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A parallel between classical computability theory and
effective definability in abstract structures

A close parallel between notions of classical computability theory and
of the theory of effective definability in abstract structures:

1 The notion of “c.e. in” corresponds to the notion of Σ1 definability;
2 The “Σ0

n+1 in” sets correspond to the sets definable by means of
computable infinitary Σn+1 formulae.
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Enumeration reducibility

1 A set X is c.e. in a set Y if X can be enumerated by a computable
in Y function.

2 A set X is enumeration reducible to a set Y if and only if there is
an effective procedure to transform an enumeration of Y to an
enumeration of X .

Proposition

X is c.e. in Y if and only if X ≤e Y ⊕ Y = Y+.

Given a set A can we find a set M such that X ≤e A if and only if X is
c.e. in M?
There are sets A which are not enumeration equivalent to any set of
the form M ⊕M, so the answer is “No”.
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Abstract structures

Let A = (A; R1, . . . ,Rk ) be a countable abstract structure.

An enumeration f of A is a bijection from N onto A.
f−1(X ) = {〈x1 . . . xa〉 : (f (x1), . . . , f (xa)) ∈ X} for any X ⊆ Aa.
f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk ) computes the positive atomic
diagram of an isomorphic copy of A.

Definition
A set X ⊆ A is relatively intrinsically c.e. in A (X c.e. in A) if for every
enumeration f of A we have that f−1(X ) is c.e. in f−1(A).

By Ash, Knight, Manasse, Slaman and independantly Chisholm we
have that X is c.e. in A if and only if X is definable in A by means of a
computable infinitary Σ1 formula with parameters.
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Relatively intrinsically enumeration reducible

Definition
A set X ⊆ A is (relatively intrinsically) enumeration reducible to A
(X ≤e A) if for every enumeration f of A , f−1(X ) ≤e f−1(A).

X ≤e A if and only if X is definable in A by means of a positive
computable infinitary Σ1 formula with parameters.
Given a structure A = (A; R1, . . .Rn) let A+ = (A; R1,R1, . . .Rn,Rn).

Proposition
For every X ⊆ A, X c.e. in A if and only if X ≤e A+.

Question
Given a structure A, does there exist a structure M, such that for all
R ⊆ |A|, R ≤e A if and only if R is relatively intrinsically Σ1 in M?
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From sets to sequences of sets

Definition
A sequence of sets of natural numbers X = {Xn}n<ω is c.e. in a set
A ⊆ N if for every n, Xn is c.e. in A(n) uniformly in n.

Theorem (Selman)
X ≤e A if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition
(i) Given a set X of natural numbers and a sequence Y of sets of

natural numbers, let X ≤n Y if for all sets B, Y is c.e. in B implies
X is Σ0

n+1 in B;
(ii) Given sequences X and Y of sets of natural numbers, say that X

is ω-enumeration reducible to Y (X ≤ω Y) if for all sets B, Y is c.e.
in B implies X is c.e. in B.
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Sequences of sets

Ash presents a characterization of “≤n” and “≤ω” using computable
infinitary propositional sentences. Soskov and Kovachev give another
characterizations in terms of enumeration computability.

Definition
The jump sequence P(X ) = {Pn(X )}n<ω of X is defined by induction:

(i) P0(X ) = X0;
(ii) Pn+1(X ) = Pn(X )′ ⊕ Xn+1.

Theorem (Soskov)
1 X ≤n Y if and only if X ≤e Pn(Y).
2 X ≤ω Y if and only if for every n, Xn ≤e Pn(Y) uniformly in n.
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Sequences of structures

Now consider a sequence of structures ~A = {An}n<ω, where
An = (An; Rn

1 ,R
n
2 , . . .R

n
mn ). Let A =

⋃
n An.

An enumeration f of ~A is a bijection from N→ A.
f−1(~A) is the sequence {f−1(An)⊕ f−1(Rn

1) · · · ⊕ f−1(Rn
mn )}n<ω.

Definition

For R ⊆ A we say that R ≤n ~A if for every enumeration f of ~A,
f−1(R) ≤n f−1(~A).
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Questions

Question

Given a sequence of structures ~A, does there exist a structure M,
such that the Σn+1 definable in M sets coincide with sets R ≤n ~A?

