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Abstract. A relativized version of the notion of Degree spectrum of a
structure with respect to finitely many abstract structures is presented,
inspired by the notion of relatively intrinsic sets. The connection with
the notion of Joint spectrum is studied. Some specific properties like
Minimal Pair type theorem and the existence of Quasi-Minimal degree
with respect to the Relative spectrum are shown.

1 Introduction

Let A be a countable partial structure. The Degree spectrum DS(A) of the struc-
ture A is the set of all enumeration degrees generated by all enumerations of A.
The notion is introduced by Richter in [?] and studied by Knight, Ash, Jockush,
Downey and Soskov in [?,?,?,?]. It is a kind of a measure of complexity of
the structure. The Co-spectrum CS(A) of the structure A is the set of all enu-
meration degrees which are lower bounds of the DS(A). A typical example of a
Degree spectrum is the cone of all total enumeration degrees, greater than or
equal to some enumeration degree a and the respective Co-spectrum is equal to
the set of all degrees less than or equal to a. In [?] Soskov shows that the Degree
spectra behave with respect to their Co-spectra very much like the cones of enu-
meration degrees. The Degree spectra have some general and specific properties.
For example each Degree spectrum is closed upwards, i.e. if a ∈ DS(A) then
each total enumeration degree b greater than or equal to a is in DS(A). But not
every upwards closed set of enumeration degrees is a spectrum of a structure.
Some typical specific properties of the Degree spectra and their Co-spectra are
the Minimal Pair type theorem and the existence of Quasi-Minimal degree. For
every Degree spectrum DS(A) there exist total enumeration degrees f0 and f1,
elements of DS(A), which determine completely the elements of the Co-spectrum
CS(A), i.e. the set of all enumeration degrees less than or equal to both f0 and
f1 is exactly CS(A). The degrees f0 and f1 are called Minimal Pair for DS(A).
For each Degree spectrum DS(A) there is an enumeration degree q ̸∈ CS(A),
called Quasi-Minimal for DS(A), such that for each total degree a if a ≥ q, then
a ∈ DS(A) and if a ≤ q, then a ∈ CS(A).
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In this paper we introduce and study a generalized notion of Degree spectrum
of the structure A, relatively given structures A1, . . . ,An, inspired by the notion
of relatively intrinsic on A sets. An internal characterization of the relatively
intrinsic on A sets is presented in [?], [?] and in [?] with respect to the infinite
sequence of sets.

The Relative spectrum RS(A,A1, . . . ,An) of A with respect to the structures
A1, . . . ,An is the set of all enumeration degrees generated by all enumerations of
A, such that the structure Ak is relatively k-intrinsic on A, i.e. Ak is admissible
in the kth jump of A. In other words we consider the set of all enumeration
degrees of the presentations of the structure A in which the degrees of Ak fall
below the kth jump of the degrees of A, k ≤ n. We will show that this generalized
notion of Degree spectra posses all general and specific properties of the Degree
spectra of a structure. And we will compare this notion with the notion of Joint
Spectrum of A with respect to the structures A1, . . . ,An, considered in [?], [?].

2 Preliminaries

Let A = (IN;R1, . . . , Rs) be a partial structure over the set of all natural numbers
IN, where each Ri is a subset of INri and =, ̸= are among R1, . . . , Rs.

An enumeration f of A is a total mapping from IN onto IN.

For A ⊆ INa define f−1(A) = {⟨x1 . . . xa⟩ : (f(x1), . . . , f(xa)) ∈ A}. Denote
by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).

For any sets of natural numbers A and B the set A is enumeration reducible
to B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By
de(A) we denote the enumeration degree of the set A and by De the set of all
enumeration degrees. The set A is total if A ≡e A+, where A+ = A ⊕ (IN\A).
A degree a is total if a contains the e-degree of a total set. The jump operation
“′” denotes here the enumeration jump introduced by Cooper in [?].

