Quasi-minimal degrees for degree spectra Spring Scientific Conference 16.03.2013

Alexandra Soskova ${ }^{1}$

${ }^{1}$ This research was partially supported by Sofia University Science Fund and a NSF grant DMS- 1101123.

Enumeration reducibility

Definition. We say that $\Gamma: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is an enumeration operator iff for some c.e. set W_{i} for each $B \subseteq \mathbb{N}$

$$
\Gamma(B)=\left\{x \mid(\exists D)\left[\langle x, D\rangle \in W_{i} \& D \subseteq B\right]\right\}
$$

Definition. The set A is enumeration reducible to the set B $\left(A \leq_{e} B\right)$, if $A=\Gamma(B)$ for some e-operator Γ.
The enumeration degree of A is $d_{e}(A)=\left\{B \subseteq \mathbb{N} \mid A \equiv_{e} B\right\}$. The set of all enumeration degrees is denoted by \mathcal{D}_{e}.

- $\mathbf{0}_{\mathbf{e}}=d_{e}(\emptyset)=\{W \mid W$ is c.e. $\}$.
- $d_{e}(A) \vee d_{e}(B)=d_{e}(A \oplus B)$.
- $\mathcal{D}_{e}=\left\langle\mathcal{D}_{e} ; \leq ; \oplus ; \mathbf{0}_{\mathbf{e}}\right\rangle$ is an upper semi-lattice with least element.

The enumeration reducibility

Definition. Given a set A, denote by $A^{+}=A \oplus(\mathbb{N} \backslash A)$. A set A is called total iff $A \equiv_{e} A^{+}$.

Theorem. For any sets A and B :
(1) A is c.e. in B iff $A \leq_{e} B^{+}$.
(2) $A \leq_{T} B$ iff $A^{+} \leq_{e} B^{+}$.

Theorem.[Selman] $\mathbf{a} \leq_{e} \mathbf{b}$ iff for all total $\mathbf{c}\left(\mathbf{b} \leq_{e} \mathbf{c} \Rightarrow \mathbf{a} \leq_{e} \mathbf{c}\right)$.

The enumeration jump

Definition. For any set A let $K_{A}=\left\{\langle i, x\rangle \mid x \in \Gamma_{i}(A)\right\}$. Set $A^{\prime}=K_{A}^{+}$.

- Let $d_{e}(A)^{\prime}=d_{e}\left(A^{\prime}\right)$.
- The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota: \mathcal{D}_{T} \rightarrow \mathcal{D}_{e}$ by $\iota\left(d_{T}(A)\right)=d_{e}\left(A^{+}\right)$.
- A is \sum_{n+1}^{B} if $A \leq_{e}\left(B^{+}\right)^{(n)}$.

Theorem.[Soskov] For every $\mathrm{x} \in \mathcal{D}_{e}$ there exists a total e-degree $\mathbf{a} \geq \mathbf{x}$, such that $\mathbf{a}^{\prime}=\mathbf{x}^{\prime}$.

Degree spectra

Let $\mathfrak{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a countable structure. An enumeration of \mathfrak{A} is every one to one mapping of \mathbb{N} onto A.

Definition. The degree spectrum of \mathfrak{A} is the set of all Turing degrees which computes the diagram of an isomorphic copy of \mathfrak{A}.

Given an enumeration f of \mathfrak{A} and a subset of B of $A^{\text {a }}$, let

$$
\begin{aligned}
f^{-1}(B)=\left\{\left\langle x_{1}, \ldots, x_{a}\right\rangle \mid\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in B\right\} . \\
f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right)^{+} \oplus \cdots \oplus f^{-1}\left(R_{k}\right)^{+} .
\end{aligned}
$$

Degree spectra

Definition. The degree spectrum of \mathfrak{A} is the set

$$
D S(\mathfrak{A})=\left\{\mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{T} \&(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}
$$

If \mathbf{a} is the least element of $D S(\mathfrak{A})$ then we call a the degree of \mathfrak{A}.

Co-spectra

Definition.[Soskov] The co-spectrum of \mathfrak{A} is the set

$$
C S(\mathfrak{A})=\left\{\mathbf{b}: \mathbf{b} \in \mathcal{D}_{e} \&(\forall \mathbf{a} \in D S(\mathfrak{A}))\left(\mathbf{b} \leq_{e} \mathbf{a}\right)\right\}
$$

If \mathbf{a} is the greatest element of $\operatorname{CS}(\mathfrak{A})$ then we call a the co-degree of \mathfrak{A}.
Soskov proved that every countable ideal of enumeration degrees is a co-spectrum of a structure.

