A parallel between classical computability theory and effective definability in abstract structures The last paper of Ivan Soskov

Alexandra A. Soskova¹

Faculty of Mathematics and Computer Science Sofia University

September 2014

¹Supported by Sofia University Science Fund, contract 97/2014

Alexandra A. Soskova (Sofia University) A parallel between classical computability the

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:

- **(**) The notion of "c.e. in" corresponds to the notion of Σ_1 definability;
- **2** The " Σ_{n+1}^{0} in" sets correspond to the sets definable by means of computable infinitary Σ_{n+1} formulae.

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Proposition

X is c.e. in Y if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$.

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Proposition

X is c.e. in Y if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$.

Given a set *A* can we find a set *M* such that $X \leq_e A$ if and only if *X* is *c.e.* in *M*?

4 3 5 4 3 5 5

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Proposition

X is c.e. in Y if and only if $X \leq_e Y \oplus \overline{Y} = Y^+$.

Given a set *A* can we find a set *M* such that $X \leq_e A$ if and only if *X* is *c.e.* in *M*?

There are sets *A* which are not enumeration equivalent to any set of the form $M \oplus \overline{M}$, so the answer is "No".

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}$ for any $X \subseteq A^a$.
- *f*⁻¹(𝔅) = *f*⁻¹(*R*₁) ⊕ · · · ⊕ *f*⁻¹(*R_k*) computes the positive atomic diagram of an isomorphic copy of 𝔅.

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} (X c.e. in \mathfrak{A}) if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

くゆ くうとく ひとう う

Abstract structures

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

• An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.

• $f^{-1}(X) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X \}$ for any $X \subseteq A^a$.

f⁻¹(𝔅) = *f*⁻¹(*R*₁) ⊕ · · · ⊕ *f*⁻¹(*R_k*) computes the positive atomic diagram of an isomorphic copy of 𝔅.

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} (X c.e. in \mathfrak{A}) if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

By Ash, Knight, Manasse, Slaman and independently Chisholm we have that X is c.e. in \mathfrak{A} if and only if X is definable in \mathfrak{A} by means of a computable infinitary Σ_1 formula with parameters.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

4 3 > 4 3

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters.

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters. Given a structure $\mathfrak{A} = (A; R_1, \dots, R_n)$ let $\mathfrak{A}^+ = (A; R_1, \overline{R_1}, \dots, R_n, \overline{R_n})$.

Proposition

For every $X \subseteq A$, X c.e. in \mathfrak{A} if and only if $X \leq_{e} \mathfrak{A}^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters. Given a structure $\mathfrak{A} = (A; R_1, \dots, R_n)$ let $\mathfrak{A}^+ = (A; R_1, \overline{R_1}, \dots, R_n, \overline{R_n})$.

Proposition

For every $X \subseteq A$, X c.e. in \mathfrak{A} if and only if $X \leq_{e} \mathfrak{A}^+$.

Question

Given a structure \mathfrak{A} , does there exist a structure \mathfrak{M} , such that for all $R \subseteq |\mathfrak{A}|, R \leq_{e} \mathfrak{A}$ if and only if *R* is relatively intrinsically Σ_1 in \mathfrak{M} ?

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set $A \subseteq \mathbb{N}$ if for every *n*, X_n is c.e. in $A^{(n)}$ uniformly in *n*.

< 回 > < 三 > < 三 >

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set $A \subseteq \mathbb{N}$ if for every *n*, X_n is c.e. in $A^{(n)}$ uniformly in *n*.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

不同 トイモトイモ

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set $A \subseteq \mathbb{N}$ if for every *n*, X_n is c.e. in $A^{(n)}$ uniformly in *n*.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition

- (i) Given a set X of natural numbers and a sequence 𝒱 of sets of natural numbers, let X ≤_n 𝒱 if for all sets B, 𝒱 is c.e. in B implies X is Σ⁰_{n+1} in B;
- (ii) Given sequences \mathcal{X} and \mathcal{Y} of sets of natural numbers, say that \mathcal{X} is ω -enumeration reducible to \mathcal{Y} ($\mathcal{X} \leq_{\omega} \mathcal{Y}$) if for all sets B, \mathcal{Y} is c.e. in B implies \mathcal{X} is c.e. in B.

3

イロト 不得 トイヨト イヨト

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

(i)
$$\mathcal{P}_0(\mathcal{X}) = X_0;$$

(ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}.$

4 3 5 4 3 5 5

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction: (i) $\mathcal{P}_n(\mathcal{X}) - \mathcal{X}_n$:

(ii)
$$\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}.$$

Theorem (Soskov)

1
$$X \leq_n \mathcal{Y}$$
 if and only if $X \leq_e \mathcal{P}_n(\mathcal{Y})$.

