perp, T$ does not halt.

Decidable languages

Corollary: L is decidable \Leftrightarrow the characteristic function c_{L} is computable.

$$
c_{L}: \Sigma^{*} \rightarrow\{0,1\} \quad \text { with } \quad c_{L}(w)= \begin{cases}1 & \text { if } w \in L \\ 0 & \text { otherwise }\end{cases}
$$

Example: $\left\{0^{n} 1^{n}: n \geq 0\right\}$ is decidable.

Semi-decidable languages

Computability of a function is the main idea.
Instead of acceptor for $L \subseteq \Sigma^{*}$ consider TM, which computes a „half" characteristic function

$$
\chi_{L}(w)= \begin{cases}1 & \text { if } w \in L \\ \perp & \text { otherwise }\end{cases}
$$

The semi-decidable languages coincide with the domains of the computable functions.

Example

$0|0, R \quad 1| 1, R \quad 1 \mid 0, L$

$f(w)= \begin{cases}w+1 & \text { if } w \in 0 \cup 1(0 \cup 1)^{*}, \\ & w \text { interpreted as binary number } \\ \text { undefined } & \text { otherwise }\end{cases}$
Remark: Not displayed movement are valid here as infinite loops.

Properties of the semi-decidable sets

Proposition: $A, B \subseteq \Sigma^{*}$ semi-decidable \Rightarrow
$A \cup B$ and $A \cap B$ are semi-decidable.
Let M_{1} and M_{2} semi-decide A and B
$A \cup B$: for $j:=1$ to ∞ do
if M_{1} accepts w for j steps then Accept
if M_{2} accepts w for j steps then Accept
$A \cap B$: for $j:=1$ to ∞ do
if M_{1} accepts w in j st. \& M_{2} accepts w in j st. then Accept

Local Variables

Local variable accumulates $x \in A,(|A|<\infty$!):
$Q \rightsquigarrow Q \times A$
Example: M is TM, such that memorizes the first symbol of the word and halts if it is not in another place in the word.

$$
\begin{array}{cc}
\delta([s, \sqcup], 0)=([q, 0], 0, R) & \delta([s, \sqcup], 1)=([q, 1], 1, R) \\
\delta([q, 0], 1)=([q, 0], 1, R) & \delta([q, 1], 0)=([q, 1], 0, R) \\
\delta([q, 0], \sqcup)=(f, \sqcup, N) & \delta([q, 1], \sqcup)=(f, \sqcup, N)
\end{array}
$$

Composition

Given: $T=(Q, \Sigma, \Gamma, \delta, s, F)$
Let: $(s) w \vdash^{*}(r) f_{T}(w)$ for one $r \in F$ if $f_{T}(w) \neq \perp$.
$T^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$.
output: Turing machine $T^{\circ}=\left(Q^{\circ}, \Sigma, \Gamma^{\circ}, \delta^{\circ}, s, F^{\prime}\right)$ for $f_{T^{\prime}}\left(f_{T}(x)\right)$:

$$
\begin{aligned}
& Q^{\circ}=Q \cup Q^{\prime} \\
& \Gamma^{\circ}=\Gamma \cup \Gamma^{\prime}
\end{aligned}
$$

If then else

Given: $T=(Q, \Sigma, \Gamma, \delta, s, F), T^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$
$T^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \Gamma^{\prime \prime}, \delta^{\prime \prime}, s^{\prime \prime}, F^{\prime \prime}\right)$.
Output: Turing machine $T^{\circ}=\left(Q^{\circ}, \Sigma, \Gamma^{\circ}, \delta^{\circ}, s, F^{\prime} \cup F^{\prime \prime}\right)$
$Q^{\circ}=Q \dot{\cup} Q^{\prime} \cup Q^{\prime \prime}, \Gamma^{\circ}=\Gamma \cup \Gamma^{\prime} \cup \Gamma^{\prime \prime}$
$f_{T^{\circ}}(x)=\left\{\begin{array}{ll}f_{T^{\prime}}\left(f_{T}(x)\right) & \text { if } f_{T}(x)=a \\ f_{T^{\prime \prime}}\left(f_{T}(x)\right) & \text { if } \downarrow f_{T}(x) \neq a\end{array}\right.$.

