The α -jump inversion theorem for spectra of structures

Alexandra Sokova¹

Faculty of Mathematics and Informatics Sofia University

Logic and Analysis Seminar, Ghent University, September 2015

¹This research was partially supported by FWO-BAS project and Sofia University Science Fund project 81, 2015

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Degree spectra

Definition. Let \mathfrak{A} be a countable structure. The *spectrum* of \mathfrak{A} is the set of Turing degrees

 $Sp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ computes the diagram of an isomorphic copy on } \mathbb{N} \text{ of } \mathfrak{A} \}.$

Logic and Analysis Seminar, Ghent Un

For $\alpha < \omega_1^{CK}$ the α -th jump spectrum of \mathfrak{A} is the set $Sp_{\alpha}(\mathfrak{A}) = \{\mathbf{a}^{(\alpha)} \mid \mathbf{a} \in Sp(\mathfrak{A})\}.$

An example

Consider a non-trivial group $G \subseteq Q$. For every $a \neq 0$ element of G and every prime number p set

 $h_p(a) = \begin{cases} k & \text{if } k \text{ is the greatest number such that } p^k | a \text{ in } G, \\ \infty & \text{if } p^k | a \text{ in } G \text{ for all } k. \end{cases}$

Let p_0, p_1, \ldots be the standard enumeration of the prime numbers and set

$$S_a(G) = \{\langle i, j \rangle : j \leq h_{p_i}(a)\}.$$

If a and b are non-zero elements of G, then $S_a(G) \equiv_e S_b(G)$. Denote by $\mathbf{d}_G = d_e(S_a(G))$, for some non-zero element a of G.

Proposition. $Sp(G) = \{\mathbf{b} \mid \mathbf{b} \text{ is total } \& \mathbf{d}_G \leq_e \mathbf{b}\}.$ $Sp_1(G) = \{\mathbf{b} \mid \mathbf{d}'_G \leq_e \mathbf{b}\}.$

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $Sp(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Logic and Analysis Seminar, Ghent Universit

/ 40

The jump inversion theorem

Let $\alpha < \omega_1^{CK}$ and \mathfrak{A} be a countable structure such that all elements of $Sp(\mathfrak{A})$ are above $\mathbf{0}^{(\alpha)}$.

Logic and Analysis Seminar, Ghent Univer

Does there exist a structure \mathfrak{M} such that $Sp_{\alpha}(\mathfrak{M}) = Sp(\mathfrak{A})$?

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, **136**, 219-246.

Logic and Analysis Seminar, Ghent Univer-

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136, 219-246.
- 2007 A. Soskova, A Jump Inversion Theorem for the Degree Spectra, CiE 2007, Siena, LNCS, 4497, 716-726.
- 2007 A. Soskova and I. Soskov, Jump spectra of abstract structures, Proceedings of PLS6, 2007, Volos
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, **19**, 199-215.

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, **136**, 219-246.
- 2007 A. Soskova, A Jump Inversion Theorem for the Degree Spectra, CiE 2007, Siena, LNCS, 4497, 716-726.
- 2007 A. Soskova and I. Soskov, Jump spectra of abstract structures, Proceedings of PLS6, 2007, Volos
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, **19**, 199-215.
- **2009 A. Montalban**, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.

- 2005 S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, **136**, 219-246.
- 2007 A. Soskova, A Jump Inversion Theorem for the Degree Spectra, CiE 2007, Siena, LNCS, 4497, 716-726.
- 2007 A. Soskova and I. Soskov, Jump spectra of abstract structures, Proceedings of PLS6, 2007, Volos
- 2009 A. Soskova and I. Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, **19**, 199-215.
- **2009 A. Montalban**, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372-378.
- 2009 A. I. Stukachev, A Jump Inversion Theorem for the Semilattice of Sigma-Degrees, Siberian Advances in Mathematics, 20, 68-74.

Jump inversion theorem

Theorem.[*A.* Soskova, *I.* Soskov] Every jump spectrum is a spectrum of a structure, i.e. for every countable structure \mathfrak{A} there is a structure \mathfrak{B} such that $Sp_1(\mathfrak{A}) = Sp(\mathfrak{B})$.