2 $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_n \leq_e \mathcal{P}_n(\mathcal{Y})$ uniformly in n.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

∃ ► < ∃</p>

Now consider a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n < \omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$.

 $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

 $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_m^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_m^n)\}_{n<\omega}$.

Definition

A sequence $\{Y_n\}$ of subsets of *A* is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration *f* of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}}).$

Questions

Question

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that the Σ_{n+1} definable in \mathfrak{M} sets coincide with sets $R \leq_n \vec{\mathfrak{A}}$?

 \mathcal{X} is (r.i.) c.e. in \mathfrak{M} if for each enumeration f of \mathfrak{M} , $f^{-1}(X_n)$ is c.e. in $f^{-1}(\mathfrak{M})^{(n)}$ uniformly in n.

Question

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that for every sequence \mathcal{X} of subsets of $A = \bigcup_n A_n$, $\mathcal{X} \leq_{\omega} \vec{\mathfrak{A}}$ if and only if \mathcal{X} is (r.i.) c.e. in \mathfrak{M} ?

4 3 5 4 3 5 5

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A}) = \{ \mathbf{a} \mid (\exists f)(d_T(f^{-1}(\mathfrak{A})) \leq_T \mathbf{a}) \}.$

4 3 5 4 3 5 5

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A}) = \{ \mathbf{a} \mid (\exists f)(d_T(f^{-1}(\mathfrak{A})) \leq_T \mathbf{a}) \}$. The *k*-th jump spectrum of \mathfrak{A} is the set $\operatorname{Sp}_k(\mathfrak{A}) = \{ \mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A}) \}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A}) = \{ \mathbf{a} \mid (\exists f)(d_T(f^{-1}(\mathfrak{A})) \leq_T \mathbf{a}) \}$. The *k*-th jump spectrum of \mathfrak{A} is the set $\operatorname{Sp}_k(\mathfrak{A}) = \{ \mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A}) \}$.

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots, \ \mathfrak{A}_n) = \\ \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1), \ldots, \mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}$$

4 **A** N A **B** N A **B** N

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A}) = \{\mathbf{a} \mid (\exists f)(d_{\mathcal{T}}(f^{-1}(\mathfrak{A})) \leq_{\mathcal{T}} \mathbf{a})\}$. The *k*-th jump spectrum of \mathfrak{A} is the set $\operatorname{Sp}_k(\mathfrak{A}) = \{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A})\}$.

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\ \mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1), \ldots, \mathbf{a}^{(\mathbf{n})} \in Sp(\mathfrak{A}_n)\}.$$

Definition

The *k*-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{CoJSp}_k(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\boldsymbol{e}} \mid \forall \mathbf{x} \in \mathrm{JSp}_k(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\boldsymbol{e}} \mathbf{x}) \right\},$$

Relative Spectra of Structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_k}_{k \le n}$ be a finite sequence of countable structures. Denote by $A = \bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

 $\operatorname{RSp}(\mathfrak{A}) = \{ d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)}) \}$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_k}_{k \leq n}$ be a finite sequence of countable structures. Denote by $A = \bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

 $\operatorname{RSp}(\mathfrak{A}) = \{ d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)}) \}$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.
The *k*-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{RSp}_{k}(\vec{\mathfrak{A}}) = \{ \mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{RSp}(\vec{\mathfrak{A}}) \}.$$

Spectra of sequences of structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$ be a sequence of countable structures.

< 6 k

Spectra of sequences of structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

 $JSp(\vec{\mathfrak{A}}) = \{ d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \},$

If $\vec{\mathfrak{A}}$ and $\vec{\mathfrak{A}}^*$ are such that for every $n \mathfrak{A}_n \cong \mathfrak{A}_n^*$ then $JSp(\vec{\mathfrak{A}}) = JSp(\vec{\mathfrak{A}}^*)$.

Spectra of sequences of structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

 $JSp(\vec{\mathfrak{A}}) = \{ d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \},$

If $\vec{\mathfrak{A}}$ and $\vec{\mathfrak{A}}^*$ are such that for every $n \mathfrak{A}_n \cong \mathfrak{A}_n^*$ then $JSp(\vec{\mathfrak{A}}) = JSp(\vec{\mathfrak{A}}^*)$.