$$
\delta^{\circ}(q, b)= \begin{cases}\delta(q, b) & \text { if } q \in Q \backslash F \\ \left(s^{\prime}, b, N\right) & \text { if } q \in F \& b=a \\ \left(s^{\prime \prime}, b, N\right) & \text { if } q \in F \& b \neq a \\ \delta^{\prime}(q, b) & \text { if } q \in Q^{\prime} \\ \delta^{\prime \prime}(q, b) & \text { if } q \in Q^{\prime \prime}\end{cases}
$$

k tapes

k - tapes TM (k-heads): $T=(Q, \Sigma, \Gamma, \delta, s, F)$, where
$\delta: Q \times \Gamma^{k} \mapsto Q \times \Gamma^{k},\{L, R, N\}^{k}$.
$\delta\left(q,\left(a_{1}, \ldots, a_{k}\right)\right)=\left(p,\left(b_{1}, \ldots, b_{k}\right),\left(C_{1}, \ldots, C_{k}\right)\right)$,
$C_{1}, \ldots, C_{k} \in\{L, R, N\}$.
Example: Arithmetical operations of 2 binary numbers,
\square replace $a \in \Sigma$ through $(a, 0, \ldots, 0)$ in the input.
Theorem For every TM M with k tapes there is a TM M^{\prime} with one tape which computes the same function. (polynomial).

Theorem For every nondeterministic TM there is a deterministic TM which computes the same function. (exponential)

While-loops: While $i \neq 0$ Do tape: $=f_{T}($ tape $)$

Track i defines a number (unary or binary)
Subprogram: test on track $i=0$.
When yes: halt
Leave T moving
back to the start state. (the transition $\delta(f, a)=(s, a, N)$)

1.2 RAM: Random Access Machine

Modern (RISC) adaptation
of Neumann-models [of Neumann 1945]

Register

k (any constant) memory
R_{1}, \ldots, R_{k} for
(small) integers

The main memory

Non bounded supply of memory cells
$S[1], S[2] \ldots$ for
(small) integers

Memory access

$R_{i}:=S\left[R_{j}\right]$ loads the content of the memory cell $S\left[R_{j}\right]$ in Register R_{i}.
$S\left[R_{j}\right]:=R_{i}$ stores Register R_{i} in memory cell $S\left[R_{j}\right]$.

Calculation

$R_{i}:=R_{j} \odot R_{\ell}$ Register arithmetic.
' \odot ' is a placeholder for a huge number of operations
Arithmetic, Comparison, Logic

Conditional jump

$\mathrm{JZ} j, R_{i}$ Puts the program execution an label j (goto j) if $R_{i}=0$

RAM-computability

Configuration: $\left(q, R_{1}, \ldots, R_{k}, S\right)$
Let M be RAM:
input: $w \in \Sigma^{n}$ in $S[1], \ldots, S[n]$
output: $f_{M}(w)$ in $S[1], \ldots, S\left[\left|f_{M}(w)\right|\right]$
till HALT- command is executed.

(Unlimited) Register machines

\approx RAM - memory + arbitrary large

$Z(n), S(n), T(m, n), J(m, n, q)$

(Unlimited) Register machines-computability

Configuration: $\left(q, R_{1}, \ldots, R_{k}\right)$
q is a counter for the program commands
„ \vdash^{*} " we have defined.
$f: \mathbb{N}^{k^{\prime}} \rightarrow \mathbb{N}, k^{\prime} \leq k$ is Register machines computable \Leftrightarrow
$\exists \mathrm{RM} M: \forall n_{1}, \ldots, n_{k^{\prime}}, m \in \mathbb{N}$:

$$
\begin{aligned}
& f\left(n_{1}, \ldots, n_{k^{\prime}}\right)=m \Leftrightarrow \\
& \quad\left(1, n_{1}, \ldots, n_{k^{\prime}}, 0^{k-k^{\prime}}\right) \vdash^{*}\left(q, f\left(n_{1}, \ldots, n_{k}\right), \ldots\right) \\
& \quad \text { with PROGRAM }[q]=\operatorname{HALT}
\end{aligned}
$$

High level program languages

Java, C/C++, Pascal,...

ML, Lisp,...
Prolog, Oz,...
are the most popular program models for us.
Compilers translate the programs in RAM Code.