Let B0, . . . , Bn be arbitrary subsets of IN. Define the set P(B0, . . . , Bi) by
induction on i ≤ n, as follows:

1. P(B0) = B0;

2. If i < n, then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))
′ ⊕Bi+1.

We will use the following modification of Jump Inversion Theorem from [?]:

Theorem 1 ([?]). Let {Ak
r}r∈IN, k = 0, . . . , n − 1 be n sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k < n, Ak
r ̸≤e P(B0, . . . , Bk) and let

Q be a total set, such that P(B0, . . . , Bn) ≤e Q. Then there exists a total set F
having the following properties:

1. Bi ≤e F
(i), for all i ≤ n;

2. Ak
r ̸≤e F

(k), for all r and all k < n;

3. F (n) ≡e Q.



3 Relative Spectra of Structures

Definition 2. The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A} .

Let A1, . . . ,An be arbitrary abstract structures on IN.

Definition 3. The Relative spectrum of the structure A with respect to A1, . . . ,
An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) : f is an enumeration of A such that:
(∀k ≤ n)(f−1(Ak) ≤e (f

−1(A))(k))} .

Definition 4. Let k ≤ n. An enumeration f of A is k-acceptable with respect to
the structures A1, . . . ,Ak, if f

−1(Ai) ≤e (f
−1(A))(i), for each i ≤ k.

In fact the Relative spectrum of A is the set, generated by all n-acceptable
enumerations of A with respect to A1, . . . , An. First we show that the Relative
spectra are closed upwards.

Lemma 5. If F is a total set, f is a n-acceptable enumeration of A with respect
to A1, . . . , An and f−1(A) ≤e F , then there exists a n-acceptable enumeration g
of A with respect to A1, . . . , An, such that

1. g−1(A) ≡e F ⊕ f−1(A) ≡e F ;
2. g−1(B) ≤e F ⊕ f−1(B), for every B ⊆ IN.

Proof (sketch). Let s ̸= t ∈ IN, f(xs) ≃ s and f(xt) ≃ t. Define

g(x) ≃

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F,
t if x = 2z + 1 and z ̸∈ F.

It is clear that f−1(A) ≤e g
−1(A). Since “=” and “ ̸=” are among the underlined

predicates of A, F ≤e g
−1(A).

Consider the predicate Ri of A. Let x1, . . . , xri be arbitrary natural numbers.
Define the natural numbers y1, . . . , yri by means of the following recursive in F
procedure. Let 1 ≤ j ≤ ri. If xj is even then let yj = xj/2. If xj = 2z + 1 and
z ∈ F , then let yj = xs. If xj = 2z + 1 and z ̸∈ F , then let yj = xt. Clearly

⟨x1, . . . , xri⟩ ∈ g−1(Ri) ⇐⇒ ⟨y1, . . . , yri⟩ ∈ f−1(Ri).

Thus g−1(Ri) ≤e F ⊕ f−1(A). So, we obtain that g−1(A) ≡e F ⊕ f−1(A) ≡e F .
From the definition of g it follows that g−1(B) ≤e F ⊕ f−1(B), for any

B ⊆ IN. Then, for each i ≤ n, g−1(Ai) ≤e F ⊕ f−1(Ai) ≤e F ⊕ (f−1(A))(i) ≤e

F ⊕ F (i) ≡e F
(i) ≡e (g

−1(A))(i).

Corollary 6. If b is a total e-degree, a ∈ RS(A, A1, . . . , An), and a ≤ b, then
b ∈ RS(A, A1, . . . , An).



Denote by Pf
k = P(f−1(A), f−1(A1), . . . , f

−1(Ak)), for every enumeration f of
A and k ≤ n.

Lemma 7. Let f be an arbitrary enumeration of A, then there exists a n-
acceptable enumeration g of A with respect to A1, . . . , An, such that f−1(A) ≤e

g−1(A) and g−1(A) is a total set.

Let Q be a total set such that Pf
n ≤e Q. Apply Theorem ?? and the construction

of Lemma ??.

Definition 8. Let k ≤ n. The kth Jump Relative spectrum of A with respect to
A1, . . . ,An is the set

RSk(A,A1, . . . ,An) = {a(k) : a ∈ RS(A,A1, . . . ,An)} .