Theorem.[*A.* Soskova, *I.* Soskov] Let \mathfrak{A} and \mathfrak{C} be countable structures and $Sp(\mathfrak{A}) \subseteq Sp_1(\mathfrak{C})$. There exists a structure \mathfrak{B} such that $Sp(\mathfrak{A}) = Sp_1(\mathfrak{B})$ and $Sp(\mathfrak{B}) \subseteq Sp(\mathfrak{C})$.

In one of his last papers I. Soskov provides a negative solution to the ω -jump inversion problem for degree spectra of structures.

Logic and Analysis Seminar, Ghent University

40

The jump inversion theorem - a negative solution

Theorem.[Soskov] There is a structure \mathfrak{A} with $Sp(\mathfrak{A}) \subseteq \{\mathbf{b} \mid \mathbf{0}^{(\omega)} \leq \mathbf{b}\}$ for which there is no structure \mathfrak{M} with $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A})$.

Logic and Analysis Seminar, Ghent Univer

/ 40

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Turing reducibility

Let $A \subseteq \mathbb{N}$. Denote by φ_e^B the Turing computable function by a program with code *e* with oracle *A*.

Definition. $A \leq_T B$ if $A = \varphi_e^B$.

Definition. $A \equiv_T B \iff A \leq_T B \& B \leq_T A$.

Definition.

$$d_T(A) = \{B \mid B \equiv_T A\}.$$

Definition. $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$

The Turing jump

 $D_T = (D_T, \leq, \oplus, \mathbf{0}_T)$ is an upper semi-lattice, where $\mathbf{0}_T = d_T(\emptyset)$.

Definition. The Turing jump of the set *A*: $J_T(A) = K_A = \{x \mid x \in \operatorname{dom}(\varphi_x^A)\}.$

 $A \leq_T B \Rightarrow J_T(A) \leq_T J_T(A).$

Definition. $(d_T(A))' = d_T(J_T(A)).$

Since $A <_T K_A$, but $K_A \not\leq_T A$, then $d_T(A) < d_T(A)'$.

Logic and Analysis Seminar, Ghent University

/ 40

Enumeration reducibility

Definition. Given two sets of natural numbers *X* and *Y*, say that *X* is enumeration reducible to $Y (X \leq_e Y)$ if for some $e, X = W_e(Y)$, i.e.

 $(\forall x)(x \in X \iff (\exists v)(\langle x, v \rangle \in W_e \land D_v \subseteq Y)).$

Definition. Let $X \equiv_e Y$ if $X \leq_e Y$ and $Y \leq_e X$. The enumeration degree of X is $d_e(X) = \{Y \subseteq \mathbb{N} \mid X \equiv_e Y\}$. By D_e we shall denote the set of all enumeration degrees.

The enumeration reducibility

Definition. Given a set $X \subseteq \mathbb{N}$, denote by $X^+ = X \oplus (\mathbb{N} \setminus X)$. A set *X* is called *total* iff $X \equiv_e X^+$.

Theorem. For any sets X and Y: (i) X is c.e. in Y iff $X \leq_e Y^+$. (ii) $X \leq_T Y$ iff $X^+ \leq_e Y^+$.

Theorem.[Selman] $X \leq_e Y$ iff for all total Z

$$(Y \leq_{e} Z \Rightarrow X \leq_{e} Z).$$

Logic and Analysis Seminar, Ghent Universit

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

The enumeration jump

Definition. For any $X \subseteq \mathbb{N}$ set $J_e(X) = \{ \langle e, x \rangle \mid x \in W_e(X) \}$. The *enumeration jump* X' of X is the set $J_e(X)^+$.

- $J_T(X)^+ \equiv_e (X^+)'$.
- $X' \leq_T (X^+)' \leq_T J_T(X).$
- for total X, $X' \equiv_T J_T(X)$.
- The enumeration jump of an e-degree is always a total degree and agrees with the Turing jump under the standard embedding
 ι : D_T → D_e by *ι*(d_T(X)) = d_e(X⁺).

Enumeration reducibility of sequences of sets

Definition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ and $\mathcal{Y} = \{Y_n\}_{n < \omega}$ be sequences of sets of natural numbers. Then \mathcal{X} is enumeration reducible to \mathcal{Y} ($\mathcal{X} \leq_e \mathcal{Y}$) if for all $n, X_n \leq_e Y_n$ uniformly in n. In other words, if there exists a computable function μ such that for all $n, X_n = W_{\mu(n)}(Y_n)$.