Equivalence of the machine models

Register machine emulates RAM

Idea: an additional register R_{S} represents the memory:

$$
R_{S}=\sum_{i} S[i] \cdot 2^{b i}
$$

with $b=$ number of RAM bits
$S[i]$ in R_{j} loading:

$$
R_{j}:=\frac{R_{S}}{2^{b i}} \bmod 2^{b}
$$

$S[i]:=0$:

$$
R_{S}:=R_{S}-\left(\frac{R_{S}}{2^{b i}} \bmod 2^{b}\right) 2^{b i}
$$

R_{j} in $S[i]$ saving:

$$
S[i]:=0 ; R_{S}:=R_{S}+R_{j} \cdot 2^{b i}
$$

1.3 Primitive recursive functions

Basic functions

$\square O(x)=0$
$\square S(x)=x+1$
$\square I_{k}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{k}, k \leq n$
Basic operations
\square Superposition
$h\left(x_{1}, \ldots, x_{n}\right)=f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$
\square Primitive recursion

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{n}, 0\right)=f\left(x_{1}, \ldots, x_{n}\right) \\
& h\left(x_{1}, \ldots, x_{n}, y+1\right)=g\left(x_{1}, \ldots, x_{n}, y, h\left(x_{1}, \ldots, x_{n}, y\right)\right)
\end{aligned}
$$

Primitive recursive functions

A function is primitive recursive if it could be obtained from the basic functions by means of the operations superposition and primitive recursion applied finitely many times.

Examples:
$\square x+0=0$ (addition is pr. rec) $x+(y+1)=(x+y)+1$
$\square x .0=0$ (multiplication is pr rec)
$x .(y+1)=x \cdot y+x$
$\square x^{0}=1$ (powering is pr. rec)
$x^{y+1}=x^{y} \cdot x$

Primitive recursive functions - examples

$\square x \dot{-1}=0$ if $x=0, x \dot{-} 1=x-1$ if $x>0$
$\square x-y=0$ if $x<y, x \dot{-} y=x-y$ if $x \geq y$
$\square|x-y|=x \dot{-} y+y \dot{-} x$
$\square x \leq y \Longleftrightarrow x \dot{-} y=0$
$\square \operatorname{sg}(0)=0$, and $s g(x)=1$ if $x>0$
$\square \overline{s g}(0)=1$, and $\overline{s g}(x)=0$ if $x>0$

Operations preserving the primitive recursiveness

\square if then else
$h(x)=\left\{\begin{array}{ll}f(x) & \text { if } p(x)=0 \\ g(x) & \text { if } p(x)>0\end{array}\right.$.
$h(x)=f(x) \cdot \overline{s g}(p(x))+g(x) \cdot \operatorname{sg}(p(x))$.
\square bounded sum

$$
g(x, y)=\Sigma_{z<y} f(x, z)
$$

\square bounded minimization
$h(x, y)=\left\{\begin{array}{ll}\mu z_{z<y}[f(x, z)=0] & \text { if there exists such } \\ y & \text { ow }\end{array}\right.$.

Primitive recursive functions - Examples

$\square x \bmod y$, where $x \bmod 0=x$
$0 \bmod y=0$
$x+1 \bmod y=\left\{\begin{array}{ll}(x \bmod y)+1 & \text { if }(x \bmod y)+1 \neq y \\ 0 & \text { ow }\end{array}\right.$.
$\square x / y, x / 0=0$.
$\square \operatorname{div}(x, y)=\left\{\begin{array}{ll}1 & \text { if }(x \bmod y)=0 \\ 0 & \text { ow }\end{array}\right.$.
$\square D(x)=\Sigma_{z<x+1} \operatorname{sg}(\operatorname{div}(x, z))$ the number of factors of x.

Primitive recursive functions - Examples

$\square \operatorname{pr}(x)=\overline{s g}|D(x)-2|-x$ is a prime number.
$\square p(x)=x$ th prime number, where $p(0)=2, p(1)=3, \ldots$ $p(0)=2$ $p(x+1)=\mu z_{<x!}[z>p(x) \& \operatorname{pr}(z)=0]$.
$\square(x)_{y}=$ the power of the y th prime number in factoring of x.

$$
(x)_{y}=\mu t_{\leq x}\left[\operatorname{div}\left(p(y)^{t+1}, x\right)=0\right] .
$$

Primitive recursive coding

$\square \pi(x, y)=2^{x}(2 y+1)-1$ pr.rec,
$\square L(\pi(x, y))=x$ and $R(p(x, y))=y$ decoding functions
$L(z)=(z+1)_{0}$
$R(z)=\left((z+1) / 2^{(z+1)_{0}}\right) / 2$.
\square every natural number is a code of a pair
\square the coding is a bijection.