Definition. A set B of natural numbers is admissible in \mathfrak{A} if for every enumeration f of $\mathfrak{A}, B \leq_{e} f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in C S(\mathfrak{A})$ iff $\mathbf{a}=d_{e}(B)$ for some admissible in \mathfrak{A} set B.

Every finite one-to-one mapping of \mathbb{N} into A is called a finite part. For every finite part τ and natural numbers e, x, let

Definition. An enumeration f of \mathfrak{A} is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_{e}(x) \vee \tau \Vdash \neg F_{e}(x)$

Definition. A set B of natural numbers is admissible in \mathfrak{A} if for every enumeration f of $\mathfrak{A}, B \leq_{e} f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in C S(\mathfrak{A})$ iff $\mathbf{a}=d_{e}(B)$ for some admissible in \mathfrak{A} set B.

Every finite one-to-one mapping of \mathbb{N} into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$
\begin{aligned}
& \tau \Vdash F_{e}(x) \Longleftrightarrow x \in \Gamma_{e}\left(\tau^{-1}(\mathfrak{A})\right) \text { and } \\
& \tau \Vdash \neg F_{e}(x) \Longleftrightarrow(\forall \rho \supseteq \tau)\left(\rho \nVdash F_{e}(x)\right) .
\end{aligned}
$$

Definition. An enumeration f of \mathfrak{A} is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_{e}(x) \vee \tau \Vdash \neg F_{e}(x)$.

Forcing definable in \mathfrak{A} sets

Definition. A set B of natural numbers is forcing definable in the structure \mathfrak{A} iff there exist a finite part δ and a natural number es.t.

$$
B=\left\{x \mid(\exists \tau \supseteq \delta)\left(\tau \Vdash F_{e}(x)\right)\right\} .
$$

Denote by $D(\mathfrak{A})$ the diagram of \mathfrak{A}

Proposition. Let $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathfrak{A}. There exists a 1 -generic enumeration f of \mathfrak{A} satisfying the following conditions:
(1) $f \leq_{e} D(\mathfrak{A})^{\prime}$

(- $B_{i} \not z_{e} f^{-1}(\mathfrak{R})$ for every $i \in \mathbb{N}$.

Definition. A set B of natural numbers is forcing definable in the structure \mathfrak{A} iff there exist a finite part δ and a natural number e s.t.

$$
B=\left\{x \mid(\exists \tau \supseteq \delta)\left(\tau \Vdash F_{e}(x)\right)\right\} .
$$

Denote by $D(\mathfrak{A})$ the diagram of \mathfrak{A}.
Proposition. Let $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathfrak{A}. There exists a 1 -generic enumeration f of \mathfrak{A} satisfying the following conditions:
(1) $f \leq_{e} D(\mathfrak{A})^{\prime}$.
(2) $f^{-1}(\mathfrak{A})^{\prime} \leq_{e} f \oplus D(\mathfrak{A})^{\prime}$.
(3) $B_{i} Z_{e} f^{-1}(\mathfrak{A})$ for every $i \in \mathbb{N}$.

The formally definable sets on \mathfrak{A}

Definition. A Σ_{1}^{c} formula with free variables among W_{1}, \ldots, W_{r} is a c.e. disjunction of existential formulae of the form
$\exists Y_{1} \ldots \exists Y_{k} \theta(\bar{Y}, \bar{W})$, where θ is a finite conjunction of atomic and negated atomic formulae.

Definition. A set $B \subseteq \mathbb{N}$ is formally definable on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \mathbb{N}} \Phi_{\gamma(x)}$ is a Σ_{1}^{c} formula with free variables among W_{1}, \ldots, W_{r} and elements t_{1}, \ldots, t_{r} of A such that the following equivalence holds:

$$
x \in B \Longleftrightarrow \mathfrak{A} \mid=\Phi_{\gamma(x)}\left(W_{1} / t_{1}, \ldots, W_{r} / t_{r}\right)
$$

Normal form

Theorem. Let $B \subseteq \mathbb{N}$. Then
(1) B is admissible in $\mathfrak{A}\left(d_{e}(B) \in C S(\mathfrak{A})\right)$ iff
(2) B is forcing definable on \mathfrak{A} iff
(3) B is formally definable on \mathfrak{A}.

Corollary.If \mathfrak{B} is an isomorphic structure of \mathfrak{A} then a set $X \subseteq \mathbb{N}$ is forcing definable on \mathfrak{A} if and only if X is forcing definable on \mathfrak{B}.

