Quasi-minimal degrees for degree spectra Spring Scientific Conference 16.03.2013

Alexandra Soskova¹

¹This research was partially supported by Sofia University Science Fund and a NSF grant DMS- 1101123.

Definition. We say that $\Gamma : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is an *enumeration operator* iff for some c.e. set W_i for each $B \subseteq \mathbb{N}$

 $\Gamma(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B]\}.$

Definition. The set A is enumeration reducible to the set B $(A \leq_e B)$, if $A = \Gamma(B)$ for some e-operator Γ . The enumeration degree of A is $d_e(A) = \{B \subseteq \mathbb{N} | A \equiv_e B\}$. The set of all enumeration degrees is denoted by \mathcal{D}_e .

•
$$\mathbf{0}_{\mathbf{e}} = d_{e}(\emptyset) = \{ W \mid W \text{ is c.e.} \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B)$$
.

D_e = ⟨D_e; ≤; ⊕; 0_e⟩ is an upper semi-lattice with least element.

A (1) < A (1) < A (1) < A (1) </p>

Definition. Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$. A set A is called *total* iff $A \equiv_e A^+$.

Theorem. For any sets A and B: A is c.e. in B iff $A \leq_e B^+$. $A \leq_T B$ iff $A^+ \leq_e B^+$.

Theorem.[Selman] $\mathbf{a} \leq_e \mathbf{b}$ iff for all total \mathbf{c} ($\mathbf{b} \leq_e \mathbf{c} \Rightarrow \mathbf{a} \leq_e \mathbf{c}$).

Definition. For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A)\}$. Set $A' = K_A^+$.

- Let $d_e(A)' = d_e(A')$.
- The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding ι: D_T → D_e by ι(d_T(A)) = d_e(A⁺).
 A is Σ^B_{n+1} if A <_e (B⁺)⁽ⁿ⁾.

Theorem.[Soskov] For every $\mathbf{x} \in D_e$ there exists a total e-degree $\mathbf{a} \geq \mathbf{x}$, such that $\mathbf{a}' = \mathbf{x}'$.

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every one to one mapping of \mathbb{N} onto A.

Definition. The degree spectrum of \mathfrak{A} is the set of all Turing degrees which computes the diagram of an isomorphic copy of \mathfrak{A} .

Given an enumeration f of ${\mathfrak A}$ and a subset of B of $A^a,$ let

$$f^{-1}(B) = \{ \langle x_1, \dots, x_a \rangle \mid (f(x_1), \dots, f(x_a)) \in B \}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1)^+ \oplus \dots \oplus f^{-1}(R_k)^+.$$

Definition. The degree spectrum of \mathfrak{A} is the set

$$DS(\mathfrak{A}) = \{ \mathsf{a} \mid \mathsf{a} \in \mathcal{D}_T \And (\exists f)(d_T(f^{-1}(\mathfrak{A})) \leq_T \mathsf{a}) \}.$$

If **a** is the least element of $DS(\mathfrak{A})$ then we call **a** the *degree* of \mathfrak{A} .

Definition. [Soskov] The *co-spectrum of* \mathfrak{A} is the set

 $CS(\mathfrak{A}) = \{\mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in DS(\mathfrak{A})) (\mathbf{b} \leq_e \mathbf{a})\}.$

If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the co-degree of \mathfrak{A} .

Soskov proved that every countable ideal of enumeration degrees is a co-spectrum of a structure.

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

Every finite one-to-one mapping of \mathbb{N} into A is called a finite part. For every finite part τ and natural numbers e, x, let

> $\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})) \text{ and}$ $\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x))$

Definition. An enumeration f of \mathfrak{A} is *generic* if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set B of natural numbers is admissible in \mathfrak{A} if for every enumeration f of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

Every finite one-to-one mapping of \mathbb{N} into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

$$\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x))$$

Definition. An enumeration f of \mathfrak{A} is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

 $B = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$

Denote by $D(\mathfrak{A})$ the diagram of \mathfrak{A} .

