Joint Spectra and Relative Spectra of structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science Sofia University

CiE 2014, June 2014

Degree spectra

Definition

Let ${\mathfrak A}$ be a countable structure. The spectrum of ${\mathfrak A}$ is the set of Turing degrees

 $Sp(\mathfrak{A}) = \{ \mathbf{a} \mid \mathbf{a} \text{ computes the diagram of an isomorphic copy of } \mathfrak{A} \}.$

Enumeration of a structure

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- Let for any $X \subseteq A^a$ $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}.$
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$.

Definition

The spectrum of $\mathfrak A$ is the set $\operatorname{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$

Enumeration of a structure

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable abstract structure.

- An enumeration f of \mathfrak{A} is a bijection from \mathbb{N} onto A.
- Let for any $X \subseteq A^a$ $f^{-1}(X) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in X\}.$
- $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$.

Definition

The spectrum of $\mathfrak A$ is the set $\operatorname{Sp}(\mathfrak A)=\{\mathbf a\mid (\exists f)(d_T(f^{-1}(\mathfrak A))\leq_T\mathbf a)\}.$

The *k*-th jump spectrum of \mathfrak{A} is the set $\mathrm{Sp}_k(\mathfrak{A}) = \{\mathbf{a}^{(k)} \mid \mathbf{a} \in \mathrm{Sp}(\mathfrak{A})\}.$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)} \in Sp(\mathfrak{A}_n)\}.$$

The *k*-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$JSp_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{a}^{(k)} \mid \mathbf{a} \in JSp(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$$

Joint Spectra

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be arbitrary countable abstract structures.

Definition

The Joint spectrum of $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n$ is the set

$$JSp(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\ \mathfrak{A}_n) = \{\mathbf{a}: \mathbf{a} \in Sp(\mathfrak{A}_0), \mathbf{a}' \in Sp(\mathfrak{A}_1),\ldots,\mathbf{a}^{(\mathbf{n})} \in Sp(\mathfrak{A}_n)\}.$$

The k-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$JSp_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{a}^{(k)} \mid \mathbf{a} \in JSp(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$$

Proposition

The joint spectrum of $\vec{\mathfrak{A}} = {\{\mathfrak{A}_k\}_{k \le n}}$ is the set

$$\operatorname{JSp}(\vec{\mathfrak{A}}) = \{d_{T}(B) \mid (\exists \{f_{k}\}_{k < n}) (\forall k \leq n) (f_{k}^{-1}(\mathfrak{A}_{k}) \text{ is c.e. in } B^{(k)})\}.$$

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Enumeration reducibility

- A set X is c.e. in a set Y if X can be enumerated by a computable in Y function.
- A set X is enumeration reducible to a set Y if and only if there is an effective procedure to transform an enumeration of Y to an enumeration of X.

Denote by Y^+ the set $Y \oplus \overline{Y}$.

Proposition

X is c.e. in *Y* if and only if $X \leq_e Y^+$.

Co-spectra of structures

Let $\vec{\mathfrak{A}} = {\{\mathfrak{A}_k\}_{k \leq n}}$ be a finite sequence of structures. Let $A = \bigcup_k A_k$.

Definition

The k-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{CoJSp}_{k}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{e} \mathbf{x}) \right\}.$$

Co-spectra of structures

Let $\vec{\mathfrak{A}} = {\{\mathfrak{A}_k\}_{k \leq n}}$ be a finite sequence of structures. Let $A = \bigcup_k A_k$.

Definition

The k-th co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\operatorname{CoJSp}_{k}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{e} \mid \forall \mathbf{x} \in \operatorname{JSp}_{k}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{e} \mathbf{x}) \right\}.$$

For a set X, $d_e(X) \in \operatorname{CoJSp}_k(\widetilde{\mathfrak{A}})$ is equivalent to X is definable by a computable sequence of infinitary computable Σ_{k+1}^+ formulae with predicates only from the first k structures, such that the predicates for the j-th appear for the first time at level j+1 positively, but considered as a many-sorted formulae.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

Relative Spectra of Structures

Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_k\}_{k\leq n}$ be a finite sequence of countable structures. Denote by $A=\bigcup_k A_k$.

