Enumeration Degree Spectra Definability in Computable Structures May 12-13, 2012, Chicago

Alexandra A. Soskova ¹

Faculty of Mathematics and Informatics Sofia University

¹Supported by David and Lucile Packard Foundation and BNSF Grant No. D002-258/18.12.08; Sofia University Science Fund, contract ▲31/09.05.2012 = ∽ < **Definition.** We say that $\Gamma : 2^{\omega} \to 2^{\omega}$ is an *enumeration operator* iff for some c.e. set W_i for each $B \subseteq \omega$

 $\Gamma(B) = \{x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B]\}.$

Definition. The set A is *enumeration reducible to* the set B $(A \leq_e B)$, if $A = \Gamma(B)$ for some e-operator Γ . The enumeration degree of A is $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. The set of all enumeration degrees is denoted by \mathcal{D}_e .

The enumeration jump

Definition. Given a set A, denote by $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any sets A and B:

- A is c.e. in B iff $A \leq_e B^+$.
- $a \leq_T B \text{ iff } A^+ \leq_e B^+.$

Definition. For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A)\}$. Set $A' = K_A^+$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

The enumeration jump

Definition. Given a set A, denote by $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any sets A and B: **1** A is c.e. in B iff $A <_{e} B^{+}$.

 $A <_{T} B \text{ iff } A^{+} <_{e} B^{+}.$

Definition. For any set A let $K_A = \{\langle i, x \rangle | x \in \Gamma_i(A)\}$. Set $A' = K_A^+$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

Degree spectra

Let $\mathfrak{A} = (A; R_1, ..., R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every surjective (partial) mapping of ω onto A.

Given an enumeration f of \mathfrak{A} and a subset of B of A^a , let

$$f^{-1}(B) = \{ \langle x_1, \dots, x_a \rangle \mid x_1, \dots, x_a \in dom(f) \& (f(x_1), \dots, f(x_a)) \in B \}.$$

$$f^{-1}(\mathfrak{A})=f^{-1}(R_1)\oplus\cdots\oplus f^{-1}(R_k)\oplus f^{-1}(=)\oplus f^{-1}(
eq).$$

Definition.[Richter] *The Turing degree spectrum of* \mathfrak{A} is the set

 $DS_T(\mathfrak{A}) = \{ d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is a one-to-one total enum. of } \mathfrak{A} \}.$

If **a** is the least element of $DS_T(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A} .

Definition.[Soskov] The enumeration degree spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is a total enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *e*-degree of \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if $\mathbf{a} \in DS(\mathfrak{A})$, \mathbf{b} is a total e-degree $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS(\mathfrak{A})$.

Total structures

Definition. The structure \mathfrak{A} is called *total* if for every total enumeration f of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If \mathfrak{A} is a total structure then $DS(\mathfrak{A}) = \iota(DS_T(\mathfrak{A}))$.

Given a structure $\mathfrak{A} = (A, R_1, \dots, R_k)$, for every j denote by R_j^c the complement of R_j and let $\mathfrak{A}^+ = (A, R_1, \dots, R_k, R_1^c, \dots, R_k^c)$.

Proposition.

- $\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$
- If \mathfrak{A} is total then $DS(\mathfrak{A}) = DS(\mathfrak{A}^+)$.

Proposition. If \mathfrak{A} has e-degree **a** then $\mathbf{a} = d_e(f^{-1}(\mathfrak{A}))$ for some one-to-one enumeration f of \mathfrak{A} .

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

 $co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \& (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$$

Definition. Given a structure \mathfrak{A} , set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

If \mathfrak{A} has a degree **a** then **a** is also the co-degree of \mathfrak{A} . The vice versa is not always true.

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

Every finite mapping of ω into A is called a finite part. For every finite part τ and natural numbers e, x, let

> $\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})) \text{ and}$ $\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x))$

Definition. An enumeration f of \mathfrak{A} is *generic* if for every $e, x \in \omega$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set *B* of natural numbers is admissible in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} , $B \leq_e f^{-1}(\mathfrak{A})$.

Clearly $\mathbf{a} \in CS(\mathfrak{A})$ iff $\mathbf{a} = d_e(B)$ for some admissible in \mathfrak{A} set B.