Proposition. Let $\{B_i\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathfrak{A} . There exists a 1-generic enumeration f of \mathfrak{A} satisfying the following conditions:

 $\bullet f \leq_e D(\mathfrak{A})'.$

- $f^{-1}(\mathfrak{A})' \leq_e f \oplus D(\mathfrak{A})'.$
- ③ $B_i \not\leq_e f^{-1}(\mathfrak{A})$ for every $i \in \mathbb{N}$.

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Denote by $D(\mathfrak{A})$ the diagram of \mathfrak{A} .

Proposition. Let $\{B_i\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathfrak{A} . There exists a 1-generic enumeration f of \mathfrak{A} satisfying the following conditions:

f ≤_e D(𝔅)'.
 f⁻¹(𝔅)' ≤_e f ⊕ D(𝔅)'.
 B_i ≤_e f⁻¹(𝔅) for every i ∈ N.

Definition. A Σ_1^c formula with free variables among W_1, \ldots, W_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{W})$, where θ is a finite conjunction of atomic and negated atomic formulae.

Definition. A set $B \subseteq \mathbb{N}$ is formally definable on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \mathbb{N}} \Phi_{\gamma(x)}$ is a Σ_1^c formula with free variables among W_1, \ldots, W_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r)$$
.

Theorem. Let $B \subseteq \mathbb{N}$. Then

- **1** B is admissible in \mathfrak{A} ($d_e(B) \in CS(\mathfrak{A})$) iff
- **2** B is forcing definable on \mathfrak{A} iff
- **3** B is formally definable on \mathfrak{A} .

Corollary. If \mathfrak{B} is an isomorphic structure of \mathfrak{A} then a set $X \subseteq \mathbb{N}$ is forcing definable on \mathfrak{A} if and only if X is forcing definable on \mathfrak{B} .

Definition. The *n*th jump spectrum of \mathfrak{A} is the set $DS_n(\mathfrak{A}) = \{\mathbf{a}^{(n)} \mid \in DS(\mathfrak{A})\}.$

Definition. The *n*th jump co-spectrum $CS_n(\mathfrak{A})$ of \mathfrak{A} is the set $CS_n(\mathfrak{A}) = \{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in DS_n(\mathfrak{A}))(\mathbf{b} \leq \mathbf{a})\}.$

伺 と くき とくき とうき

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. A structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

Suppose that the sequence of e-degrees $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$. Assume that no \mathbf{b}_i is an e-degree of \mathfrak{A} . Then for every i, $\mathbf{b}_i \notin CS(\mathfrak{A})$. Let $B_i \in \mathbf{b}_i$ for every $i \in \mathbb{N}$. Then all the sets B_i have no forcing normal form. We can construct a generic enumeration f of \mathfrak{A} , omitting all B_i , i.e. $B_i \not\leq_e f^{-1}(\mathfrak{A})$. This contradicts with fact that $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$.

An upwards closed set of degrees which is not a degree spectra of a structure

Theorem.[Soskov] There exist $f,g \in DS(\mathfrak{A})$ such that

$$(\forall \mathbf{b} \in \mathcal{D}_e)(\mathbf{b} \leq \mathbf{f} \& \mathbf{b} \leq \mathbf{g} \Rightarrow \mathbf{b} \in \mathcal{CS}(\mathfrak{A})).$$

Definition. [Medevdev (1955)] An e-degree **a** is said to be quasiminimal if

•
$$a \neq 0_e$$
;

• $(\forall \text{ total } \mathbf{b})[\mathbf{b} \leq \mathbf{a} \rightarrow \mathbf{b} = \mathbf{0}_e].$

Definition. [Slaman, Sorbi] Given any $I \subseteq D_e$, we say that an e-degree **a** is *I*-quasi-minimal if

•
$$(\forall \mathbf{c} \in I)[\mathbf{c} < \mathbf{a}];$$

• $(\forall \text{ total } \mathbf{c})[\mathbf{c} \leq a \iff (\exists \mathbf{b} \in I)[\mathbf{c} \leq \mathbf{b}].$

Definition. Let A be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to A if:

- $\mathbf{q} \not\in co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

From Selman's theorem it follows that if \mathbf{q} is quasi-minimal with respect to \mathcal{A} , then \mathbf{q} is an upper bound of $co(\mathcal{A})$.

