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Abstract. We prove the following properties of quasi-minimal degrees for the
degree spectrum of a structure. There are uncountably many quasi-minimal

degrees for every degree spectrum. The first jump spectrum of every structure

consists exactly of the enumeration jumps of the quasi-minimal degrees for
the degree spectrum. Every element of the first jump spectrum could be

represented as the join of two quasi-minimal degrees for the degree spectrum.

Key words: enumeration degrees; forcing; degree spectra; quasi-minimal
degrees.

1. Introduction

Let A = (A;R1, . . . , Rk) be a countable structure. The degree spectrum DS(A)
of A is the set of all Turing degrees which compute the diagram of an isomorphic
copy of A on the natural numbers.

The notion of degree spectrum of a structure is introduced by Richter [10] as
the set of all Turing degrees of the diagrams of the presentations of the structure.
Here we consider a modification of her notion, with the benefit that every degree
spectrum is closed upwards. The first jump spectrum DS1(A) of A is the set of
all Turing degrees which compute the Turing jumps of the elements of the degree
spectrum DS(A) of A.

Soskov [15] initiated the study of the properties of the degree spectra as sets of
enumeration degrees. He introduced the notion of co-spectrum CS(A) of a structure
A as the set of all enumeration degrees which are lower bounds of the elements of
the degree spectrum of A and proved several properties which show that the degree
spectra behave with respect to their co-spectra very much like the cones of the
enumeration degrees {x | x ≥e a} behave with respect to the intervals {x | x ≤e a}.
He showed that every countable ideal of enumeration degrees is a co-spectrum of a
structure.

Some typical properties of degree spectra and their co-spectra are the existence
of minimal pairs in every degree spectrum of a structure and the existence of quasi-
minimal degree with respect to the degree spectrum. But there are examples of
upwards closed sets of degrees which do not have minimal pairs and for which there
are no quasi-minimal degrees. More precisely, for every degree spectrum DS(A),
there exist degrees f0 and f1 in DS(A) such that the set of all enumeration degrees
less than or equal to both f0 and f1 is equal to CS(A). Every such pair of degrees
is called a minimal pair for DS(A). For each degree spectrum DS(A) there is an
enumeration degree q 6∈ CS(A), called quasi-minimal for DS(A) such that every
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Turing degree a ≥e q belongs to DS(A) and every Turing degree a ≤e q belongs to
CS(A).

In this paper we shall present some properties of the quasi-minimal degrees for
the degree spectrum of a structure. We shall see that there are uncountably many
quasi-minimal degrees for every degree spectrum. The first jump spectrum of every
structure consists exactly of the enumeration jumps of the quasi-minimal degrees
of the degree spectrum. And every element of the first jump spectrum could be
represent as the join of two quasi-minimal degrees for the degree spectrum. These
properties of the quasi-minimal degrees for a degree spectrum are analogues of
the classical results of Jockush [8], Slaman and Sorbi [13] and McEvoy [9] in the
enumeration degrees.

2. Preliminaries

2.1. Enumeration Degrees. Intuitively a set A of natural numbers is enumera-
tion reducible to a set of natural numbers B, denoted by A ≤e B, if there is an
effective procedure to enumerate A given any enumeration of B. More precisely,
A is enumeration reducible to B if there is an enumeration operator Γa such that
A = Γa(B), i.e.

(∀x)(x ∈ A ⇐⇒ (∃v)(〈v, x〉 ∈Wa & Dv ⊆ B))

where Dv is the finite set with canonical code v and Wa is the computably enumer-
able set with index a with respect to the Gödel numbering of all c.e. sets.

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all sets of natural numbers. The enumeration degree of the set A, denoted
by de(A), is the equivalence class relatively ≡e. The degree structure 〈De,≤e〉 is
defined by setting De = {de(A) | A ⊆ N}, and de(A) ≤e de(B) if and only if A ≤e B.
The structure De is an upper semilattice with least element 0e = de(A) where A is
any computably enumerable set. The operation of least upper bound is given by
de(A) ∨ de(B) = de(A⊕B), where A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

By identifying partial functions with their graphs, where 〈ϕ〉 = {〈x, y〉 | ϕ(x) =
y} we shall write ϕ ≤e g to mean 〈ϕ〉 ≤e 〈g〉. This reducibility coincides with the
reducibility between partial functions introduced by Kleene (1952). Similarly, given
a set A and a partial function ϕ, ϕ ≤e A means 〈ϕ〉 ≤e A.

Define A+ = A⊕ (N\A). A set A is total if A ≡e A
+. In other words A ≡e cA,

where cA is the characteristic function of A. Thus a set A is total when it is e-
equivalent to the graph of a total function. An enumeration degree a is total if a
contains a total set or equivalently the graph of a total function. A set A is c.e. in
a set B if A ≤e B

+.
Selman [11] proved that A ≤e B if and only if for every set X if B is c.e. in X

then A is c.e in X.
Cooper [3] introduced the jump operation “′” for enumeration degrees. Given a

set A, let LA = {〈x, z〉 | x ∈ Γz(A)}.
The e-jump A′ of A is the set (LA)+. We define:

(1) A(0) = A;
(2) A(n+1) = (A(n))′.

Let 〈DT ,≤T,∨,0T〉 denote the upper semilattice of Turing degrees (T-degrees),
with partial ordering the relation ≤T. For any sets A and B: A ≤T B if and only
if A+ ≤e B

+ and equivalently if cA ≤e cB , where cA and cB are the characteristic
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functions of A and B. This gives an order preserving embedding ι : DT → DT

namely ι(dT(A)) = de(A
+).