Definition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ be a sequence of sets of natural numbers. The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n < \omega}$ of \mathcal{X} is defined by induction:

Logic and Analysis Seminar, Ghent Univer

- (i) $\mathcal{P}_0(\mathcal{X}) = X_0;$
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}.$

Enumeration reducibility of sequences of sets

By $\mathcal{P}_{\omega}(\mathcal{X})$ we shall denote the set $\bigoplus_{n} \mathcal{P}_{n}(\mathcal{X})$. Clearly $\mathcal{X} \leq_{e} \mathcal{P}(\mathcal{X})$ and hence $\bigoplus_{n} X_{n} \leq_{e} \mathcal{P}_{\omega}(\mathcal{X})$.

Proposition. For all sequences \mathcal{X} of sets of natural numbers the set $\mathcal{P}_{\omega}(\mathcal{X})$ is total.

Proposition. Let $\mathcal{X} = \{X_n\}_{n < \omega}$ be a sequence of sets of natural numbers, $M \subseteq \mathbb{N}$ and $\mathcal{X} \leq_{e} \{M^{(n)}\}_{n < \omega}$. Then $\mathcal{P}(\mathcal{X}) \leq_{e} \{M^{(n)}\}_{n < \omega}$.

Logic and Analysis Seminar, Ghent Unive

Co-spectra of structures

Definition. Let \mathfrak{M} be a countable structure and $\alpha < \omega_1^{CK}$. The α -th co-spectrum of \mathfrak{M} is the set

$$CoSp_{\alpha}(\mathfrak{M}) = \{ \mathbf{a} \mid \mathbf{a} \in D_{e} \land (\forall \mathbf{b} \in Sp_{\alpha}(\mathfrak{M})) (\mathbf{a} \leq_{e} \mathbf{b}) \}.$$

Logic and Analysis Seminar, Ghent Univer-

40

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Computable Σ^{c}_{α} formulas

Let *L* be the language of the structure \mathfrak{M} and $\alpha < \omega_1^{CK}$. The computable Σ_{α}^c formulas in *L* are defined inductively:

- A computable Σ^c₀ (Π^c₀) formula is a finitary quantifier-free formula in L:
- A computable Σ^c_α formula Φ(X) is a disjunction of c.e. set of formulas of the form

 $(\exists \overline{Y}) \Psi(\overline{X},\overline{Y})$

 Ψ is a finite conjunction of Σ_{β}^{c} and Π_{β}^{c} formulas for $\beta < \alpha$.

• Π_{α}^{c} formulas are the negations of the Σ_{α}^{c} formulas.

Σ^{c}_{α} definable sets on \mathfrak{M}

Definition. Let $\alpha < \omega_1^{CK}$. A subset R of \mathbb{N} is Σ_{α}^c definable in \mathfrak{M} if there exist a computable function γ taking as values codes of computable Σ_{α}^c infinitary formulas $F_{\gamma(x)}$ and finitely many parameters t_1, \ldots, t_m of $|\mathfrak{M}|$ such that

$$\mathbf{x} \in \mathbf{R} \iff \mathfrak{M} \models \mathcal{F}_{\gamma(\mathbf{x})}(t_1, \ldots, t_m).$$

Theorem.[Ash,Knight,Mannase,Slaman][Soskov] Let $\alpha < \omega_1^{CK}$. Then

- If $\alpha < \omega$ then $\mathbf{a} \in CoSp_{\alpha}(\mathfrak{M})$ if and only if all elements of \mathbf{a} are $\Sigma_{\alpha+1}^{c}$ definable in \mathfrak{M} .
- If ω ≤ α then a ∈ CoSp_α(𝔅) if and only if all elements of a are Σ^c_α definable in 𝔅.

Theorem. Let \mathfrak{M} be a countable structure and $\mathbf{a} \in CoSp_{\omega}(\mathfrak{M})$. Then there exists a total enumeration degree \mathbf{b} such that $\mathbf{a} \leq_{e} \mathbf{b}$ and $\mathbf{b} \in CoSp_{\omega}(\mathfrak{M})$,

Logic and Analysis Seminar, Ghent Univer

40

Proof.

