Joint Spectra and Relative Spectra of structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science
Sofia University
CiE 2014, June 2014

Degree spectra

Definition

Let \mathfrak{A} be a countable structure. The spectrum of \mathfrak{A} is the set of Turing degrees

$$
\operatorname{Sp}(\mathfrak{A})=\{\mathbf{a} \mid \mathbf{a} \text { computes the diagram of an isomorphic copy of } \mathfrak{A}\} .
$$

Enumeration of a structure

Let $\mathfrak{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- Let for any $X \subseteq A^{a}$
$f^{-1}(X)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in X\right\}$.
- $f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)$.

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A})=\left\{\mathbf{a} \mid(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}$.

Enumeration of a structure

Let $\mathfrak{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- Let for any $X \subseteq A^{a}$
$f^{-1}(X)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in X\right\}$.
- $f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)$.

Definition

The spectrum of \mathfrak{A} is the set $\operatorname{Sp}(\mathfrak{A})=\left\{\mathbf{a} \mid(\exists f)\left(d_{T}\left(f^{-1}(\mathfrak{A})\right) \leq_{T} \mathbf{a}\right)\right\}$.
The k-th jump spectrum of \mathfrak{A} is the set $\operatorname{Sp}_{k}(\mathfrak{A})=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{Sp}(\mathfrak{A})\right\}$.

Joint Spectra

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\begin{array}{ll}
\operatorname{Jsp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots,\right. & \left.\mathfrak{A}_{n}\right)= \\
& \left\{\mathbf{a}: \mathbf{a} \in \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in \operatorname{Sp}\left(\mathfrak{A}_{n}\right)\right\} .
\end{array}
$$

Joint Spectra

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\begin{array}{ll}
\operatorname{Jsp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots,\right. & \left.\mathfrak{A}_{n}\right)= \\
& \left\{\mathbf{a}: \mathbf{a} \in \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in \operatorname{Sp}\left(\mathfrak{A}_{n}\right)\right\} .
\end{array}
$$

The k-th jump spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\operatorname{JSp}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{JSp}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right\}
$$

Joint Spectra

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\begin{array}{ll}
\operatorname{JSp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots,\right. & \left.\mathfrak{A}_{n}\right)= \\
& \left\{\mathbf{a}: \mathbf{a} \in \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in \operatorname{Sp}\left(\mathfrak{A}_{n}\right)\right\} .
\end{array}
$$

The k-th jump spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\operatorname{JSp}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{JSp}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right\}
$$

Proposition

The joint spectrum of $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ is the set $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\left(\exists\left\{f_{k}\right\}_{k \leq n}\right)(\forall k \leq n)\left(f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right.\right.$ is c.e. in $\left.\left.B^{(k)}\right)\right\}$.

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Enumeration reducibility

(1) A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
(2) A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Denote by Y^{+}the set $Y \oplus \bar{Y}$.

Proposition

X is c.e. in Y if and only if $X \leq_{e} Y^{+}$.

Co-spectra of structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of structures. Let $A=\bigcup_{k} A_{k}$.

Definition

The k-th co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{e} \mathbf{x}\right)\right\}
$$

Co-spectra of structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of structures. Let $A=\bigcup_{k} A_{k}$.

Definition

The k-th co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{e} \mathbf{x}\right)\right\} .
$$

For a set $X, d_{e}(X) \in \operatorname{CoJSp}_{k}(\overrightarrow{\mathfrak{A}})$ is equivalent to X is definable by a computable sequence of infinitary computable Σ_{k+1}^{+}formulae with predicates only from the first k structures, such that the predicates for the j-th appear for the first time at level $j+1$ positively, but considered as a many-sorted formulae.

Relative Spectra of Structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_{k} A_{k}$.

Definition

The relative spectrum of $\overrightarrow{\mathfrak{A}}$ is
$\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid(\exists f\right.$ enumeration of $A)(\forall k \leq n)\left(f^{-1}\left(\mathfrak{A}_{k}\right)\right.$ is c.e. in $\left.B^{(k)}\right)$ where $f^{-1}\left(\mathfrak{A}_{k}\right)=f^{-1}\left(A_{k}\right) \oplus f^{-1}\left(R_{1}^{k}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{k}}^{k}\right)$.