Every finite mapping of ω into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$\tau \Vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathfrak{A})) \text{ and}$$

$$\tau \Vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvDash F_e(x))$$

Definition. An enumeration f of \mathfrak{A} is *generic* if for every $e, x \in \omega$, there exists a $\tau \subseteq f$ s.t. $\tau \Vdash F_e(x) \lor \tau \Vdash \neg F_e(x)$.

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $B \subseteq \omega$ and $d_e(C) \in DS(\mathfrak{A})$. Then the following are equivalent:

- **1** B is admissible in \mathfrak{A} .
- B ≤_e f⁻¹(𝔅) for all generic enumerations f of 𝔅 s.t. (f⁻¹(𝔅))' ≡_e C'.
- \bigcirc B is forcing definable on \mathfrak{A} .

Definition. A set *B* of natural numbers is *forcing definable in the structure* \mathfrak{A} iff there exist a finite part δ and a natural number *e* s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x))\}.$$

Theorem. Let $B \subseteq \omega$ and $d_e(C) \in DS(\mathfrak{A})$. Then the following are equivalent:

- **1** B is admissible in \mathfrak{A} .
- B ≤_e f⁻¹(𝔅) for all generic enumerations f of 𝔅 s.t. (f⁻¹(𝔅))' ≡_e C'.
- **3** B is forcing definable on \mathfrak{A} .

The formally definable sets on \mathfrak{A}

Definition. A Σ_1^c formula with free variables among W_1, \ldots, W_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{W})$, where θ is a finite conjunction of atomic and negated atomic formulae.

Definition. A set $B \subseteq \omega$ is formally definable on \mathfrak{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \omega} \Phi_{\gamma(x)}$ is a Σ_1^c formula with free variables among W_1, \ldots, W_r and elements t_1, \ldots, t_r of Asuch that the following equivalence holds:

$$x \in B \iff \mathfrak{A} \models \Phi_{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r)$$
.

Theorem. Let $B \subseteq \omega$. Then

- **1** B is admissible in \mathfrak{A} ($d_e(B) \in CS(\mathfrak{A})$) iff
- **2** B is forcing definable on \mathfrak{A} iff
- **3** B is formally definable on \mathfrak{A} .

The partial case

Definition. The partial enumeration degree spectrum of \mathfrak{A} is the set

 $DS^{p}(\mathfrak{A}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \text{ is a partial enumeration of } \mathfrak{A} \}.$

Lemma. If f is a partial enumeration of \mathfrak{A} then $\operatorname{dom}(f) \leq_e f^{-1}(\mathfrak{A}).$

Proposition. The partial enumeration degree spectrum is closed upwards with respect to enumeration degrees, i.e. if $\mathbf{a} \in DS^{p}(\mathfrak{A})$ and $\mathbf{a} \leq_{e} \mathbf{b}$ then $\mathbf{b} \in DS^{p}(\mathfrak{A})$.

Theorem. Let $B \subseteq \omega$. The following are equivalent:

2 B is formally definable on \mathfrak{A} .

Definition. The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *nth jump* degree of \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} . If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *n*th jump

co-degree of \mathfrak{A} .

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example.[Slaman, Whener] There exists a structure \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example.[*Slaman*,*Whener*] *There exists a structure* \mathfrak{A} *s.t.*

 $DS(\mathfrak{A}) = \{\mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a}\}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Example.[*Richter*] Let $\mathfrak{A} = (A; <)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A}) = \{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a} = \mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all *e*-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example. [Slaman, Whener] There exists a structure \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{\mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a}\}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

Representing the principle countable ideals as co-spectra

Example. [Coles, Downey, Slaman] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} }.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some G.

Remark. If we consider the partial enumeration degree spectra, then the abelian groups of rank 1 always have an e-degree.

Representing the principle countable ideals as co-spectra

Example. [Coles, Downey, Slaman] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = {\mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b}}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_{e}$ there exists a G, s.t. $\mathbf{s}_{G} = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some G.

Remark. If we consider the partial enumeration degree spectra, then the abelian groups of rank 1 always have an e-degree.

Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i+1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

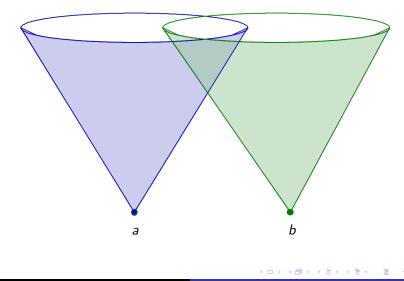
Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem. A structure \mathfrak{A} has an e-degree if and only if $DS(\mathfrak{A})$ has a countable base.

