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Abstract

We study the notion of relatively intrinsically c.e. sets with respect to a sequence of structures.

We propose a generalization of the notion of jump sequence of sets to jump sequence of structures and

study the relatively intrinsically c.e. sets in this notion.

1 Introduction

Let A = (A;R1, . . . , Rk) be a countable abstract structure. An enumeration f of A is a bijection
from N onto A. For an arbitrary set X ⊆ Aa the pullback of X under the enumeration f is
denoted by f−1(X) and defined as {〈x1 . . . xa〉 : (f(x1), . . . , f(xa)) ∈ X}. The pullback of the
structure A under f is f−1(A) = f−1(R1) ⊕ · · · ⊕ f−1(Rk). We will consider only structures
A = (A;R1, R̄1 . . . , Rk, R̄k) where equality is among the predicates R1, . . . , Rk.

Definition 1.1. A set R ⊆ A is relatively intrinsically c.e. in A if and only if f−1(R) is c.e.
in f−1(A) for every enumeration f of A.

Ash, Knight, Manasse, Slaman[1] and independently Chisholm[2] show that the relatively
intrinsically c.e. sets in a structure A and the sets that are definable in A by means of computable
infinitary Σ0

1 formulas coincide.
We will generalize the notion of jump sequence of a sequence of sets which is the main tool in

many results and proofs of Soskov such as the jump inversion theorem for the enumeration jump,
the regular enumerations, Ash’s theorem for abstract structures and ω-enumeration degrees.

Definition 1.2. (Soskov) Let X = {Xn}n<ω and (∀n)(Xn ⊆ N). The jump sequence
P(X ) = {Pn(X )}n<ω of X is defined inductively:

(i) P0(X ) = X0;

(ii) Pn+1(X ) = Pn(X )′e ⊕Xn+1. Here Pn(X )′e is the enumeration jump of Pn(X ).

We generalize the above notion to a sequence of structures in the following way:

Definition 1.3. Given a sequence of structures ~A = {Ai}i<ω the n-th polynomial of ~A is a

structure Pn(~A) defined inductively:

(i) P0(~A) = A0;

(ii) Pn+1(~A) = Pn(~A)′⊕An+1. Here the jump of a structure and the join of two structures are
appropriately defined.
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We denote by A(n) the n-th jump of structure A defined inductively:
A(0) = A; A(n+1) = (An)′.

Definition 1.4. We call two structures A and B equivalent: A ≡ B if they have the same
relatively intrinsically c.e. subsets of the common part of the domains of A and B.

Our main result is the following:

Theorem 1.5. For every sequence of structures ~A, there exists a structure M such that for
every n we have Pn(~A) ≡M(n).

2 Preliminaries

2.1 Enumeration and ≤n Reducibility

We shall assume a fixed Gödel enumeration W0, . . . ,Wa, . . . of the computably enumerable sets.
By Dv we shall denote the finite set with canonical code v. Each c.e. set Wa determines an
enumeration operator Wa : P(N) −→ P(N), so that for any sets of natural numbers A and B

A = Wa(B) ⇐⇒ (∀x)(x ∈ A ⇐⇒ (∃v)(〈x, v〉 ∈Wa ∧Dv ⊆ B)).
The set A is enumeration reducible to B (A ≤e B) if there exists a c.e. set W such that
A = W (B). Let A ≡e B ⇐⇒ A ≤e B & B ≤e A. The relation ≡e is an equivalence relation
and the respective equivalence classes are called enumeration degrees.

For every set A of natural numbers let A+ = A⊕ (N \A). Clearly a set B is c.e. in A if and
only if B ≤e A+. A set A is total if A ≡e A+.

Given a set A of natural numbers, set LA = {〈a, x〉 : x ∈ Wa(A)} and let the enumeration
jump of A be the set L+

A. We will denote it by A′e. One property of the enumeration jump is
(A+)′e ≡e (A′T )+ uniformly in A. It is obvious that if A is total then A′e ≡T A′T .

Enumeration reducibility is further generalized to a notion of enumeration reducibility of
sets to sequences of sets and to a notion of enumeration reducibility of sequences of sets to
sequences of sets. The starting point of these generalizations is Selman’s Theorem which states
that the set X is enumeration reducible to the set Y if for all sets B, Y is c.e. in B implies X
is c.e. in B. The following definition in a different notation is given by Ash:

Definition 2.1. Given a set X of natural numbers and a sequence Y = {Yk}k∈ω of sets of
natural numbers, let X ≤n Y if for all sets Z ⊆ N, Y is c.e. in Z implies X is Σ0

n+1 in Z.

Here Y is c.e. in Z means that (∀k)(Yk is c.e. in Z
(k)
T uniformly in k).

Ash presents a characterization of “≤n” using computable infinitary propositional sentences.
Another characterization in terms of enumeration reducibility is obtained by Soskov and Ko-
vachev:

Theorem 2.2. (Soskov) X ≤n Y if and only if X ≤e Pn(Y).

Soskov further generalized the notion to a sequence of structures:

Definition 2.3. Let ~A is a sequence of structures and the union of their domains is A.
For R ⊆ A we say that R ≤n ~A if f−1(R) ≤n f−1(~A) for every enumeration f of ~A.