Fix an element *R* of $\mathbf{a} \in CoSp_{\omega}(\mathfrak{M})$. *R* is Σ_{ω}^{c} definable in \mathfrak{M} and hence there exists a computable function γ and parameters t_{1}, \ldots, t_{m} of $|\mathfrak{M}|$ such that

$$x \in R \iff \mathfrak{M} \models F_{\gamma(x)}(t_1,\ldots,t_m).$$

 $F_{\gamma(x)}$ is a c.e. disjunction of computable Σ_{n+1}^c infinitary formulae. Hence there exists a computable function $\delta(n, x)$ such that for all n and x, $\delta(n, x)$ yields a code of some computable Σ_{n+1}^c infinitary formula $F_{\delta(n,x)}$ and

$$\mathbf{x} \in \mathbf{R} \iff (\exists \mathbf{n})(\mathfrak{M} \models \mathbf{F}_{\delta(\mathbf{n},\mathbf{x})}(t_1,\ldots,t_m)).$$

Proof.

For each $n \in \mathbb{N}$ denote by

$$R_n = \{ x \mid x \in \mathbb{N} \land \mathfrak{M} \models F_{\delta(n,x)}(t_1,\ldots,t_m) \}.$$

Let *B* be the diagram of some isomorphic copy \mathfrak{B} of \mathfrak{M} on the natural numbers and let κ be an isomorphism from \mathfrak{M} to \mathfrak{B} and $x_1 = \kappa(t_1), \ldots, x_m = \kappa(t_m)$. Then

$$x \in R_n \iff \mathfrak{B} \models F_{\delta(n,x)}(x_1,\ldots,x_m).$$

Hence

$$\mathcal{P}(\{R_n\}_{n<\omega}) \leq_e \{B^{(n)}\}_{n<\omega}$$
 uniformly in *n*.

Thus

$$\mathcal{P}_{\omega}(\{R_n\}_{n<\omega})\leq_{e}B^{(\omega)}.$$

Proof.

Set $\mathbf{b} = d_e(\mathcal{P}_{\omega}(\{R_n\}_{n < \omega})).$

- **b** $\in CoSp_{\omega}(\mathfrak{M})$ since $\mathcal{P}_{\omega}(\{R_n\}_{n<\omega}) \leq_{e} B^{(\omega)}$ for any isomorphic copy \mathfrak{B} of \mathfrak{M} ;
- **b** is a total degree since $\mathbf{b} = d_e(\mathcal{P}_{\omega}(\{R_n\}_{n < \omega}));$
- **a** \leq_e **b** since $R = \bigoplus_n R_n \leq_e \mathcal{P}_{\omega}(\{R_n\}_{n < \omega})$.

A negative solution for the ω -jump inversion problem

Let Y be a set which is quasi-minimal above Ø^(ω), i.e. Ø^(ω) <_e Y and if X is a total set and X ≤_e Y then X ≤_e Ø^(ω), e.g. Y = Ø^(ω) ⊕ G, where G is one-generic relatively Ø^(ω).

Logic and Analysis Seminar, Ghent Unive

• *d_e*(*Y*) does not contain any total set.

A negative solution for the ω -jump inversion problem

- Let Y be a set which is quasi-minimal above Ø^(ω), i.e. Ø^(ω) <_e Y and if X is a total set and X ≤_e Y then X ≤_e Ø^(ω), e.g. Y = Ø^(ω) ⊕ G, where G is one-generic relatively Ø^(ω).
- d_e(Y) does not contain any total set.
- Let $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$. Then $Sp(\mathfrak{A}) \subseteq \{ \mathbf{b} \mid \mathbf{0}^{(\omega)} \leq_T \mathbf{b} \}$.
- Assume that there exists a countable structure M such that Sp_ω(M) = Sp(A). Then CoSp_ω(M) = CoSp(A).
- Hence there exists a total degree b in CoSp(𝔅) such that d_e(Y) ≤ b ≤ d_e(Y). A contradiction.