Proposition 9. Let k ≤ n. RSk(A,A1, . . .An) is closed upwards, i.e. if b is a
total e-degree, a ∈ RS(A,A1, . . .An) and a(k) ≤ b, then b ∈ RSk(A,A1, . . . ,An).

Proof. Let G be a total set, G ∈ b, and (f−1(A))(k) ≤e G, for some n-acceptable

enumeration f of A, with respect to A1, . . . , An. Then Pf
k ≤e (f

−1(A))(k) ≤e G.
By Theorem ?? there exists a total set F , such that f−1(A) ≤e F , f−1(Ai) ≤e

F (i), for i ≤ k and F (k) ≡e G. As in Lemma ??, we construct a k-acceptable
enumeration g of A, with respect to A1, . . . , Ak, so that g−1(A) ≡e F . So,
g−1(Ai) ≤e (g−1(A))(i), for i ≤ k. But for k ≤ j ≤ n we have g−1(Aj) ≤e

F ⊕ f−1(Aj) ≤e F ⊕ (f−1(A))(j) ≤e F ⊕ F (j) ≡e F (j) ≡e (g−1(A))(j). Thus
G ≡e (g−1(A))(k), de(g

−1(A)) ∈ RS(A,A1, . . . ,An) and hence de(G) ∈ RSk(A,
A1, . . . , An).

4 Relative Co-spectra of Structures

Let A be a set of enumeration degrees. The co-set of A is the set of all lower
bounds of A.

Definition 10. The Relative co-spectrum of A with respect to A1, . . . ,An, is the
co-set of RS(A,A1, . . . ,An), i.e.

CRS(A,A1, . . . ,An) = {b : b ∈ De&(∀a ∈ RS(A,A1, . . . ,An))(b ≤ a)} .

Definition 11. Let k ≤ n. The Relative kth co-spectrum of A with respect to
A1, . . . ,An, is the co-set of RSk(A,A1, . . . ,An), i.e.

CRSk(A,A1, . . . ,An) = {b : b ∈ De&(∀a ∈ RSk(A,A1, . . . ,An))(b ≤ a)} .

Proposition 12. CRSk(A,A1, . . . ,Ak, . . . ,An) = CRSk(A,A1, . . . , Ak).

Proof. It is clear that RSk(A,A1, . . . ,Ak, . . . ,An) ⊆ RSk(A,A1, . . . ,Ak). Thus
CRSk(A,A1, . . . ,Ak) ⊆ CRSk(A,A1, . . . ,Ak, . . . ,An).

Let a ∈ CRSk(A,A1 . . .Ak . . . ,An), A ∈ a and assume that A ̸≤e (f
−1(A))(k)

for some k-acceptable enumeration f of A with respect to A1, . . . ,Ak. Then A ̸≤e



Pf
k . Hence by Theorem ?? for B0 = f−1(A), B1 = f−1(A1), . . . , Bn = f−1(An),

Bn+1 = IN, there exists a total set F , such that f−1(A) ≤e F , for each i ≤ n
f−1(Ai) ≤e F

(i), and A ̸≤e F
(k). As in Lemma ??, we construct a k-acceptable

enumeration g of A with respect to A1, . . . ,Ak, such that g−1(A) ≡e F . Then
A ̸≤e (g−1(A))(k) and g−1(Ai) ≤e (g−1(A))(i), for i ≤ k. But for k ≤ j ≤ n,
g−1(Aj) ≤e F ⊕ f−1(Aj) ≤e F ⊕ F (j) ≡e F (j) ≡e (g−1(A))(j), i.e. g is a n-
acceptable enumeration of A with respect to A1, . . . ,An and A ̸≤e (g−1(A))(k),
which contradicts with the choice of A.

In order to obtain a forcing normal form of the sets with enumeration degrees
in CRSk(A,A1, . . . , An) we shall define the notion of forcing relation τ k Fe(x)
and the relations f |=k Fe(x), for k ≤ n, as in [?].