X is (r.i.) c.e. in M if for each enumeration f of M, f−1(Xn) is c.e. in
f−1(M)(n) uniformly in n.

Question

Given a sequence of structures ~A, does there exist a structure M,
such that for every sequence X of subsets of A =

⋃
n An,

X ≤ω
~A if and only if X is (r.i.) c.e. in M?
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Joint Spectra
Definition
The spectrum of A is the set Sp(A) = {a | (∃f )(dT (f−1(A)) ≤T a)}.

The k -th jump spectrum of A is the set Spk (A) = {a(k) | a ∈ Sp(A)}.

Let A0, . . . ,An be arbitrary countable abstract structures.

Definition
The Joint spectrum of A0,A1, . . . ,An is the set

JSp(A0,A1, . . . , An) =

{a : a ∈ Sp(A0),a′ ∈ Sp(A1), . . . ,a(n) ∈ Sp(An)}.

Definition

The k -th co-spectrum of ~A is the set

CoJSpk (~A) =
{

a ∈ De | ∀x ∈ JSpk (~A)(a ≤e x)
}
,

where
JSpk (~A) = {a(k) | a ∈ JSp(~A)}.
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Relative Spectra of Structures

Let ~A = {Ak}k≤n be a finite sequence of countable structures. Denote
by A =

⋃
k Ak .

Definition

The relative spectrum of ~A is

RSp(~A) = {dT (B) | (∃f enumeration of A)(∀k ≤ n)(f−1(Ak ) is c.e. in B(k))},

where f−1(Ak ) = f−1(Ak )⊕ f−1(Rk
1 )⊕ · · · ⊕ f−1(Rk

mk
).

The k -th jump spectrum of ~A is the set

RSpk (~A) = {a(k) | a ∈ RSp(~A)}.
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Spectra of sequences of structures

Let ~A = {An}n<ω be a sequence of countable structures.

Definition

The Joint spectrum of ~A is

JSp(~A) = {dT (B) | (∃{fn}n<ω enumerations of ~A)

(∀n)(f−1
n (An) is c.e. in B(n) uniformly in n)},

If ~A and ~A∗ are such that for every n An ∼= A∗n then JSp(~A) = JSp(~A∗).

Definition

The Relative spectrum of ~A is

RSp(~A) = {dT (B) | (∃f enumeration of A =
⋃

n An)

(∀n)(f−1(An) is c.e. in B(n) uniformly in n)},
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Omega enumeration co-spectra

Definition

The ω-enumeration relative Co-spectrum of ~A is the set

OCoSp(~A) =
{

a ∈ Dω | ∀x ∈ RSp(~A)(a ≤ω x)
}
.

For any enumeration f of A denote by f−1(~A) = {f−1(An)}n<ω.

Proposition
For every sequence of sets of natural numbers X = {Xn}n<ω:

1 dω(X ) ∈ OCoSp(~A) iff
2 X ≤ω {Pk (f−1(~A))}k<ω, for every enumeration f of A iff
3 each Xn is definable by a computable sequence of Σ+

n+1 formulae
with parameters uniformly in n.
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The Question

Question

Given a sequence of structures ~A,
1 does there exist a structure M, such that JSp(~A) = Sp(M) ?
2 does there exist a structure M, such that RSp(~A) = Sp(M) ?
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Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An. Let R ⊆ Am.

The n-th Marker’s extension Mn(R) of R
Let X0,X1, . . .Xn be new infinite disjoint countable sets - companions
to Mn(R).
Fix bijections: h0 : R → X0
h1 : (Am × X0) \Gh0 → X1 . . .
hn : (Am × X0 × X1 · · · × Xn−1) \Ghn−1 → Xn
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Marker’s extensions

For A = (A; R1,R2, . . .Rm) and B = (B; P1,P2, . . .Pk ) let
A ∪B = (A ∪ B; R1,R2, . . .Rm,P1,P2, . . .Pk ).

Let ~A = {An}n<ω, and A =
⋃

n An.

1 For every n construct the n-th Markers’s extensions of An, Rn
1 ,

. . . Rn
mn with disjoint companions.

2 For every n let Mn(An) = Mn(An) ∪Mn(Rn
1) ∪ · · · ∪Mn(Rn

mn ).
3 Set M(~A) to be

⋃
n Mn(An) with one additional predicate for A.
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Two steps (Soskov)
Lemma

For every enumeration f of M(~A) there is an enumeration g of ~A:
1 Pn(g−1(~A)) ≤e (f−1(M(~A))+)(n) uniformly in n;
2
⊕

n Pn(g−1(~A)) ≤T (f−1(M(~A))+)(ω).