Relative Spectra of Structures

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{k}\right\}_{k \leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_{k} A_{k}$.

Definition

The relative spectrum of $\overrightarrow{\mathfrak{A}}$ is
$\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid(\exists f\right.$ enumeration of $A)(\forall k \leq n)\left(f^{-1}\left(\mathfrak{A}_{k}\right)\right.$ is c.e. in $\left.B^{(k)}\right)$ where $f^{-1}\left(\mathfrak{A}_{k}\right)=f^{-1}\left(A_{k}\right) \oplus f^{-1}\left(R_{1}^{k}\right) \oplus \cdots \oplus f^{-1}\left(R_{m_{k}}^{k}\right)$.
The k-th jump spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{RSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a}^{(k)} \mid \mathbf{a} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\right\} .
$$

Relative Co-spectra of Structures

Definition

The Relative k th co-spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\operatorname{CoRSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{b} \mid\left(\forall \mathbf{a} \in \operatorname{RSp}_{k}(\overrightarrow{\mathfrak{A}})\right)(\mathbf{b} \leq \mathbf{a})\right\} .
$$

Relative Co-spectra of Structures

Definition

The Relative k th co-spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\operatorname{CoRSp}_{k}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{b} \mid\left(\forall \mathbf{a} \in \operatorname{RSp}_{k}(\overrightarrow{\mathfrak{A}})\right)(\mathbf{b} \leq \mathbf{a})\right\} .
$$

For a set $X, d_{e}(X) \in \operatorname{CoRSp}_{k}(\overrightarrow{\mathfrak{A}})$ is equivalent to X is definable by a computable sequence of infinitary computable Σ_{k+1}^{+}formulae.

The connection with the Joint Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.

The connection with the Joint Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.
There are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

The connection with the Joint Spectra

For every $\overrightarrow{\mathfrak{A}}$ we have $\operatorname{CoJSp}(\overrightarrow{\mathfrak{A}})=\operatorname{CoRSp}(\overrightarrow{\mathfrak{A}})$.
There are structures \mathfrak{A}_{0} and \mathfrak{A}_{1} s.t. $\operatorname{CoJSp}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right) \neq \operatorname{CoRSp}_{1}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$:

Question

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$,
(1) does there exist a structure \mathfrak{M}, such that $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}(\mathfrak{M})$?
(2) does there exist a structure \mathfrak{M}, such that $\operatorname{RSp}(\overrightarrow{\mathfrak{l}})=\operatorname{Sp}(\mathfrak{M})$?

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:
(1) The notion of "c.e. in" corresponds to the notion of Σ_{1} definability;
(2) The " Σ_{n+1}^{0} in" sets correspond to the sets definable by means of infinitary computable Σ_{n+1} formulae.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

$X \leq_{e} A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$ is c.e. in a set $A \subseteq \mathbb{N}$ if for every n, X_{n} is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

$X \leq_{e} A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition

(i) Given a set X of natural numbers and a sequence \mathcal{Y} of sets of natural numbers, let $X \leq_{n} \mathcal{Y}$ if for all sets B, \mathcal{Y} is c.e. in B implies X is Σ_{n+1}^{0} in B;
(ii) Given sequences \mathcal{X} and \mathcal{Y} of sets of natural numbers, say that \mathcal{X} is ω-enumeration reducible to $\mathcal{Y}\left(\mathcal{X} \leq_{\omega} \mathcal{Y}\right)$ if for all sets B, \mathcal{Y} is c.e. in B implies \mathcal{X} is c.e. in B.

Sequences of sets

Ash presents a characterization of " \leq_{n} " and " \leq_{ω} " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X})=\left\{\mathcal{P}_{n}(\mathcal{X})\right\}_{n<\omega}$ of \mathcal{X} is defined by induction:
(i) $\mathcal{P}_{0}(\mathcal{X})=X_{0}$;
(ii) $\mathcal{P}_{n+1}(\mathcal{X})=\mathcal{P}_{n}(\mathcal{X})^{\prime} \oplus X_{n+1}$.

