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A parallel between classical computability theory and
effective definability in abstract structures

A close parallel between notions of classical computability theory and
of the theory of effective definability in abstract structures:

@ The notion of “c.e. in” corresponds to the notion of ¥ definability;

@ The “£?_, in” sets correspond to the sets definable by means of
computable infinitary ¥,, 1 formulae.
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Enumeration reducibility

@ Aset Xis c.e.inaset Y if X can be enumerated by a computable
in Y function.

© A set X is enumeration reducible to a set Y if and only if there is
an effective procedure to transform an enumeration of Y to an
enumeration of X.
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Enumeration reducibility

@ Aset Xis c.e.inaset Y if X can be enumerated by a computable
in Y function.

© A set X is enumeration reducible to a set Y if and only if there is
an effective procedure to transform an enumeration of Y to an

enumeration of X.

Proposition
X isc.e. inY ifand only if X <¢ YoVY=Y". J

Given a set A can we find a set M such that X <. Aif and only if X is
c.e. in M?
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Enumeration reducibility

@ Aset Xis c.e.inaset Y if X can be enumerated by a computable
in Y function.

© A set X is enumeration reducible to a set Y if and only if there is
an effective procedure to transform an enumeration of Y to an
enumeration of X.

Proposition
X isc.e. inY ifand only if X <¢ YoVY=Y". J

Given a set A can we find a set M such that X <. Aif and only if X is

c.e.in M?
There are sets A which are not enumeration equivalent to any set of

the form M & M, so the answer is “No”.
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Abstract structures

Let 2 = (A; Ry, ..., Rx) be a countable abstract structure.

@ An enumeration f of 2( is a bijection from N onto A.

@ (X)) ={(xy...xa) : (f(X1),...,f(xa)) € X} forany X C A2,

o 1) =f"(Ry) @ @ (Rk) computes the positive atomic
diagram of an isomorphic copy of 2.

Definition
A set X C Ais relatively intrinsically c.e. in 20 (X c.e. in Q) if for every
enumeration f of 21 we have that f~1(X) is c.e. in f~1(21).
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Abstract structures

Let 2 = (A; Ry, ..., Rx) be a countable abstract structure.

@ An enumeration f of 2l is a bijection from N onto A.

@ (X)) ={(xy...xa) : (f(X1),...,f(xa)) € X} forany X C A2,

o 1) =f"(Ry) @ @ (Rk) computes the positive atomic
diagram of an isomorphic copy of 2.

Definition
A set X C Ais relatively intrinsically c.e. in 20 (X c.e. in Q) if for every
enumeration f of 21 we have that f~1(X) is c.e. in f~1(21).

By Ash, Knight, Manasse, Slaman and independantly Chisholm we
have that X is c.e. in 2 if and only if X is definable in 2 by means of a
computable infinitary ¥ formula with parameters.
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Relatively intrinsically enumeration reducible

Definition

A set X C Ais (relatively intrinsically) enumeration reducible to
(X <e ) if for every enumeration f of 2, f~1(X) <e f~1(2).
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Relatively intrinsically enumeration reducible

Definition

A set X C Ais (relatively intrinsically) enumeration reducible to
(X <e ) if for every enumeration f of 2, f~1(X) <e f~1(2).

X <e 2 if and only if X is definable in 2( by means of a positive
computable infinitary ¥4 formula with parameters.
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Relatively intrinsically enumeration reducible

Definition

A set X C Ais (relatively intrinsically) enumeration reducible to
(X <e ) if for every enumeration f of 2, f~1(X) <e f~1(2).

X <e 2 if and only if X is definable in 2( by means of a positive
computable infinitary ¥4 formula with parameters. o
Given a structure 2 = (A; Ry, ... Rp) let A" = (A; Ry, Ry, ... Rn, Rn).

Proposition
Forevery X C A, X c.e.in ifand only if X <¢ AT. J
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Relatively intrinsically enumeration reducible

Definition
A set X C Ais (relatively intrinsically) enumeration reducible to
(X <e ) if for every enumeration f of 2, f~1(X) <e f~1(2).