Let W0, . . . ,Wz, . . . be a Gödel’s enumeration of the c.e. sets and Dv be the
finite set having the canonical code v. Let f be an enumeration of A.

For every i ≤ n, e and x in IN define the relations f |=i Fe(x) and f |=i ¬Fe(x)
by induction on i:

1. f |=0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & Dv ⊆ f−1(A));
2. f |=i+1 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & (∀u ∈ Dv)(u = ⟨0, eu, xu⟩ &

f |=i Feu(xu) ∨ u = ⟨1, eu, xu⟩ & f |=i ¬Feu(xu) ∨ u = ⟨2, xu⟩ &
xu ∈ f−1(Ai+1)));

3. f |=i ¬Fe(x) ⇐⇒ f ̸|=i Fe(x).

From the definition it follows that for any A ⊆ IN and k ≤ n

A ≤e Pf
k ⇐⇒ (∃e)(A = {x : f |=k Fe(x)}) .

The forcing conditions, called finite parts, are finite mappings τ of IN in IN.
For any i ≤ n, e and x in IN and every finite part τ define the forcing relations

τ i Fe(x) and τ i ¬Fe(x) following the definition of relation “|=i”.

1. τ 0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & Dv ⊆ τ−1(A));
2. τ i+1 Fe(x) ⇐⇒ ∃v(⟨v, x⟩ ∈ We & (∀u ∈ Dv)(u = ⟨0, eu, xu⟩ &

τ i Feu(xu) ∨ u = ⟨1, eu, xu⟩ & τ i ¬Feu(xu) ∨ u = ⟨2, xu⟩ &
xu ∈ τ−1(Ai+1)));

3. τ i ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ ̸i Fe(x)).

For any i ≤ n, e, x ∈ IN denote by Xi
⟨e,x⟩ = {ρ : ρ i Fe(x)}.

Definition 13. Let k ≤ n+1. An enumeration f of A is k-generic with respect
to A1, . . . ,An, if for every j < k, e, x ∈ IN

(∀τ ⊆ f)(∃ρ ∈ Xj
⟨e,x⟩)(τ ⊆ ρ) =⇒ (∃τ ⊆ f)(τ ∈ Xj

⟨e,x⟩) .

In [?] the following properties of the k-generic enumerations are shown:

1. The forcing relation is monotone.
2. If f is a (k + 1)-generic enumeration of A, with respect to A1, . . . ,An, then

f |=k (¬)Fe(x) ⇐⇒ (∃τ ⊆ f)(τ k (¬)Fe(x)) .



Definition 14. Let A ⊆ IN and k ≤ n. The set A is forcing k-definable on A
with respect to A1, . . . ,An if there exist a finite part δ and e ∈ IN such that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ k Fe(x)) .

Proposition 15. Let {Ak
r}r∈IN, k = 0, . . . , n be n + 1 sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k ≤ n, the set Ak
r be not forcing

k-definable on A with respect to A1, . . . ,An. Then there exists a (n+ 1)-generic

enumeration f of A such that Ak
r ̸≤e Pf

k for all r and k ≤ n.

Corollary 16. Let {Ak
r}r∈IN, k = 0, . . . , n be n + 1 sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k ≤ n, the set Ak
r be not forcing

k-definable on A with respect to A1, . . . ,An. Then there exists a n-acceptable
enumeration f of A with respect to A1, . . . ,An, such that the enumeration degree
of f−1(A) is total and Ak

r ̸≤e (f
−1(A))(k) for all r and k ≤ n.

This follows from the previous proposition, Theorem ?? and Lemma ??.

Theorem 17. For every A ⊆ IN and k ≤ n, the following are equivalent:

1. de(A) ∈ CRSk(A,A1, . . . ,An).

2. A ≤e Pf
k , for every k-acceptable enumeration f of A with respect to A1, . . . ,

Ak.
3. A is forcing k-definable on A with respect to A1, . . . ,An.