The enumeration jump is always a total degree and agrees with the Turing jump
under the embedding ι. So, the upper semilattice of the Turing degrees with jump
operation can be viewed as a substructure of the enumeration degrees. We shall
identify the Turing degree a = dT(A) with the total e-degree ι(a) = de(A

+).
Furthermore McEvoy [9] showed that a set A is ΣB

n+1 if A ≤e (B+)(n).
By Soskov’s Jump Inversion Theorem [14] for every x ∈ De there exists a total

e-degree a ≥e x, such that a′ = x′.
The existence of nontotal e-degrees is an easy consequence of the existence of

quasi-minimal e-degrees, first shown by Medvedev (1955).

Definition 2.1.1. (Medvedev) An e-degree a is said to be quasi-minimal if

(1) a 6= 0e,
(2) ∀ total b[b ≤e a→ b = 0e].

It is easy to see that a nonzero e-degree a is quasi-minimal if and only if (∀A ∈
a)(∀ total function f)[f ≤e A→ f is computable].

Let A ⊆ DT. The co-set of A is the set co(A) of all enumeration degrees which
are lower bounds of A:

co(A) = {b | b ∈ De & (∀a ∈ A)(b ≤e a)} .

2.2. Degree Spectra and Co-Spectra. Let A = (A;R1, . . . , Rk) be a countable
structure.

An enumeration of A is every one-to-one mapping of N onto A.
Given an enumeration f of A and a subset B of Aa, let

f−1(B) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ B}.

Denote by f−1(A) = f−1(R1)+ ⊕ · · · ⊕ f−1(Rk)+.

Definition 2.2.1. The degree spectrum of A is the set

DS(A) = {a | a ∈ DT & (∃f)(dT(f−1(A)) ≤T a)} .

From the definition of the degree spectrum of a structure it follows that it is
always an upwards closed set of Turing degrees.

Definition 2.2.2. The co-spectrum of A is the set of all enumeration degrees which
are lower bounds of DS(A), i.e. the co-set of DS(A):

CS(A) = {b | b ∈ De & (∀a ∈ DS(A))(b ≤e a)} .

Notice that two isomorphic structures A and B always have the same degree
spectrum and hence CS(A) = CS(B). So we could suppose that the domain of A
is the set of the natural numbers N.

For each natural number n, the nth jump spectrum of A is the set

DSn(A) = {a | a ∈ DT & (∃b ∈ DS(A))(b(n) ≤T a)} .

The nth co-spectrum of A is the set CSn(A) = co(DSn(A)).
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2.3. The co-spectrum of a structure. Let A = (N;R1, . . . , Rk) be a countable
structure on the natural numbers.

In this section we shall consider a notion of partial (1-generic) enumeration of A
and some properties of the elements of the co-spectrum of the structure A proved
by Soskov [15].

We need first a characterization of the elements of the co-spectrum of A.

2.4. Partial 1-generic enumerations. Let ⊥ 6∈ N.

Definition 2.4.1. A partial enumeration of A is a partial one-to-one mapping of
N onto N. A partial finite part is a finite mapping of N into N ∪ {⊥}.

By δ,ρ,τ we shall denote partial finite parts. Given a partial finite part τ and
a partial enumeration ϕ of A, by τ ⊆ ϕ we shall denote that for all x in dom(τ)
either τ(x) = ⊥ and ϕ(x) is not defined or τ(x) ∈ N and ϕ(x) = τ(x). So τ(x) = ⊥
means that for any partial enumeration ϕ ⊇ τ , ϕ(x) is undefined. If ϕ is a partial
enumeration of A and B is a subset of Na, let

ϕ−1(B) = {〈x1, . . . , xa〉 : x1, . . . , xa ∈ dom(ϕ) & (ϕ(x1), . . . , ϕ(xa)) ∈ B} .
Denote by

ϕ−1(A) = dom(ϕ)⊕ ϕ−1(R1)+ ⊕ · · · ⊕ ϕ−1(Rk)+ .

Notice that it could happen that de(ϕ
−1(A)) 6∈ DS(A). For instance it is possible

that de(ϕ
−1(A)) is not a total enumeration degree. On the other hand Soskov [15]

shows that for every partial enumeration ϕ of A the enumeration degree of ϕ−1(A)
is “almost” in DS(A).

Lemma 2.4.1. [15] Let X be a total set, let ϕ be a partial enumeration of A and
ϕ−1(A) ≤e X. Then de(X) ∈ DS(A).

Proof. Since X is a total set we have that ϕ−1(A) is c.e. in X and hence dom(ϕ)
is c.e. in X. Let ρ : N → dom(ϕ) be an enumeration of the domain of ϕ which is
computable in X and one-to-one. Then we can easily construct a total enumeration
g(n) = ϕ(ρ(n)) of A. For every basic predicate R(x1, . . . , xr) of A we have:

g−1(R) = {〈n1, . . . , nr〉 | (ρ(n1), . . . , ρ(nr)) ∈ ϕ−1(R)} ≤c.e. X,

g−1(¬R) = {〈n1, . . . , nr〉 | (ρ(n1), . . . , ρ(nr)) ∈ ϕ−1(¬R)} ≤c.e. X .