X <e 2 ifand only if X is definable in 21 by means of a positive
computable infinitary ¥4 formula with parameters. o
Given a structure 2 = (A; Ry, ... Rp) let A" = (A; Ry, Ry, ... Rn, Rn).
Proposition

Forevery X C A, X c.e.in ifand only if X <¢ AT.

Question

Given a structure 2, does there exist a structure 9, such that for all
R C ||, R < 2 if and only if R is relatively intrinsically 1 in 9t?

Alexandra A. Soskova (Sofia University) |A parallel between classical computability the September 2014 5/25



From sets to sequences of sets

Definition

A sequence of sets of natural numbers X = {X,}n<. is c.e. in a set
A C N if for every n, X, is c.e. in A" uniformly in n.
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From sets to sequences of sets

Definition
A sequence of sets of natural numbers X = {X,}n<. is c.e. in a set
A C N if for every n, X, is c.e. in A" uniformly in n.

Theorem (Selman)
X <e Aifan only if for every B, if A is c.e. in B then X is c.e. in B.
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From sets to sequences of sets

Definition
A sequence of sets of natural numbers X = {X,}n<. is c.e. in a set
A C N if for every n, X, is c.e. in A" uniformly in n.

Theorem (Selman)
X <¢ Aifanonly if for every B, if A is c.e. in B then X is c.e. in B.

Definition
(i) Given a set X of natural numbers and a sequence ) of sets of
natural numbers, let X <, Y if for all sets B, ) is c.e. in B implies
Xis¥% ,in B;
(i) Given sequences X and ) of sets of natural numbers, say that X

is w-enumeration reducible to Y (X <, ) if for all sets B, ) is c.e.
in Bimplies X" is c.e. in B.

v
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Sequences of sets

Ash presents a characterization of “<,” and “<,,” using computable

infinitary propositional sentences. Soskov and Kovachev give another
characterizations in terms of enumeration computability.

Definition

The jump sequence P(X) = {Pn(X)}n<. Of X is defined by induction:
(i) Po(X) = Xo;

(il) Ppi1(X) = Pn(X) & Xpi1.
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Sequences of sets

Ash presents a characterization of “<,” and “<,,” using computable

infinitary propositional sentences. Soskov and Kovachev give another
characterizations in terms of enumeration computability.

Definition

The jump sequence P(X) = {Pn(X)}n<. of X is defined by induction:
(i) Po(X) = Xo;

(il) Pri1(X) = Pn(X) ® Xnt1.

Theorem (Soskov)
Q@ X <, Yifandonly if X <¢ Pn(Y).
Q X <, Yifand only if for every n, X, <e Pn(Y) uniformly in n.
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Sequences of structures

Now consider a sequence of structures 2 = {,}n.,, Where
an = (An, Rf, Rg, NN H,’-,'-,n) Let A= UnAn.
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Sequences of structures

Now consider a sequence of structures 2 = {,}n.,, Where
An = (An R{,R3,...R},). Let A=, An.

An enumeration f of 2 is a bijection from N — A,

f~1(2A) is the sequence {f~"(An) @ 1 (RY) - @ (R}, )} n<w-
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Sequences of structures

Now consider a sequence of structures 2 = {,}n.,, Where
An = (An R{,R3,...R},). Let A=, An.

An enumeration f of 2 is a bijection from N — A.

f=1(21) is the sequence {f~1(Ap) @ F 1 (R})--- & F(RY )} new-

Definition

For R C Awe say that R <, 2 if for every enumeration f of 2,
~Y(R) <, f~1(2).
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Sequences of structures

A = {An}pew, where A, = (Ap; R], RS, ... RY ). Let A=, An.
f~1(20) is the sequence {f~"(A)) @ F1(RY)--- @ F(RY, )} new-
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Sequences of structures

A = {An}pew, where A, = (Ap; R], RS, ... RY ). Let A=, An.
f~1(20) is the sequence {f~"(A)) @ F1(RY)--- @ F(RY, )} new-
Definition

A sequence { Yy} of subsets of Ais (relatively intrinsically)
w-enumeration reducible to 2 if for every enumeration f of 2,
{f71(Yn)} <o F77(20).
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Questions

Question

Given a sequence of structures 2, does there exist a structure m,
such that the X, 1 definable in 9t sets coincide with sets R <, 2A?

