Structural properties of spectra and co-spectra WCT 2016, Ghent

Alexandra A. Soskova¹

Faculty of Mathematics and Informatics Sofia University

¹Supported by Sofia University Science Fund, project 54, 2016 CER CER CER CER CERCE

Alexandra A. Soskova (Sofia University) Structural properties of spectra and co-spectra

Degree spectra

Let $\mathfrak{A} = (A; R_1, ..., R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every total surjective mapping of ω onto A.

Given an enumeration f of \mathfrak{A} and a subset of B of A^n , let

$$f^{-1}(B) = \{ \langle x_1, \ldots, x_n \rangle \mid (f(x_1), \ldots, f(x_n)) \in B \}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$$

Definition.[Richter, Jockusch] *The Turing degree spectrum of* \mathfrak{A} is the set

 $DS_T(\mathfrak{A}) = \{ d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is a one-to-one enum. of } \mathfrak{A} \}.$

If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A} .

Enumeration degree spectra

Definition.[Soskov] *The enumeration degree spectrum of* \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

< 回 > < 回 > < 回 >

Enumeration degree spectra

Definition.[Soskov] *The enumeration degree spectrum of* \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, **b** is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one-to-one enumeration f of \mathfrak{A} .

Total structures

Given a structure $\mathfrak{A} = (A, R_1, \dots, R_k)$, for every *j* denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (A, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$.

Proposition.

•
$$\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$$

• If \mathfrak{A} is total then $DS(\mathfrak{A}) = DS(\mathfrak{A}^+)$.

< 回 > < 回 > < 回 > -

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

 $co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_{e} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{e} \mathbf{a}) \}.$

< 回 > < 回 > < 回 > -

Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The *co-set of* A is the set co(A) of all lower bounds of A. Namely

 $co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_{e} \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{e} \mathbf{a}) \}.$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

< 回 > < 三 > < 三 >

The admissible in \mathfrak{A} sets

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

A B A B A B A

Forcing definable in \mathfrak{A} sets

Every finite mapping of ω into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$au \Vdash F_{e}(x) \iff x \in \Gamma_{e}(\tau^{-1}(\mathfrak{A})) \text{ and}$$

 $au \Vdash \neg F_{e}(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_{e}(x)).$

Definition. An enumeration f of \mathfrak{A} is *generic* if for every $e, x \in \omega$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

$$B = \{ x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

Forcing definable in \mathfrak{A} sets

Theorem. Let $B \subseteq \omega$ and $d_e(C) \in DS(\mathfrak{A})$. Then the following are equivalent:

- B is admissible in 𝔄.
- ② $B \leq_e f^{-1}(\mathfrak{A})$ for all generic enumerations f of \mathfrak{A} s.t. $(f^{-1}(\mathfrak{A}))' \equiv_e C'$.
- **3** B is forcing definable on \mathfrak{A} .

The formally definable sets on ${\mathfrak A}$

Definition. A Σ_1^+ formula with free variables among X_1, \ldots, X_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{X})$, where θ is a finite conjunction of atomic formulae.

Definition. A set $B \subseteq \omega$ is *formally definable* on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \omega} \Phi_{\gamma(x)}$ is a Σ_1^+ formula with free variables among X_1, \ldots, X_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(X_1/t_1, \ldots, X_r/t_r)$$
.

Theorem. Let $B \subseteq \omega$. Then

- **1** B is admissible in \mathfrak{A} ($d_e(B) \in CS(\mathfrak{A})$) iff
- B is forcing definable on A iff
- **3** B is formally definable on \mathfrak{A} .

Jump spectra and jump co-spectra

Definition. The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth jump degree* of \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} . If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth jump co-degree of* \mathfrak{A} .

く 戸 と く ヨ と く ヨ と

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

< 回 > < 回 > < 回 > -

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Example.[Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all *e*-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

く 同 ト く ヨ ト く ヨ ト -

A special kind of co-degree

Definition. [Knight, Motalbán] A structure \mathfrak{A} has "enumeration degree X" if every enumeration of X computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

Example. Given $X \subseteq \omega$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

< 日 > < 同 > < 回 > < 回 > < □ > <

A special kind of co-degree

Definition. [Knight, Motalbán] A structure \mathfrak{A} has "enumeration degree X" if every enumeration of X computes a copy of \mathfrak{A} , and every copy of \mathfrak{A} computes an enumeration of X.