Jump spectra

Definition. The nth jump spectrum of \mathfrak{A} is the set

$$
D S_{n}(\mathfrak{A})=\left\{\mathbf{a}^{(n)} \mid \in D S(\mathfrak{A})\right\} .
$$

Definition. The nth jump co-spectrum $C S_{n}(\mathfrak{A})$ of \mathfrak{A} is the set

$$
C S_{n}(\mathfrak{A})=\left\{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{e} \&\left(\forall \mathbf{a} \in D S_{n}(\mathfrak{A})\right)(\mathbf{b} \leq \mathbf{a})\right\}
$$

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$
(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a})
$$

Theorem. A structure \mathfrak{A} has a degree if and only if $D S(\mathfrak{A})$ has a countable base.

Suppose that the sequence of e-degrees $\left\{\mathbf{b}_{i}\right\}_{i}$ is a base for $\operatorname{DS}(\mathfrak{A})$. Assume that no \mathbf{b}_{i} is an e-degree of \mathfrak{A}. Then for every i, $\mathbf{b}_{i} \notin C S(\mathfrak{A})$.
Let $B_{i} \in \mathbf{b}_{i}$ for every $i \in \mathbb{N}$. Then all the sets B_{i} have no forcing normal form.
We can construct a generic enumeration f of \mathfrak{A}, omitting all B_{i}, i.e. $B_{i} \not Z_{e} f^{-1}(\mathfrak{A})$.

This contradicts with fact that $\left\{\mathbf{b}_{i}\right\}_{i}$ is a base for $\operatorname{DS}(\mathfrak{A})$.

An upwards closed set of degrees which is not a degree spectra of a structure

The minimal pair theorem

Theorem.[Soskov] There exist $\mathrm{f}, \mathrm{g} \in \mathrm{DS}(\mathfrak{A})$ such that

$$
\left(\forall \mathbf{b} \in \mathcal{D}_{e}\right)(\mathbf{b} \leq \mathbf{f} \& \mathbf{b} \leq \mathbf{g} \Rightarrow \mathbf{b} \in C S(\mathfrak{A}))
$$

The quasi-minimal degree

Definition. [Medevdev (1955)] An e-degree a is said to be quasiminimal if

- $\mathbf{a} \neq \mathbf{0}_{e}$;
- $(\forall$ total $\mathbf{b})\left[\mathbf{b} \leq \mathbf{a} \rightarrow \mathbf{b}=\mathbf{0}_{e}\right]$.

Definition.[Slaman, Sorbi] Given any $I \subseteq \mathcal{D}_{e}$, we say that an e-degree a is I-quasi- minimal if

- $(\forall \mathbf{c} \in I)[\mathbf{c}<\mathbf{a}]$;
- $(\forall$ total $\mathbf{c})[\mathbf{c} \leq a \Longleftrightarrow(\exists \mathbf{b} \in I)[\mathbf{c} \leq \mathbf{b}]$.

The quasi-minimal degree with respect to $\operatorname{DS}(\mathfrak{A})$

Definition. Let \mathcal{A} be a set of enumeration degrees. The degree \mathbf{q} is quasi-minimal with respect to \mathcal{A} if:

- $\mathbf{q} \notin \operatorname{co}(\mathcal{A})$.
- If \mathbf{a} is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If \mathbf{a} is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in \operatorname{co}(\mathcal{A})$.

From Selman's theorem it follows that if \mathbf{q} is quasi-minimal with respect to \mathcal{A}, then \mathbf{q} is an upper bound of $\operatorname{co}(\mathcal{A})$.

Theorem.[Soskov] For every structure \mathfrak{A} there exists a quasi-minimal with respect to $D S(\mathfrak{A})$ degree.

Partial generic enumerations
Let $\perp \notin A$.
Definition. A partial finite part is a finite mapping of \mathbb{N} into $A \cup\{\perp\}$.

Let τ be a partial finite part and let f be a partial enumeration, by $\tau \subseteq f$ we denote that for all x in $\operatorname{dom}(\tau)$ either $\tau(x)=\perp$ and $f(x)$ is not defined or $\tau(x) \in A$ and $f(x)=\tau(x)$.

Definition. A subset B of \mathbb{N} is partially forcing definable on \mathfrak{A} if there exist an $e \in \mathbb{N}$ and a partial finite part δ such that for all natural numbers x,

$$
x \in B \Longleftrightarrow(\exists \tau \supseteq \delta)\left(\tau \Vdash F_{e}(x)\right) .
$$

Lemma. Let $B \subseteq \mathbb{N}$ be partially forcing definable on \mathfrak{A}. Then $d_{e}(B) \in C S(\mathfrak{A})$.