Theorem.[Soskov] For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Let $\perp \not\in A$.

Definition. A *partial finite part* is a finite mapping of \mathbb{N} into $A \cup \{\bot\}$.

Let τ be a partial finite part and let f be a partial enumeration, by $\tau \subseteq f$ we denote that for all x in dom (τ) either $\tau(x) = \bot$ and f(x) is not defined or $\tau(x) \in A$ and $f(x) = \tau(x)$.

Definition. A subset *B* of \mathbb{N} is *partially forcing definable* on \mathfrak{A} if there exist an $e \in \mathbb{N}$ and a partial finite part δ such that for all natural numbers *x*,

$$x \in B \iff (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)).$$

Lemma. Let $B \subseteq \mathbb{N}$ be partially forcing definable on \mathfrak{A} . Then $d_e(B) \in CS(\mathfrak{A})$.

The quasi-minimal degree

Proposition.

- For every partial generic f, f⁻¹(𝔅) ≤_e D(𝔅). Hence d_e(f⁻¹(𝔅)) ∉ CS(𝔅).
- **2** There exists a partial generic enumeration $f \leq_e D(\mathfrak{A})'$ such that $f^{-1}(\mathfrak{A}) \leq_e D(\mathfrak{A})'$.
- If B ≤_e f⁻¹(𝔅) for all partial generic enumerations f, then B is partially forcing definable on 𝔅.

Theorem. Let f be a partial generic enumeration of \mathfrak{A} . Then $d_e(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to $DS(\mathfrak{A})$.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

- **1** If $\mathbf{a} \in I$ then $\mathbf{a} <_e \mathbf{q}$.
- **2** If **a** is total and $\mathbf{a} \leq_e \mathbf{q}$ then $\mathbf{a} \in I$.

Proposition. For every countable structure \mathfrak{A} there exist continuum many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Suppose that all quasi-minimal degrees with respect to $DS(\mathfrak{A})$ are $\mathbf{q}_0, \mathbf{q}_1, \ldots, \mathbf{q}_n, \ldots$ and let $X_i \in \mathbf{q}_i$, for all $i \in \mathbb{N}$. Then all \mathbf{q}_i are not in $CS(\mathfrak{A})$ and hence every X_i is not forcing definable on \mathfrak{A} . Then we could build a partial generic enumeration f of \mathfrak{A} such that $X_i \not\leq_e f^{-1}(\mathfrak{A})$. Thus $d_e(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to $DS(\mathfrak{A})$ and not in $\{\mathbf{q}_i\}$.

Jumps of quasi-minimal degrees

Theorem.[Ganchev] Let $B \subseteq \mathbb{N}$ and Q be a total set such that $B' \leq Q$. There exists a partial set F called quasi-minimal over B. with the following properties:

$$P' \equiv Q.$$

• for every total $X \leq F$ we have that $X \leq B$.

Lemma. There exists a patrial 1-generic enumeration f of \mathfrak{A} , such that $f^{-1}(\mathfrak{A})' \leq D(\mathfrak{A})'$ and $\langle f \rangle \leq D(\mathfrak{A})'$.

Theorem. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary.[*McEvoy*] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Proof.

• Let $g^{-1}(\mathfrak{A})' \in DS_1(\mathfrak{A})$. Denote by $B = g^{-1}(\mathfrak{A})$.

•
$$\mathfrak{B} = (\mathbb{N}, g^{-1}(R_1), \ldots, g^{-1}(R_n)).$$

- There is a partial 1-generic enumeration f of \mathfrak{B} such that $f^{-1}(\mathfrak{B})' \leq B'$.
- There is a partial set F, such that $f^{-1}(\mathfrak{B}) < F$, $F' \equiv B'$, $(\forall \text{ total } X)(X \leq F \Rightarrow X \leq f^{-1}(\mathfrak{B}))$.

