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Degree spectra

Definition. Let A be a countable structure. The spectrum of A is the
set of Turing degrees

Sp(A) = {a | a computes the diagram of an isomorphic copy on N of A}.

For α < ωCK
1 the α-th jump spectrum of A is the set

Spα(A) = {a(α) | a ∈ Sp(A)}.
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An example

Consider a non-trivial group G ⊆ Q.
For every a 6= 0 element of G and every prime number p set

hp(a) =

{
k if k is the greatest number such that pk |a in G,
∞ if pk |a in G for all k.

Let p0,p1, . . . be the standard enumeration of the prime numbers and
set

Sa(G) = {〈i , j〉 : j ≤ hpi (a)}.

If a and b are non-zero elements of G, then Sa(G) ≡e Sb(G).
Denote by dG = de(Sa(G)), for some non-zero element a of G.

Proposition. Sp(G) = {b | b is total & dG ≤e b}.
Sp1(G) = {b | d′G ≤e b}.
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The jump inversion theorem

Let α < ωCK
1 and A be a countable structure such that all elements of

Sp(A) are above 0(α).

Does there exist a structure M such that Spα(M) = Sp(A)?
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Jump inversion theorem

Theorem.[A. Soskova, I. Soskov] Every jump spectrum is a spectrum
of a structure, i.e. for every countable structure A there is a structure
B such that Sp1(A) = Sp(B).

Theorem.[A. Soskova, I. Soskov] Let A and C be countable structures
and Sp(A) ⊆ Sp1(C). There exists a structure B such that
Sp(A) = Sp1(B) and Sp(B) ⊆ Sp(C).
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The ω case

In one of his last papers I. Soskov provides a negative solution to the
ω-jump inversion problem for degree spectra of structures.
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The jump inversion theorem - a negative solution

Theorem.[Soskov] There is a structure A with Sp(A) ⊆ {b | 0(ω) ≤ b}
for which there is no structure M with Spω(M) = Sp(A).
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Turing reducibility

Let A ⊆ N.
Denote by ϕB

e the Turing computable function by a program with code
e with oracle A.

Definition. A ≤T B if A = ϕB
e .

Definition. A ≡T B ⇐⇒ A ≤T B & B ≤T A.

Definition.
dT (A) = {B | B ≡T A}.

Definition. A⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.
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The Turing jump

DT = (DT ,≤,⊕,0T ) is an upper semi-lattice, where 0T = dT (∅).

Definition. The Turing jump of the set A:
JT (A) = KA = {x | x ∈ dom(ϕA

x )}.

A ≤T B ⇒ JT (A) ≤T JT (A).

Definition. (dT (A))′ = dT (JT (A)).

Since A <T KA, but KA 6≤T A, then dT (A) < dT (A)′.
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Enumeration reducibility

Definition. Given two sets of natural numbers X and Y , say that X is
enumeration reducible to Y (X ≤e Y ) if for some e, X = We(Y ), i.e.

(∀x)(x ∈ X ⇐⇒ (∃v)(〈x , v〉 ∈We ∧ Dv ⊆ Y )).

Definition. Let X ≡e Y if X ≤e Y and Y ≤e X .
The enumeration degree of X is de(X ) = {Y ⊆ N | X ≡e Y}.
By De we shall denote the set of all enumeration degrees.
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The enumeration reducibility

Definition. Given a set X ⊆ N, denote by X+ = X ⊕ (N \ X ).
A set X is called total iff X ≡e X+.

Theorem. For any sets X and Y :
(i) X is c.e. in Y iff X ≤e Y+.
(ii) X ≤T Y iff X+ ≤e Y+.

Theorem.[Selman] X ≤e Y iff for all total Z

(Y ≤e Z ⇒ X ≤e Z ).
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The enumeration jump

Definition. For any X ⊆ N set Je(X ) = {〈e, x〉 | x ∈We(X )}.
The enumeration jump X ′ of X is the set Je(X )+.

JT (X )+ ≡e (X+)′.
X ′ ≤T (X+)′ ≤T JT (X ).
for total X , X ′ ≡T JT (X ).
The enumeration jump of an e-degree is always a total degree and
agrees with the Turing jump under the standard embedding
ι : DT → De by ι(dT (X )) = de(X+).
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Enumeration reducibility of sequences of sets

Definition. Let X = {Xn}n<ω and Y = {Yn}n<ω be sequences of sets
of natural numbers. Then X is enumeration reducible to Y (X ≤e Y) if
for all n, Xn ≤e Yn uniformly in n. In other words, if there exists a
computable function µ such that for all n, Xn = Wµ(n)(Yn).