The quasi-minimal degree

Proposition.

(1) For every partial generic $f, f^{-1}(\mathfrak{A}) \not Z_{e} D(\mathfrak{A})$. Hence $d_{e}\left(f^{-1}(\mathfrak{A})\right) \notin \operatorname{CS}(\mathfrak{A})$.
(2) There exists a partial generic enumeration $f \leq_{e} D(\mathfrak{A})^{\prime}$ such that $f^{-1}(\mathfrak{A}) \leq_{e} D(\mathfrak{A})^{\prime}$.
(3) If $B \leq_{e} f^{-1}(\mathfrak{A})$ for all partial generic enumerations f, then B is partially forcing definable on \mathfrak{A}.

Theorem. Let f be a partial generic enumeration of \mathfrak{A}. Then $d_{e}\left(f^{-1}(\mathfrak{A})\right)$ is quasi-minimal with respect to $D S(\mathfrak{A})$.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree \mathbf{q} s.t.
(1) If $\mathbf{a} \in I$ then $\mathbf{a}<_{e} \mathbf{q}$.
(2) If \mathbf{a} is total and $\mathbf{a} \leq_{e} \mathbf{q}$ then $\mathbf{a} \in I$.

Properties of the quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist continuum many quasi-minimal degrees with respect to $D S(\mathfrak{A}$.

Suppose that all quasi-minimal degrees with respect to $D S(\mathfrak{A})$ are $\mathbf{q}_{0}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n}, \ldots$ and let $X_{i} \in \mathbf{q}_{i}$, for all $i \in \mathbb{N}$. Then all \mathbf{q}_{i} are not in $\operatorname{CS}(\mathfrak{A})$ and hence every X_{i} is not forcing definable on \mathfrak{A}.
Then we could build a partial generic enumeration f of \mathfrak{A} such that $X_{i} Z_{e} f^{-1}(\mathfrak{A})$.
Thus $d_{e}\left(f^{-1}(\mathfrak{A})\right)$ is quasi-minimal with respect to $D S(\mathfrak{A})$ and not in $\left\{\mathbf{q}_{i}\right\}$.

Jumps of quasi-minimal degrees

Theorem.[Ganchev] Let $B \subseteq \mathbb{N}$ and Q be a total set such that $B^{\prime} \leq Q$. There exists a partial set F called quasi-minimal over B. with the following properties:
(1) $B<F$;
(2) $F^{\prime} \equiv Q$.
(3) for every total $X \leq F$ we have that $X \leq B$.

Lemma. There exists a patrial 1-generic enumeration f of \mathfrak{A}, such that $f^{-1}(\mathfrak{A})^{\prime} \leq D(\mathfrak{A})^{\prime}$ and $\langle f\rangle \leq D(\mathfrak{A})^{\prime}$.

Theorem. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[McEvoy] For every total e-degree $\mathbf{a} \geq_{e} \mathbf{0}_{e}^{\prime}$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}^{\prime}=\mathbf{a}$.

Proof

Proof.

- Let $g^{-1}(\mathfrak{A})^{\prime} \in D S_{1}(\mathfrak{A})$. Denote by $B=g^{-1}(\mathfrak{A})$.
- $\mathfrak{B}=\left(\mathbb{N}, g^{-1}\left(R_{1}\right), \ldots, g^{-1}\left(R_{n}\right)\right)$.
- There is a partial 1-generic enumeration f of \mathfrak{B} such that $f^{-1}(\mathfrak{B})^{\prime} \leq B^{\prime}$.
- There is a partial set F, such that

$$
f^{-1}(\mathfrak{B})<F, F^{\prime} \equiv B^{\prime},(\forall \text { total } X)\left(X \leq F \Rightarrow X \leq f^{-1}(\mathfrak{B})\right) .
$$

- Set $\mathbf{q}=d_{\mathrm{e}}(F)$.
- \mathbf{q} is a quasi-minimal with respect to $\operatorname{DS}(\mathfrak{A})$.

Splitting a total set

Proposition.[Jockusch] For every total e-degree a there are quasi-minimal degrees \mathbf{p} and \mathbf{q} such that $\mathbf{a}=\mathbf{p} \vee \mathbf{q}$.

Theorem. For every element a of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to $D S(\mathfrak{A})$ degrees \mathbf{p} and \mathbf{q} such that $\mathbf{a}=\mathbf{p} \vee \mathbf{q}$.