Sequences of sets

Ash presents a characterization of " \leq_{n} " and " \leq_{ω} " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The jump sequence $\mathcal{P}(\mathcal{X})=\left\{\mathcal{P}_{n}(\mathcal{X})\right\}_{n<\omega}$ of \mathcal{X} is defined by induction:
(i) $\mathcal{P}_{0}(\mathcal{X})=X_{0}$;
(ii) $\mathcal{P}_{n+1}(\mathcal{X})=\mathcal{P}_{n}(\mathcal{X})^{\prime} \oplus X_{n+1}$.

Theorem (Soskov)

(1) $X \leq_{n} \mathcal{Y}$ if and only if $X \leq_{e} \mathcal{P}_{n}(\mathcal{Y})$.
(2) $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_{n} \leq_{e} \mathcal{P}_{n}(\mathcal{Y})$ uniformly in n.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$. $f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Sequences of structures

Now consider a sequence of structures $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
An enumeration f of $\overrightarrow{\mathfrak{A}}$ is a bijection from $\mathbb{N} \rightarrow A$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_{n} \overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $f^{-1}(R) \leq_{n} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to R is definable by a computable infinitary formula Σ_{n+1}^{+}

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

A sequence $\left\{Y_{n}\right\}$ of subsets of A is (relatively intrinsically) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $\left\{f^{-1}\left(Y_{n}\right)\right\} \leq_{\omega} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Sequences of structures

$\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, where $\mathfrak{A}_{n}=\left(A_{n} ; R_{1}^{n}, R_{2}^{n}, \ldots R_{m_{n}}^{n}\right)$. Let $A=\bigcup_{n} A_{n}$.
$f^{-1}(\overrightarrow{\mathfrak{A}})$ is the sequence $\left\{f^{-1}\left(A_{n}\right) \oplus f^{-1}\left(R_{1}^{n}\right) \cdots \oplus f^{-1}\left(R_{m_{n}}^{n}\right)\right\}_{n<\omega}$.

Definition

A sequence $\left\{Y_{n}\right\}$ of subsets of A is (relatively intrinsically) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if for every enumeration f of $\overrightarrow{\mathfrak{A}}$, $\left\{f^{-1}\left(Y_{n}\right)\right\} \leq_{\omega} f^{-1}(\overrightarrow{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to Y_{n} is uniformly in n definable by a computable Σ_{n+1}^{+}formula.

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{aligned}
\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & \left(\exists\left\{f_{n}\right\}_{n<\omega} \text { enumerations of } \overrightarrow{\mathfrak{A}}\right) \\
& \left.(\forall n)\left(f_{n}^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{aligned}
$$

Spectra of sequences of structures

More generally let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{array}{ll}
\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & \left(\exists\left\{f_{n}\right\}_{n<\omega} \text { enumerations of } \overrightarrow{\mathfrak{A})}\right. \\
& \left.(\forall n)\left(f_{n}^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{array}
$$

Definition

The Relative spectrum of $\overrightarrow{\mathfrak{A}}$ is

$$
\begin{aligned}
\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\left\{d_{T}(B) \mid\right. & (\exists f \text { enumeration of } A) \\
& \left.(\forall n)\left(f^{-1}\left(\mathfrak{A}_{n}\right) \text { is c.e. in } B^{(n)} \text { uniformly in } n\right)\right\},
\end{aligned}
$$

Omega enumeration co-spectra

Definition

The ω-enumeration relative Co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{\omega} \mathbf{x}\right)\right\}
$$

Omega enumeration co-spectra

Definition

The ω-enumeration relative Co-spectrum of $\overrightarrow{\mathfrak{A}}$ is the set

$$
\operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})=\left\{\mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \operatorname{RSp}(\overrightarrow{\mathfrak{A}})\left(\mathbf{a} \leq_{\omega} \mathbf{x}\right)\right\} .
$$

For any enumeration f of A denote by $f^{-1}(\overrightarrow{\mathfrak{A}})=\left\{f^{-1}\left(\mathfrak{A}_{n}\right)\right\}_{n<\omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X}=\left\{X_{n}\right\}_{n<\omega}$:
(1) $d_{\omega}(\mathcal{X}) \in \operatorname{OCoSp}(\overrightarrow{\mathfrak{A}})$ iff
(2) $\mathcal{X} \leq_{\omega}\left\{\mathcal{P}_{k}\left(f^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}_{k<\omega}$, for every enumeration f of A iff
(3) each X_{n} is definable by a computable sequence of Σ_{n+1}^{+}formulae with parameters uniformly in n.

