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I Degree spectra and jump spectra
I Every jump spectrum is spectrum
I Jump inversion theorem for the degree spectra
I Some applications
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Enumeration of a Structure

Let A = (N; R1, . . . , Rk ,=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I For each predicate R of A:

f−1(R) = {〈x1, . . . , xr , 0〉 | R(f (x1), . . . , f (xr )}∪
{〈x1, . . . , xr , 1〉 | ¬R(f (x1), . . . , f (xr )}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=).
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Degree Spectra

Definition
The degree spectrum of A is the set

DS(A) = {dT(f−1(A)) | f is an enumeration of A}.

I L. Richter [1981], J. Knight [1986].
I The degree spectra are upwards closed:

a ∈ DS(A), a ≤ b ⇒ b ∈ DS(A).

I The jump spectrum of A is the set
DS1(A) = {a′ | a ∈ DS(A)}.
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Theorem
Each jump spectrum is degree spectrum of a structure,
i.e. for every structure A there exists a structure B such
that DS1(A) = DS(B).
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Moschovakis’ extension

Definition
I 0̄ 6∈ N, N0 = N ∪ {0̄}.
I A pairing function 〈., .〉, range(〈., .〉) ∩ N0 = ∅.
I The least set N∗ ⊇ N0, closed under 〈., .〉.
I Moschovakis’ extension of A is the structure

A∗ = (N∗, R1, . . . , Rn,=, N0, G〈.,.〉).

Proposition
DS(A) = DS(A∗).
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The set KA

I A new predicate KA (analogue of Kleene’s set).
I For e, x ∈ N and finite part τ , let

τ 
 Fe(x) ⇐⇒ x ∈ W τ−1(A)
e .

I KA = {〈δ∗, e, x〉 : (∃τ ⊇ δ)(τ 
 Fe(x))}.
I B = (A∗, KA).

Theorem
DS1(A) = DS(B)
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Inverting the jump

Given a set of enumeration degrees A does there exist a
structure C such that DS1(C) = A?

1. Each element of A should be a jump of a degree.
2. A should be upwards closed (since each jump

spectrum is a spectrum and the spectrum is upwards
closed).

3. The set A should be a degree spectrum of a
structure A.
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Theorem
Let A and B be structures such that DS(A) ⊆ DS1(B).
Then there exists a structure C such that DS(C) ⊆ DS(B)
and DS1(C) = DS(A).

I The structure C we construct as a Marker’s extension
of A.

I We code the structure B in C.
I In our construction we use also the relativized

representation lemma for Σ0
2 sets proved by

Goncharov and Khoussainov
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Theorem DS(A) ⊆ DS1(B) =⇒ (∃C)(DS1(C) =
DS(A) & DS(C) ⊆ DS(B)).

DS(A) = DS1(C)

DS(B)

DS1(B)

DS(C)

b

b′

c

c′ = a
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Marker’s Extensions

A∃∀ = (A ∪
⋃s

i=1 Xi ∪⋃s
i=1 Yi , R∃∀

1 , . . . , R∃∀
s , X̄1, . . . , X̄s, Ȳ1, . . . , Ȳs,=)

1. X = {x〈a1,...,ar 〉 | R(a1, . . . , ar )}
2. (∃x ∈ X )R∃(a1, . . . , ar , x) ⇐⇒ R(a1, . . . , ar ).
3. Y = {y〈a1,...,ar ,x〉 | ¬R∃(a1, . . . , ar , x)}.
4. (∀y ∈ Y )R∃∀(a1, . . . , ar , x , y) ⇐⇒ R∃(a1, . . . , ar , x)

5. R(a1, . . . , ar ) ⇐⇒
(∃x ∈ X )(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y);

6. (∀y ∈ Y )(∃ a unique sequence
a1, . . . , ar ∈ A & x ∈ X )(¬R∃∀(a1, . . . , ar , x , y));

7. (∀x ∈ X )(∃ a unique sequence
a1, . . . , ar ∈ A)(∀y ∈ Y )R∃∀(a1, . . . , ar , x , y).
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One-to-one Representation of Σ0
2 Sets

Goncharov and Khoussainov
1. n ∈ M ⇔ (∃ a unique a)(∀b)Q(n, a, b);
2. (∀b)(∃ a unique pair 〈n, a〉)(¬Q(n, a, b));
3. (∀a)(∃ a unique n)(∀b)Q(n, a, b).

n

a

b
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Theorem (Jump Inversion Theorem)
Let DS(A) ⊆ DS1(B). Then there exists a structure C

such that DS1(C) = DS(A) and DS(C) ⊆ DS(B).