Suppose that the sequence of e-degrees $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$. Assume that no \mathbf{b}_i is an e-degree of \mathfrak{A} . Then for every i, $\mathbf{b}_i \notin CS(\mathfrak{A})$. Let $B_i \in \mathbf{b}_i$ for every $i \in \omega$. Then all the sets B_i have no forcing normal form. We can construct a generic enumeration f of \mathfrak{A} , omitting all B_i , *i.e.* $B_i \not\leq_e f^{-1}(\mathfrak{A})$. This contradicts with fact that $\{\mathbf{b}_i\}_i$ is a base for $DS(\mathfrak{A})$.

(E)

An upwards closed set of degrees which is not a degree spectra of a structure



Definition. Consider a subset \mathcal{A} of \mathcal{D}_e . Say that \mathcal{A} is *upwards closed* if for every $\mathbf{a} \in \mathcal{A}$ all total degrees greater than \mathbf{a} are contained in \mathcal{A} .

Theorem.[Selman] $\mathbf{a} \leq_e \mathbf{b}$ iff for all total \mathbf{c} ($\mathbf{b} \leq_e \mathbf{c} \Rightarrow \mathbf{a} \leq_e \mathbf{c}$).

Proposition. Let $A_t = \{ \mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total} \}$. Then $co(A) = co(A_t)$.

Proposition. Let **b** be an arbitrary enumeration degree and n > 0. Set $\mathcal{A}_{\mathbf{b},n} = \{\mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{b} \leq_{e} \mathbf{a}^{(n)}\}$. Then $co(\mathcal{A}) = co(\mathcal{A}_{\mathbf{b},n})$.

Specific properties of the degree spectra

Theorem. Let \mathfrak{A} be a structure, $1 \le n$ and $\mathbf{c} \in DS_n(\mathfrak{A})$. Then $CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$

Example.(Upwards closed set for which the Theorem is not true) Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

 $\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$

Set $\mathcal{A} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

• $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.

• $d_e(B) \leq d_e(A)$ and hence $d_e(B) \notin co(\mathcal{D})$.

Specific properties of the degree spectra

Theorem. Let \mathfrak{A} be a structure, $1 \le n$ and $\mathbf{c} \in DS_n(\mathfrak{A})$. Then $CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$

Example.(Upwards closed set for which the Theorem is not true) Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$$

Set $\mathcal{A} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

• $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.

• $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \notin co(\mathcal{D})$.

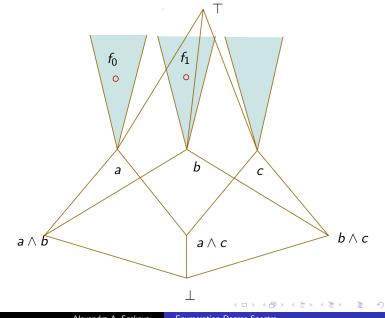
Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree **b** there exists a structure $\mathfrak{A}_{\mathbf{b}}$ s. t. $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x}\}$. Hence

Corollary. [Rozinas] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

Not every upwards closed set of enumeration degrees has a minimal pair:

An upwards closed set with no minimal pair



Alexandra A. Soskova Enumeration Degree Spectra

Definition. Let \mathcal{A} be a set of enumeration degrees. The degree **q** is quasi-minimal with respect to \mathcal{A} if:

- $\mathbf{q} \not\in co(\mathcal{A})$.
- If **a** is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

From Selman's theorem it follows that if \mathbf{q} is quasi-minimal with respect to \mathcal{A} , then \mathbf{q} is an upper bound of $co(\mathcal{A})$.

Theorem. For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.

Partial generic enumerations

Let $\perp \not\in A$.

Definition. A *partial finite part* is a finite mapping of ω into $A \cup \{\bot\}$.

Let τ be a partial finite part and let f be a partial enumeration, by $\tau \subseteq f$ we denote that for all x in dom (τ) either $\tau(x) = \bot$ and f(x) is not defined or $\tau(x) \in A$ and $f(x) = \tau(x)$.

Definition. A subset *B* of ω is *partially forcing definable* on \mathfrak{A} if there exist an $e \in \omega$ and a partial finite part δ such that for all natural numbers *x*,

$$x \in B \iff (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)).$$

Lemma. Let $B \subseteq \omega$ be partially forcing definable on \mathfrak{A} . Then $d_e(B) \in CS(\mathfrak{A})$.