In our terms this can be formulated as \mathfrak{A}^+ has a co-degree $d_e(X)$ and $DS(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \text{ is total and } d_e(X) \leq \mathbf{a}\}.$

Example. Given $X \subseteq \omega$, consider the group $G_X = \bigoplus_{i \in X} \mathbb{Z}_{p_i}$, where p_i is the ith prime number. Then G_X has "enumeration degree X": We can easily build G_X out of an enumeration of X, and for the other direction, we have that $n \in X$ if and only if there exists $g \in G_X$ of order p_n .

Theorem. [A. Montalbán] Let K be Π_2^c class of \exists -atomic structures, i.e. K is the class of structures axiomatized by some Π_2^c sentence and for every structure \mathfrak{A} in K and every tuple $\bar{a} \in |\mathfrak{A}|$ the orbit of \bar{a} is existentially definable (with parameters \bar{a}). Then every structure in K has "enumeration degree" given by its \exists -theory.

Representing the principle countable ideals as co-spectra

Example.[Coles, Downey, Slaman; Soskov] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff **s**_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_{G}^{(n)}$ is the n-th jump degree of G.

A D A D A D A

Representing the principle countable ideals as co-spectra

Example.[Coles, Downey, Slaman; Soskov] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = \{\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}\}.$
- The co-degree of G is **s**_G.
- G has a degree iff **s**_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some *G*.

Representing non-principle countable ideals as co-spectra

Theorem.[Soskov] Every countable ideal is the co-spectrum of a structure.

< 回 > < 三 > < 三 >

Spectra with a countable base

Definition. Let $\mathcal{B}\subseteq\mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

< 回 > < 回 > < 回 >

Spectra with a countable base

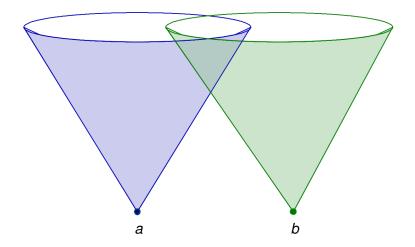
Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. A structure \mathfrak{A} has e-degree if and only if $DS(\mathfrak{A})$ has a countable base.

周レイモレイモ

An upwards closed set of degrees which is not a degree spectra of a structure



The minimal pair theorem

Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree **b** there exists a structure $\mathfrak{A}_{\mathbf{b}}$ s. t. $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x}\}$. Hence

Corollary.[*Rozinas*] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \ge \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

1 If
$$\mathbf{a} \in I$$
 then $\mathbf{a} <_e \mathbf{q}$.

2 If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

< ロ > < 同 > < 回 > < 回 >

Properties of the quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist uncountably many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Proposition. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[*McEvoy*] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

A (10) A (10)

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to \mathfrak{A} degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

< 回 > < 回 > < 回 >

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. Moschovakis' extension of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$. Let L and R be the decoding functions.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}, G_L, G_R).$$

Let $K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_{e}(x)) \}.$ Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem. [Soskov, A. Soskova] $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$.

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

一日

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $DS(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Does there exist a structure \mathfrak{M} such that $DS_{\alpha}(\mathfrak{M}) = DS(\mathfrak{A})$?

Theorem.[Soskov, A. Soskova] Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

一日、

The jump inversion theorem

Remark.

- 2009 Montalbán, Notes on the jump of a structure.
- 2009 Stukachev, A jump inversion theorem for the semilattices of Sigma-degrees.
- 2006 Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, Enumerations in computable structure theory.
- 2013 Vatev, Another Jump Inversion Theorem for Structures

A B b 4 B b

The jump inversion theorem - a negative solution

Theorem.[Soskov 2013] There is a structure \mathfrak{A} with $DS(\mathfrak{A}) \subseteq \{\mathbf{b} \mid \mathbf{0}^{(\omega)} \leq \mathbf{b}\}$ for which there is no structure \mathfrak{M} with $DS_{\omega}(\mathfrak{M}) = DS(\mathfrak{A})$.

Every member of $\mathbf{a} \in CS_{\omega}(\mathfrak{M})$ is bounded by a total degree \mathbf{b} , which is also a member of $CS_{\omega}(\mathfrak{M})$.

一日