Then g−1(R) ≤T X and hence g−1(A) ≤T X. So, de(X) ∈ DS(A).
�

For every partial enumeration ϕ of A, the set ϕ−1(A) is an upper bound of the
elements of the co-spectrum CS(A). This is true since if B ∈ b and b is an element
of CS(A) then for every total set X such that ϕ−1(A) ≤e X we have de(X) ∈ DS(A)
and hence B ≤e X. Now applying Selman’s theorem [11] B ≤e ϕ

−1(A). Moreover
for every partial enumeration ϕ of A, the enumeration degree of ϕ−1(A)′ belongs to
DS1(A) since by the Jump Inversion Theorem of Soskov [14] there exists a total set F
such that ϕ−1(A) ≤e F and F ′ ≡e ϕ

−1(A)′. Then by Lemma 2.4.1 de(F ) ∈ DS(A)
and hence, de(F

′) ∈ DS1(A). So we have the following properties of the partial
enumerations of A:

Proposition 2.4.2. For every partial enumeration ϕ of the structure A if a =
de(ϕ

−1(A)) then

• a ≥e b for every b ∈ CS(A);
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• a′ ∈ DS1(A).

Let ϕ be a partial enumeration of A and e, x ∈ N. Then the modeling relation
“|=” is defined as follows:

(i) ϕ |= Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & (∀u ∈ Dv)(∃i)(1 ≤ i ≤ k &

(u = 〈0, i, xu1 , . . . , xuri〉 & xu1 , . . . , x
u
ri ∈ dom(ϕ) & (ϕ(xu1 ), . . . , ϕ(xuri)) ∈ Ri)∨

(u = 〈1, i, xu1 , . . . , xuri〉 & xu1 , . . . , x
u
ri ∈ dom(ϕ) & (ϕ(xu1 ), . . . , ϕ(xuri)) ∈ ¬Ri))).

(ii) ϕ |= ¬Fe(x) ⇐⇒ ϕ 6|= Fe(x).

Notice that for every e ∈ N the following equivalence is true for all x ∈ N:

ϕ |= Fe(x) ⇐⇒ x ∈ Γe(ϕ
−1(A)) .

Let τ be a partial finite part and e, x ∈ N. The forcing relation is defined as follows:

(i) τ  Fe(x) if and only if there exists a v such that 〈v, x〉 ∈ We and for all
u ∈ Dv, there is 1 ≤ i ≤ k such that

(u =〈0, i, xu1 , . . . , xuri〉, & xu1 , . . . , x
u
ri ∈ dom(τ) & (τ(xu1 ), . . . , τ(xuri)) ∈ Ri)∨

(u =〈1, i, xu1 , . . . , xuri〉, & xu1 , . . . , x
u
ri ∈ dom(τ) & (τ(xu1 ), . . . , τ(xuri)) ∈ ¬Ri) .

(ii) τ  ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1 Fe(x)).

The forcing relation  is monotone, i.e. if τ ⊆ ρ then τ  Fe(x)⇒ ρ  Fe(x).
For every partial enumeration ϕ of A, e, x ∈ N the following equivalence is true:

ϕ |= Fe(x) ⇐⇒ (∃τ ⊆ ϕ)(τ  Fe(x)) .

Definition 2.4.2. A subset B of N is partially forcing definable on A if there exist
a natural number e and a partial finite part δ such that for all natural numbers x,

x ∈ B ⇐⇒ (∃τ ⊇ δ)(τ  Fe(x)) .

Denote by D(A) the atomic diagram of A, i.e. D(A) = i−1(A), where i is the
identity function.

Let B ⊆ N be a partially forcing definable on A. From the definition of the
forcing relation we have that B ≤e D(A). And moreover de(B) ∈ CS(A). To see this
consider an arbitrary total enumeration g of A. Let B = (N; g−1(R1), . . . , g−1(Rk))
be the structure isomorphic to A. Then the atomic diagram ofB is D(B) = g−1(A).
The set B is partially forcing definable on B also and hence B ≤e D(B) = g−1(A).
Thus de(B) ∈ CS(A). So we have the following property of the partially forcing
definable sets on A:

Proposition 2.4.3. The enumeration degree of every partially forcing definable on
A set is in CS(A).

Definition 2.4.3. A partial enumeration ϕ of A is 1-generic if for every e, x ∈ N,
there exists a partial finite part τ ⊆ ϕ such that τ  Fe(x) or τ  ¬Fe(x).

The proof of the following properties is standard.

Proposition 2.4.4. [15] Let ϕ be a partial 1-generic enumeration. Then

ϕ |= Fe(x) ⇐⇒ (∃τ ⊆ ϕ)(τ  Fe(x)) ;

ϕ |= ¬Fe(x) ⇐⇒ (∃τ ⊆ ϕ)(τ  ¬Fe(x)) .
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Lemma 2.4.5. Let {Bi}i∈N be a sequence of subsets of N each of them not partially
forcing definable on A and Q =

⊕
iBi. There exists a partial 1-generic enumeration

ϕ of A satisfying the following conditions:

(1) ϕ ≤e D(A)′ ⊕Q+.
(2) ϕ−1(A)′ ≤e ϕ⊕D(A)′.
(3) Bi 6≤e ϕ

−1(A) for every i ∈ N.

Proof. We shall construct the enumeration ϕ by stages. On each stage s we shall
define a partial finite part δs so that δs ⊆ δs+1 and take ϕ =

⋃
s δs, where ϕ(x) =

y ⇐⇒ (∃s)(δs(x) = y & y 6=⊥). We shall consider three kinds of stages. On stages
s = 3r we shall ensure that the mapping ϕ is surjective. On stages q = 3r + 1 we
shall ensure that ϕ is 1-generic and on stages 3r + 2 we shall ensure that ϕ omits
all Bi, i.e. for every natural number i the set Bi 6≤e ϕ

−1(A).
Let δ0 be the empty finite part and suppose that δs is defined.
(a) Stage s = 3r. Let x0 be the least natural number which does not belong to

dom(δs) and let s0 be the least natural number which does not belong to the range
of δs. Set δs+1(x0) = s0 and δs+1(x) = δs(x) for x 6= x0.