Definition

The relative spectrum of $\vec{\mathfrak{A}}$ is

$$\mathrm{RSp}(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A)(\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \text{ is c.e. in } B^{(k)})\}$$

where
$$f^{-1}(\mathfrak{A}_k) = f^{-1}(A_k) \oplus f^{-1}(R_1^k) \oplus \cdots \oplus f^{-1}(R_{m_k}^k)$$
.

The k-th jump spectrum of $\vec{\mathfrak{A}}$ is the set

$$RSp_k(\vec{\mathfrak{A}}) = {\mathbf{a}^{(k)} \mid \mathbf{a} \in RSp(\vec{\mathfrak{A}})}.$$

Relative Co-spectra of Structures

Definition

The Relative kth co-spectrum of $\vec{\mathfrak{A}}$ is

$$CoRSp_k(\vec{\mathfrak{A}}) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in RSp_k(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

Relative Co-spectra of Structures

Definition

The Relative kth co-spectrum of $\vec{\mathfrak{A}}$ is

$$CoRSp_k(\vec{\mathfrak{A}}) = \{ \mathbf{b} \mid (\forall \mathbf{a} \in RSp_k(\vec{\mathfrak{A}}))(\mathbf{b} \leq \mathbf{a}) \}.$$

For a set X, $d_e(X) \in \operatorname{CoRSp}_k(\tilde{\mathfrak{A}})$ is equivalent to X is definable by a computable sequence of infinitary computable Σ_{k+1}^+ formulae.

The connection with the Joint Spectra

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$.

The connection with the Joint Spectra

```
For every \vec{\mathfrak{A}} we have CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}}).
There are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1):
```

The connection with the Joint Spectra

For every $\vec{\mathfrak{A}}$ we have $CoJSp(\vec{\mathfrak{A}}) = CoRSp(\vec{\mathfrak{A}})$. There are structures \mathfrak{A}_0 and \mathfrak{A}_1 s.t. $CoJSp_1(\mathfrak{A}_0,\mathfrak{A}_1) \neq CoRSp_1(\mathfrak{A}_0,\mathfrak{A}_1)$:

Question

Given a sequence of structures $\vec{\mathfrak{A}}$,

- **1** does there exist a structure \mathfrak{M} , such that $JSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M})$?
- ② does there exist a structure \mathfrak{M} , such that $RSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M})$?

A parallel between classical computability theory and effective definability in abstract structures

A close parallel between notions of classical computability theory and of the theory of effective definability in abstract structures:

- The notion of "c.e. in" corresponds to the notion of Σ_1 definability;
- ② The " Σ_{n+1}^0 in" sets correspond to the sets definable by means of infinitary computable Σ_{n+1} formulae.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

From sets to sequences of sets

Definition

A sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e.* in a set $A \subseteq \mathbb{N}$ if for every n, X_n is c.e. in $A^{(n)}$ uniformly in n.

Theorem (Selman)

 $X \leq_e A$ if an only if for every B, if A is c.e. in B then X is c.e. in B.

Definition

- (i) Given a set X of natural numbers and a sequence \mathcal{Y} of sets of natural numbers, let $X \leq_n \mathcal{Y}$ if for all sets B, \mathcal{Y} is c.e. in B implies X is Σ_{n+1}^0 in B;
- (ii) Given sequences $\mathcal X$ and $\mathcal Y$ of sets of natural numbers, say that $\mathcal X$ is ω -enumeration reducible to $\mathcal Y$ ($\mathcal X \leq_\omega \mathcal Y$) if for all sets $\mathcal B$, $\mathcal Y$ is c.e. in $\mathcal B$ implies $\mathcal X$ is c.e. in $\mathcal B$.

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n<\omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Sequences of sets

Ash presents a characterization of " \leq_n " and " \leq_ω " using computable infinitary propositional sentences. Soskov and Kovachev give another characterizations in terms of enumeration computability.