5 Normal Form Theorem

In this section a normal form of the forcing k-definable sets on the structure A
with respect to A1, . . . ,An is presented. According to [?], these sets coincide with
the sets which are definable on A by means of positive recursive Σ0

k formulae [?].
Let L = {T1, . . . , Ts} be the first order language corresponding to the struc-

ture A. Let L1, . . . ,Ln be the languages of A1, . . . ,An. Assume that the languages
L,L1, . . . ,Ln are disjoined.

For each i ≤ n, define the elementary Σ+
i formulae and the Σ+

i formulae by
induction on i, as follows.

Definition 18. (1) The elementary Σ+
0 formulae are formulae in prenex normal

form with a finite number of existential quantifiers and a matrix which is a
finite conjunction of atomic predicates built up from the variables and the
predicate symbols T1, . . . , Ts.

(2) An elementary Σ+
i+1 formula is in the form

∃Y1 . . . ∃YmΦ(X1, . . . , Xl, Y1, . . . , Ym),

where Φ is a finite conjunction of atoms built up from the variables X1, . . . ,
Xl, Y1, . . . , Ym and the predicate symbols from Li+1, Σ

+
i formulae and nega-

tions of Σ+
i formulae with free variables among X1, . . . , Xl, Y1, . . . , Ym.



(3) A Σ+
i formula with free variables among X1, . . . , Xl is an c.e. infinitary

disjunction of elementary Σ+
i formulae with free variables amongX1, . . . , Xl.

Let Φ be a Σ+
i formula with free variables among W1, . . . ,Wr and let t1, . . . , tr

be elements of IN. Then by (A,A1, . . . ,An) |= Φ(W1/t1, . . . ,Wr/tr) we denote
that Φ is true on a structure, obtained from A by adding the predicates from
A1, . . . ,An, under the variable assignment v such that v(W1) = t1, . . . , v(Wn) =
tn.

Definition 19. Let A ⊆ IN and let k ≤ n. The set A is formally k-definable
on A with respect to A1, . . . ,An if there exists a recursive sequence {Φγ(x)} of
Σ+

k formulae with free variables among W1, . . . ,Wr and elements t1, . . . , tr of IN
such that for every x ∈ IN the following equivalence holds:

x ∈ A ⇐⇒ (A,A1, . . . ,An) |= Φγ(x)(W1/t1, . . . ,Wr/tr).

The next theorem is proved, following the construction from [?].

Theorem 20. A set A ⊆ IN is forcing k-definable on A with respect to A1, . . . ,
An if and only if A is formally k-definable on A with respect to A1, . . . ,An.

6 The connection with the Joint Spectra

In [?] another generalization of the notion of Degree spectra is considered.

Definition 21. The Joint spectrum of A,A1, . . . ,An is the set

DS(A,A1, . . . ,An) = {a : a ∈ DS(A),a′ ∈ DS(A1), . . . ,a
(n) ∈ DS(An)} .

The co-set of DS(A,A1, . . . ,An) is denoted by CS(A,A1, . . . ,An). The kth Jump
spectrum of A,A1, . . . ,An is the set DSk(A,A1, . . . ,An) of all kth jumps of the
elements of the Joint spectrum DS(A,A1, . . . ,An). The co-set of DSk(A,A1, . . . ,
An) is denoted by CSk(A,A1, . . . , An).

The properties of both notions of spectra are very similar, for example the
Joint Spectra are closed upwards, the kth Co-spectrum depends only on the first
k structures.

Proposition 22. CS(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).

This follows from the fact that CS(A,A1, . . . ,An) = CS(A) by [?], and
CRS(A,A1, . . . ,An) = CSR(A) = CS(A) by Proposition ??.