Definition. Let X = {Xn}n<ω be a sequence of sets of natural
numbers. The jump sequence P(X ) = {Pn(X )}n<ω of X is defined by
induction:

(i) P0(X ) = X0;
(ii) Pn+1(X ) = Pn(X )′ ⊕ Xn+1.
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Enumeration reducibility of sequences of sets

By Pω(X ) we shall denote the set
⊕

n Pn(X ).
Clearly X ≤e P(X ) and hence

⊕
n Xn ≤e Pω(X ).

Proposition. For all sequences X of sets of natural numbers the set
Pω(X ) is total.

Proposition. Let X = {Xn}n<ω be a sequence of sets of natural
numbers, M ⊆ N and X ≤e {M(n)}n<ω. Then P(X ) ≤e {M(n)}n<ω.
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Co-spectra of structures

Definition. Let M be a countable structure and α < ωCK
1 . The α-th

co-spectrum of M is the set

CoSpα(M) = {a | a ∈ De ∧ (∀b ∈ Spα(M))(a ≤e b)}.
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Computable Σc
α formulas

Let L be the language of the structure M and α < ωCK
1 . The

computable Σc
α formulas in L are defined inductively:

A computable Σc
0 (Πc

0) formula is a finitary quantifier-free formula
in L:
A computable Σc

α formula Φ(X ) is a disjunction of c.e. set of
formulas of the form

(∃Y )Ψ(X ,Y )

Ψ is a finite conjunction of Σc
β and Πc

β formulas for β < α.
Πc
α formulas are the negations of the Σc

α formulas.
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Σc
α definable sets on M

Definition. Let α < ωCK
1 . A subset R of N is Σc

α definable in M if there
exist a computable function γ taking as values codes of computable Σc

α

infinitary formulas Fγ(x) and finitely many parameters t1, . . . , tm of |M|
such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

Theorem.[Ash,Knight,Mannase,Slaman][Soskov] Let α < ωCK
1 . Then

1 If α < ω then a ∈ CoSpα(M) if and only if all elements of a are
Σc
α+1 definable in M.

2 If ω ≤ α then a ∈ CoSpα(M) if and only if all elements of a are Σc
α

definable in M.
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A property of the ω co-spectra

Theorem. Let M be a countable structure and a ∈ CoSpω(M). Then
there exists a total enumeration degree b such that a ≤e b and
b ∈ CoSpω(M),
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A property of the ω co-spectra

Proof.
Fix an element R of a ∈ CoSpω(M).
R is Σc

ω definable in M and hence there exists a computable function γ
and parameters t1, . . . , tm of |M| such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

Fγ(x) is a c.e. disjunction of computable Σc
n+1 infinitary formulae.

Hence there exists a computable function δ(n, x) such that for all n and
x , δ(n, x) yields a code of some computable Σc

n+1 infinitary formula
Fδ(n,x) and

x ∈ R ⇐⇒ (∃n)(M |= Fδ(n,x)(t1, . . . , tm)).
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A property of the ω co-spectra
Proof.
For each n ∈ N denote by

Rn = {x | x ∈ N ∧M |= Fδ(n,x)(t1, . . . , tm)}.

Let B be the diagram of some isomorphic copy B of M on the natural
numbers and let κ be an isomorphism from M to B and
x1 = κ(t1), . . . , xm = κ(tm). Then

x ∈ Rn ⇐⇒ B |= Fδ(n,x)(x1, . . . , xm).

Hence
P({Rn}n<ω) ≤e {B(n)}n<ω uniformly in n.

Thus
Pω({Rn}n<ω) ≤e B(ω).
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A property of the ω co-spectra

Proof.
Set b = de(Pω({Rn}n<ω)).

b ∈ CoSpω(M) since Pω({Rn}n<ω) ≤e B(ω) for any isomorphic
copy B of M;
b is a total degree since b = de(Pω({Rn}n<ω));
a ≤e b since R =

⊕
n Rn ≤e Pω({Rn}n<ω).
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A negative solution for the ω-jump inversion problem

Let Y be a set which is quasi-minimal above ∅(ω), i.e. ∅(ω) <e Y
and if X is a total set and X ≤e Y then X ≤e ∅(ω), e.g.
Y = ∅(ω) ⊕G, where G is one-generic relatively ∅(ω).
de(Y ) does not contain any total set.

Let CoSp(A) = {a | a ≤e de(Y )}. Then Sp(A) ⊆ {b | 0(ω) ≤T b}.
Assume that there exists a countable structure M such that
Spω(M) = Sp(A). Then CoSpω(M) = CoSp(A).
Hence there exists a total degree b in CoSp(A) such that
de(Y ) ≤ b ≤ de(Y ).
A contradiction.