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$\begin{split} \mathrm{RSp}(\vec{\mathfrak{A}}) &= \{ d_T(B) \mid \quad (\exists f \text{ enumeration of } A = \bigcup_n A_n) \\ &\quad (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n) \}, \end{split}$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(ec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_\omega \mid orall \mathbf{x} \in \mathrm{RSp}(ec{\mathfrak{A}}) (\mathbf{a} \leq_\omega \mathbf{x})
ight\}.$$

< 6 b

4 3 5 4 3

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(ec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_\omega \mid orall \mathbf{x} \in \mathrm{RSp}(ec{\mathfrak{A}}) (\mathbf{a} \leq_\omega \mathbf{x})
ight\}.$$

For any enumeration *f* of *A* denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$:

- $d_{\omega}(\mathcal{X}) \in \mathrm{OCoSp}(\vec{\mathfrak{A}})$ iff
- 2 $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}$, for every enumeration f of A iff
- each X_n is definable by a computable sequence of \sum_{n+1}^+ formulae with parameters uniformly in *n*.

The Question

Question

Given a sequence of structures $\vec{\mathfrak{A}}$,

- **O** does there exist a structure \mathfrak{M} , such that $JSp(\mathfrak{A}) = Sp(\mathfrak{M})$?
- 2 does there exist a structure \mathfrak{M} , such that $RSp(\mathfrak{A}) = Sp(\mathfrak{M})$?

Marker's extensions Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n).$

(B)

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n)$.

If *n* is even then:

 $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$

3

4 E N 4 E N

< 🗇 🕨

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n)$.

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n[M_n(\bar{a}, x_0, \dots x_n)].$

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

For
$$\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$$
 and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

æ.

- Terr (s)

< 6 b

- For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$
- Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$.
 - For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

- $\mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}})) \leq_e (f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))^+)^{(n)}$ uniformly in n;
- $\bigcirc \ \bigoplus_n \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}})) \leq_T (f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))^+)^{(\omega)}.$

< 6 k

4 E N 4 E N

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

•
$$\mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}})) \leq_e (f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))^+)^{(n)}$$
 uniformly in n;

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \not\leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

2)
$$\mathcal{Y}$$
 is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

3

Two steps (Soskov)

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

•
$$\mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}})) \leq_e (f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))^+)^{(n)}$$
 uniformly in n;

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \not\leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

2
$$\mathcal{Y}$$
 is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

Theorem

A sequence \mathcal{Y} of subsets of A is (r.i.) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if and only if \mathcal{Y} is (r.i) c.e. in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Generalized Goncharov and Khoussainov Lemma

Proposition

Let $n \ge 0$ and R be a $\sum_{n+1}^{0}(B)$ set with an infinite computable subset. Then there exists bijections k_0, \ldots, k_n such that the graph of k_n is computable in B, uniformly in an index for R and n and $k_0 : R \to \mathbb{N}$. $k_1 : \mathbb{N}^2 \setminus G_{k_0} \to \mathbb{N} \dots$ $k_n : \mathbb{N}^{n+1} \setminus G_{k_{n-1}} \to \mathbb{N}$.

Lemma (Soskov, M. Soskova)

Let R be $\Sigma_2^0(X)$ and $S \subseteq R$ be infinite and computable. There exists a bijection $k : R \to \mathbb{N}$ such that $\mathbb{N}^2 \setminus G_k$ is $\Sigma_1^0(X)$ and has an infinite computable subset.

イロト 不得 トイヨト イヨト

The positive answers of the questions [Soskov] Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}$, $A = \bigcup_n |\mathfrak{A}_n|$ and $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$ the Marker's extension of $\vec{\mathfrak{A}}$.

Theorem

A sequence \mathcal{Y} of subsets of A is (r.i.) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if and only if \mathcal{Y} is (r.i) c.e. in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Theorem

For every structure \mathfrak{A} , there is a structure \mathfrak{M} , s.t. $R \subseteq |\mathfrak{A}|$, $R \leq_{e} \mathfrak{A}$ if and only if R is relatively intrinsically Σ_{1} in \mathfrak{M} .

Theorem

For every $R \subseteq A$, $R \leq_n \vec{\mathfrak{A}} \iff R$ is relatively intrinsically Σ_{n+1} in \mathfrak{M} .

Theorem

• There is a structure \mathfrak{M}_1 with $JSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M}_1)$.

2 There is a structure \mathfrak{M}_2 with $\operatorname{RSp}(\vec{\mathfrak{A}}) = \operatorname{Sp}(\mathfrak{M}_2)$.

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$. OCoSp $(\mathfrak{M}) = \left\{ d_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \right\}$.

