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Enumeration reducibility

Definition. We say that Γ : 2ω → 2ω is an enumeration operator
iff for some c.e. set Wi for each B ⊆ ω

Γ(B) = {x |(∃D)[〈x ,D〉 ∈Wi &D ⊆ B]}.

Definition. The set A is enumeration reducible to the set B
(A ≤e B), if A = Γ(B) for some e-operator Γ.
The enumeration degree of A is de(A) = {B ⊆ ω|A ≡e B}.
The set of all enumeration degrees is denoted by De .
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The enumeration jump

Definition. Given a set A, denote by A+ = A⊕ (ω \ A).

Theorem. For any sets A and B:

1 A is c.e. in B iff A ≤e B+.

2 A ≤T B iff A+ ≤e B+.

Definition. For any set A let KA = {〈i , x〉|x ∈ Γi (A)}. Set
A′ = K +

A .

Definition. A set A is called total iff A ≡e A+.

Let de(A)′ = de(A′). The enumeration jump is always a total
degree and agrees with the Turing jump under the standard
embedding ι : DT → De by ι(dT (A)) = de(A+).
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Degree spectra

Let A = (A; R1, . . . ,Rk) be a countable structure. An enumeration
of A is every surjective (partial) mapping of ω onto A.

Given an enumeration f of A and a subset of B of Aa, let

f −1(B) = {〈x1, . . . , xa〉 | x1, . . . , xa ∈dom(f ) &

(f (x1), . . . , f (xa)) ∈ B}.

f −1(A) = f −1(R1)⊕ · · · ⊕ f −1(Rk)⊕ f −1(=)⊕ f −1( 6=).

Definition.[Richter] The Turing degree spectrum of A is the set

DST (A) = {dT (f −1(A)) | f is a one-to-one total enum. of A}.

If a is the least element of DST (A), then a is called the degree of
A.
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Enumeration degree spectra

Definition.[Soskov] The enumeration degree spectrum of A is the
set

DS(A) = {de(f −1(A)) | f is a total enumeration of A}.

If a is the least element of DS(A), then a is called the e-degree of
A.

Proposition. The enumeration degree spectrum is closed upwards
with respect to total e-degrees, i.e. if a ∈ DS(A), b is a total
e-degree a ≤e b then b ∈ DS(A).
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Total structures

Definition. The structure A is called total if for every total
enumeration f of A the set f −1(A) is total.

Proposition. If A is a total structure then DS(A) = ι(DST (A)).

Given a structure A = (A,R1, . . . ,Rk), for every j denote by Rc
j

the complement of Rj and let A+ = (A,R1, . . . ,Rk ,R
c
1 , . . . ,R

c
k ).

Proposition.

ι(DST (A)) = DS(A+).

If A is total then DS(A) = DS(A+).

Proposition. If A has e-degree a then a = de(f −1(A)) for some
one-to-one enumeration f of A.
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Co-spectra

Definition. Let A be a nonempty set of enumeration degrees. The
co-set of A is the set co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

Definition. Given a structure A, set CS(A) = co(DS(A)).
If a is the greatest element of CS(A) then we call a the co-degree
of A.

If A has a degree a then a is also the co-degree of A. The vice
versa is not always true.
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The admissible in A sets

Definition. A set B of natural numbers is admissible in A if for
every enumeration f of A, B ≤e f −1(A).

Clearly a ∈ CS(A) iff a = de(B) for some admissible in A set B.

Every finite mapping of ω into A is called a finite part.
For every finite part τ and natural numbers e, x, let

τ  Fe(x) ⇐⇒ x ∈ Γe(τ−1(A)) and

τ  ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1 Fe(x)).

Definition. An enumeration f of A is generic if for every e, x ∈ ω,
there exists a τ ⊆ f s.t. τ  Fe(x) ∨ τ  ¬Fe(x).
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Forcing definable in A sets

Definition. A set B of natural numbers is forcing definable in the
structure A iff there exist a finite part δ and a natural number e s.t.

B = {x |(∃τ ⊇ δ)(τ  Fe(x))}.