μ-recursive (computable)functions

μ-operation:

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=\mu z\left[g\left(x_{1}, \ldots, x_{n}, z\right)=0\right] \Leftrightarrow \\
& (\forall y<z)\left(g\left(x_{1}, \ldots, x_{n}, y\right)>0\right) \& g\left(x_{1}, \ldots, x_{n}, z\right)=0
\end{aligned}
$$

A function is μ-recursive if it could be obtained from the basic functions by means of the operations superposition, primitive recursion and μ-operation applied finitely many times.

Kleene's normal form: f is μ-recursive if there is a primitive rec.
functions ρ and $L: f(x)=L(\mu z[\rho(x, n)=0])$.
Example: nowhere defined function $\emptyset(x)=\mu z[S(x)=0]$.
Theorem The class of μ-recursive functions is exactly the class of the computable functions with TM.

1.4 The Ackermann function

[Ackermann 1928, Hermes]
Function $a(x, y)$
if $x=0$ then return $y+1$
if $y=0$ then return $a(x-1,1)$
return $a(x-1, a(x, y-1))$

Totality of the Ackermann function

Proposition: a is a total, TM-computable function
Proof: Induction on the lexicographical order of (x, y) :
Base of induction: $a(0, y)=y+1$
Induction step for $y=0$:
$a(x, 0)=a(x-1,1)$,
terminates, as $(x-1,1)<(x, 0)$
Induction step for $x, y>0$:
$a(x-1, a(x, y-1))$ terminates as
$(x, y-1)<(x, y)$ and
$(x-1, a(x, y-1))<(x, y)$

The Ackermann function is not primitive recursive

Proof: Assume that a is primitive recursive.
$\longrightarrow a(n, n)=g(n)$ is primitive recursive.
But
\forall primitive recursive $h: \exists k: \forall x_{1} \ldots x_{n} \in \mathbb{N}: h\left(x_{1}, \ldots, x_{n}\right)<$ $a\left(k, \max x_{1}, \ldots, x_{n}\right)$.
Then $g(k)<a(k, k)$ A contradiction.

Example

$$
\begin{aligned}
a(0, y)= & y+1 \\
a(1, y)= & a(0, a(1, y-1))=a(1, y-1)+1= \\
& a(0, a(1, y-2))+1=a(1, y-2)+2=\cdots= \\
& a(1,0)+y=y+a(0,1)=y+2 \\
a(2, y)= & a(1, a(2, y-1)=2+a(2, y-1)=\cdots \\
& =2 y+a(2,0)=2 y+a(1,1)=2 y+3
\end{aligned}
$$

Example

$$
\begin{aligned}
a(2, y) & =2 y+3 \\
a(3, y) & =a(2, a(3, y-1))=2 a(3, y-1)+3 \\
& =2 a(2, a(3, y-2))+3=4 a(3, y-2)+3(1+2) \\
& =4 a(2, a(3, y-3)+3(1+2)=8 a(3, y-3)+3(1+2+4) \\
& =\cdots=2^{y} \underbrace{a(3,0)}_{=5}+3(\underbrace{1+2+\cdots+2^{y-1}}_{=2^{y}-1}) \\
& =2^{y+3}-3
\end{aligned}
$$

Soskova: Copmutability August 10, 2010

Example

$$
\begin{aligned}
& a(3, y)=2^{y+3}-3 \\
& \begin{aligned}
a(4, y) & =a(3, a(4, y-1))=2^{a(4, y-1)+3}-3 \\
& =2^{a(3, a(4, y-2))+3}-3=2^{2^{a(4, y-2)+3}-3+3}-3 \\
& =2^{2^{a(3, a(4, y-3))+3}-3=2^{2^{2^{a(4, y-3)+3}-3+3}}-3} \\
& =a(3,1)=2^{1+3}-3 \\
\overbrace{a(4,0)}^{+3} & \sum^{2}-3=2^{2^{16}}-3 \\
& =\cdots=2^{a^{16}}-3=2^{65536}-3
\end{aligned} \\
& a(4,2)=2^{2^{16}-3}
\end{aligned}
$$

1.5 Halting problem, Undecidability, Reducibility

\square Gödel numbering: TMs could processed themselves as an input
\square Important example: Universal TM
\square Diagonal argument: a undecidable language
\square Reductions: it shows that other problems are undecidable.