The quasi-minimal degree

Proposition.

- For every partial generic f, f⁻¹(𝔅) ≤_e D(𝔅). Hence d_e(f⁻¹(𝔅)) ∉ CS(𝔅).
- **2** There exists a partial generic enumeration $f \leq_e D(\mathfrak{A})'$ such that $f^{-1}(\mathfrak{A}) \leq_e D(\mathfrak{A})'$.
- If B ≤_e f⁻¹(𝔅) for all partial generic enumerations f, then B is partially forcing definable on 𝔅.

Theorem. Let f be a partial generic enumeration of \mathfrak{A} . Then $d_e(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to $DS(\mathfrak{A})$.

Corollary.[Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree **q** s.t.

1 If $\mathbf{a} \in I$ then $\mathbf{a} <_e \mathbf{q}$.

2) If **a** is total and
$$\mathbf{a} \leq_{e} \mathbf{q}$$
 then $\mathbf{a} \in I$.

Proposition. For every countable structure \mathfrak{A} there exist continuum many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Suppose that all quasi-minimal degrees with respect to $DS(\mathfrak{A})$ are $\mathbf{q}_0, \mathbf{q}_1, \ldots, \mathbf{q}_n, \ldots$ and let $X_i \in \mathbf{q}_i$, for all $i \in \omega$. Then all \mathbf{q}_i are not in $CS(\mathfrak{A})$ and hence every X_i is not forcing definable on \mathfrak{A} . We could build a partial generic enumeration f of \mathfrak{A} such that $X_i \not\leq_e f^{-1}(\mathfrak{A})$. Thus $d_e(f^{-1}(\mathfrak{A}))$ is quasi-minimal with respect to $DS(\mathfrak{A})$ and not in $\{\mathbf{q}_i\}$. **Lemma.** Let $\mathbf{a} \in DS_1(\mathfrak{A})$ and g be an enumeration of \mathfrak{A} such that $g^{-1}(\mathfrak{A})' \in \mathbf{a}$. There exists a partial generic enumeration f such that $f^{-1}(\mathfrak{A})' \equiv_e g^{-1}(\mathfrak{A})'$.

Proposition. The first jump spectrum of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary. [*McEvoy*] For every total e-degree $\mathbf{a} \ge_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure \mathfrak{A} there exists quasi-minimal with respect to \mathfrak{A} degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Suppose that $\mathfrak{A} = (\mathbb{N}; R_1, ..., R_n)$. Denote by Δ the set of all finite parts. For each $\tau \in \Delta$ and $x \in \mathbb{N}$ by $\tau * x$ we denote an extension of τ such that $\tau * x(lh(\tau)) = x$. Let $f : \Delta \to \Delta$ and $\{y_n\}_n$ be a sequence of natural numbers. If $\tau_0 = \emptyset$, $\tau_{n+1} = f(\tau_n * y_i)$, then we denote by $f(\{y_n\}_n) = \bigcup_n \tau_n$. Let P be a set of enumerations of \mathfrak{A} .

Lemma. [Ganchev] If f is computable in the total set Q and such that for every sequence $\{y_n\}_n$ computable in Q, $f(\{y_n\}_n) \in P$, then there exist enumerations $g, h \in P$ of \mathfrak{A} such that $Q \equiv_e \langle g \rangle \oplus \langle h \rangle$.

A method of splitting a total set

Let q be an enumeration of Q such that $\langle q \rangle \leq_e Q$. We construct two sequences of finite parts $\{\tau_n\}_n$ and $\{\sigma_n\}_n$ by the following rule:

• $\tau_0 = \sigma_0 = \emptyset;$ • $y_n = \langle lh(\sigma_n), q(2n) \rangle;$ • $\tau_{n+1} = f(\tau_n * y_n);$ • $z_n = \langle lh(\tau_n), q(2n+1) \rangle;$ • $\sigma_{n+1} = f(\sigma_n * z_n).$ Define $g = f(\{y_n\}_n)$ and $h = f(\{z_n\}_n).$

Let $\mathbf{a} \in DS_1(\mathfrak{A})$ and $B' \in \mathbf{a}$. Q = B' is a total set. Let P be the class of all partial generic enumerations of \mathfrak{A} . Applying the lemma we have that $\mathbf{p} = d_e(\langle g \rangle)$ and $\mathbf{q} = d_e(\langle h \rangle)$ are quasi-minimal for $DS(\mathfrak{A})$ and $\mathbf{a} = \mathbf{p} \lor \mathbf{q}$.