(b) Stage s = 3〈e, x〉+ 1. Check whether there exists a partial finite part ρ such
that ρ  Fe(x) and δs ⊆ ρ. If the answer is positive, then let δs+1 be the partial
finite part with a least extension of δs. If the answer is negative then let δs+1 = δs.

(c) Stage s = 3〈e, i〉+ 2. Consider the set

Ce = {x : (∃τ ⊇ δs)(τ  Fe(x))} .

Clearly Ce is partially forcing definable on A and hence Ce 6= Bi.
Let xe be the least natural number such that

xe ∈ Ce & xe 6∈ Bi ∨ xe 6∈ Ce & xe ∈ Bi .

Suppose that xe ∈ Ce. Then there exists a τ such that

(1) δs ⊆ τ & τ  Fe(xe) .

Let δs+1 be the partial finite part τ with a least code satisfying the above con-
dition. If xe 6∈ Ce, then set δs+1 = δs. Notice that in this case we have that
δs+1  ¬Fe(xe).

From the construction above it follows immediately that ϕ =
⋃

s δs is a partial 1-
generic enumeration of A. The construction of ϕ is effective relatively Q+⊕D(A)′,
i.e. ϕ is e-reducible to Q+ ⊕D(A)′ and hence it satisfies (1).

To see (2) set ϕ−1(A)′ = L+, where

L = {〈a, x〉 | x ∈ Γa(ϕ−1(A))} .

Then

2〈a, x〉 ∈ ϕ−1(A)′ ⇐⇒ (∃τ ⊆ ϕ)(τ  Fa(x)) .

2〈a, x〉+ 1 ∈ ϕ−1(A)′ ⇐⇒ (∃τ ⊆ ϕ)(τ  ¬Fa(x)) .

We have also from the definition of the forcing relation:

{(τ, a, x) | τ  Fa(x)} ≤e D(A).

{(τ, a, x) | τ  ¬Fa(x)} ≤e D(A)′.

Therefore ϕ−1(A)′ ≤e ϕ⊕D(A)′.
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It remains to show that Bi 6≤e ϕ
−1(A) for every i ∈ N. Towards a contradiction

assume that Bi ≤e ϕ
−1(A). Then there exists an e such that

Bi = {x : ϕ |= Fe(x)} .

Consider the stage s = 3〈e, i〉+ 2. By the construction we have that there is xe

xe 6∈ Bi & δs+1  Fe(xe) ∨ xe ∈ Bi & δs+1  ¬Fe(xe) .

Hence by the genericity of ϕ

xe 6∈ Bi & ϕ |= Fe(xe) ∨ xe ∈ Bi & ϕ |= ¬Fe(xe) .

A contradiction.
�

Corollary 2.4.6. If B ≤e ϕ
−1(A) for all partial 1-generic enumerations ϕ, then

B is partially forcing definable on A.

Lemma 2.4.7. There exists a partial 1-generic enumeration ϕ of A such that
ϕ ≤e D(A)′ and ϕ−1(A)′ ≤e ϕ⊕D(A)′ and hence ϕ−1(A)′ ≤e D(A)′.

Repeat the same construction as in Lemma 2.4.5 using only stages (a) and (b).

3. The quasi-minimal degree

Another specific property of the degree spectra proved by Soskov [15] which is not
valid for all upwards closed sets of degrees is the existence of quasi-minimal degree
for the degree spectra. Slaman and Sorbi relativized the notion of a quasi-minimal
degree for an arbitrary set of e-degrees.

Definition 3.0.4. [13] Given any I ⊆ De, we say that an e-degree a is I-quasi
minimal if

• (∀c ∈ I)[c ≤e a];
• (∀ total c)[c ≤e a ⇐⇒ (∃b ∈ I)(c ≤e b)].

They proved that for every countable ideal I of e-degrees, I-quasi-minimal e-
degrees exist.

Soskov generalized this notion for degree spectra of a structure.

Definition 3.0.5. [15] Let A be a set of e-degrees. The degree q is quasi-minimal
with respect to A if:

• q 6∈ co(A).
• If a is a total e-degree and a ≥e q, then a ∈ A.
• If a is a total e-degree and a ≤e q, then a ∈ co(A).

From Selman’s theorem it follows that if q is quasi-minimal with respect to A,
then q is an upper bound for co(A).

Soskov proved the existence of a quasi-minimal degree with respect to every
degree spectrum, i.e. for every structure A there is an e-degree q 6∈ CS(A) and
every total e-degree above q is in DS(A) and every total e-degree below q is in
CS(A).

Theorem 3.0.8 (Soskov). [15] Let ϕ be a partial 1-generic enumeration of A.
Then de(ϕ

−1(A)) is quasi-minimal with respect to DS(A).
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Soskov constructed a partial 1-generic enumeration ϕ of A such that for every
total function g on N if g ≤e ϕ

−1(A) then g is partially forcing definable on A and
hence de(g) ∈ CS(A).

As a corollary he received the theorem proved by Slaman and Sorbi [13], using
the fact that every countable ideal of enumeration degrees is the co-spectrum of a
structure.

Corollary 3.0.9 (Slaman and Sorbi). [13] For every countable ideal I of enumer-
ation degrees there exists an enumeration degree q which is I-quasi minimal.

We will prove three additional properties of the quasi-minimal degrees for the
degree spectra.

3.1. Properties of the quasi-minimal degrees for a degree spectrum. The
first property we want to point out is that there exist uncountably many quasi-
minimal degrees with respect to the degree spectra.