Theorem 2.4 (Soskov[4]). For every sequence of structures ~A, there exists a structure M, such

that for each n, the relatively intrinsically Σn+1 sets in M sets coincide with the sets R ≤n ~A.
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The structure M is the Marker’s extension of the sequence of structures ~A as defined below.
First we will define the n-th Marker’s extension Mn(R) of R ⊆ Am, where A is the union of

the domains. Let X0, X1, . . . Xn be new infinite disjoint countable sets - companions to Mn(R).
Fix bijections:

h0 : R→ X0

h1 : (Am ×X0) \Gh0
→ X1

. . .

hn : (Am ×X0 ×X1 · · · ×Xn−1) \Ghn−1
→ Xn

Let Mn(R) = (A ∪X0 ∪ · · · ∪Xn;X0, X1, . . . Xn, Ghn).
Now for every n construct the n-th Marker’s extension Mn(An) of An by constructing the

n-th Marker’s extension for all of its predicates An, R
n
1 , . . .Rnmn

with disjoint companions and
let Mn(An) = Mn(An)∪Mn(Rn1 )∪· · ·∪Mn(Rnmn

). Finally for the whole sequence of structures
set M to be

⋃
nMn(An) with one additional predicate for A. For further details refer to [4].

2.2 Moschkovakis’ Extension and the Jump Structure

Let A = (A;R1, . . . , Rs) be a countable structure and let equality be among the predicates
R1, . . . , Rs. Following Moschkovakis[3] the least acceptable extension of the structure A is
defined as follows.

Let 0 be an object which does not belong to A and Π be a pairing operation chosen so
that neither 0 nor any element of A is an ordered pair. Let A∗ be the least set containing all
elements of A0 = A ∪ {0} and closed under operation Π.

Let L and R be the decoding functions on A∗ satisfying the following conditions:
L(0) = R(0) = 0; (∀t ∈ A)(L(t) = R(t) = 1∗); (∀s, t ∈ A∗)(L(Π(s, t)) = s & R(Π(s, t)) = t).

We associate an element n∗ of A∗ with each natural number n by induction:
0∗ = 0; (n+ 1)∗ = Π(0, n∗).

The set of all elements n∗ defined above will be denoted by N∗.
The pairing function allows us to code finite sequences of elements: let Π1(t1) = t1,

Πn+1(t1, t2, . . . , tn+1) = Π(t1,Πn(t2, . . . , tn+1)) for every t1, t2, . . . , tn+1 ∈ A∗.
For each predicate Ri of the structure A define the respective predicate R∗i on A∗ by

R∗i (t) ⇐⇒ (∃a1 ∈ A) . . . (∃ari ∈ A)(t = Πri(a1, . . . , ari) & Ri(a1, . . . , ari)).

Definition 2.5. Moschovakis’ extension of A is the structure

A∗ = (A∗;A0, R
∗
1, . . . , R

∗
s , GΠ, GL, GR,=),

where GΠ, GL and GR are the graphs of Π, L and R respectively.

We will now define the jump of a structure [5]. We define a forcing with conditions all finite
mappings of N into A. For any e, x ∈ N and for every finite mapping δ of N into A, define the
forcing relations δ 
 Fe(x) and δ 
 ¬Fe(x) as follows:

δ 
 Fe(x) ⇐⇒ x ∈W δ−1(A)
e ; δ 
 ¬Fe(x) ⇐⇒ (∀τ ⊇ δ)(τ 6
 Fe(x)).

Where δ−1(A) is a finite function that is an initial part of the characteristic function of f−1(A)
for an enumeration f ⊇ δ of A. We also assume that if the oracle is called with an argument
outside the domain of δ then the computation {e}δ−1(A)(x) halts unsuccessfully.

With each finite mapping τ 6= ∅ such that dom(τ) = {x1 < · · · < xn} and τ(xi) = si, 1 ≤
i ≤ n, we associate an element τ∗ = Πn(Π(x∗1, s1), . . . ,Π(x∗n, sn)) of A∗. Let τ∗ = 0 if τ = ∅.

Define KA = {Π3(δ∗, e∗, x∗) | (∃τ ⊇ δ)(τ 
 Fe(x)) & e∗, x∗ ∈ N∗}. The set KA is an
analogue of the Kleene set K.
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Definition 2.6. We define the jump of structure A to be

A′ = (A∗, A0, R
∗
1, . . . , R

∗
s , GΠ, GL, GR,=,KA).

The main property of the jump structure, obtained in [6], is that for all X ⊆ A:

Theorem 2.7. X is relatively intrinsically Σn+1 in A ⇐⇒ X is relatively intrinsically Σ1 in
A(n).

Let A be a set, X ⊆ A and f, g are enumerations of A. We will denote by Ef,gX the set:

Ef,gX = {〈x, y〉 | f(x) = g(y) ∈ X}.
The following two lemmas give the connection between enumerations of a structure and enu-
merations of its jump structure. They can be proved following [5](Propositions 13 and 15).