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}).$$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta) (\tau \Vdash F_e(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem.

• The structure
$$\mathfrak{A}'$$
 is total.

 $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A} = (A; R_1, ..., R_n)$. Let $\overline{0} \notin A$. Set $A_0 = A \cup \{\overline{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \ldots \rangle}).$$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \Vdash F_e(x)) \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem.

- **1** The structure \mathfrak{A}' is total.
- $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

Consider two structures ${\mathfrak A}$ and ${\mathfrak B}.$ Suppose that

 $DS(\mathfrak{B})_t = \{\mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total}\} \subseteq DS_1(\mathfrak{A}).$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extensions.

Corollary. Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C} such that $DS(\mathfrak{B}) = DS(\mathfrak{C})$.

A A A

The jump inversion theorem

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark.

- 2009 Montalban, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.
- 2009 Stukachev, A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 – 190

2012 Montalban, Rice Sequences of Relations, to appear in the Philosophical Transactions A.

The jump inversion theorem

Theorem. Let $n \ge 1$. Suppose that $DS(\mathfrak{B}) \subseteq DS_n(\mathfrak{A})$. There exists a structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}^{(n)}$. Then there exists a total structure \mathfrak{C} s.t. $DS_n(\mathfrak{C}) = DS(\mathfrak{B})$.

Remark.

- 2009 Montalban, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.
- 2009 Stukachev, A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 – 190
- 2012 Montalban, Rice Sequences of Relations, to appear in the Philosophical Transactions A.

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-th jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure \mathfrak{B} satisfying:

- $DS(\mathfrak{B})$ has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **③** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- B is quasi-minimal above 0⁽ⁿ⁾.
- $B' \equiv_e \mathbf{0}^{(n+1)}$

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{ \mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure \mathfrak{C} s.t. \mathfrak{C} has a n + 1-th jump degree $\mathbf{0}^{(n+1)}$ but has no k-th jump degree for $k \le n$. It is sufficient to construct a structure \mathfrak{B} satisfying:

- DS(B) has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **③** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

$$\mathbf{2} \ B' \equiv_{e} \mathbf{0}^{(n+1)}$$

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{\mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

・ロト ・同ト ・ヨト ・ヨト

Let $n \ge 0$. There exists a total structure \mathfrak{C} such that $DS_n(\mathfrak{C}) = \{\mathbf{a} \mid \mathbf{0}^{(n)} <_e \mathbf{a}\}.$ It is sufficient to construct a structure \mathfrak{B} such that the elements of $DS(\mathfrak{B})$ are exactly the total e-degrees greater than $\mathbf{0}^{(n)}$. This could be done by Whener's construction using a special family of sets:

Theorem. Let $n \ge 0$. There exists a family \mathcal{F} of sets of natural numbers s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a computable in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no such U c.e. in $\mathbf{0}^{(n)}$.

- 2004 Soskov, Degree spectra and co-spectra of structures, Ann. Univ. Sofia, 96, 45–68.
- 2007 Calvert, Harizanov and Shlapentokh, Turing degrees of isomorphism types of algebraic objects, Journal of the London Math. Soc., 73, 273–286.
- 2007 Kalimullin, Some notes on degree spectra of the structures. CiE 2007, LNCS 4497, 389–397
- 2009 Frolov, Kalimullin and Miller, Spectra of algebraic fields and subfields, CiE 2009, LNCS, 5635, 232–241.
- 2010 Frolov, Harizanov, Kalimullin, Kudinov and Miller, Spectra of high_n and nonlow_n degrees, Journal of Logic and Computation; doi:10.1093/logcom/exq041.
- 2012 Andersen, Kach, Melnikov and Solomon, Jump degrees of torsion free abelian groups, submitted.

< 日 > < 同 > < 三 > < 三 >

- Questions:
 - Describe the sets of Turing degrees (enumeration degrees) which are equal to $DS(\mathfrak{A})$ for some structure \mathfrak{A} .
 - Is the set of all Muchnik degrees containing some degree spectra definable in the lattice of the Muchnik degrees?

Thank you!

<ロ> <同> <同> < 同> < 同>

æ