X is (ri.) c.e. in M if for each enumeration f of M, F~1(X,) is c.e. in
=1 (20) (" uniformly in n.

Question

Given a sequence of structures 2, does there exist a structure 9,
such that for every sequence X" of subsets of A=, An,
X <, 2 if and only if X is (r.i.) c.e. in 9M?
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Joint Spectra
Definition

The spectrum of 2 is the set Sp(A) = {a | (3F)(dr(F~1(A)) <7 a)}.
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Joint Spectra

Definition

The spectrum of 2 is the set Sp(A) = {a | (3F)(dr(F~1(A)) <7 a)}.
The k-th jump spectrum of 2 is the set Sp,(2) = {a() | a € Sp(2)}.
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Joint Spectra

Definition

The spectrum of 2 is the set Sp(A) = {a | (3F)(dr(F~1(A)) <7 a)}.
The k-th jump spectrum of 2 is the set Sp,(2) = {a() | a € Sp(2)}.

Let 2o, ..., 2, be arbitrary countable abstract structures.
Definition
The Joint spectrum of g, 24, ..., %A, is the set

JSp(Q[o,QH yoeey Q[n) =
{a:a e Sp(Ap),a’ € Sp(Ay),...,aM e Sp(An)}.

v
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Joint Spectra
Definition
The spectrum of 2 is the set Sp(A) = {a | (3F)(dr(F~1(A)) <7 a)}.

The k-th jump spectrum of 2 is the set Sp,(2) = {a() | a € Sp(2)}.

Let 2o, ..., 2, be arbitrary countable abstract structures.
Definition
The Joint spectrum of g, 24, ..., %A, is the set

JSp(Qlo,QH yoeey Q[n) =

{a:a e Sp(Ap),a’ € Sp(Ay),...,aM e Sp(An)}.

Definition

The k-th co-spectrum of 2 is the set

ColSp, () = {a € De | VX € ISp,(2A)(a <e x)} ,
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Relative Spectra of Structures

Let 2 = {2k }k<n be a finite sequence of countable structures. Denote

Definition
The relative spectrum of 2 is
RSp(2A) = {dr(B) | (3f enumeration of A)(vk < n)(f~"(2) is c.e. in BK

where f=1(2) = -1 (A) @ F ' (Rf) @ --- & F(RE,).
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Relative Spectra of Structures

Let 2 = {4 }k<n be a finite sequence of countable structures. Denote

Definition
The relative spectrum of 2 is

RSp(2A) = {dr(B) | (3f enumeration of A)(vk < n)(f~"(2) is c.e. in BK

where f=1(2) = -1 (A) @ F ' (Rf) @ --- & F(RE,).
The k-th jump spectrum of 2 is the set

RSp, (%) = {a’) | a € RSp(2)}.
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Spectra of sequences of structures

Let 2 = {2} <., be a sequence of countable structures.
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Spectra of sequences of structures

Let 2 = {2} <., be a sequence of countable structures.
Definition
The Joint spectrum of A is

ISp(A) = {dr(B) | (3{fn}n<., enumerations of A)
(vn)(f; 1(2Ap) is c.e. in B(M uniformly in n)},

If 2 and 20* are such that for every n 2, = 2% then JSp(2) = ISp(2A*).
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Spectra of sequences of structures

Let 2 = {2} <., be a sequence of countable structures.
Definition

The Joint spectrum of 2 is

ISp(A) = {dr(B) | (3{fn}n<., enumerations of A)
(vn)(f; 1(2Ap) is c.e. in B(M uniformly in n)},