Theorem. Let B ⊆ ω and de(C ) ∈ DS(A). Then the following are
equivalent:

1 B is admissible in A.

2 B ≤e f −1(A) for all generic enumerations f of A s.t.
(f −1(A))′ ≡e C ′.

3 B is forcing definable on A.
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The formally definable sets on A

Definition. A Σc
1 formula with free variables among W1, . . . , Wr

is a c.e. disjunction of existential formulae of the form
∃Y1 . . . ∃Ykθ(Ȳ , W̄ ), where θ is a finite conjunction of atomic and
negated atomic formulae.

Definition. A set B ⊆ ω is formally definable on A if there exists
a recursive function γ(x), such that

∨
x∈ω Φγ(x) is a Σc

1 formula
with free variables among W1, . . . ,Wr and elements t1, . . . , tr of A
such that the following equivalence holds:

x ∈ B ⇐⇒ A |= Φγ(x)(W1/t1, . . . ,Wr/tr ) .

Theorem. Let B ⊆ ω. Then

1 B is admissible in A (de(B) ∈ CS(A)) iff

2 B is forcing definable on A iff

3 B is formally definable on A.
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The partial case

Definition. The partial enumeration degree spectrum of A is the
set

DSp(A) = {de(f −1(A)) | f is a partial enumeration of A}.

Lemma. If f is a partial enumeration of A then
dom(f ) ≤e f −1(A).

Proposition. The partial enumeration degree spectrum is closed
upwards with respect to enumeration degrees, i.e. if a ∈ DSp(A)
and a ≤e b then b ∈ DSp(A).

Theorem. Let B ⊆ ω. The following are equivalent:

1 B ≤e f −1(A) for all partial enumerations of A
(de(B) ∈ CSp(A))

2 B is formally definable on A.

Corollary. CS(A) = CSp(A).
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Jump spectra

Definition. The nth jump spectrum of A is the set

DSn(A) = {de(f −1(A)(n)) : f is an enumeration of A}.

If a is the least element of DSn(A), then a is called the nth jump
degree of A.

Definition. The co-set CSn(A) of the nth jump spectrum of A is
called nth jump co-spectrum of A.
If CSn(A) has a greatest element then it is called the nth jump
co-degree of A.
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Some examples

Example.[Richter] Let A = (A;<) be a linear ordering. DS(A)
contains a minimal pair of degrees and hence CS(A) = {0e}. 0e is
the co-degree of A. So, if A has a degree a, then a = 0e .

Example.[Knight] For a linear ordering A, CS1(A) consists of all
e-degrees of Σ0

2 sets. The first jump co-degree of A is 0′e .

Example.[Slaman,Whener] There exists a structure A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a degree.
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Representing the principle countable ideals as co-spectra

Example.[Coles, Downey, Slaman] Let G be a torsion free abelian
group of rank 1, i.e. G is a subgroup of Q.
There exists an enumeration degree sG such that

DS(G ) = {b : b is total and sG ≤e b}.
The co-degree of G is sG .

G has a degree iff sG is a total e-degree.

If 1 ≤ n, then s
(n)
G is the n-th jump degree of G .

For every d ∈ De there exists a G , s.t. sG = d.

Corollary. Every principle ideal of enumeration degrees is CS(G )
for some G .

Remark. If we consider the partial enumeration degree spectra,
then the abelian groups of rank 1 always have an e-degree.
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Representing non-principle countable ideals as co-spectra

Example. Let B0, . . . ,Bn, . . . be a sequence of sets of natural
numbers. Set A = (N; f ;σ),

f (〈i , n〉) = 〈i + 1, n〉;
σ = {〈i , n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I (de(B0), . . . , de(Bn), . . . )
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Spectra with a countable base

Definition. Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem. A structure A has an e-degree if and only if DS(A) has
a countable base.