Proposition 3.1.1. For every countable structure A there exist uncountably many
quasi-minimal degrees with respect to DS(A).

Proof. Suppose that all quasi-minimal degrees with respect to DS(A) are in the
sequence q0,q1, . . . ,qn, . . . and consider sets Xi ∈ qi, for every i ∈ N. Then all
qi are not in CS(A) and hence every set Xi is not partially forcing definable on A,
i ∈ N.

By Lemma 2.4.5 we could construct a partial 1-generic enumeration ϕ of A such
that Xi 6≤e ϕ

−1(A).
Thus de(ϕ

−1(A)) is quasi-minimal with respect to DS(A) and it is not in the
sequence {qi}i∈N. A contradiction.

�

3.2. Jumps of quasi-minimal degrees for a degree spectrum. In this subsec-
tion we shall show that for every countable structure A the elements of DS1(A) can
be represented as e-jumps of quasi-minimal degrees with respect to DS(A). This
is an analogue of a jump inversion theorem of McEvoy [9] for the enumeration de-
grees who proved that any total e-degree above 0e

′ is an e-jump of a quasi-minimal
degree.

We know by Proposition 2.4.2 that for every partial enumeration ϕ of the struc-
ture A the enumeration degree of ϕ−1(A)′ belongs to DS1(A). Now we shall prove
that every element a of the jump spectrum of A is an e-jump of a quasi-minimal
degree with respect to DS(A), i.e. we will construct a partial 1-generic enumeration
of A and a set F - quasi-minimal over ϕ−1(A) such that F ′ ∈ a.

We will use some ideas from Ganchev [5] about a quasi-minimal set over a given
set. This techniques are a modification of the regular enumerations introduced by
Soskov [14] and used in [5, 16, 7] for constructing a quasi-minimal set over a given
set.

Definition 3.2.1. Let B ⊆ N. The set F ⊆ N is called quasi-minimal over B if
B <e F and for every total set X ≤e F we have that X ≤e B.

Theorem 3.2.1. Let B ⊆ N and Q be a total set such that B′ ≤e Q. There exists
a set F with the following properties:

(1) F ′ ≡e Q;
(2) the set F is quasi-minimal over B.
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The set F in the above theorem is constructed as the graph of a B-generic
function. We will prove this theorem in section 4.

Lemma 3.2.2. Let q be quasi-minimal e-degree with respect to DS(A) and de(B) =
q. If the set F ⊆ N is quasi minimal over B then de(F ) is quasi-minimal with
respect to DS(A).

Proof. Firstly de(F ) 6∈ CS(A). Otherwise since B ≤e F , de(B) = q will be in
CS(A), which contradicts the fact that q is quasi-minimal with respect to the
degree spectrum DS(A).

Let X be a total set.
If X ≤e F , then since F is quasi-minimal over B we have that X ≤e B. Since

de(B) is quasi-minimal with respect to the degree spectrum DS(A) and X is total
we have that de(X) ∈ CS(A).

If X ≥e F then X ≥e B. Then since de(B) is quasi-minimal with respect to the
degree spectrum of A and X is a total set we know that de(X) ∈ DS(A).

�

Theorem 3.2.3. For every a ∈ DS1(A) there is a set F , whose e-degree is quasi-
minimal with respect to DS(A) and with F ′ ∈ a, i.e. de(F )′ = a.

Proof. Let a ∈ DS1(A). Then there is a total enumeration g of A such that
de(g

−1(A))′ ≤T a. Consider the structure B = (N, g−1(R1), . . . , g−1(Rk)). Note
that the diagram of B is g−1(A). By Lemma 2.4.7 there is a partial 1-generic enu-
meration ϕ of B such that ϕ−1(B)′ ≤e D(B)′ ≡e g

−1(A)′. Then de(ϕ
−1(B)) is

quasi-minimal with respect to the degree spectrum DS(B).
Let Q be a total set and Q ∈ a. We have ϕ−1(B)′ ≤e g

−1(A)′ ≤e Q. Then
by Theorem 3.2.1 there is a set F which is quasi-minimal over ϕ−1(B), with an
e-jump equivalent to Q, i.e. ϕ−1(B) ≤e F , F ′ ≡e Q and for every total set X ≤e F
we have that X ≤e ϕ

−1(B). Let q be the e-degree of F . By Lemma 3.2.2 we have
that q is quasi-minimal with respect to DS(B) and hence q is quasi-minimal with
respect to DS(A). Moreover F ′ ≡e Q and hence de(F )′ = q′ = a.

�

Corollary 3.2.4. The first jump spectrum of every structure A consists exactly of
the enumeration jumps of the quasi-minimal degrees for DS(A).

If we consider a simple computable structure A = (N,=), the co-spectrum of A
contains only 0e and if q is a quasi-minimal for DS(A), then q is a quasi-minimal
e-degree. We receive the following theorem proved by McEvoy [9].

Corollary 3.2.5 (McEvoy). [9] For every total e-degree a ≥e 0e
′ there is a quasi-

minimal degree q with q′ = a.

3.3. Splitting a total set. Jockusch [8] showed that every nonzero Turing degree
contains a semi-recursive set A, such that both A and A are not c.e. In the context
of enumeration reducibility this property can be translated as follows. A nonzero
enumeration degree a is total if and only if there is a semi-recursive set A, which is
not c.e. or co-c.e. such that a = de(A) ∨ de(A). Arslanov, Cooper and Kalimullin
[1] showed that if A is a semi recursive set such that A and A are not c.e., then the
e-degree of A is quasi-minimal.