Theorem. If Y is quasi-minimal above ∅(ω) and A is a structure with
CoSp(A) = {a | a ≤e de(Y )} then there is no structure M with
Spω(M) = Sp(A).
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A structure A with CoSp(A) = {a | a ≤e de(Y )}

Consider a non-trivial group G ⊆ Q.
For every a 6= 0 element of G and every prime number p set

hp(a) =

{
k if k is the greatest number such that pk |a in G,
∞ if pk |a in G for all k.

Let p0,p1, . . . be the standard enumeration of the prime numbers and
set

Sa(G) = {〈i , j〉 : j ≤ hpi (a)}.

If a and b are non-zero elements of G, then Sa(G) ≡e Sb(G).
Denote by dG = de(Sa(G)), for some non-zero element a of G.
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A structure A with CoSp(A) = {a | a ≤e de(Y )}

Proposition.[Coles, Downey, Slaman, Soskov]
Sp(G) = {b | b is total & dG ≤e b}.

Corollary. CoSp(G) = {a | a ≤e dG}.

Proof.
Clearly a ∈ CoSp(G) if and only if for all total b, dG ≤e b⇒ a ≤e b.
According Selman’s Theorem the last is equivalent to a ≤e dG.
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A structure A with CoSp(A) = {a | a ≤e de(Y )}

Consider the set

S = {〈i , j〉 : (j = 0) ∨ (j = 1 & i ∈ Y )}.

Clearly S ≡e Y.
Let G be the least subgroup of Q containing the set

{1/pj
i : 〈i , j〉 ∈ S}.

Then 1 ∈ G and S1(G) = S. So, dG = de(Y ).

Theorem. CoSp(G) = {a | a ≤e de(Y )}.
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Coding a set by a sequence of structures

Let S be a set of natural numbers, B1 and B2 be structures in the
same language. We say that the sequence of structures {Cn}n codes
the set S if

Cn =

{
B1, n ∈ S;
B2, n 6∈ S

The sequence {Cn}n is uniformly computable, if it consists of
computable copies of B1 and B2 and for each n we can effectively find
a computable index for Cn, although we do not know whether this index
corresponds to B1 and B2. If {Cn}n is a uniformly computable
sequence, then we say that {Cn}n strongly codes the set S.

Alexandra Sokova (Sofia University) The α-jump inversion theorem for spectra of structures
Logic and Analysis Seminar, Ghent University, September 2015 27

/ 40



Coding by a sequence of structures
Consider the sequence of structures:

Cn =

{
ω, n ∈ S;
ω∗, n 6∈ S

The following are equivalent:
the sequence {Cn}n strongly codes the set S;
the set S is ∆0

2.
The question what sets we can strongly coded by what kind of
structures was studied by Ash and Knight (1990).

Theorem.[Ash & Knight] If α is a computable successor ordinal and
B1 and B2 in L are computable and α friendly and such that and B1
and B2 satisfied the same Σβ sentences of L for each β < α then for
each ∆0

α set S there is a sequence consisting of copies of B1 and B2
which strongly codes S.

Alexandra Sokova (Sofia University) The α-jump inversion theorem for spectra of structures
Logic and Analysis Seminar, Ghent University, September 2015 28

/ 40



Jump inversion for a successor ordinal

Theorem.[Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006]
Let α be a computable successor ordinal and B1 and B2 in L are
computable and α-friendly structures and such that

B1 and B2 satisfy the same Σβ sentences of L for each β < α,
each Bi satisfies some Σc

α sentence that is not true in the other.
Then there is a graph N built from the sequences which strongly
encodes the initial predicates of A and
N has an X computable copy iff A has a ∆0

α(X ) computable copy.
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Jump inversion for a successor ordinal

S. Vatev considers a weak condition for the sequence {Cn}n to code
the set S - it is not necessarily α-friendly, but

∆0
α(
⊕

n

Cn) ≤T S.

Theorem.[S. Vatev,2013] For every computable successor ordinal
α ≥ 2 and a countable structure A such that Sp(A) ⊆ {a | 0(α) ≤T a}
there is a structure N such that:

Spα(N) = Sp(A);
(∀X ⊆ A)[X ∈ Σc

α+1(N) ⇐⇒ X ∈ Σc
1(A)].
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Spectra of sequences of structures

Let ~A = {An}n<ω be a sequence of countable structures.

Definition. The Relative spectrum of ~A is

RSp(~A) = {dT (B) | (∃f enumeration of A =
⋃

n An)

(∀n)(f−1(An) is c.e in B(n) uniformly in n)}.
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Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An. Let R ⊆ Am.