Paradoxes and Self reference

The barber of a small town
shaves all and only those men
who do not shave themselves.

Does the barber shave himself?

Paradoxes and Self reference

Daniel Dösentrieb invented an all-knowing machine.
Yes No

Ones places a yes/no Question and the answer lights up.
Dagobert Duck wants to buy the machine.
But will pay however if only it functions correctly.
It places the Question to the machine:
Will you answer with no?
What happens?

Decidability

$A \subseteq \Sigma^{*}$ is decidable (computable) if the characteristic function c_{A} is computable.

$$
c_{A}(w)= \begin{cases}1 & \text { if } w \in A \\ 0 & \text { if } w \notin A\end{cases}
$$

Semi-decidability

$A \subseteq \Sigma^{*}$ is semi-decidable if
the "half" characteristic function χ_{A} is computable.

$$
\chi_{A}(w)= \begin{cases}1 & \text { if } w \in A \\ \perp & \text { if } w \notin A\end{cases}
$$

Every decidable set is semi-decidable.

Proposition: $A \subseteq \Sigma^{*}$ decidable \Leftrightarrow
A and \bar{A} are both semi-decidable

Proof: Let TM

M_{A} acceptor for A and
$M_{\bar{A}}$ acceptor for \bar{A}
for $s:=1$ to ∞ do
if M_{A} halts in s steps then Accept
if $M_{\bar{A}}$ halts in s steps then Reject

Computably enumerable

$A \subseteq \Sigma^{*}$ recursively (computably) enumerable if
$A=\emptyset$ or \exists total computable function $f: \mathbb{N} \rightarrow \Sigma^{*}$:

$$
A=\{f(1), f(2), f(3), \ldots\}
$$

Proposition: A is computably enumerable $\Leftrightarrow A$ is semi-decidable

Computably enumerable \longrightarrow semi-decidable

Let A is computably enumerable by means of f.
Function $\chi_{A}(x)$

$$
\text { for } s:=1 \text { to } \infty \text { do }
$$

if $f(n)=x$ then return 1

Semi-decidable \longrightarrow computably enumerable

\square Consider $\pi(k, m)=2^{k}(2 m+1)-1$ - a codding function for all pairs of natural numbers.
\square Each natural number n is a code of exactly one pair $n=\pi(k, m)$.
\square Let $L(\pi(m, k))=m$ and $R(\pi(m, k))=k$ be the decoding functions.
$\square \pi, L, R$ are computable functions.
\square Consider the sequence of all words in Σ^{*} :
$\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}, \ldots$
in the following order $\left|\alpha_{i}\right|<\left|\alpha_{i+1}\right|$ or $\left|\alpha_{i}\right|=\left|\alpha_{i+1}\right|$ and α_{i} is lexicographically less than α_{i+1}.
\square For example: $a, b, a a, a b, b a, b b, \ldots$

Semi-decidable \longrightarrow computably enumerable

Case $A=\emptyset$: trivial.
Otherwise we give one function $f: \mathbb{N} \rightarrow \Sigma^{*}$ with the range A.

$$
f(n)= \begin{cases}\alpha_{L(n)} & \text { if } M\left(\alpha_{L(n)}\right) \downarrow \text { for } \mathrm{R}(\mathrm{n}) \text { steps }, \\ a & \text { ow. }\end{cases}
$$

Function $f(n)$
a:= some fixed element of A
interpret n as a pair $n=\pi(m, k)$
Consider the word $u=\alpha_{m}$
if an acceptor M for A accepts u in $\leq k$ steps then return u else return a

Semi-decidable \longrightarrow computably enumerable

$\square f$ is total
$\square f$ gets only values from A
$\square \forall u \in A \exists k: M$ accepts u in k steps
$\square f(\pi(m, k))=\alpha_{m}$