Definition

The *jump sequence* $\mathcal{P}(\mathcal{X}) = \{\mathcal{P}_n(\mathcal{X})\}_{n<\omega}$ of \mathcal{X} is defined by induction:

- (i) $\mathcal{P}_0(X) = X_0$;
- (ii) $\mathcal{P}_{n+1}(\mathcal{X}) = \mathcal{P}_n(\mathcal{X})' \oplus X_{n+1}$.

Theorem (Soskov)

- $X \leq_n \mathcal{Y}$ if and only if $X \leq_e \mathcal{P}_n(\mathcal{Y})$.
- ② $\mathcal{X} \leq_{\omega} \mathcal{Y}$ if and only if for every $n, X_n \leq_{e} \mathcal{P}_n(\mathcal{Y})$ uniformly in n.

Now consider a sequence of structures $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\dots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\dots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Now consider a sequence of structures $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\ldots R_{m_n}^n)$. Let $A=\bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N}\to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\cdots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Definition

For $R \subseteq A$ we say that $R \leq_n \vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $f^{-1}(R) \leq_n f^{-1}(\vec{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to R is definable by a computable infinitary formula Σ_{n+1}^+

$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$$
, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

$$\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega},$$
 where $\mathfrak{A}_n=(A_n;R_1^n,R_2^n,\ldots R_{m_n}^n).$ Let $A=\bigcup_n A_n.$ $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n)\oplus f^{-1}(R_1^n)\cdots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}.$

Definition

A sequence $\{Y_n\}$ of subsets of A is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}})$.

$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$$
, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots R_{m_n}^n)$. Let $A = \bigcup_n A_n$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$.

Definition

A sequence $\{Y_n\}$ of subsets of A is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration f of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}})$.

Soskov and Baleva show that this is equivalent to Y_n is uniformly in n definable by a computable Σ_{n+1}^+ formula.

Spectra of sequences of structures

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Spectra of sequences of structures

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

Spectra of sequences of structures

More generally let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ be a sequence of countable structures.

Definition

The Joint spectrum of $\vec{\mathfrak{A}}$ is

$$JSp(\vec{\mathfrak{A}}) = \{d_{\mathcal{T}}(B) \mid (\exists \{f_n\}_{n < \omega} \text{ enumerations of } \vec{\mathfrak{A}}) \\ (\forall n)(f_n^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

Definition

The Relative spectrum of $\vec{\mathfrak{A}}$ is

$$RSp(\vec{\mathfrak{A}}) = \{d_T(B) \mid (\exists f \text{ enumeration of } A) \\ (\forall n)(f^{-1}(\mathfrak{A}_n) \text{ is c.e. in } B^{(n)} \text{ uniformly in } n)\},$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

Omega enumeration co-spectra

Definition

The ω -enumeration relative Co-spectrum of $\vec{\mathfrak{A}}$ is the set

$$\mathrm{OCoSp}(\vec{\mathfrak{A}}) = \left\{ \mathbf{a} \in \mathcal{D}_{\omega} \mid \forall \mathbf{x} \in \mathrm{RSp}(\vec{\mathfrak{A}}) (\mathbf{a} \leq_{\omega} \mathbf{x}) \right\}.$$

For any enumeration f of A denote by $f^{-1}(\vec{\mathfrak{A}}) = \{f^{-1}(\mathfrak{A}_n)\}_{n < \omega}$.

Proposition

For every sequence of sets of natural numbers $\mathcal{X} = \{X_n\}_{n < \omega}$:

- lacktriangledown $d_{\omega}(\mathcal{X}) \in \mathrm{OCoSp}(\vec{\mathfrak{A}})$ iff
- ② $\mathcal{X} \leq_{\omega} \{\mathcal{P}_k(f^{-1}(\vec{\mathfrak{A}}))\}_{k<\omega}$, for every enumeration f of A iff
- **3** each X_n is definable by a computable sequence of Σ_{n+1}^+ formulae with parameters uniformly in n.

Questions

Question

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that the Σ_{n+1} definable in \mathfrak{M} sets coincide with sets $R \leq_n \vec{\mathfrak{A}}$?

