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Degree Spectra

Let A = (A; P1, . . . ,Pk) be a denumerable structure. Enumeration
of A is every one to one mapping of N onto A.

Given an enumeration f of A and a subset of X of Aa, let

f −1(X ) = {〈x1, . . . , xa〉 : (f (x1), . . . , f (xa)) ∈ X}.

Set f −1(A) = f −1(P1)⊕ · · · ⊕ f −1(Pk)⊕ f −1(=)⊕ f −1( 6=).

Definition.[Richter] The Degree Spectrum of A is the set

DS(A) = {dT (f −1(A)) : f is an enumeration of A)}.
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Degree Spectra

Definition.[Knight] The n-th jump spectrum of a structure A is
the set

DSn(A) = {a(n)|a ∈ DS(A)}.

Proposition.[Knight] For every automorphically nontrivial
structure A, DSn(A) is an upwards closed set of degrees.
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Degree Spectra

Theorem.[A., Soskov] Every first jump spectrum is a spectrum of
a structure, i.e. for every countable structure A there is a structure
B such that DS1(A) = DS(B).

Theorem.[A., Soskov] Let A and C be countable structures and
DS(A) ⊆ DS1(C). There exists a structure B such that
DS(A) = DS1(B) and DS(B) ⊆ DS(C).
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Computable Σc
n-formulas

The computable Σc
n formulas are defined inductively:

A computable Σc
0 (Πc

0) formula is a finitary quantifier-free
formula.

A computable Σc
n+1 formula Φ(x) is a disjunction of c.e. set

of formulas of the form

(∃Y )Ψ(X ,Y )

Ψ is a finite conjunction of Σc
n and Πc

n formulas

Πc
n+1 formulas are the negations of the Σc

n+1 formulas.
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Formally Σc
n-definable sets

Definition. A set X ⊆ A is formally Σc
n- definable on A

(X ∈ Σc
n(A)) if there exists a computable Σc

n formula
Φ(W1, . . . ,Wr ,X ) and elements t1, . . . , tr of A such that:

x ∈ X ↔ A |= Φ(W1/t1, . . . ,Wr/tr ,X/x).
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Example

Consider O = (N; =) and S = (N; GSucc ; =), where GSucc is the
graph of the successor function.

DS(O) = DS(S)

The Σc
1(O) sets are all finite and co-finite sets of natural numbers.

But all c.e. set are formally Σc
1 definable on S.

So, the structure S is more powerful than the O.
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Enumerations

Definition. The pair α = (fα,Rα) is an enumeration of the set
X ⊆ A, if Rα is a set of natural numbers, fα is a partial one-to-one
mapping of N onto X and dom(fα) = f −1

α (X ) is c.e. in Rα.
We denote this by X ≤ α.

Definition. The pair α = (fα,Rα) is an enumeration of A if fα is
an enumeration of A and f −1

α (A) is computable in Rα.
We denote this by A ≤ α.

Denote by α(n) = (fα,R
(n)
α ).
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Reformulation

The Degree Spectrum of A is the set

DS(A) = {dT (Rα) | A ≤ α}.

Theorem.(Ash, Knigh, Manasse, Slaman, Chisholm)
For every set X ⊆ A,

X ∈ Σc
n+1(A)↔ (∀α)[A ≤ α→ X ≤ α(n)].
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Conservative (k , n) Extensions

Let α = (fα,Rα) and β = (fβ,Rβ) be enumerations of the
structures A and B respectively.
We write α ≤ β if

(i) Rα ≤T Rβ and

(ii) the set

E (fα, fβ) = {(x , y) | x ∈ Dom(fα) & y ∈ Dom(fβ) &

fα(x) = fβ(y)}.

is c.e. in Rβ.
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Conservative (k , n) Extensions

Definition. Let A and B be countable structures, possibly with
different signatures and A ⊆ B.

(i) A ≤k
n B iff for every enumeration β of B there exists an

enumeration α of A such that α(k) ≤ β(n).

(ii) A ≥k
n B iff for every enumeration α of A there exists an

enumeration β of B such that β(n) ≤ α(k).

(iii) A ≡k
n B if A ≤k

n B and A ≥k
n B. We shall say that B is a

(k, n)-conservative extension of A.

Note that the relation ≡k
n is not symmetric.
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Conservative (k , n) Extensions and Degree Spectra

Proposition. Let A and B be countable structures with A ⊆ B.

(i) If A ≤k
n B then DSn(B) ⊆ DSk(A);

(ii) If A ≥k
n B then DSk(A) ⊆ DSn(B);

(iii) If A ≡k
n B then DSk(A) = DSn(B);

Corollary.