Theorem. If *Y* is quasi-minimal above $\emptyset^{(\omega)}$ and \mathfrak{A} is a structure with $CoSp(\mathfrak{A}) = \{\mathbf{a} \mid \mathbf{a} \leq_e d_e(Y)\}$ then there is no structure \mathfrak{M} with $Sp_{\omega}(\mathfrak{M}) = Sp(\mathfrak{A}).$

A structure \mathfrak{A} with $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$

Consider a non-trivial group $G \subseteq Q$. For every $a \neq 0$ element of G and every prime number p set

 $h_p(a) = \begin{cases} k & \text{if } k \text{ is the greatest number such that } p^k | a \text{ in } G, \\ \infty & \text{if } p^k | a \text{ in } G \text{ for all } k. \end{cases}$

Let p_0, p_1, \ldots be the standard enumeration of the prime numbers and set

 $S_a(G) = \{\langle i, j \rangle : j \leq h_{\mathcal{P}_i}(a)\}.$

If a and b are non-zero elements of G, then $S_a(G) \equiv_e S_b(G)$. Denote by $\mathbf{d}_G = d_e(S_a(G))$, for some non-zero element a of G. A structure \mathfrak{A} with $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$

Proposition.[Coles, Downey, Slaman, Soskov] $Sp(G) = \{ \mathbf{b} \mid \mathbf{b} \text{ is total } \& \mathbf{d}_G \leq_e \mathbf{b} \}.$

Corollary. $CoSp(G) = \{ \mathbf{a} \mid \mathbf{a} \leq_e \mathbf{d}_G \}.$

Proof.

Clearly $\mathbf{a} \in CoSp(G)$ if and only if for all total \mathbf{b} , $\mathbf{d}_G \leq_e \mathbf{b} \Rightarrow \mathbf{a} \leq_e \mathbf{b}$. According Selman's Theorem the last is equivalent to $\mathbf{a} \leq_e \mathbf{d}_G$. A structure \mathfrak{A} with $CoSp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}$

Consider the set

$$S = \{ \langle i, j \rangle : (j = 0) \lor (j = 1 \& i \in Y) \}.$$

Clearly $S \equiv_e Y$. Let G be the least subgroup of Q containing the set

$$\{1/p_i^j:\langle i,j\rangle\in S\}.$$

Logic and Analysis Seminar, Ghent Univer

Then $1 \in G$ and $S_1(G) = S$. So, $\mathbf{d}_G = d_e(Y)$.

Theorem. $CoSp(G) = \{ \mathbf{a} \mid \mathbf{a} \leq_e d_e(Y) \}.$

Coding a set by a sequence of structures

Let *S* be a set of natural numbers, \mathfrak{B}_1 and \mathfrak{B}_2 be structures in the same language. We say that the sequence of structures $\{\mathfrak{C}_n\}_n$ codes the set *S* if

$$\mathfrak{L}_n = \left\{ egin{array}{cc} \mathfrak{B}_1, & n \in S; \ \mathfrak{B}_2, & n
ot\in S \end{array}
ight.$$

The sequence $\{\mathfrak{C}_n\}_n$ is **uniformly computable**, if it consists of computable copies of \mathfrak{B}_1 and \mathfrak{B}_2 and for each *n* we can effectively find a computable index for \mathfrak{C}_n , although we do not know whether this index corresponds to \mathfrak{B}_1 and \mathfrak{B}_2 . If $\{\mathfrak{C}_n\}_n$ is a uniformly computable sequence, then we say that $\{\mathfrak{C}_n\}_n$ **strongly codes** the set *S*.

Coding by a sequence of structures

Consider the sequence of structures:

$$\mathfrak{L}_{n} = \left\{ egin{array}{cc} \omega, & n \in S; \ \omega^{*}, & n
ot\in S \end{array}
ight.$$

The following are equivalent:

- the sequence $\{\mathfrak{C}_n\}_n$ strongly codes the set *S*;
- the set S is Δ_2^0 .

The question what sets we can strongly coded by what kind of structures was studied by Ash and Knight (1990).

Theorem.[Ash & Knight] If α is a computable successor ordinal and \mathfrak{B}_1 and \mathfrak{B}_2 in \mathcal{L} are computable and α friendly and such that and \mathfrak{B}_1 and \mathfrak{B}_2 satisfied the same Σ_β sentences of \mathcal{L} for each $\beta < \alpha$ then for each Δ^0_α set S there is a sequence consisting of copies of \mathfrak{B}_1 and \mathfrak{B}_2 which strongly codes S.