Exercise: Prove that if A is infinite, then A is decidable iff there exists a total computable function $f: \mathbb{N} \rightarrow \Sigma^{*}$:

$$
A=\{f(0)<f(1)<f(2)<\ldots\} \text { in a lexicographical order. }
$$

Equivalent statements

$\square A$ is computably enumerable
$\square A$ is semi-decidable
$\square A=L(M)$ for $\mathrm{TM} M$
$\square \chi_{A}$ is Turing-, RegM., RAM, ... computable
$\square A$ is a domain of one (partial) computable function
$\square A$ is a range of a computable function
$\square A=\{x \mid \exists n(\rho(x, n)=0)\}$ for some primitive recursive function ρ

Enumeration of Turing-machines

Consider $T=(Q, \Sigma, \Gamma, \delta, s, F)$. Let:
$\square Q=\{1, \ldots, n\}$
$\square \Sigma=\{0,1\}$
$\square \Gamma=\{0,1, \sqcup\}, \sqcup=2$
$\square s=1$
$\square F=\{2\}$
for appropriate constant n

Goödel number $\langle M\rangle$ of Turing machine M

Define the following strings in $\{0,1\}$:
Code $\delta(q, a)=(r, b, d)$ by $0^{q} 10^{a+1} 10^{r} 10^{b+1} 10^{d}$
where d is the code of the directions: $N=1, L=2, R=3$.
The Turing-machine will be coded by binary numbers:

$$
111 \operatorname{code}_{1} 11 \operatorname{code}_{2} 11 \ldots 11 \operatorname{code}_{z} 111,
$$

code_{i} for $i=1, \ldots, z$: all values of function δ are written in arbitrary order.

Convention:
n is not a Goödel number of a TM,
$\rightarrow n$ describes one TM, which accepts the \emptyset

Example

Let $M=(\{1,2,3\},\{0,1\},\{0,1, \sqcup\}, \delta, 1,\{2\})$, with
$\delta(1,1)=(3,0, R)$
$\delta(3,0)=(1,1, R)$
$\delta(3,1)=(2,0, R)$
$\delta(3, \sqcup)=(3,1, L)$
then $\langle M\rangle$ is:
11101001000101000110001010100100011000100100101000
1100010001000100100111

Universal Turing machine

$U=\left(Q_{u},\{0,1\},\{0,1, \sqcup\}, \delta_{u}, s_{u}, F_{u}\right)$
input: $\langle M\rangle w$
M is the simulated TM, w is the binary coded input.
U simulates M on w.
U accepts $\langle M\rangle w$ if M accepts w.

Universal Turing machine

3 Tapes:

1. $\langle M\rangle$
2. the state q_{M} of M unary coded
3. the content of the tape w of M

Universal Turing machine

if prefix v of w represents a TM then
// 111tuple111
move v on the tape $\langle M\rangle$
$q_{M}:=1$
while $q_{M} \neq 2$ do
// the initial state of M
// final state of M
run to the beginning of $\langle M\rangle$
foreach $(q, a, r, b, d) \in\langle M\rangle$ do
if $q=q_{M}$ then
if input symbol of the tape $3=a$ then
$q_{M}:=r \quad / /$ copy on the state tape
put b on the tape 3
the moving on the tape 3 is according to the chosen d

The diagonal language L_{d} is undecidable

Let M_{i} is the TM with $\left\langle M_{i}\right\rangle=i$.
Let w_{i} be the binary representation of i.
$L_{d}:=\left\{w_{i}: M_{i}\right.$ does not accept $\left.w_{i}\right\}=\left\{w_{i} \mid M_{i}\left(w_{i}\right) \uparrow\right\}$

Proof:

Assume: $L_{d}=\left\{w_{i}: M_{i}\right.$ does not accept $\left.w_{i}\right\}$ is decidable.
$\xrightarrow{\text { Def. „decidable" }} \exists M_{i}: M_{i}$ accepts L_{d} and halts always.
What does M_{i} do with w_{i} ?
$w_{i} \in L_{d} \xrightarrow{\text { Def. } M_{i}} w_{i}$ will be accepted. $\xrightarrow{\text { Def. } L_{d}} w_{i} \notin L_{d}$
$w_{i} \notin L_{d} \xrightarrow{\text { Def. } M_{i}} w_{i}$ will not be accepted. $\xrightarrow{\text { Def. } L_{d}} w_{i} \in L_{d}$
Both lead to a contradiction.