Theorem

Let g be an enumeration of ~A and Y �ω g−1(~A). There is an
enumeration f of M(~A):

1
⊕

n Pn(g−1(~A)) ≡e (f−1(M(~A)))(ω).
2 Y is not c.e. in f−1(M(~A)).

Theorem

A sequence Y of subsets of A is (r.i.) ω-enumeration reducible to ~A if
and only if Y is (r.i) c.e. in M(~A).
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Generalized Goncharov and Khoussainov Lemma

Proposition

Let n ≥ 0 and R be a Σ0
n+1(B) set with an infinite computable subset.

Then there exists bijections k0, . . . , kn such that the graph of kn is
computable in B, uniformly in an index for R and n and
k0 : R → N.
k1 : N2 \Gk0 → N . . .
kn : Nn+1 \Gkn−1 → N.

Lemma (Soskov, M. Soskova)

Let R be Σ0
2(X ) and S ⊆ R be infinite and computable. There exists a

bijection k : R → N such that N2 \Gk is Σ0
1(X ) and has an infinite

computable subset.
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The positive answers of the questions [Soskov]
Let ~A = {An}, A =

⋃
n |An| and M = M(~A) the Marker’s extension of ~A.

Theorem

A sequence Y of subsets of A is (r.i.) ω-enumeration reducible to ~A if
and only if Y is (r.i) c.e. in M(~A).

Theorem
For every structure A, there is a structure M, s.t. R ⊆ |A|, R ≤e A if
and only if R is relatively intrinsically Σ1 in M.

Theorem

For every R ⊆ A, R ≤n ~A ⇐⇒ R is relatively intrinsically Σn+1 in M.

Theorem
1 There is a structure M1 with JSp(~A) = Sp(M1).
2 There is a structure M2 with RSp(~A) = Sp(M2).
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An example

Theorem (Soskov)

Fix ~A = {An}n<ω and let M = M(~A).
OCoSp(M) =

{
dω(Y) | (∀g)(Y ≤ω g−1(~A))

}
.

Example

Let R = {Rn}n<ω be a seq. of sets. Define ~A the seq. of structures:
A0 = (N; Gs,R0);
An = (N; Rn) for n ≥ 1.

Since every enumeration g of ~A is computable from g−1(Gs), we have
that Pn(R) ≤e Pn(g−1(~A)) uniformly in n.
OCoSp(M) = {dω(Y) | Y ≤ω R}.
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DT ⊂ De ⊂ Dω

The Turing degrees are embedded in to the enumeration degrees
by: ι(dT (X )) = de(X+).
There are sets X which are not enumeration equivalent to any set
of the form Y+.

The enumeration degrees are embedded in to the ω-enumeration
degrees by: κ(de(X )) = dω({X (n)}n<ω).
There are sequences R = {Rn}n<ω such that:

I Pn(R) ≡e ∅(n) for every n.
I R �ω {∅(n)}n<ω.

Sequences with this property are called almost zero.
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Embedding the ω-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure ~A obtained from a sequence of sets R.
A0 = (N; Gs,R0) and for all n ≥ 1, An = (N; Rn).

For every enumeration g of ~A, R ≤ω g−1(~A).
Sp(MR) = {dT (B) | R is c.e. in B}.

R ≤ω Q ⇐⇒
{dT (B) | R is c.e. in B} ⊇ {dT (B) | Q is c.e. in B} ⇐⇒
Sp(MR) ⊇ Sp(MQ).
Let µ(dω(R)) = Sp(MR).
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Spectrum with all non lown degrees for each n

Theorem

For every sequence ~A = {An}n<ω there exists a structure M such that
Sp(M) = JSp(~A).

Sp(M) ⊆ Sp(A0), Sp1(M) ⊆ Sp(A1), . . . , Spn(M) ⊆ Sp(An) . . .

Apply this to the sequence ~A, where An is obtained by Wehner’s
construction relativized to 0(n).

Theorem (Soskov)

There is a structure M with Sp(M) =
{

b | ∀n(b(n) > 0(n))
}

.
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