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The enumeration jump

Definition. Given A ⊆ ω, set A+ = A⊕ (ω \ A).

Definition.(Cooper, McEvoy) Given A ⊆ ω, let
EA = {〈i , x〉|x ∈ Ψi (A)}. Set Je(A) = E+

A .

The enumeration jump Je is monotone and agrees with the Turing
jump JT in the following sense:

Theorem. For any A ⊆ ω, JT (A)+ ≡e Je(A
+).

Definition. A set A is called total iff A ≡e A+.
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The enumeration degrees

The Rogers embedding. Define ι : DT → De by
ι(dT (A)) = de(A

+). Then ι is a proper embedding of DT into De .
The enumeration degrees in the range of ι are called total.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ι.
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Degree Spectra

Let A = (N;R1, . . . ,Rk) be a denumerable structure. Enumeration
of A is every total surjective mapping of N onto N.

Given an enumeration f of A and a subset of A of Na, let

f −1(A) = {〈x1, . . . , xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

Set f −1(A) = f −1(R1)⊕ · · · ⊕ f −1(Rk)⊕ f −1(=)⊕ f −1(6=). .

Definition.(Richter) The Turing Degree Spectrum of A is the set

DST (A) = {dT (f −1(A)) : f is an one to one enumeration of A)}.

If a is the least element of DST (A), then a is called the degree of A
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Enumeration Degree Spectra

Definition. The e-Degree Spectrum of A is the set

DS(A) = {de(f
−1(A)) : f is an enumeration of A)}.

If a is the least element of DS(A), then a is called the e-degree of
A

Proposition. If a ∈ DS(A),b is a total e-degree and a ≤e b then
b ∈ DS(A).
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Total structures

Definition. The structure A is called total if for every enumeration
f of A the set f −1(A) is total.

Proposition. If A is a total structure then DS(A) = ι(DST (A)).

Given a structure A = (N,R1, . . . ,Rk), for every j denote by Rc
j

the complement of Rj and let A+ = (N,R1, . . . ,Rk ,Rc
1 , . . . ,Rc

k ).

Proposition. The following are true:

1 ι(DST (A)) = DS(A+).

2 If A is total then DS(A) = DS(A+).
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Clearly if A is a total structure then DS(A) consists of total
degrees. The vice versa is not always true.

Example. Let K be the Kleene’s set and A = (N;GS ,K ), where
GS is the graph of the successor function. Then DS(A) consists of
all total degrees. On the other hand if f = λx .x, then f −1(A) is
an r.e. set. Hence K̄ 6≤e f −1(A). Clearly K̄ ≤e (f −1(A))+. So
f −1(A) is not total.

Is it true that if DS(A) consists of total degrees then there exists a
total structure B s.t. DS(A) = DS(B)?
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Jump spectra

Definition. The n-th jump spectrum of a structure A is the set

DSn(A) = {a(n)|a ∈ DS(A)}.

If a is the least element of DSn(A) then a is called n-th jump
degree of A.

Proposition. For every A, DS1(A) ⊆ DS(A).

Is it true that for every A, DS1(A) ⊂ DS(A)? Probably the answer
is ”no”.
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Every jump spectrum is spectrum of a total structure

Let A = (N;R1, . . . ,Rn).
Let 0̄ 6∈ N. Set N0 = N ∪ {0̄}. Let 〈., .〉 be a pairing function s.t.
none of the elements of N0 is a pair and N∗ be the least set
containing N0 and closed under 〈., .〉.

Definition. Moschovakis’ extension of A is the structure

A∗ = (N∗,R1, . . . ,Rn, N0,G〈.,.〉).

Proposition. DS(A) = DS(A∗)

Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ 
 Fe(x))}.
Set A′ = (A∗,KA, N∗ \ KA).

Theorem.

1 The structure A′ is total.

2 DS1(A) = DS(A′).
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The Jump Inversion Theorem

Consider two structures A and B. Suppose that

DS(B)t = {a|a ∈ DS(B) and a is total} ⊆ DS1(A).

Theorem. There exists a structure C s.t. DS(C) ⊆ DS(A) and
DS1(C) = DS(B)t .

Corollary. Let DS(B) ⊆ DS1(A). Then there exists a structure C

s.t. DS(C) ⊆ DS(A) and DS(B) = DS1(C).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0′. Then there exists a total structure C′ such
that DS(B) = DS(C′).
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Theorem. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There
exists a structure C s.t. DSn(C) = DS(B).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0(n). Then there exists a total structure C s.t.
DSn(C) = DS(B).
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Applications

Example. Let n ≥ 0. There exists a total structure C s.t. C has a
n + 1-th jump degree 0(n+1) but has no k-th jump degree for
k ≤ n.
It is sufficient to construct a structure B satisfying:

1 DS(B) has not least element.

2 0(n+1) is the least element of DS1(B).

3 All elements of DS(B) are total and above 0(n).

Consider a set B satisfying:

1 B is quasi-minimal above 0(n).

2 B ′ ≡e 0(n+1).

Let G be a subgroup of the additive group of the rationales s.t.
SG ≡e B. Recall that DS(G ) = {a|de(SG ) ≤e a and a is total}
and de(SG )′ is the least element of DS1(G ).
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Applications

Let n ≥ 0. There exists a total structure C such that
DSn(C) = {a|0(n) <e a}.
It is sufficient to construct a structure B such that the elements of
DS(B) are exactly the total e-degrees greater than 0(n).
This is done by Whener’s construction using a special family of
sets:

Theorem. Let n ≥ 0. There exists a family F of sets of natural
number s.t. for every X strictly above 0(n) there exists a recursive
in X set U satisfying the equivalence:

F ∈ F ⇐⇒ (∃a)(F = {x |(a, x) ∈ U}).

But there is no r.e. in 0(n) such U.
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Thank you!
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