The n-th Marker’s extension Mn(R) of R
Let X0,X1, . . .Xn be new infinite disjoint countable sets - companions
to Mn(R).
Fix bijections: h0 : R → X0
h1 : (Am × X0) \Gh0 → X1 . . .
hn : (Am × X0 × X1 · · · × Xn−1) \Ghn−1 → Xn

Let Mn = Ghn and Mn(R) = (A ∪ X0 ∪ · · · ∪ Xn; X0,X1, . . .Xn,Mn).

If n is even then:
ā ∈ R ⇐⇒ ∃x0 ∈ X0[(ā, x0) ∈ Gh0 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1[(ā, x0, x1) /∈ Gh1 ] ⇐⇒

∃x0 ∈ X0∀x1 ∈ X1∃x2 ∈ X2[(ā, x0, x1, x2) ∈ Gh2 ] ⇐⇒ . . .

∃x0 ∈ X0∀x1 ∈ X1 . . . ∃xn ∈ Xn[Mn(ā, x0, . . . xn)].
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Marker’s extensions
Let ~A = {An}n<ω, and A =

⋃
n An. Let R ⊆ Am.

The n-th Marker’s extension Mn(R) of R
Let X0,X1, . . .Xn be new infinite disjoint countable sets - companions
to Mn(R).
Fix bijections: h0 : R → X0
h1 : (Am × X0) \Gh0 → X1 . . .
hn : (Am × X0 × X1 · · · × Xn−1) \Ghn−1 → Xn

Let Mn = Ghn and Mn(R) = (A ∪ X0 ∪ · · · ∪ Xn; X0,X1, . . .Xn,Mn).

If n is even then:
ā ∈ R ⇐⇒ ∃x0 ∈ X0[(ā, x0) ∈ Gh0 ] ⇐⇒
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Marker’s extensions

For A = (A; R1,R2, . . .Rm) and B = (B; P1,P2, . . .Pk ) let
A ∪B = (A ∪ B; R1,R2, . . .Rm,P1,P2, . . .Pk ).

Let ~A = {An}n<ω, and A =
⋃

n An.

1 For every n construct the n-th Markers’s extensions of An, Rn
1 ,

. . . Rn
mn with disjoint companions.

2 For every n let Mn(An) = Mn(An) ∪Mn(Rn
1) ∪ · · · ∪Mn(Rn

mn ).
3 Set M(~A) to be

⋃
n Mn(An) with one additional predicate for A.
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The positive answers [Soskov]

Theorem. Let M = M(~A) be the Marker’s extension of the sequence
of structures ~A. Then for every n:

Spn(M) ⊆ Sp(An).

Moreover

(∀X ⊆ A)[X ∈ Σc
n+1(M) ⇐⇒ X ∈ Σ+

n+1(A0, . . . ,An)]

Theorem. For every sequence of structures ~A = {An}, there is a
structure M = M(~A) the Marker’s extension of ~A, such that
RSp(~A) = Sp(M).

Theorem. Let M(~A) be the Marker’s extension of the sequence of
structures ~A = {B,A,B, . . . }, where B = {A,=}. Then
Sp1(M(~A)) = Sp(A).
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Omega enumeration reducibility

Definition. Given sequences X and Y of sets of natural numbers, say
that X is ω-enumeration reducible to Y (X ≤ω Y) if for all sets B, Y is
c.e. in B implies X is c.e. in B.

Theorem.[Soskov] X ≤ω Y if and only if for every n, Xn ≤e Pn(Y)
uniformly in n.
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Omega enumeration co-spectra

Definition. The ω-enumeration relative Co-spectrum of ~A is the set

OCoSp(~A) =
{

a ∈ Dω | ∀x ∈ RSp(~A)(a ≤ω x)
}
.

For any enumeration f of A denote by f−1(~A) = {f−1(An)}n<ω.

Proposition. For every sequence of sets of natural numbers
X = {Xn}n<ω:

1 dω(X ) ∈ OCoSp(~A) iff
2 X ≤ω {Pk (f−1(~A))}k<ω, for every enumeration f of A iff
3 each Xn is definable by a computable sequence of Σ+

n+1 formulae
with parameters uniformly in n.
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Embedding the ω-enumeration degrees into the
Muchnik degrees generated by spectra of structures

Consider the structure ~A obtained from a sequence of sets R = {Rn}:
A0 = (N; Gs,R0) and for all n ≥ 1, An = (N; Rn), where GS is the graph
of the successor function λx .x + 1.

For every enumeration g of ~A, R ≤ω g−1(~A).
Sp(MR) = {dT (B) | R is c.e. in B}.

R ≤ω Q ⇐⇒
{dT (B) | R is c.e. in B} ⊇ {dT (B) | Q is c.e. in B} ⇐⇒
Sp(MR) ⊇ Sp(MQ).
Let µ(dω(R)) = Sp(MR).
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Thank you!
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