• Set
$$\mathbf{q} = d_{\mathrm{e}}(F)$$
.

• **q** is a quasi-minimal with respect to $DS(\mathfrak{A})$.

→ □ → → □ →

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Theorem. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to $DS(\mathfrak{A})$ degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Suppose that $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_n)$. Denote by Δ the set of all finite parts. For each $\tau \in \Delta$ and $x \in \mathbb{N}$ by $\tau * x$ we denote an extension of τ such that $\tau * x(lh(\tau)) = x$. Let $f : \Delta \to \Delta$ and $\{y_n\}_n$ be a sequence of natural numbers. If $\tau_0 = \emptyset$, $\tau_{n+1} = f(\tau_n * y_i)$, then we denote by $f(\{y_n\}_n) = \bigcup_n \tau_n$. Let P be a set of enumerations of \mathfrak{A} .

Lemma.[Ganchev] If f is computable in the total set Q and such that for every sequence $\{y_n\}_n$ computable in Q, $f(\{y_n\}_n) \in P$, then there exist enumerations $g, h \in P$ of \mathfrak{A} such that $Q \equiv_e \langle g \rangle \oplus \langle h \rangle$.

Let q be an enumeration of Q such that $\langle q \rangle \leq_e Q$. We construct two sequences of finite parts $\{\tau_n\}_n$ and $\{\sigma_n\}_n$ by the following rule:

•
$$\tau_0 = \sigma_0 = \emptyset;$$

• $y_n = \langle lh(\sigma_n), q(2n) \rangle;$
• $\tau_{n+1} = f(\tau_n * y_n);$
• $z_n = \langle lh(\tau_n), q(2n+1) \rangle;$
• $\sigma_{n+1} = f(\sigma_n * z_n).$
Define $g = f(\{y_n\}_n)$ and $h = f(\{z_n\}_n)$

A method of splitting a total set

Theorem. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to $DS(\mathfrak{A})$ degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Proof.

- Let $\mathbf{a} = \mathbf{d}_T(g^{-1}(\mathfrak{A})') \in DS_1(\mathfrak{A})$. Denote by $B = g^{-1}(\mathfrak{A})$.
- $\mathfrak{B} = (\mathbb{N}, g^{-1}(R_1), \ldots, g^{-1}(R_n)).$
- Construct a partial 1-generic enumeration f of \mathfrak{B} such that $f^{-1}(\mathfrak{B})' \leq B'$.
- Let P be the class of all partial generic enumerations g of 𝔅, s.t. ⟨g⟩ is quasi-minimal over f⁻¹(𝔅), i.e f⁻¹(𝔅) < ⟨g⟩, ⟨g⟩' ≡ B', (∀ total X)(X ≤ ⟨g⟩ ⇒ X ≤ f⁻¹(𝔅)).
- Applying the lemma there are $\mathbf{p} = d_e(\langle g \rangle)$ and $\mathbf{q} = d_e(\langle h \rangle)$ are quasi-minimal over $f^{-1}(\mathfrak{B})$ and hence quasi-minimal for $DS(\mathfrak{A})$ and $\mathbf{a} = \mathbf{p} \vee \mathbf{q}$.

- Ganchev, H., A Jump Inversion Theorem for the Infinite Enumeration Jump, *Ann. Univ. Sofia University*, **98**, 61–85 (2008).
- Ganchev H. ω-enumeration degrees. *PhD thesis, Sofia university*, (2009)
- Soskov I. N., A jump inversion theorem for the enumeration jump *Arch. Math. Logic* **39** 417–437 (2000).
- Soskov I. N., Degree spectra and co-spectra of structures. Ann. Univ. Sofia, **96** 45–68 (2003)
- Soskova, A. A. Properties of co-spectra of joint spectra of structures. Ann. Sofia Univ., Fac. Math. and Inf. 97 23-40 (2005)

Thank you!

문 문 문