$\bar{L}_{d}=\left\{w_{i}: M_{i}\right.$ accepts $\left.w_{i}\right\}$ is undecidable

Assume: \bar{L}_{d} is decidable.
$\rightarrow \exists M: M$ accepts \bar{L}_{d}
modify $M \rightsquigarrow M^{\prime}$ so M^{\prime} accepts L_{d}
(Exchange accepts/does not accept for the final state).
A contradiction.
Notice that \bar{L}_{d} is semi-decidable. Run the universal machine on $\left\langle M_{i}\right\rangle w_{i}$.

Undecidable problems

Does not exist a program P, such that

$$
\text { halts }(\langle P\rangle, X))= \begin{cases}y e s & \text { if } P(X) \text { halts } \\ \text { no } & \text { otherwise }\end{cases}
$$

Assume that there is:
$D(X)=$ if halts (X, X) then loop (X) else halt
$\mathrm{D}(\langle D\rangle)=$ if halts $(\langle D\rangle,\langle D\rangle)$ then $\operatorname{loop}(\langle D\rangle)$ else halt
If halts $(\langle D\rangle,\langle D\rangle)=$ yes, then $\downarrow \mathrm{D}(\langle D\rangle)$, but $\uparrow \mathrm{D}(\langle D\rangle)$.
If halts $(\langle D\rangle,\langle D\rangle)=$ no, then $\downarrow \mathrm{D}(\langle D\rangle)$, but $\uparrow \mathrm{D}(\langle D\rangle)$.

Halting problem

$H:=\left\{w_{i} v: M_{i}\right.$ halts on $\left.v\right\}$
Proposition: H is not decidable.
Proof: Assume that H is decidable.
We construct one TM, by which \bar{L}_{d} will be accepted.
$w_{i} \in \bar{L}_{d}$?
$\Leftrightarrow M_{i}$ accepts w_{i}.
$\Leftrightarrow w_{i} w_{i} \in H$.
This we could do by means of one TM for H and one universal TM.
A contradiction.

Reducibility

Definition Let $L_{1}, L_{2} \subseteq \Sigma^{*}$. L_{1} is reducible to $L_{2}\left(L_{1} \leq L_{2}\right)$ if there is a total computable function f, s.t.

$$
w \in L_{1} \Longleftrightarrow f(w) \in L_{2} .
$$

Lemma Let $L_{1} \leq L_{2}$. If L_{1} is not decidable (not semi-decidable) then L_{2} is not decidable (not semi-decidable).

Rice theorem

Let \mathbf{R} be the class of all Turing computable functions.
Theorem Let \mathbf{S} be a nontrivial class of Turing computable functions $(S \neq \emptyset, S \neq R)$. Then the set

$$
C(S)=\left\{w \mid M_{w} \text { computes a function } \in S\right\}
$$

is not decidable.
Proof:
Assume that $C(S)$ is decidable.
Case 1. $\emptyset \notin S$ and $f \in S$. Then there is a Turing machine M_{f} that computes f.

Let M be a Turing machine and w is a word.

$$
T_{M, w}(x)= \begin{cases}M_{f}(x) & \text { if } \downarrow M(w) \\ \perp & \text { otherwise }\end{cases}
$$

Then:

$$
\begin{aligned}
& \text { if } \downarrow M(w) \Rightarrow(\forall x) T_{M, w}(x)=f(x) \\
& \text { if } \uparrow M(w) \Rightarrow T_{M, w}(x)=\emptyset .
\end{aligned}
$$

$$
\begin{gathered}
T_{M, w} \in S \Leftrightarrow \downarrow M(w) . \\
\left\langle T_{M, w}\right\rangle \in C(S) \Leftrightarrow\langle M\rangle w \in H .
\end{gathered}
$$

A contradiction.
Case 2. $\emptyset \in S$. Consider: $R \backslash S$ is non trivial.
Then $C \overline{(S)}$ is undecidable, and hence $C(S)$ is undecidable.