I The structure C is constructed as

C = B⊕ A∃∀.
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Jump Inversion Theorem

Definition
n-th jump spectrum of A is the set
DSn(A) = {a(n) : a ∈ DS(A)}.
By induction on n:

Theorem
There exists a structure A(n) such that
DSn(A) = DS(A(n)).

Theorem
Let DS(A) ⊆ DSn(B). There exists a structure C such that
DS(C) ⊆ DS(B) and DSn(C) = DS(A).
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Definition
If a is the least element of DSn(A) then a is called nth
jump degree.

I Downey and Knight by complicated construction:
I for every recursive ordinal α there exists a linear

ordering A such that A has αth jump degree equal to
0(α) but for all β < α, there is no βth jump degree of
A.

I we show a construction: for every natural number n
we can find examples of structures which have
(n + 1)st jump degree but do not have k th jump
degree for k ≤ n.
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The Construction

A group A, a subgroup of the set of rational numbers,
satisfying the following conditions:

(C1) DS(A) ⊆ {a : 0(n) ≤ a}.
(C2) DS(A) has no degree.
(C3) A has a first jump degree equal to 0(n+1).

I B = (N; =)

I DS(A) ⊆ DSn(B).
JIT there exists C,s.t. DSn(C) = DS(A)

I C does not have an nth jump degree and hence it
has no k th jump degree for k ≤ n

I But DSn+1(C) = DS1(A) and hence the (n + 1)st
jump degree of C is 0(n+1).
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Applications

Theorem (Wehner)
There is a family of finite sets, which has no c.e.
enumeration, i.e. c.e. universal set, and for each
noncomputable set X there is a enumeration computable
in X

Theorem (relativized)
Let B ⊆ N. There is a family F of sets, which has no c.e.
in B enumeration, and for each set X >T B there is a
enumeration of the family F , computable in X.
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Applications

(Kalimullin)

F = {{0}⊕B}∪{{1}⊕B}∪{{n+2}⊕F | F fin. F 6= W B
n }

Proposition
If a universal for F set U is c.e. in X then B <T X.

I B ≤T X;
I If B ≡T X, then we can construct a computable in B

function g, s.t. (∀n)(W B
g(n) 6= W B

n ).
I A contradiction with the recursion theorem.
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Applications

F = {{0}⊕B}∪{{1}⊕B}∪{{n+2}⊕F | F fin.F 6= W B
n }

Proposition
Let B <T X. There exists a universal set U for the family
F , such that U ≤T X.

I U is constructed in stages.
I If F s

〈n,F ,i〉 = W B
n,s, we add a new element (from X ) to

F s+1
〈n,F ,i〉.

I There is no sets which are not in the family, i.e.
F〈n,F ,i〉 6= W B

n since X is not c. e. in B.
I U is computable in X .
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Applications

Theorem (Wehner, Slaman)
There exists a structure C, s.t. DS(C) = {x | x >T 0}.

Theorem
For every n and b ≥ 0(n) there exists C, s.t.
DSn(C) = {x | x >T b}.

I We construct A, for which DS(A) = {x | x >T b},
using the family F .

I Let B = (N; =). Then b ∈ DSn(B), b ≥ 0(n).
I DS(A) ⊆ DSn(B).

JIT There is C, s.t. DSn(C) = DS(A).
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Applications

Theorem
For each n ∈ N and every Turing degree b ≥ 0(n) there
exists C, for which DSn(C) = {x | x >T b} .

Theorem (Goncharov, Harizanov, Knight, McCoy,
Miller, Solomon)
For every n there is a structure C, such that
DS(C) = {x | x (n) >T 0(n)}, i.e. the degree spectrum
contains exactly all non-lown Turing degrees.

Theorem (Harizanov, R. Miller)
There is a structure C, such that DS(C) = {x | x ′ ≥T 0′′}.
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Jump Inversion Theorem

I The Jump inversion theorem gives a method to lift
some interesting results for degree spectra to the nth
jump spectra.

I Questions:
I Other interesting results for degree spectra
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