A (10) A (10)

Theorem (Soskov)

$$\begin{array}{l} \mathsf{Fix}\, \vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega} \,\, \mathsf{and} \,\, \mathsf{let}\, \mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}}).\\ \mathrm{OCoSp}(\mathfrak{M}) = \Big\{ \mathsf{d}_\omega(\mathcal{Y}) \mid (\forall \mathsf{g})(\mathcal{Y} \leq_\omega \mathsf{g}^{-1}(\vec{\mathfrak{A}})) \Big\}. \end{array}$$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Define $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \ge 1$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Soskov)

$$\begin{array}{l} \mathsf{Fix}\, \vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega} \,\, \mathsf{and} \,\, \mathsf{let}\, \mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}}).\\ \mathrm{OCoSp}(\mathfrak{M}) = \Big\{ \mathsf{d}_\omega(\mathcal{Y}) \mid (\forall \mathsf{g})(\mathcal{Y} \leq_\omega \mathsf{g}^{-1}(\vec{\mathfrak{A}})) \Big\}. \end{array}$$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Define $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \ge 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n.

A (10) A (10)

Theorem (Soskov)

$$\begin{array}{l} \mathsf{Fix}\, \vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega} \,\, \mathsf{and} \,\, \mathsf{let}\, \mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}}).\\ \mathrm{OCoSp}(\mathfrak{M}) = \Big\{ \mathsf{d}_\omega(\mathcal{Y}) \mid (\forall \mathsf{g})(\mathcal{Y} \leq_\omega \mathsf{g}^{-1}(\vec{\mathfrak{A}})) \Big\}. \end{array}$$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a seq. of sets. Define $\vec{\mathfrak{A}}$ the seq. of structures:

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \ge 1$.

Since every enumeration g of $\vec{\mathfrak{A}}$ is computable from $g^{-1}(G_s)$, we have that $\mathcal{P}_n(\mathcal{R}) \leq_{\mathfrak{e}} \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in n. $OCoSp(\mathfrak{M}) = \{d_{\omega}(\mathcal{Y}) \mid \mathcal{Y} \leq_{\omega} \mathcal{R}\}.$

A (10) A (10)

$\mathcal{D}_{\textit{T}} \subset \mathcal{D}_{\textit{e}} \subset \mathcal{D}_{\omega}$

- The Turing degrees are embedded in to the enumeration degrees by: ι(d_T(X)) = d_e(X⁺).
- There are sets X which are not enumeration equivalent to any set of the form Y⁺.

$\mathcal{D}_{\textit{T}} \subset \mathcal{D}_{\textit{e}} \subset \mathcal{D}_{\omega}$

- The Turing degrees are embedded in to the enumeration degrees by: ι(d_T(X)) = d_e(X⁺).
- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- The enumeration degrees are embedded in to the ω-enumeration degrees by: κ(d_e(X)) = d_ω({X⁽ⁿ⁾}_{n<ω}).
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every *n*.
 - $\blacktriangleright \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n < \omega}.$

Sequences with this property are called *almost zero*.

4 E N 4 E N

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

• For every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- For every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{ d_T(B) \mid \mathcal{R} \text{ is c.e. in } B \}.$

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- For every enumeration g of $\vec{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{ d_T(B) \mid \mathcal{R} \text{ is c.e. in } B \}.$

$$\begin{array}{l} \mathcal{R} \leq_{\omega} \mathcal{Q} \iff \\ \{d_{\mathcal{T}}(\mathcal{B}) \mid \mathcal{R} \text{ is c.e. in } \mathcal{B}\} \supseteq \{d_{\mathcal{T}}(\mathcal{B}) \mid \mathcal{Q} \text{ is c.e. in } \mathcal{B}\} \iff \\ \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) \supseteq \operatorname{Sp}(\mathfrak{M}_{\mathcal{Q}}). \\ \operatorname{Let} \mu(d_{\omega}(\mathcal{R})) = \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}). \end{array}$$

Theorem

For every sequence $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

4 3 > 4 3

Theorem

For every sequence $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

 $\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \dots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \dots$

Theorem

For every sequence $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

 $\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \dots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \dots$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem

For every sequence $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

 $\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \dots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \dots$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)

There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M}) = \{ \mathbf{b} \mid \forall n (\mathbf{b}^{(n)} > \mathbf{0}^{(n)}) \}.$

3

A. A. Soskova and I. N. Soskov Co-spectra of joint spectra of structures. *Ann. Univ. Sofia*, **96** (2004) 35–44.

I. N. Soskov

Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, **96** (2004) 45–68.

🔒 A. A. Soskova

Relativized degree spectra.

Journal of Logic and Computation, **17** (2007) 1215–1234.

I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, 23 (6), (2013) 1335–1367.