If 2 and 20* are such that for every n 2, = 2% then JSp(2) = ISp(2A*).
Definition

The Relative spectrum of 2 is

RSp(2A) = {d7(B) | (3f enumeration of A= (], Ap)
(vn)(F~1(Ap) is c.e. in B uniformly in n)},
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Omega enumeration co-spectra

Definition
The w-enumeration relative Co-spectrum of 2 is the set

0CoSp(3) = {a € D, | ¥x € RSp(2)(a <., x)} .
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Omega enumeration co-spectra

Definition

The w-enumeration relative Co-spectrum of 2 is the set

0CoSp(3) = {a € D, | ¥x € RSp(2)(a <., x)} .

For any enumeration f of A denote by f~1(2A) = {f1(An)}new.
Proposition

For every sequence of sets of natural numbers X = {Xp}n<w:
@ d,(X) € OCoSp(2) iff
Q X <, {Pu(f 1 (A))}k<w, for every enumeration f of A iff

© each X, is definable by a computable sequence of ¥, . formulae

n+1
with parameters uniformly in n.
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The Question

Question

Given a sequence of structures 2,
@ does there exist a structure 91, such that JSp(2) = Sp(M) ?
@ does there exist a structure 9, such that RSp(2) = Sp(M) ?
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Marker’s extensions

Let 2 = {An}new, and A =, An. Let R C A™.
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Marker’s extensions
Let Ql - {an}n<w, and A = Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to My (R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).
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Marker’s extensions
Let Ql - {an}n<w, and A = Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to My (R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —
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Marker’s extensions
Let Ql - {an}n<w, and A = Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to My (R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —

dxg € XoVXx1 € Xq [(é, Xo,X1) ¢ Gh1] <~
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Marker’s extensions
Let Ql - {an}n<w, and A - Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to My (R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —

dxg € XoVXx1 € Xq [(é, Xo,X1) ¢ Gh1] <~

Ixg € XoVXx1 € X13xo € XQ[(é, Xo,X1,X2) S Gh2] — ...
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Marker’s extensions
Let Ql - {an}n<w, and A - Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to My (R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmX)(o><)(1---><)(n_1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —

dxg € XoVXx1 € Xq [(é, Xo,X1) ¢ Gh1] <~
dxg € XoVX1 € Xiadx € XQ[(é, Xo,X1,X2) € Gh2] <~ ...
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Marker’s extensions

For 2 = (A; Ry, Ra, ... Rm) and B = (B; Py, P2, ... Py) let
QlU%:(AUBCl‘:ﬁ,:‘:l’g,...Fa’m,P1,P2,...Pk).
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Marker’s extensions

For 2 = (A; Ry, Ra, ... Rm) and B = (B; Py, P2, ... Py) let
QLU%:(AUBCR1,R2,...Rm,P1,P2,...Pk).

Let Q_i = {an}n<w, and A = Un An.
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Marker’s extensions

Form:(A;R17R27---Rm)and%:(B;P1,P2,-..Pk)Iet
QLU%:(AUBCR1,R2,...Rm,P1,P2,...Pk).

Let Q_i = {an}n<w, and A = Un An.

@ For every n construct the n-th Markers’s extensions of A,, R,
... Ry, with disjoint companions.
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Marker’s extensions

Form:(A;R17R27---Rm)and%:(B;P1,P2,...Pk)Iet
QLU%:(AUBCH1,R2,...Rm,P1,P2,...Pk).

Let Q_i = {an}n<w, and A = Un An.

@ For every n construct the n-th Markers’s extensions of A,, R,
... Ry, with disjoint companions.

@ Forevery nlet Mp(2An) = Mny(An) UMp(RY) U --- UMn(RY, ).
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Marker’s extensions

FOI’Q(:(A;R1,R2,...Rm) and%:(B;P1,P2,...Pk) let
QLU%:(AUB;R1,R2,...Rm,P1,P2,...Pk).
Letﬁ: {an}n<w, andA:UnAn

@ For every n construct the n-th Markers’s extensions of A,, R,
... RY, with disjoint companions.
@ Forevery nlet Mp(2An) = Mny(An) UMp(RY) U --- UMn(RY, ).