Questions

Question

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$, does there exist a structure \mathfrak{M}, such that the Σ_{n+1} definable in \mathfrak{M} sets coincide with sets $R \leq_{n} \overrightarrow{\mathfrak{A}}$?

Question

Given a sequence of structures $\overrightarrow{\mathfrak{A}}$, does there exist a structure \mathfrak{M}, such that for every sequence \mathcal{X} of subsets of $A=\bigcup_{n} A_{n}, \mathcal{X} \leq_{\omega} \overrightarrow{\mathfrak{A}}$ if and only if \mathcal{X} c.e. in \mathfrak{M} ?
Here \mathcal{X} c.e. in \mathfrak{M} if for each enumeration f of $\mathfrak{M}, f^{-1}\left(X_{n}\right)$ is c.e. in $f^{-1}(\mathfrak{M})^{(n)}$ uniformly in n.

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$. Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$.
Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \exists x_{2} \in X_{2}\left[\left(\bar{a}, x_{0}, x_{1}, x_{2}\right) \in G_{h_{2}}\right] \Longleftrightarrow \ldots$

Marker's extensions

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$. Let $R \subseteq A^{m}$.
The n-th Marker's extension $\mathfrak{M}_{n}(R)$ of R
Let $X_{0}, X_{1}, \ldots X_{n}$ be infinite disjoint countable - companions to $\mathfrak{M}_{n}(R)$.
Fix bijections: $h_{0}: R \rightarrow X_{0}$
$h_{1}:\left(A^{m} \times X_{0}\right) \backslash G_{h_{0}} \rightarrow X_{1} \ldots$
$h_{n}:\left(A^{m} \times X_{0} \times X_{1} \cdots \times X_{n-1}\right) \backslash G_{h_{n-1}} \rightarrow X_{n}$
Let $M_{n}=G_{h_{n}}$ and $\mathfrak{M}_{n}(R)=\left(A \cup X_{0} \cup \cdots \cup X_{n} ; X_{0}, X_{1}, \ldots X_{n}, M_{n}\right)$.
If n is even then:
$\bar{a} \in R \Longleftrightarrow \exists x_{0} \in X_{0}\left[\left(\bar{a}, x_{0}\right) \in G_{h_{0}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1}\left[\left(\bar{a}, x_{0}, x_{1}\right) \notin G_{h_{1}}\right] \Longleftrightarrow$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \exists x_{2} \in X_{2}\left[\left(\bar{a}, x_{0}, x_{1}, x_{2}\right) \in G_{h_{2}}\right] \Longleftrightarrow \ldots$
$\exists x_{0} \in X_{0} \forall x_{1} \in X_{1} \ldots \exists x_{n} \in X_{n}\left[M_{n}\left(\bar{a}, x_{0}, \ldots x_{n}\right)\right]$.

Marker's extensions

$$
\begin{aligned}
& \text { For } \mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right) \text { and } \mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right) \text { let } \\
& \mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right) \text {. }
\end{aligned}
$$

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.
(3) Set $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ to be $\bigcup_{n} \mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)$ with one additional predicate for A.

Marker's extensions

For $\mathfrak{A}=\left(A ; R_{1}, R_{2}, \ldots R_{m}\right)$ and $\mathfrak{B}=\left(B ; P_{1}, P_{2}, \ldots P_{k}\right)$ let $\mathfrak{A} \cup \mathfrak{B}=\left(A \cup B ; R_{1}, R_{2}, \ldots R_{m}, P_{1}, P_{2}, \ldots P_{k}\right)$.