Suppose that the sequence of e-degrees {bi}i is a base for DS(A).
Assume that no bi is an e-degree of A. Then for every i ,
bi 6∈ CS(A).
Let Bi ∈ bi for every i ∈ ω. Then all the sets Bi have no forcing
normal form.
We can construct a generic enumeration f of A, omitting all Bi ,
i.e. Bi 6≤e f −1(A).
This contradicts with fact that {bi}i is a base for DS(A).
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An upwards closed set of degrees which is not a degree
spectra of a structure

a b
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General properties of upwards closed sets

Definition. Consider a subset A of De . Say that A is upwards
closed if for every a ∈ A all total degrees greater than a are
contained in A.

Theorem.[Selman] a ≤e b iff for all total c (b ≤e c⇒ a ≤e c).

Proposition. Let At = {a : a ∈ A & a is total}. Then
co(A) = co(At).

Proposition. Let b be an arbitrary enumeration degree and n > 0.
Set Ab,n = {a : a ∈ A & b ≤e a(n)}. Then co(A) = co(Ab,n).
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Specific properties of the degree spectra

Theorem. Let A be a structure, 1 ≤ n and c ∈ DSn(A). Then

CS(A) = co({b ∈ DS(A) : b(n) = c}).

Example.(Upwards closed set for which the Theorem is not true)

Let B 6≤e A and A 6≤e B ′. Let

D = {a : de(A) ≤e a} ∪ {a : de(B) ≤e a}.

Set A = {a : a ∈ D & a′ = de(B)′}.

de(B) is the least element of A and hence de(B) ∈ co(A).

de(B) 6≤ de(A) and hence de(B) 6∈ co(D).
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The minimal pair theorem

Theorem. Let c ∈ DS2(A). There exist f,g ∈ DS(A) s.t. f,g are
total, f′′ = g′′ = c and CS(A) = co({f,g}).

Notice that for every enumeration degree b there exists a structure
Ab s. t. DS(Ab) = {x ∈ DT |b <e x}. Hence

Corollary.[Rozinas] For every b ∈ De there exist total f, g below
b′′ which are a minimal pair over b.

Not every upwards closed set of enumeration degrees has a
minimal pair:
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An upwards closed set with no minimal pair

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

>

⊥
Alexandra A. Soskova Enumeration Degree Spectra



The quasi-minimal degree

Definition. Let A be a set of enumeration degrees. The degree q
is quasi-minimal with respect to A if:

q 6∈ co(A).

If a is total and a ≥ q, then a ∈ A.

If a is total and a ≤ q, then a ∈ co(A).

From Selman’s theorem it follows that if q is quasi-minimal with
respect to A, then q is an upper bound of co(A).

Theorem. For every structure A there exists a quasi-minimal with
respect to DS(A) degree.
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Partial generic enumerations

Let ⊥ 6∈ A.

Definition. A partial finite part is a finite mapping of ω into
A ∪ {⊥}.

Let τ be a partial finite part and let f be a partial enumeration, by
τ ⊆ f we denote that for all x in dom(τ) either τ(x) = ⊥ and
f (x) is not defined or τ(x) ∈ A and f (x) = τ(x).

Definition. A subset B of ω is partially forcing definable on A if
there exist an e ∈ ω and a partial finite part δ such that for all
natural numbers x ,

x ∈ B ⇐⇒ (∃τ ⊇ δ)(τ  Fe(x)).

Lemma. Let B ⊆ ω be partially forcing definable on A. Then
de(B) ∈ CS(A).

Alexandra A. Soskova Enumeration Degree Spectra



The quasi-minimal degree

Proposition.

1 For every partial generic f , f −1(A) 6≤e D(A). Hence
de(f −1(A)) 6∈ CS(A).

2 There exists a partial generic enumeration f ≤e D(A)′ such
that f −1(A) ≤e D(A)′.

3 If B ≤e f −1(A) for all partial generic enumerations f , then B
is partially forcing definable on A.

Theorem. Let f be a partial generic enumeration of A. Then
de(f −1(A)) is quasi-minimal with respect to DS(A).

Corollary.[Slaman and Sorbi] Let I be a countable ideal of
enumeration degrees. There exists an enumeration degree q s.t.