@ Set M(2A) to be U, Ma(An) with one additional predicate for A.
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@ Set M(2A) to be U, Ma(An) with one additional predicate for A.
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Two steps (Soskov)
Lemma

For every enumeration f of M(21) there is an enumeration g of A
Q@ Pa(g ' (A)) <e (F1(M(A) )™ uniformly in n;
@ P, Pn(g () <7 (F (M(2A)) "))

Alexandra A. Soskova (Sofia University) |A parallel between classical computability the September 2014 18/25



Two steps (Soskov)
Lemma

For every enumeration f of 9(2) there is an enumeration g of A
Q@ Pa(g ' (A)) <e (F1(M(A) )™ uniformly in n;
@ P, Pn(g () <7 (F (M(2A)) "))

Theorem

Let g be an enumeration of % and Y w9 ! (2A). There is an

—

enumeration f of M(A):
Q B, Pn(g () =e (F (M(A))).
@ Yisnotc.e. inf~1(M(A)).
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Two steps (Soskov)
Lemma

For every enumeration f of 9(2) there is an enumeration g of A

Q@ Pa(971(2A)) <e (F~1 (ML) ) uniformly in n;
Q@ B, Pu(g™ () <7 (F(M(2A))*)).

Theorem

Let g be an enumeration of % and Y w9 ! (2A). There is an

—

enumeration f of M(A):
Q B, Pn(g () =e (F (M(A))).
@ Yisnotc.e. inf~1(M(A)).

Theorem

A sequence ) of subsets of Aqis (r.i.) w-enumeration reducible to A if
and only if Y is (r.i) c.e. in IM(2).

v
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Generalized Goncharov and Khoussainov Lemma

Proposition

Letn >0 and R be a¥?_ ,(B) set with an infinite computable subset.
Then there exists bijections ko, . .., k, such that the graph of k, is
computable in B, uniformly in an index for R and n and

ko :R— N.

k1 :NZ\GKO%N...

ko : N1\ G, — N.

Lemma (Soskov, M. Soskova)

Let R be £3(X) and S C R be infinite and computable. There exists a
bijection k : R — N such that N2\ G is £9(X) and has an infinite
computable subset.
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The positive answers of the questions [Soskov]
Let A = {An}, A=, |™An| and Mt = M(A) the Marker’s extension of .
Theorem

A sequence ) of subsets of A#is (r.i.) w-enumeration reducible to A if
and only if Y is (r.i) c.e. in M(A).

Theorem

For every structure 2, there is a structure 9, s.t. R C ||, R <¢ A if
and only if R is relatively intrinsically ¥4 in 90t.

Theorem
ForeveryRC A, R <, A «— Ris relatively intrinsically ¥, 1 in 9.

v

Theorem

@ There is a structure My with ISp(2A) = Sp(My).
@ There is a structure My with RSp(A) = Sp(9y).

v
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An example

Theorem (Soskov)
Fix 2 = {An}new and let M = MM(A).

0Cosp() = {AL(V) | (vO)(¥ <u g7 ()}
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An example

Theorem (Soskov)

Fix 24 = {An} new and let M = M(2A).
0Cosp() = {AL(V) | (vO)(¥ <u g7 ()}

Example

Let R = {Rn}n<w be a seq. of sets. Define 2 the seq. of structures:
@ R = (N; Gs, Ao);
@ A, =(N;Rp) forn>1.
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An example

Theorem (Soskov)
Fix 24 = {An} new and let M = M(2A).
OCoSp(IM) = {dw(y) | (vg)(V <w g7 (5[))}-

Example

Let R = {Rn}n<w be a seq. of sets. Define 2 the seq. of structures:
@ R = (N; Gs, Ao);
@ A, =(N;Rp) forn>1.