Question

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that for every sequence \mathcal{X} of subsets of $A = \bigcup_n A_n$, $\mathcal{X} \leq_{\omega} \vec{\mathfrak{A}}$ if and only if \mathcal{X} c.e. in \mathfrak{M} ?

Here \mathcal{X} c.e. in \mathfrak{M} if for each enumeration f of \mathfrak{M} , $f^{-1}(X_n)$ is c.e. in $f^{-1}(\mathfrak{M})^{(n)}$ uniformly in n.

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let $X_0, X_1, ..., X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \ldots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let $M_n = G_{h_n}$ and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

 $h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \dots$

 $h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \rightarrow X_1 \ldots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of R

Let $X_0, X_1, \ldots X_n$ be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$.

Fix bijections: $h_0: R \to X_0$

$$h_1: (A^m \times X_0) \setminus G_{h_0} \to X_1 \ldots$$

$$h_n: (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \rightarrow X_n$$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \ldots X_n, M_n)$.

$$\bar{a} \in R \iff \exists x_0 \in X_0[(\bar{a}, x_0) \in G_{h_0}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 [(\bar{a}, x_0, x_1) \notin G_{h_1}] \iff$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2 [(\bar{a}, x_0, x_1, x_2) \in G_{h_2}] \iff \dots$$

$$\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n [M_n(\bar{a}, x_0, \dots x_n)].$$

For
$$\mathfrak{A} = (A; R_1, R_2, \dots R_m)$$
 and $\mathfrak{B} = (B; P_1, P_2, \dots P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots R_m, P_1, P_2, \dots P_k)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$
Let $\vec{\mathfrak{A}}=\{\mathfrak{A}_n\}_{n<\omega}$, and $A=\bigcup_n A_n.$

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$$
, and $A = \bigcup_n A_n$.

• For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- ② For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- **②** For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

For
$$\mathfrak{A}=(A;R_1,R_2,\ldots R_m)$$
 and $\mathfrak{B}=(B;P_1,P_2,\ldots P_k)$ let $\mathfrak{A}\cup\mathfrak{B}=(A\cup B;R_1,R_2,\ldots R_m,P_1,P_2,\ldots P_k).$

Let
$$\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$$
, and $A = \bigcup_n A_n$.

- For every n construct the n-th Markers's extensions of A_n , R_1^n , ... $R_{m_n}^n$ with disjoint companions.
- **②** For every n let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- **3** Set $\mathfrak{M}(\vec{\mathfrak{A}})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

The positive answers of the questions [Soskov]

Let $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}$, $A = \bigcup_n |\mathfrak{A}_n|$ and $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$ the Marker's extension of $\vec{\mathfrak{A}}$.

Theorem

A sequence $\mathcal Y$ of subsets of A is (r.i.) ω -enumeration reducible to $\vec{\mathfrak A}$ if and only if $\mathcal Y$ is (r.i) c.e. in $\mathfrak M(\vec{\mathfrak A})$.

Theorem

For every $R \subseteq \mathbb{N}$, $R \leq_n \vec{\mathfrak{A}} \iff R$ is relatively intrinsically Σ_{n+1} in \mathfrak{M} .

Theorem

- There is a structure \mathfrak{M}_1 with $JSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M}_1)$.
- 2 There is a structure \mathfrak{M}_2 with $RSp(\vec{\mathfrak{A}}) = Sp(\mathfrak{M}_2)$.

Co-spectra of Marker's extensions

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

Co-spectra of Marker's extensions

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a sequence of sets and \mathfrak{A} the sequence of structures, constructed by \mathcal{R} :

- $\bullet \ \mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for n > 1.

Co-spectra of Marker's extensions

Theorem (Soskov)

Fix $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

- $\bullet \ \operatorname{CoSp}_n(\mathfrak{M}) = \Big\{ d_e(Y) \mid (\forall g) (Y \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))) \Big\}.$

Example

Let $\mathcal{R} = \{R_n\}_{n < \omega}$ be a sequence of sets and \mathfrak{A} the sequence of structures, constructed by \mathcal{R} :

- $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0);$
- $\mathfrak{A}_n = (\mathbb{N}; R_n)$ for $n \geq 1$.