1 If a ∈ I then a <e q.

2 If a is total and a ≤e q then a ∈ I .
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Properties of the quasi-minimal degrees

Proposition. For every countable structure A there exist
continuum many quasi-minimal degrees with respect to DS(A.

Suppose that all quasi-minimal degrees with respect to DS(A) are
q0,q1, . . . ,qn, . . . and let Xi ∈ qi , for all i ∈ ω. Then all qi are
not in CS(A) and hence every Xi is not forcing definable on A.
We could build a partial generic enumeration f of A such that
Xi 6≤e f −1(A).
Thus de(f −1(A)) is quasi-minimal with respect to DS(A) and not
in {qi}.
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Jumps of quasi-minimal degrees

Lemma. Let a ∈ DS1(A) and g be an enumeration of A such that
g−1(A)′ ∈ a. There exists a partial generic enumeration f such
that f −1(A)′ ≡e g−1(A)′.

Proposition. The first jump spectrum of every structure A
consists exactly of the enumeration jumps of the quasi-minimal
degrees.

Corollary.[McEvoy] For every total e-degree a ≥e 0′e there is a
quasi-minimal degree q with q′ = a.

Alexandra A. Soskova Enumeration Degree Spectra



Splitting a total set

Proposition.[Jockusch] For every total e-degree a there are
quasi-minimal degrees p and q such that a = p ∨ q.

Proposition. For every element a of the jump spectrum of a
structure A there exists quasi-minimal with respect to A degrees p
and q such that a = p ∨ q.
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A method of splitting a total set

Suppose that A = (N; R1, . . . ,Rn).
Denote by ∆ the set of all finite parts.
For each τ ∈ ∆ and x ∈ N by τ ∗ x we denote an extension of τ
such that τ ∗ x(lh(τ)) = x.
Let f : ∆→ ∆ and {yn}n be a sequence of natural numbers.
If τ0 = ∅, τn+1 = f (τn ∗ yi ), then we denote by f ({yn}n) =

⋃
n τn.

Let P be a set of enumerations of A.

Lemma.[Ganchev] If f is computable in the total set Q and such
that for every sequence {yn}n computable in Q, f ({yn}n) ∈ P,
then there exist enumerations g , h ∈ P of A such that
Q ≡e 〈g〉 ⊕ 〈h〉.
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A method of splitting a total set

Let q be an enumeration of Q such that 〈q〉 ≤e Q. We construct
two sequences of finite parts {τn}n and {σn}n by the following
rule:

1 τ0 = σ0 = ∅;
2 yn = 〈lh(σn), q(2n)〉;
3 τn+1 = f (τn ∗ yn);

4 zn = 〈lh(τn), q(2n + 1)〉;
5 σn+1 = f (σn ∗ zn).

Define g = f ({yn}n) and h = f ({zn}n).

Let a ∈ DS1(A) and B ′ ∈ a. Q = B ′ is a total set. Let P be the
class of all partial generic enumerations of A. Applying the lemma
we have that p = de(〈g〉) and q = de(〈h〉) are quasi-minimal for
DS(A) and a = p ∨ q.
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Every jump spectrum is the spectrum of a total structure

Let A = (A; R1, . . . ,Rn).
Let 0̄ 6∈ A. Set A0 = A ∪ {0̄}. Let 〈., .〉 be a pairing function s.t.
none of the elements of A0 is a pair and A∗ be the least set
containing A0 and closed under 〈., .〉.

Definition. Moschovakis’ extension of A is the structure

A∗ = (A∗,R1, . . . ,Rn,A0,G〈.,.〉).

Let KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ  Fe(x))}.
Set A′ = (A∗,KA,A

∗ \ KA).

Theorem.

1 The structure A′ is total.

2 DS1(A) = DS(A′).
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The jump inversion theorem

Consider two structures A and B. Suppose that

DS(B)t = {a|a ∈ DS(B) and a is total} ⊆ DS1(A).

Theorem. There exists a structure C s.t. DS(C) ⊆ DS(A) and
DS1(C) = DS(B)t .