Jump inversion for a successor ordinal

Theorem.[Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, 2006] Let α be a computable successor ordinal and \mathfrak{B}_1 and \mathfrak{B}_2 in \mathcal{L} are computable and α -friendly structures and such that

• \mathfrak{B}_1 and \mathfrak{B}_2 satisfy the same Σ_β sentences of \mathcal{L} for each $\beta < \alpha$,

• each \mathfrak{B}_i satisfies some Σ^c_{α} sentence that is not true in the other.

Then there is a graph \mathfrak{N} built from the sequences which strongly encodes the initial predicates of \mathfrak{A} and \mathfrak{N} has an X computable copy iff \mathfrak{A} has a $\Delta^0_{\alpha}(X)$ computable copy.

Jump inversion for a successor ordinal

S. Vatev considers a weak condition for the sequence $\{\mathfrak{C}_n\}_n$ to code the set *S* - it is not necessarily α -friendly, but

$$\Delta^0_{\alpha}(\bigoplus_n \mathfrak{C}_n) \leq_T S.$$

Theorem.[*S.* Vatev,2013] For every computable successor ordinal $\alpha \ge 2$ and a countable structure \mathfrak{A} such that $Sp(\mathfrak{A}) \subseteq \{\mathbf{a} \mid \mathbf{0}^{(\alpha)} \le_T \mathbf{a}\}$ there is a structure \mathfrak{N} such that:

•
$$Sp_{\alpha}(\mathfrak{N}) = Sp(\mathfrak{A});$$

•
$$(\forall X \subseteq A)[X \in \Sigma_{\alpha+1}^{c}(\mathfrak{N}) \iff X \in \Sigma_{1}^{c}(\mathfrak{A})].$$

Spectra of sequences of structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$ be a sequence of countable structures.

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Logic and Analysis Seminar, Ghent Universit

/ 40

Spectra of sequences of structures

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$ be a sequence of countable structures.

Definition. The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$\begin{split} \operatorname{RSp}(\vec{\mathfrak{A}}) &= \{ d_T(B) \mid \quad (\exists f \text{ enumeration of } A = \bigcup_n A_n) \\ &\quad (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e in } B^{(n)} \text{ uniformly in } n) \}. \end{split}$$

Logic and Analysis Seminar, Ghent Univer

Marker's extensions Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Logic and Analysis Seminar, Ghent Universit

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, ..., X_n$ be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n).$

Logic and Analysis Seminar, Ghent Universit

/ 40

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n)$.

Logic and Analysis Seminar, Ghent Universit

/ 40

If *n* is even then:

 $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n)$.

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be new infinite disjoint countable sets - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$ $h_n : (A^m \times X_0 \times X_1 \dots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then: $\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1[(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$ $\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n[M_n(\bar{a}, x_0, \dots x_n)].$ Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of $x \in X_0$ (sofia University) (40)

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Logic and Analysis Seminar, Ghent University / 40

For
$$\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$$
 and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$, and $A = \bigcup_n A_n$.

/ 40

- For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$
- Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.
 - For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.

Logic and Analysis Seminar, Ghent Universit

/ 40

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

For $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k).$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

The positive answers [Soskov]

Theorem. Let $\mathfrak{M} = \mathfrak{M}(\mathfrak{A})$ be the Marker's extension of the sequence of structures \mathfrak{A} . Then for every *n*:

 $\operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n).$

Moreover

$$(\forall X \subseteq A)[X \in \Sigma_{n+1}^{c}(\mathfrak{M}) \iff X \in \Sigma_{n+1}^{+}(\mathfrak{A}_{0},\ldots,\mathfrak{A}_{n})]$$

Theorem. For every sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}$, there is a structure $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$ the Marker's extension of $\vec{\mathfrak{A}}$, such that $RSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M})$.

Theorem. Let $\mathfrak{M}(\vec{\mathfrak{A}})$ be the Marker's extension of the sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{B}, \mathfrak{A}, \mathfrak{B}, \dots\}$, where $\mathfrak{B} = \{A, =\}$. Then $\operatorname{Sp}_1(\mathfrak{M}(\vec{\mathfrak{A}})) = \operatorname{Sp}(\mathfrak{A})$.