(i) k = 1, n = 0:
If A ≡1

0 B then DS1(A) = DS(B).

(ii) k = 0, n = 1:
If A ≡0

1 B then DS(A) = DS1(B).
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Conservative (k , n) Extensions and Definability

Theorem. Let for A and B : A ⊆ B. For all k , n ∈ N,

(i) if A ≤k
n B then (∀X ⊆ A)[X ∈ Σc

k+1(A)→ X ∈ Σc
n+1(B)];

(ii) if A ≥k
n B then (∀X ⊆ A)[X ∈ Σc

n+1(B)→ X ∈ Σc
k+1(A)];

(iii) if A ≡k
n B then (∀X ⊆ A)[X ∈ Σc

k+1(A)↔ X ∈ Σc
n+1(B)].
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Conservative (k , n) Extensions and Definability

The opposite direction is not always true:

Example.
Consider OA = (A; =) and take A = B = OA.
For every natural number n,
X ⊆ A is Σc

n(OA) iff X is a finite or co-finite subset of A.
Therefore Σc

1(OA) = Σc
n(OA) and

(∀n)(∀X ⊆ A)[X ∈ Σc
n+1(OA)→ X ∈ Σc

1(OA)].

But (∀n)[OA ≤n
0 OA] is evidently not true.
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Moschovakis’ extension

Let A = (A; P1, . . . ,Pl) and 0̄ 6∈ A.
Set A0 = A ∪ {0̄}.
Let 〈., .〉 be a pairing function s.t. none of the elements of A is a
pair.
Let A? be the least set containing A0 and closed under 〈., .〉.
The decoding functions: L(〈s, t〉) = s & R(〈s, t〉) = t
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Moschovakis’ extension

Definition. Moschovakis’ extension of A is the structure

A? = (A?,P1, . . . ,Pl ,A0,G〈.,.〉,GL,GR).

Proposition. A ≡n
n A? for every n ∈ N.

Proposition. For every two structures A, B with A ⊆ B and
natural numbers n, k
A ≡k

n B iff A? ≡k
n B?.
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Conservative (k , n) Extensions and Definability

Theorem.[Vatev] Let A and B be countable structures with
A? ⊆ B and k , n ∈ N.
If (∀X ⊆ A?)[X ∈ Σc

k+1(A?)→ X ∈ Σc
n+1(B)] then A ≤k

n B.

Corollary. For any two countable structures A, B with A ⊆ B and
n, k ∈ N,

A ≤k
n B↔ (∀X ⊆ A?)[X ∈ Σc

k+1(A?)→ X ∈ Σc
n+1(B?)].
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The set KA

A new predicate KA (analogue of Kleene’s set).
For e, x ∈ N and finite part τ , let

τ 
 Fe(x)↔ x ∈W
τ−1(A)
e .

τ 
 ¬Fe(x)↔ (∀ρ ⊇ τ)(ρ 6
 Fe(x)).

KA = {〈δ, e, x〉 : (∃τ ⊇ δ)(τ 
 Fe(x))}.
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Jumps of Structures

Definition. The jump of a structure A is

A(1) = (A?,KA).

Theorem. DS1(A) = DS(A(1)).

Proposition.

(i) A ≡1
0 A(1);

(ii) A 6≡0
0 A(1).
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Marker’s Extensions

Let A = (A; P1, . . . ,Pk ,=).

Marker’s ∃-extension of Pi (P∃i ):

Xi = {x i
〈a1,...,ari 〉

| Pi (a1, . . . , ari )} (∃-fellow for Pi ).

P∃i (a1, . . . , ari , x)↔
a1, . . . , ari ∈ A & x ∈ Xi & x = x i

〈a1,...,ari 〉
.

A∃ = (A ∪
⋃k

i=1 Xi ,P
∃
1 , . . . ,P

∃
k , X̄1, . . . , X̄k ,=).
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Marker’s Extensions

Marker’s ∀-extension of Pi (P∀i ):

Yi = {y i
〈a1,...,ari 〉

| ¬Pi (a1, . . . , ari )} (∀-fellow for Pi ).

If P∀i (a1, . . . , ari , y) then a1, . . . , ari ∈ A and y ∈ Yi ;

If a1, . . . , ari ∈ A & y ∈ Yi then
¬P∀i (a1, . . . , ari , y)↔ y = y i

〈a1,...,ari 〉
.

A∀ = (A ∪
⋃k

i=1 Yi ,P
∀
1 , . . . ,P

∀
k , Ȳ1, . . . , Ȳk ,=).
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The Jump Inversion Theorem

Theorem. Let A and C be countable structures and
DS(A) ⊆ DS1(C). There exists a structure B = A∃∀ ⊕ C such that
DS(A) = DS1(B) and DS(B) ⊆ DS(C).

Remark. Similar results by:

Montalban : a different approach, keeps the domain of the structure and
adds a complete set of Πc

n formulas.

Stukachev : for Σ reducibility

Stukachev proves an analogue of this theorem for the semilattices
of Σ-degrees of structures with arbitrary cardinalities.
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The Jump Inversion Theorem

Theorem. If OA ≤1
0 A, then A ≡0

1 A∃∀.

Remark. Note that OA ≤k
0 A iff the elements of DS(A) are above

0(k).

Corollary. If OA ≤k
0 A for some k ∈ N then for each n ∈ N, there

is a structure B such that

(∀X ⊆ A)[X ∈ Σc
n+1(A)↔ X ∈ Σc

k+1(B)].
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Some problems

The definition of A ≡k
n B is not symmetric since we suppose

that A ⊆ B. How to define the similar relation more
symmetric and for arbitrary A and B?

How to relativize the Jump Inversion Theorem for structures?

The Jump inversion Theorem for structures for arbitrary
constructive ordinal α.
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Thank you!
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