Let $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$, and $A=\bigcup_{n} A_{n}$.
(1) For every n construct the n-th Markers's extensions of A_{n}, R_{1}^{n}, $\ldots R_{m_{n}}^{n}$ with disjoint companions.
(2) For every n let $\mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)=\mathfrak{M}_{n}\left(A_{n}\right) \cup \mathfrak{M}_{n}\left(R_{1}^{n}\right) \cup \cdots \cup \mathfrak{M}_{n}\left(R_{m_{n}}^{n}\right)$.
(3) Set $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$ to be $\bigcup_{n} \mathfrak{M}_{n}\left(\mathfrak{A}_{n}\right)$ with one additional predicate for A.

The positive answers of the questions [Soskov]

$$
\text { Let } \overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}, A=\bigcup_{n}\left|\mathfrak{A}_{n}\right| \text { and } \mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}}) \text { the Marker's extension of } \overrightarrow{\mathfrak{A}} \text {. }
$$

Theorem
A sequence \mathcal{Y} of subsets of A is (r.i.) ω-enumeration reducible to $\overrightarrow{\mathfrak{A}}$ if and only if \mathcal{Y} is (r.i) c.e. in $\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.

Theorem

For every $R \subseteq \mathbb{N}, R \leq_{n} \overrightarrow{\mathfrak{A}} \Longleftrightarrow R$ is relatively intrinsically Σ_{n+1} in \mathfrak{M}.

Theorem

(1) There is a structure \mathfrak{M}_{1} with $\operatorname{JSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}\left(\mathfrak{M}_{1}\right)$.
(2) There is a structure \mathfrak{M}_{2} with $\operatorname{RSp}(\overrightarrow{\mathfrak{A}})=\operatorname{Sp}\left(\mathfrak{M}_{2}\right)$.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Co-spectra of Marker's extensions

Theorem (Soskov)
Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Example

Let $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ be a sequence of sets and $\overrightarrow{\mathfrak{A}}$ the sequence of structures, constructed by \mathcal{R} :

- $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right) ;$
- $\mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$ for $n \geq 1$.

Co-spectra of Marker's extensions

Theorem (Soskov)

Fix $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ and let $\mathfrak{M}=\mathfrak{M}(\overrightarrow{\mathfrak{A}})$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid(\forall g)\left(Y \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right)\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid(\forall g)\left(\mathcal{Y} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})\right)\right\}$.

Example

Let $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ be a sequence of sets and $\overrightarrow{\mathfrak{A}}$ the sequence of structures, constructed by \mathcal{R} :

- $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right) ;$
- $\mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$ for $n \geq 1$.
$\mathcal{P}_{n}(\mathcal{R}) \leq_{e} \mathcal{P}_{n}\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right)$ uniformly in n for any enumeration g of $\overrightarrow{\mathfrak{A}}$.
(1) $\operatorname{CoSp}_{n}(\mathfrak{M})=\left\{d_{e}(Y) \mid Y \leq_{e} \mathcal{P}_{n}(\mathcal{R})\right\}$.
(2) $\operatorname{OCoSp}(\mathfrak{M})=\left\{d_{\omega}(\mathcal{Y}) \mid \mathcal{Y} \leq_{\omega} \mathcal{R}\right\}$.
$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$
- The Turing degrees are embedded in to the enumeration degrees by: $\iota\left(d_{T}(X)\right)=d_{e}\left(X^{+}\right)$.
- There are sets X which are not enumeration equivalent to any set of the form Y^{+}.
$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$
- The Turing degrees are embedded in to the enumeration degrees by: $\iota\left(d_{T}(X)\right)=d_{e}\left(X^{+}\right)$.
- There are sets X which are not enumeration equivalent to any set of the form Y^{+}.
- The enumeration degrees are embedded in to the ω-enumeration degrees by: $\kappa\left(d_{e}(X)\right)=d_{\omega}\left(\left\{X^{(n)}\right\}_{n<\omega}\right)$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \not \leq_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.
$\mathcal{D}_{T} \subset \mathcal{D}_{e} \subset \mathcal{D}_{\omega}$
- The Turing degrees are embedded in to the enumeration degrees by: $\iota\left(d_{T}(X)\right)=d_{e}\left(X^{+}\right)$.
- There are sets X which are not enumeration equivalent to any set of the form Y^{+}.
- The enumeration degrees are embedded in to the ω-enumeration degrees by: $\kappa\left(d_{e}(X)\right)=d_{\omega}\left(\left\{X^{(n)}\right\}_{n<\omega}\right)$.
- There are sequences $\mathcal{R}=\left\{R_{n}\right\}_{n<\omega}$ such that:
- $\mathcal{P}_{n}(\mathcal{R}) \equiv_{e} \emptyset^{(n)}$ for every n.
- $\mathcal{R} \nexists_{\omega}\left\{\emptyset^{(n)}\right\}_{n<\omega}$.