Since every enumeration g of 2l is computable from g~ (Gs), we have
that Pn(R) <e Pn(g~" (A)) uniformly in n.
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An example

Theorem (Soskov)
Fix 24 = {An} new and let M = M(2A).
OCoSp(IM) = {dw(y) | (vg)(V <w g7 (5[))}-

Example

Let R = {Rn}n<w be a seq. of sets. Define 2 the seq. of structures:
o Qlo = (N; Gs, Ro);
@ A, =(N;Rp) forn>1.
Since every enumeration g of 2 is computable from g~ (Gs), we have
that Pp(R) <e Pn(g~'(2)) uniformly in n.
OCoSp(M) = {d,, (V) | ¥ <. R}.
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DTCDQCDW

@ The Turing degrees are embedded in to the enumeration degrees
by: (d7(X)) = de(X*).

@ There are sets X which are not enumeration equivalent to any set
of the form Y.
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DTCDQCDW

@ The Turing degrees are embedded in to the enumeration degrees
by: 1(dr(X)) = de(X*).
@ There are sets X which are not enumeration equivalent to any set
of the form Y.
@ The enumeration degrees are embedded in to the w-enumeration
degrees by: r(de(X)) = do({X(M}pew).
@ There are sequences R = {Rp}n<. such that:
> Pn(R) = 0" for every n.
> R £y {0} ey
Sequences with this property are called almost zero.
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Embedding the w-enumeration degrees into the
Muchnik degrees generated by spectra of structures
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Embedding the w-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure 2 obtained from a sequence of sets R.
Ao = (N; Gs, Rp) and forall n > 1, 2, = (N; Rp).
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Embedding the w-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure 2 obtained from a sequence of sets R.
Ao = (N; Gs, Rp) and forall n > 1, 2, = (N; Rp).

@ For every enumeration g of 2, R <, g~ ().
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Embedding the w-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure 2 obtained from a sequence of sets R.
Ao = (N; Gs, Rp) and forall n > 1, 2, = (N; Rp).

@ For every enumeration g of 2, R <, g~ ().
@ Sp(Mz) ={dr(B) | Risc.e.in B}.
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Embedding the w-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure 2 obtained from a sequence of sets R.
Ao = (N; Gs, Rp) and forall n > 1, 2, = (N; Rp).

@ For every enumeration g of 2, R <, g~ ().

@ Sp(Mz) ={dr(B) | Risc.e.in B}.
R <w Q <
{dr(B) | Risc.e.in B} D {dr(B)| Qisc.e.in B} «<—
Sp(Mr) 2 Sp(Mo).
Let p(d..(R)) = Sp(Mr).
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Spectrum with all non low, degrees for each n

Theorem

For every sequence A = {n}n<w there exists a structure 9 such that
Sp(9M) = ISp(A).
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Spectrum with all non low, degrees for each n

Theorem

For every sequence A = {n}n<w there exists a structure 9 such that
Sp(9M) = ISp(A).

Sp(M) < Sp(Ao), Spy(M) < Sp(2H1), - - -, Sps(M) < Sp(An) . .-
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Spectrum with all non low, degrees for each n

Theorem

For every sequence A = {n}n<w there exists a structure 9 such that
Sp(9M) = ISp(A).

Sp(M) < Sp(Ao), Spy(M) < Sp(2H1), - - -, Sps(M) < Sp(An) . .-

Apply this to the sequence 2, where 2, is obtained by Wehner’s
construction relativized to 0(").
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Spectrum with all non low, degrees for each n

Theorem

For every sequence A = {n}n<w there exists a structure 9 such that
Sp(9M) = ISp(A).

Sp(M) € Sp(Ao), Spy(M) < Sp(21), - .., Spa(M) < Sp(Ap) . .-

Apply this to the sequence 2, where 2, is obtained by Wehner’s
construction relativized to 0(").

Theorem (Soskov)
There is a structure M with Sp(M) = {b | Yn(b(" > 0(M)}. }
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