Method: Marker’s extensions.

Corollary. Let DS(B) ⊆ DS1(A). Then there exists a structure C
s.t. DS(C) ⊆ DS(A) and DS(B) = DS1(C).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0′. Then there exists a total structure C such that
DS(B) = DS(C).
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The jump inversion theorem

Theorem. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There
exists a structure C s.t. DSn(C) = DS(B).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0(n). Then there exists a total structure C s.t.
DSn(C) = DS(B).

Remark.

2009 Montalban, Notes on the jump of a structure, Mathematical
Theory and Computational Practice, 372–378.

2009 Stukachev, A jump inversion theorem for the semilattices of
Sigma-degrees, Siberian Electronic Mathematical Reports, v.
6, 182 – 190

2012 Montalban, Rice Sequences of Relations, to appear in the
Philosophical Transactions A.

Alexandra A. Soskova Enumeration Degree Spectra



The jump inversion theorem

Theorem. Let n ≥ 1. Suppose that DS(B) ⊆ DSn(A). There
exists a structure C s.t. DSn(C) = DS(B).

Corollary. Suppose that DS(B) consists of total degrees greater
than or equal to 0(n). Then there exists a total structure C s.t.
DSn(C) = DS(B).

Remark.

2009 Montalban, Notes on the jump of a structure, Mathematical
Theory and Computational Practice, 372–378.

2009 Stukachev, A jump inversion theorem for the semilattices of
Sigma-degrees, Siberian Electronic Mathematical Reports, v.
6, 182 – 190

2012 Montalban, Rice Sequences of Relations, to appear in the
Philosophical Transactions A.

Alexandra A. Soskova Enumeration Degree Spectra



Applications

Example.[Ash, Jockusch, Knight and Downey] Let n ≥ 0. There
exists a total structure C s.t. C has a n + 1-th jump degree 0(n+1)

but has no k-th jump degree for k ≤ n.
It is sufficient to construct a structure B satisfying:

1 DS(B) has not a least element.

2 0(n+1) is the least element of DS1(B).

3 All elements of DS(B) are total and above 0(n).

Consider a set B satisfying:

1 B is quasi-minimal above 0(n).

2 B ′ ≡e 0(n+1).

Let G be a subgroup of the additive group of the rationals s.t.
SG ≡e B. Recall that DS(G ) = {a | de(SG ) ≤e a and a is total}
and de(SG )′ is the least element of DS1(G ).
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Applications

Example.[Ash, Jockusch, Knight and Downey] Let n ≥ 0. There
exists a total structure C s.t. C has a n + 1-th jump degree 0(n+1)

but has no k-th jump degree for k ≤ n.
It is sufficient to construct a structure B satisfying:

1 DS(B) has not a least element.

2 0(n+1) is the least element of DS1(B).

3 All elements of DS(B) are total and above 0(n).

Consider a set B satisfying:

1 B is quasi-minimal above 0(n).

2 B ′ ≡e 0(n+1).

Let G be a subgroup of the additive group of the rationals s.t.
SG ≡e B. Recall that DS(G ) = {a | de(SG ) ≤e a and a is total}
and de(SG )′ is the least element of DS1(G ).
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Applications

Let n ≥ 0. There exists a total structure C such that
DSn(C) = {a | 0(n) <e a}.
It is sufficient to construct a structure B such that the elements of
DS(B) are exactly the total e-degrees greater than 0(n).
This could be done by Whener’s construction using a special family
of sets:

Theorem. Let n ≥ 0. There exists a family F of sets of natural
numbers s.t. for every X strictly above 0(n) there exists a
computable in X set U satisfying the equivalence:

F ∈ F ⇐⇒ (∃a)(F = {x |(a, x) ∈ U}).

But there is no such U c.e. in 0(n).
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Degree spectra

Questions:

Describe the sets of Turing degrees (enumeration degrees)
which are equal to DS(A) for some structure A.
Is the set of all Muchnik degrees containing some degree
spectra definable in the lattice of the Muchnik degrees?
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Thank you!
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