 $\mathcal{P}_n(\mathcal{R}) \leq_e \mathcal{P}_n(g^{-1}(\vec{\mathfrak{A}}))$ uniformly in *n* for any enumeration *g* of $\vec{\mathfrak{A}}$.

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(X)) = d_e(X^+)$.
- There are sets X which are not enumeration equivalent to any set of the form Y⁺.

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(X)) = d_e(X^+)$.
- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- The enumeration degrees are embedded in to the ω -enumeration degrees by: $\kappa(d_e(X)) = d_\omega(\{X^{(n)}\}_{n<\omega})$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $\qquad \qquad \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

$$\mathcal{D}_{\mathcal{T}} \subset \mathcal{D}_{\mathsf{e}} \subset \mathcal{D}_{\omega}$$

- The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(X)) = d_e(X^+)$.
- There are sets X which are not enumeration equivalent to any set of the form Y⁺.
- The enumeration degrees are embedded in to the ω -enumeration degrees by: $\kappa(d_e(X)) = d_\omega(\{X^{(n)}\}_{n<\omega})$.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - ▶ $\mathcal{P}_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every n.
 - $ightharpoonup \mathcal{R} \nleq_{\omega} \{\emptyset^{(n)}\}_{n<\omega}.$

Sequences with this property are called *almost zero*.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

• Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N}; G_s, R_0)$ and for all $n \geq 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_T(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0=(\mathbb{N}; G_s, R_0)$ and for all $n\geq 1$, $\mathfrak{A}_n=(\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \left\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \right\}.$
- $\operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) = \{d_T(B) \mid \mathcal{R} \text{ is c.e. in } B\}.$

$$\begin{array}{l} \mathcal{R} \leq_{\omega} \mathcal{Q} \iff \\ \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\} \supseteq \{d_{\mathcal{T}}(B) \mid \mathcal{Q} \text{ is c.e. in } B\} \iff \\ \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}) \supseteq \operatorname{Sp}(\mathfrak{M}_{\mathcal{Q}}). \\ \operatorname{Let} \mu(d_{\omega}(\mathcal{R})) = \operatorname{Sp}(\mathfrak{M}_{\mathcal{R}}). \end{array}$$

Spectrum with all non low_n degrees for each n

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n < \omega}$ there exists a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \operatorname{JSp}(\vec{\mathfrak{A}})$.

Spectrum with all non *low_n* degrees for each *n*

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Spectrum with all non *low_n* degrees for each *n*

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Spectrum with all non low_n degrees for each n

Theorem

For every sequence $\vec{\mathfrak{A}} = \{\mathfrak{A}_n\}_{n<\omega}$ there exists a structure \mathfrak{M} such that $\mathrm{Sp}(\mathfrak{M}) = \mathrm{JSp}(\vec{\mathfrak{A}})$.

$$\operatorname{Sp}(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_0), \operatorname{Sp}_1(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_1), \ldots, \operatorname{Sp}_n(\mathfrak{M}) \subseteq \operatorname{Sp}(\mathfrak{A}_n) \ldots$$

Apply this to the sequence $\vec{\mathfrak{A}}$, where \mathfrak{A}_n is obtained by Wehner's construction relativized to $\mathbf{0}^{(n)}$.

Theorem (Soskov)

There is a structure \mathfrak{M} with $\operatorname{Sp}(\mathfrak{M}) = \{\mathbf{b} \mid \forall n (\mathbf{b}^{(n)} > \mathbf{0}^{(n)})\}.$

Co-spectra of joint spectra of structures.

Ann. Univ. Sofia, 96 (2004) 35-44.

I. N. Soskov

Degree spectra and co-spectra of structures.

Ann. Univ. Sofia, 96 (2004) 45-68.

A. A. Soskova

Relativized degree spectra.

Journal of Logic and Computation, 17 (2007) 1215–1234.

I. N. Soskov

Effective properties of Marker's Extensions.

Journal of Logic and Computation, 23 (6), (2013) 1335-1367.