The difference between the co-sets of these spectra we can see first from the
forcing normal form of both sets. In [?] is shown that for any set A ⊆ IN:

de(A) ∈ CSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1
1 (A1) . . . , f

−1
k (Ak)),

for every enumerations f of A, f1 of A1, . . . , fk of Ak. While by Theorem ??:

de(A) ∈ CRSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1(A1) . . . , f
−1(Ak)),



for any k-acceptable enumeration f of A with respect to A1, . . . ,Ak.
Second, from the normal form of forcing k-definable sets from [?] we know

that these sets are definable on A,A1, . . . ,An by a recursive sequence of Σ+
k

formulae, which differ from these considered here only by the induction step 2,
where the existential quantifiers for the structure Ai+1 are different from the
others. More precisely, in [?]:

(2) An elementary Σ+
i+1 formula with free variables among X̄0 . . . X̄i+1 is in the

form
∃Ȳ 0 . . .∃Ȳ i+1Φ(X̄0 . . . X̄i+1, Ȳ 0, . . . , Ȳ i+1)

where Φ is a finite conjunction of Σ+
i formulae and negations of Σ+

i formu-
lae with free variables among Ȳ 0 . . . Ȳ i, X̄0 . . . X̄i and atoms of Li+1 with
variables among X̄i+1, Ȳ i+1;

Notice that, the variables for each structure are different. Moreover, when we get
the value of a Σ+

i formula in (A,A1 . . . ,An) under an assignment then we treat
the structure (A,A1 . . . ,An) as a many-sorted structure with separated sorts.

From this point we will prove that there are structures A and A1, for which
CS1(A,A1) ̸= CRS1(A,A1).

Example 23. Fix an effective bijective coding of the pairs of natural numbers.
Denote by ⟨i, j⟩ the code of the ordered pair (i, j). Let R and S be binary
predicates defined as follows: for every i, j ∈ IN, R(⟨i, j⟩, ⟨i + 1, j⟩), i.e. R is
the graph of the successor function for the first coordinate. For every i, j ∈ IN,
S(⟨i, j⟩, ⟨i, j + 1⟩), i.e. S is the graph of the successor function for the second
coordinate. Let A = (IN, R, S,=, ̸=) and let the language of A be L = (R,S,=
, ̸=).

Consider a set M which is Σ0
3 , but not Σ

0
2 in the arithmetical hierarchy, and

let M = {j0, . . . , ji, . . .} be a fixed enumeration of the elements of M .
Define A1 = (IN, P,=, ̸=), where P (⟨i, ji⟩) ⇐⇒ ji ∈ M . Let L1 = (P,=, ̸=).
Claim: de(M) ∈ CRS1(A,A1) and de(M) ̸∈ CS1(A,A1).
Let t0 = ⟨0, 0⟩. Then de(M) ∈ CRS1(A,A1), since

j ∈ M ⇐⇒ ∃Y0 . . . ∃Yi∃Z0 . . .∃Zj(Y0 = t0 & R(Y0, Y1) & . . . & R(Yi−1, Yi)
& Yi = Z0 & S(Z0, Z1) & . . . & S(Zj−1, Zj) & P (Zj)) .

On the other hand if A ⊆ IN and de(A) ∈ CS1(A,A1), then A is Σ0
2 set in

the arithmetical hierarchy. This follows from the fact that for any elementary
Σ+

1 formula Φ(W1, . . . ,Wr) we can effectively find an elementary Σ+
1 formula

Ψ(W1, . . . ,Wr), where the predicate symbol P does not occur in Ψ , such that
for any fixed t1, . . . , tr ∈ IN

(A,A1) |= Φ(W1/t1, . . . ,Wr/tr) ⇐⇒ (A,A1) |= Ψ(W1/t1, . . . ,Wr/tr) .

7 Minimal Pair Theorem

In [?] a Minimal Pair Theorem for Degree spectrum of a structure A is presented.
There it is proved that for each constructive ordinal α there exist elements f and



g of DS(A) such that for any enumeration degree a and any β + 1 < α

a ≤ f(β) & a ≤ g(β) ⇒ a ∈ CSβ(A) .

We shall prove an analogue of the Minimal Pair Theorem for the Relative spec-
trum.

Theorem 24. For any structures A,A1, . . . ,An, there exist enumeration degrees
f and g in RS(A,A1, . . . ,An), such that for any enumeration degree a and k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CRSk(A,A1, . . . ,An) .