A method of splitting a total set

Suppose that $\mathfrak{A}=\left(\mathbb{N} ; R_{1}, \ldots, R_{n}\right)$.
Denote by Δ the set of all finite parts.
For each $\tau \in \Delta$ and $x \in \mathbb{N}$ by $\tau * x$ we denote an extension of τ such that $\tau * x(\operatorname{lh}(\tau))=x$.
Let $f: \Delta \rightarrow \Delta$ and $\left\{y_{n}\right\}_{n}$ be a sequence of natural numbers.
If $\tau_{0}=\emptyset, \tau_{n+1}=f\left(\tau_{n} * y_{i}\right)$, then we denote by $f\left(\left\{y_{n}\right\}_{n}\right)=\bigcup_{n} \tau_{n}$.
Let P be a set of enumerations of \mathfrak{A}.

Lemma.[Ganchev] If f is computable in the total set Q and such that for every sequence $\left\{y_{n}\right\}_{n}$ computable in $Q, f\left(\left\{y_{n}\right\}_{n}\right) \in P$, then there exist enumerations $g, h \in P$ of \mathfrak{A} such that $Q \equiv_{e}\langle g\rangle \oplus\langle h\rangle$.

A method of splitting a total set

Let q be an enumeration of Q such that $\langle q\rangle \leq_{e} Q$. We construct two sequences of finite parts $\left\{\tau_{n}\right\}_{n}$ and $\left\{\sigma_{n}\right\}_{n}$ by the following rule:
(1) $\tau_{0}=\sigma_{0}=\emptyset$;
(2) $y_{n}=\left\langle\operatorname{lh}\left(\sigma_{n}\right), q(2 n)\right\rangle$;

- $\tau_{n+1}=f\left(\tau_{n} * y_{n}\right)$;
- $z_{n}=\left\langle l h\left(\tau_{n}\right), q(2 n+1)\right\rangle$;
- $\sigma_{n+1}=f\left(\sigma_{n} * z_{n}\right)$.

Define $g=f\left(\left\{y_{n}\right\}_{n}\right)$ and $h=f\left(\left\{z_{n}\right\}_{n}\right)$.

A method of splitting a total set

Theorem. For every element a of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to $D S(\mathfrak{A})$ degrees \mathbf{p} and \mathbf{q} such that $\mathbf{a}=\mathbf{p} \vee \mathbf{q}$.

Proof.

- Let $\mathbf{a}=\mathbf{d}_{T}\left(g^{-1}(\mathfrak{A})^{\prime}\right) \in D S_{1}(\mathfrak{A})$. Denote by $B=g^{-1}(\mathfrak{A})$.
- $\mathfrak{B}=\left(\mathbb{N}, g^{-1}\left(R_{1}\right), \ldots, g^{-1}\left(R_{n}\right)\right)$.
- Construct a partial 1-generic enumeration f of \mathfrak{B} such that $f^{-1}(\mathfrak{B})^{\prime} \leq B^{\prime}$.
- Let P be the class of all partial generic enumerations g of \mathfrak{A}, s.t. $\langle g\rangle$ is quasi-minimal over $f^{-1}(\mathfrak{B})$, i.e $f^{-1}(\mathfrak{B})<\langle g\rangle$, $\langle g\rangle^{\prime} \equiv B^{\prime},(\forall$ total $X)\left(X \leq\langle g\rangle \Rightarrow X \leq f^{-1}(\mathfrak{B})\right)$.
- Applying the lemma there are $\mathbf{p}=d_{e}(\langle g\rangle)$ and $\mathbf{q}=d_{e}(\langle h\rangle)$ are quasi-minimal over $f^{-1}(\mathfrak{B})$ and hence quasi-minimal for $D S(\mathfrak{A})$ and $\mathbf{a}=\mathbf{p} \vee \mathbf{q}$.

睩 Ganchev，H．，A Jump Inversion Theorem for the Infinite Enumeration Jump，Ann．Univ．Sofia University，98，61－85 （2008）．
Ganchev H．w－enumeration degrees．PhD thesis，Sofia university，（2009）
囦 Soskov I．N．，A jump inversion theorem for the enumeration jump Arch．Math．Logic 39 417－437（2000）．

囲 Soskov I．N．，Degree spectra and co－spectra of structures．Ann． Univ．Sofia， 96 45－68（2003）

䍰 Soskova，A．A．Properties of co－spectra of joint spectra of structures．Ann．Sofia Univ．，Fac．Math．and Inf．97 23－40 （2005）

Thank you!