Omega enumeration reducibility

Definition. Given sequences \mathcal{X} and \mathcal{Y} of sets of natural numbers, say that \mathcal{X} is ω -enumeration reducible to \mathcal{Y} ($\mathcal{X} \leq_{\omega} \mathcal{Y}$) if for all sets B, \mathcal{Y} is c.e. in B implies \mathcal{X} is c.e. in B.

Logic and Analysis Seminar, Ghent Univer

Omega enumeration reducibility

Definition. Given sequences \mathcal{X} and \mathcal{Y} of sets of natural numbers, say that \mathcal{X} is ω -enumeration reducible to \mathcal{Y} ($\mathcal{X} \leq_{\omega} \mathcal{Y}$) if for all sets B, \mathcal{Y} is c.e. in B implies \mathcal{X} is c.e. in B.

Logic and Analysis Seminar, Ghent Univer

Theorem.[Soskov] $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_n \leq_{e} \mathcal{P}_n(\mathcal{Y})$ uniformly in n.

Omega enumeration co-spectra

Definition. The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(ec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_\omega \mid orall \mathbf{x} \in \mathrm{RSp}(ec{\mathfrak{A}}) (\mathbf{a} \leq_\omega \mathbf{x})
ight\}.$$

Logic and Analysis Seminar, Ghent University

40

Omega enumeration co-spectra

Definition. The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(ec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_\omega \mid orall \mathbf{x} \in \mathrm{RSp}(ec{\mathfrak{A}}) (\mathbf{a} \leq_\omega \mathbf{x})
ight\}.$$

For any enumeration *f* of *A* denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition. For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$:

- 2 $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k < \omega}, \text{ for every enumeration } f \text{ of } A \text{ iff} \}$
- each X_n is definable by a computable sequence of \sum_{n+1}^+ formulae with parameters uniformly in *n*.

Logic and Analysis Seminar, Ghent U

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets $\mathcal{R} = \{R_n\}$: $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$, where G_s is the graph of the successor function $\lambda x.x + 1$.

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets $\mathcal{R} = \{R_n\}$: $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$, where G_s is the graph of the successor function $\lambda x.x + 1$.

• For every enumeration g of $\vec{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets $\mathcal{R} = \{R_n\}$: $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$, where G_s is the graph of the successor function $\lambda x.x + 1$.

- For every enumeration g of $\vec{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{ d_T(B) \mid \mathcal{R} \text{ is c.e. in } B \}.$

Consider the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets $\mathcal{R} = \{R_n\}$: $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$, where G_s is the graph of the successor function $\lambda x.x + 1$.

• For every enumeration g of $\vec{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

•
$$\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{ d_T(B) \mid \mathcal{R} \text{ is c.e. in } B \}.$$

 $\begin{array}{l} \mathcal{R} \leq_{\omega} \mathcal{Q} \iff \\ \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\} \supseteq \{d_{\mathcal{T}}(B) \mid \mathcal{Q} \text{ is c.e. in } B\} \iff \\ \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) \supseteq \operatorname{Sp}(\mathfrak{M}_{\mathcal{Q}}). \\ \operatorname{Let} \mu(d_{\omega}(\mathcal{R})) = \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}). \end{array}$

 Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.:
 Enumerations in computable structure theory.
 Annals of Pure and Applied Logic 136 (2005) 219–246

Soskova, A., Soskov, I.:

A jump inversion theorem for the degree spectra. Journal of Logic and Computation **19** (2009) 199–215

I. N. Soskov

A note on ω -jump inversion of degree spectra of structures. LNCS, **7921** (2013) 365–370

I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, 23 (6), (2013) 1335–1367.

Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable structures. Ann. Pure Appl. Logic **42** (1989) 195–205

Soskov I. N.,

Degree spectra and co-spectra of structures. Ann. Univ. Sofia **96** (2003) 45–68

S. Vatev

Another Jump Inversion Theorem for Structures *LNCS*, **7921 (2013) 414-424.**

Logic and Analysis Seminar, Ghent Unive

40

Thank you!

Alexandra Sokova (Sofia University) The α -jump inversion theorem for spectra of s

Logic and Analysis Seminar, Ghent University / 40