Proof. Let h be an arbitrary enumeration of A. By Lemma ?? there exists a n-
acceptable enumeration f of A with respect to A1, . . . , An, such that h−1(A) ≤e

f−1(A) and F = f−1(A) is a total set. Hence de(F ) ∈ RS(A,A1, . . . ,An) and
since f is n-acceptable enumeration of A with respect to A1, . . . , An, F

(k) ≡e

Pf
k . For each k ≤ n, denote by {Xk

r }r∈IN the sequence of all sets enumeration

reducible to Pf
k .

For each k ≤ n consider the sequence {Ak
r}r∈IN of these sets among the sets

{Xk
r }r∈IN, which are not forcing k-definable on A with respect to A1, . . . ,An. By

Corollary ?? there is a n-acceptable enumeration g such that for all r, and all
k = 0, . . . , n, Ak

r ̸≤e (g
−1(A))(k) and g−1(A) is a total set. Let G = g−1(A). It is

clear that de(G) ∈ RS(A,A1, . . . ,An).
Suppose now, that k ≤ n and a set X, X ≤e F (k) and X ≤e G(k). From

X ≤e F (k) and F (k) ≡e Pf
k , it follows that X = Xk

r for some r. Assume for
contradiction that X is not forcing k-definable on A with respect to A1, . . . ,An.
Then X = Ak

l for some l and then X ̸≤e G
(k). Hence X is forcing k-definable on

A with respect to A1, . . . ,An. By Theorem ??, de(X) ∈ CRSk(A,A1, . . . ,An).
Let f = de(F ) and g = de(G).

8 Quasi-Minimal Degree

Let A be a set of enumeration degrees and co(A) be the co-set of A. The degree
q is quasi-minimal with respect to A if the following conditions hold ([?]):

1. q ̸∈ co(A).
2. If a is a total degree and a ≥ q, then a ∈ A.
3. If a is a total degree and a ≤ q, then a ∈ co(A).

It is shown in [?] that for any structure A, there is a quasi-minimal degree q
with respect to DS(A), i.e. q ̸∈ CS(A) and for every total degree a: if a ≥ q,
then a ∈ DS(A) and if a ≤ q, then a ∈ CS(A).

Theorem 25. For any structures A,A1, . . . , An there exists an enumeration
degree q such that:

1. q ̸∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then a ∈ RS(A,A1, . . . ,An);



3. If a is a total degree and a ≤ q, then a ∈ CRS(A,A1, . . . ,An).

Proof (sketch). Let f be a partial generic enumeration of A constructed as in [?].
Then by [?], de(f

−1(A)) is quasi-minimal with respect to DS(A). By Theorem
4. from [?] there is a quasi-minimal over f−1(A) set F , such that f−1(A) <e F ,
f−1(Ai) ≤e F

(i), for i ≤ n, and for any total set A, if A ≤e F , then A ≤e f
−1(A).

The set F is constructed as a partial regular enumeration which is quasi-minimal
over f−1(A) with respect to f−1(Ai), i ≤ n. Take q = de(F ).

Since de(f
−1(A)) ̸∈ CS(A) and de(f

−1(A)) < q then q ̸∈ CS(A). But
CS(A) = CRS(A,A1, . . . ,An).

Let X be a total set.
If X ≤e F , then by the choice of F , X ≤e f−1(A). Thus de(X) ∈ CS(A) =

CRS(A,A1, . . . ,An) by the choice of f−1(A).
If X ≥e F , then X ≥e f−1(A). Since “=” is in A, dom(f) ≤e X and since

X is a total set, dom(f) is r.e. in X. Let ρ be a recursive in X enumeration
of dom(f). Set h = λn.f(ρ(n)). Thus h−1(A) ≤e X and h−1(Ai) ≤e X(i), for
i ≤ n. Construct an enumeration g as in Lemma ??, g−1(A) ≡e X, and for
each i ≤ n, g−1(Ai) ≤e X ⊕ h−1(Ai) ≤e X ⊕ X(i) ≡e (g−1(A))(i). And then
de(X) ∈ RS(A,A1, . . . ,An).
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