Proposition 3.3.1. [8, 1] For every total e-degree a there are quasi-minimal degrees
p and q such that a = p ∨ q.
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We will prove an analogue of this theorem for the first jump spectrum of A.

Theorem 3.3.2. For every element a of the first jump spectrum DS1(A) of the
structure A there exist quasi-minimal with respect to DS(A) e-degrees p and q such
that a = p ∨ q.

Call the pair of sets (X,Y ) a splitting of a set Q if X ⊕ Y ≡e Q and X,Y <e Q.
We will use a method of splitting a total set considered by Ganchev [6, 7]. This
method is used for a generalization of some forcing constructions so that instead
of building one set with some properties, we build two sets X and Y with the
same properties but in addition (X,Y ) is a splitting of Q for some given total set
Q. He proved that if B is a set of natural numbers such that B′ ≤e Q and Q
is total then there exist total functions f and g, such that B ≤e f , and B ≤e g
f ⊕ g ≡e Q. Ganchev proved this method of splitting a total set constructing total
functions f and g. We shall prove the following theorem in the next section for
partial functions.

Theorem 3.3.3. Let Q be a total set and B′ ≤e Q. There exist partial functions
ψ and χ on N such that

(1) ψ ⊕ χ ≡e Q;
(2) the functions ψ and χ are quasi-minimal over B.

Using this theorem we give the proof of Theorem 3.3.2.

Proof. of Theorem 3.3.2
Let a ∈ DS1(A) and g be a total enumeration of A such that de(g

−1(A))′ ≤e a.
Let Q be a total set such that Q ∈ a. Then g−1(A)′ ≤e Q. Consider the structure
B = (N, g−1(R1), . . . , g−1(Rk)). Actually the diagram of B is g−1(A). We first
construct a partial 1-generic enumeration ϕ ofB, so ϕ−1(B) is a quasi-minimal with
respect to DS(B) and by Lemma 2.4.7 we can suppose that ϕ−1(B)′ ≤e D(B)′.
Denote by B = ϕ−1(B). Notice that B′ = ϕ−1(B)′ ≤e D(B)′ = g−1(A)′ ≤e Q.
Then B′ ≤e Q.

By Theorem 3.3.3 there exist partial functions ψ and χ on N such that the set
Q ≡e ψ ⊕ χ and ψ and χ are quasi-minimal over B, i.e. B ≤e ψ, χ and for every
total set X if X ≤e ψ then X ≤e B, and similarly if X ≤e χ then X ≤e B.

Since the e-degree of B = ϕ−1(B) is quasi-minimal for DS(B) and ψ and χ are
quasi-minimal over B it follows from Lemma 3.2.2 that p = de(ψ) and q = de(χ)
are quasi-minimal for DS(B) and hence for DS(A). Moreover a = p ∨ q.

�

4. A quasi-minimal set over a given set

In this section we will prove Theorem 3.2.1 and Theorem 3.3.3 and we will con-
sider some properties of a relativized notion of a quasi-minimal set in the enumera-
tion degrees. The properties of the partial generic functions and their relationship
with the genericity in the Turing degrees are first considered by Case [2] and then
investigated by Copestake [4]. The techniques and arguments we use are inspired
by Copestake’s work and are similar to those used in [15, 5, 7, 16].

4.1. Partial B-generic functions. Fix a set B ⊆ N.
A B-regular finite part is a partial finite part τ : N ⇀ N ∪ {⊥} such that

dom(τ) = [0, 2q + 1] and for all odd z ∈ dom(τ), τ(z) ∈ B or τ(z) = ⊥.
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The rank |τ | of τ we call the number of the odd elements x of dom(τ), for which
τ(x) 6= ⊥.

The partial function ϕ : N ⇀ N we call B-regular if ϕ([2N + 1]) = B, i.e. for
every b ∈ B there is a 2z + 1 ∈ dom(ϕ) such that ϕ(2z + 1) = b. As was pointed
out in subsection 2.1. we identify the partial functions with their graphs, i.e. by
B ≤e ϕ we mean B ≤e 〈ϕ〉, where 〈ϕ〉 = {〈x, y〉 | x ∈ dom(ϕ) & ϕ(x) = y}. So
z ∈ B ⇐⇒ (∃x)(〈2x + 1, z〉 ∈ 〈ϕ〉). From here it follows that B ≤e ϕ for every
B-regular function ϕ.

Recall that for a partial finite part τ and a partial function ϕ on N we write
τ ⊆ ϕ if for every z ∈ dom(τ) we have τ(z) = ϕ(z) or τ(z) = ⊥ and ϕ(z) is
undefined.

If ϕ is a B-regular function then for every partial finite part δ ⊆ ϕ there exists
a B-regular partial finite part τ ⊆ ϕ such that δ ⊆ τ . Moreover, there exist such
B-regular partial finite parts τ of ϕ of arbitrary large rank.

For every partial finite part τ denote by 〈τ〉 the set {〈x, y〉 | τ(x) = y & y 6= ⊥}.
Let Γa be an enumeration operator, τ be a partial finite part and x ∈ N. By

x ∈ Γa(τ) we mean x ∈ Γa(〈τ〉) ⇐⇒ (∃v)(〈v, x〉 ∈Wa & Dv ⊆ 〈τ〉).
Denote byRB the set of all B-regular finite parts. We will identify the finite parts

with their codes since they are finite functions. It is clear that the set RB ≤e B.

Definition 4.1.1. A partial function ϕ is B-generic if ϕ is B-regular and for every
set S of B-regular finite parts such that S ≤e B,

(∃τ ∈ RB)(τ ⊆ ϕ & ((τ ∈ S) ∨ (∀ρ ⊇ τ)(ρ ∈ RB ⇒ ρ 6∈ S))).