Lemma 2.8. Let A be a countable structure with domain A. For every enumeration f of
A there exists an enumeration g of A′ such that g−1(A′) ≤T (f−1(A))′T and Ef,gA is c.e. in
(f−1(A))′T .

Lemma 2.9. Let A be a countable structure with domain A. For every enumeration f of A′

there exists an enumeration g of A such that (g−1(A))′T ≤T f−1(A′) and Ef,gA is c.e. in f−1(A′).

We now define the join of two structures:

Definition 2.10. Let A = (A;R1, . . . , Rs,=) and B = (B;P1, . . . , Pt,=) be countable struc-
tures in the languages L1 and L2. Suppose that L1∩L2 = {=} and A∩B = ∅. Let L = L1∪L2∪
{A,B} where A and B are unary predicates. Define A ⊕B = (A ∪ B;R1, . . . , Rs, P1, . . . , Pt,
A,B,=) in language L where predicates A and B are true only on the elements of the domain
of A and B respectively.

In order to satisfy this definition we will only consider sequences of structures ~A = {Ai}i∈ω
where the domains of Ai and Aj don’t have common elements for all i 6= j.

3 Proof of main result

Let ~A = {Ai}i∈ω be a sequence of structures and the domain of Ai is Ai. Denote by A≤n =⋃n
i=0Ai. Let f be an enumeration of A =

⋃
i∈ω Ai then we denote by Pfn the following:

Pf0 = f−1(A0); Pfn+1 = (Pfn)′e ⊕ f−1(An+1).
Note that for the structures we are considering the set Pfn is total for all n and f .
First we prove two lemmas which follow from Lemma 2.8 and Lemma 2.9 by induction:

Lemma 3.1. For every enumeration f of ~A and every n ∈ N there exists an enumeration gn
of Pn(~A), such that g−1

n (Pn(~A)) ≤T Pfn and Ef,gn
A≤n is c.e. in Pfn .

Lemma 3.2. Let n ∈ N. For every enumeration g of Pn(~A) there exist an enumeration fn of
~A, such that Pfnn ≤T g−1(Pn(~A)) and Eg,fn

A≤n is c.e. in g−1(Pn(~A)).

Now using these two lemmas above we can prove the following:

Proposition 3.3. Let n ∈ N and X ⊆ A≤n. We have the following equivalence:

X is relatively intrinsically c.e. in Pn(~A) ⇐⇒ X ≤n
~A.
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Proof: (⇒) Suppose thatX is relatively intrinsically c.e. in Pn(~A) and let f be an enumer-
ation of A. By Theorem 2.2 we should only prove that f−1(X) ≤e Pfn . According to Lemma 3.1

for the enumeration f we can find enumeration gn of Pn(~A) such that g−1
n (Pn(~A)) ≤T Pfn and

Ef,gn
A≤n is c.e. in Pfn . Now note the equivalence:

x ∈ f−1(X) ⇐⇒ (∃y)(〈x, y〉 ∈ Ef,gn
A≤n & y ∈ g−1

n (X)).

Because X is relatively intrinsically c.e. in Pn(~A), the set g−1
n (X) is c.e. in g−1

n (Pn(~A)).

Also g−1
n (Pn(~A)) ≤T Pfn from the properties of gn. Then we have that g−1

n (X) is c.e. in P fn .

We also know that Ef,gn
A≤n is c.e. in Pfn , so we can conclude that f−1(X) is c.e. in Pfn . Since Pfn

is a total set we have that f−1(X) ≤e P
f
n .

(⇐) Suppose that X ≤n
~A. Let g be an enumeration of Pn(~A). According to Lemma 3.2

for enumeration g there is an enumeration fn of ~A, such that Pfnn ≤T g−1(Pn(~A)) and Eg,fn
A≤n is

c.e. in g−1(Pn(~A)).

Because X ≤n
~A we have that f−1

n (X) ≤e Pfnn . The set Pfn is total so we also have that

f−1
n (X) is c.e. in Pfnn . We also know that Pfnn ≤T g−1(Pn(~A)) by the properties of fn and so

the set f−1
n (X) is c.e. in g−1(Pn(~A)). Now note the equivalence:

x ∈ g−1(X) ⇐⇒ (∃y)(〈x, y〉 ∈ Eg,fn
A≤n & y ∈ f−1

n (X)).

It is obvious that g−1(X) is c.e. in g−1(Pn(~A)). 2

We can now prove our main result Theorem 1.5. Note that the structure M is the Marker’s
extension of the sequence ~A and the domains of M and Pn(~A) depend on the Moskovakis’
extension. We shall assume that the common part of the domains is exactly A≤n.

Proof: [of Theorem 1.5] Let n ∈ N. By Theorem 2.7 X is relatively intrinsically c.e. in
M(n) if and only if when X is relatively intrinsically Σn+1 in M.

Now by Theorem 2.4 we have that this is equivalent to X ≤n
~A.

Lastly using the previous Proposition 3.3 we conclude that X is relatively intrinsically c.e.
in M(n) if and only if X is relatively intrinsically c.e. in Pn(~A). Which can be written as:

M(n) ≡ Pn(~A).
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