Sequences with this property are called almost zero.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\overrightarrow{\mathfrak{A}})$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq \omega g^{-1}(\overrightarrow{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right.\right.$ is c.e. in $\left.\left.B\right)\right\}$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq \omega g^{-1}(\overrightarrow{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right.\right.$ is c.e. in $\left.\left.B\right)\right\}$.
- $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid \mathcal{R}\right.$ is c.e. in $\left.B\right\}$.

Embedding the ω-enumeration degrees into the Muchnik degrees generated by spectra of structures

Consider again the structure $\overrightarrow{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R}. $\mathfrak{A}_{0}=\left(\mathbb{N} ; G_{s}, R_{0}\right)$ and for all $n \geq 1, \mathfrak{A}_{n}=\left(\mathbb{N} ; R_{n}\right)$.

- Recall that for every enumeration g of $\overrightarrow{\mathfrak{A}}, \mathcal{R} \leq \omega g^{-1}(\overrightarrow{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid(\exists g)\left(g^{-1}(\overrightarrow{\mathfrak{A}})\right.\right.$ is c.e. in $\left.\left.B\right)\right\}$.
- $\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)=\left\{d_{T}(B) \mid \mathcal{R}\right.$ is c.e. in $\left.B\right\}$.
$\mathcal{R} \leq_{\omega} \mathcal{Q} \Longleftrightarrow$
$\left\{d_{T}(B) \mid \mathcal{R}\right.$ is c.e. in $\left.B\right\} \supseteq\left\{d_{T}(B) \mid \mathcal{Q}\right.$ is c.e. in $\left.B\right\} \Longleftrightarrow$
$\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right) \supseteq \operatorname{Sp}\left(\mathfrak{M}_{\mathcal{Q}}\right)$.
Let $\mu\left(d_{\omega}(\mathcal{R})\right)=\operatorname{Sp}\left(\mathfrak{M}_{\mathcal{R}}\right)$.

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$
Apply this to the sequence $\overrightarrow{\mathfrak{A}}$, where \mathfrak{A}_{n} is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Spectrum with all non $l o w_{n}$ degrees for each n

Theorem

For every sequence $\overrightarrow{\mathfrak{A}}=\left\{\mathfrak{A}_{n}\right\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M})=\operatorname{JSp}(\overrightarrow{\mathfrak{A}})$.
$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{0}\right), \operatorname{Sp}_{1}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{1}\right), \ldots, \operatorname{Sp}_{n}(\mathfrak{M}) \subseteq \operatorname{Sp}\left(\mathfrak{A}_{n}\right) \ldots$
Apply this to the sequence $\overrightarrow{\mathfrak{A}}$, where \mathfrak{A}_{n} is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)
There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M})=\left\{\mathbf{b} \mid \forall n\left(\mathbf{b}^{(n)}>\mathbf{0}^{(n)}\right)\right\}$.

國 A. A. Soskova and I. N. Soskov
Co-spectra of joint spectra of structures.
Ann. Univ. Sofia, 96 (2004) 35-44.
I. N. Soskov

Degree spectra and co-spectra of structures.
Ann. Univ. Sofia, 96 (2004) 45-68.
固 A. A. Soskova
Relativized degree spectra.
Journal of Logic and Computation, 17 (2007) 1215-1234.
I. N. Soskov

Effective properties of Marker's Extensions. Journal of Logic and Computation, 23 (6), (2013) 1335-1367.