For every partial function ϕ denote by ϕ∗ the total function ϕ : N → N ∪ {⊥}
such that if ϕ(x) is defined then ϕ∗(x) = ϕ(x) and ϕ∗(x) = ⊥ otherwise.

Lemma 4.1.1. Let ϕ be a B-generic function. Then ϕ′ ≡e B
′ ⊕ ϕ∗.

Proof. Since ϕ is B-regular then B ≤e ϕ and hence B′ ≤e ϕ
′. On the other hand we

have that dom(ϕ) ≤e ϕ and then dom(ϕ)+ ≤e ϕ
′. But ϕ∗ ≤e dom(ϕ)+ ⊕ ϕ ≤e ϕ

′.
Thus B′ ⊕ ϕ∗ ≤ ϕ′.
For the other direction we will use the compactness property of the enumeration

operators and the fact that ϕ is B-generic.
We have ϕ′ = {〈a, x〉 | x ∈ Γa(ϕ)}+.
For any a, x ∈ N we have

(1) X〈a,x〉 = {τ ∈ RB | x ∈ Γa(τ)} ≤e B;
(2) Y〈a,x〉 = {τ ∈ RB | (∃ρ ∈ RB)(τ ⊆ ρ & x ∈ Γa(ρ)} ≤e B;
(3) Z〈a,x〉 = {τ ∈ RB | (∀ρ ∈ RB)(τ ⊆ ρ⇒ x 6∈ Γa(ρ)) ≤e B

′.

Actually X〈a,x〉 ≤e B and Y〈a,x〉 ≤e X〈a,x〉 ⊕ RB uniformly in a, x. And Z〈a,x〉 =
RB \ Y〈a,x〉 ≤e B

′ uniformly in a, x.
Since ϕ is B-regular we have:

x ∈ Γa(ϕ) ⇐⇒ (∃τ ∈ RB)(τ ⊆ ϕ∗ & x ∈ Γa(τ)) ⇐⇒ (∃τ ⊆ ϕ∗)(τ ∈ X〈a,x〉).

x 6∈ Γa(ϕ) ⇐⇒ (∀τ ⊆ ϕ∗)(τ 6∈ X〈a,x〉).
Since ϕ is B-generic for all a, x:

(∃τ ⊆ ϕ∗)(τ ∈ X〈a,x〉 ∨ τ ∈ Z〈a,x〉).
And finally:

x 6∈ Γa(ϕ) ⇐⇒ (∃τ ⊆ ϕ∗)(τ ∈ Z〈a,x〉).
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Then {〈a, x〉 | x ∈ Γa(ϕ)}+ ≤e B
′ ⊕ ϕ∗ and hence ϕ′ ≤e B

′ ⊕ ϕ∗.
�

Lemma 4.1.2. If ϕ is a B-generic partial function on N, then B <e ϕ and for
every total set X ≤e ϕ we have that X ≤e B.

A function ϕ with the property above : B <e ϕ and for every total set X ≤e ϕ
we have that X ≤e B we shall call quasi-minimal over B.

Proof. We already know that B ≤e ϕ. Suppose that ϕ ≤e B. Then the following
set of B-regular finite parts will be e-reducible to B:

S = {τ : τ ∈ RB & (∃x ∈ dom(τ) ∩ dom(ϕ))(ϕ(x) 6= τ(x))}.
Since ϕ is B-generic then there is a B-regular finite part τ ⊆ ϕ such that τ ∈ S or
(∀ρ ∈ RB)(τ ⊆ ρ⇒ ρ 6∈ S). It is clear that both cases are impossible. So ϕ is not
e-reducible to B.

For any total set X ⊆ N one can construct a total function g on N, so that
g ≡e X. To prove that ϕ is quasi-minimal over B, it is sufficient to show that if g
is a total function on N and g ≤e ϕ, then g ≤e B.

Let g be a total function and g = Γe(ϕ).
Consider the set

S = {τ | τ ∈ RB & (∃x, y1 6= y2 ∈ N)(〈x, y1〉 ∈ Γe(τ) & 〈x, y2〉 ∈ Γe(τ))}.
Since S ≤e B, we have that there exists a B-regular partial finite part τ ⊆ ϕ such
that either τ ∈ S or (∀ρ ∈ RB)(ρ ⊇ τ ⇒ ρ 6∈ S).

Assume that τ ∈ S. Then there exist x, y1 6= y2 such that 〈x, y1〉 ∈ Γe(τ)
and 〈x, y2〉 ∈ Γe(τ). Then g(x) = y1 and g(x) = y2, which is impossible. So,
(∀ρ ∈ RB)(ρ ⊇ τ ⇒ ρ 6∈ S).

Consider now the set:

S1 = {ρ : ρ ∈ RB & (∃µ ∈ RB)(τ ⊆ µ ⊆ ρ & (∃δ1, δ2 ∈ RB)(δ1 ⊇ µ & δ2 ⊇ µ &

(∃x, y1 6= y2 ∈ N)(〈x, y1〉 ∈ Γe(δ1) & 〈x, y2〉 ∈ Γe(δ2) &

dom(ρ) = dom(δ1) ∪ dom(δ2) &

(∀z)(z ∈ dom(ρ) \ dom(µ)⇒ ρ(z) = ⊥))))}.
We have that S1 ≤e B and hence there exists a B-regular partial finite part τ1 ⊆ ϕ
such that either τ1 ∈ S1 or (∀ρ ∈ RB)(ρ ⊇ τ1 ⇒ ρ 6∈ S1).

Assume that τ1 ∈ S1. Then there exists a B-regular partial finite part µ such
that τ ⊆ µ ⊆ τ1 and for some B-regular finite parts δ1 ⊇ µ, δ2 ⊇ µ and for some
x, y1 6= y2 ∈ N we have

〈x, y1〉 ∈ Γe(δ1) & 〈x, y2〉 ∈ Γe(δ2) & dom(τ1) = dom(δ1) ∪ dom(δ2) &

(∀z)(z ∈ dom(τ1) \ dom(µ)⇒ τ1(z) = ⊥).

Let g(x) = y. Then 〈x, y〉 ∈ Γe(ϕ). Hence there exists a B -regular finite part
ρ ⊇ τ1 such that 〈x, y〉 ∈ Γe(ρ). Without loss of generality we may assume y 6= y1.
Define the partial finite part ρ0 as follows:

ρ0(z) =

{
δ1(z) if z ∈ dom(δ1),

ρ(z) if z ∈ dom(ρ) \ dom(δ1).

Then ρ0 is a B-regular finite part and τ ⊆ ρ0, δ1 ⊆ ρ0. Moreover since ρ ⊇ τ1
for all z ∈ dom(ρ) if ρ(z) 6= ⊥, then ρ(z) = ρ0(z). Hence 〈x, y1〉 ∈ Γe(ρ0) and



QUASI-MINIMAL DEGREES FOR DEGREE SPECTRA 13

〈x, y〉 ∈ Γe(ρ0). So, ρ0 ∈ S. Since ρ0 ⊇ τ this contradicts with the property of τ
proved above.

Thus, (∀ρ ∈ RB)(ρ ⊇ τ1 ⇒ ρ 6∈ S1).
Since τ ⊆ ϕ and τ1 ⊆ ϕ then let τ2 = τ1 ∪ τ . Notice that τ2 ⊆ ϕ and τ2 ∈ RB .

We shall show that for all x, y ∈ N

g(x) = y ⇐⇒ (∃δ ∈ RB)(δ ⊇ τ2 & 〈x, y〉 ∈ Γe(δ)).

And hence g ≤e B.
If g(x) = y, then 〈x, y〉 ∈ Γe(ϕ), and there exists ρ ⊆ ϕ & ρ ∈ RB & 〈x, y〉 ∈

Γe(ρ). Let δ = τ2 ∪ ρ.
For the other direction assume that δ1 ⊇ τ2 and 〈x, y〉 ∈ Γe(δ1). Suppose that

g(x) = y2 and y 6= y2. Then there exists a δ2 ⊇ τ2 such that 〈x, y2〉 ∈ Γe(δ2). Set

ρ(x) =

{
τ2(x) if x ∈ dom(τ2),

⊥ if x ∈ (dom(δ1) ∪ dom(δ2)) \ dom(τ2).

Clearly, ρ ⊇ τ2 ⊇ τ1 and ρ ∈ S1. A contradiction.
�

For each partial finite part τ with dom(τ) = [1, q − 1] denote by lh(τ) = q the
number of the elements in dom(τ) and for every x ∈ N by τ ∗ x we denote the
extension of τ such that τ ∗ x(lh(τ)) = x.

Recall the theorem that we have to prove.

Proof. of Theorem 3.2.1
Let B ⊆ N and Q be a total set such that B′ ≤e Q. We have to construct a set

F with the following properties:

(1) B <e F ;
(2) F ′ ≡e Q.
(3) for every total X ≤e F we have that X ≤e B.

By Lemma 4.1.1 and Lemma 4.1.2 it is enough to construct a partial B-generic
function ϕ on N such that ϕ ≤e B

′ ⊕ Q ≤e Q and B′ ⊕ ϕ∗ ≡e Q. Then the set
F = 〈ϕ〉 will have all the properties (1)-(3) from the theorem since by Lemma 4.1.1
B′⊕ϕ∗ ≡e ϕ

′ thus F ′ ≡e Q and by Lemma 4.1.2 the set F will be a quasi-minimal
over B.

We shall construct the function ϕ in stages. At each stage n we shall define
a finite part δn so that δn ⊆ δn+1 and take ϕ∗ =

⋃
n δn. Then ϕ(x) = ϕ∗(x)

if ϕ(x) 6= ⊥ and ϕ(x) is undefined otherwise. We shall consider three kinds of
stages. At stage n = 3e we shall ensure that the mapping ϕ is B-regular. At stages
n = 3e+ 1 we shall ensure that ϕ is B-generic. At stages n = 3e+ 2 we shall code
the elements of Q in ϕ.

For every partial finite part τ denote by ν(τ) = µρ[τ ⊆ ρ & ρ ∈ RB & |ρ| > |τ |]
if any, and let ν(τ) be undefined otherwise. The function ν gives the B-regular
extension of τ with the least code if any.

Let q be a computable in Q listing of the elements of Q, i.e. q is total and the
range of q is Q.

Let δ0 be the empty finite part and suppose that δn is defined.
(a) Case n = 3e. Set δn+1 = ν(δn).
(b) Case n = 3e + 1. Check whether there exists a B-regular finite part ρ such

that δn ⊆ ρ and ρ ∈ Γe(B). If the answer is positive, then let δn+1 be the least
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B-regular extension of δn belonging to Γe(B). If the answer is negative then let
δn+1 = δn.

(c) Case n = 3e+ 2. Let δn+1 be the least B-regular extension of δn ∗ q(e).
From the construction above it follows immediately that ϕ∗ =

⋃
n δn is e-

reducible to B′ ⊕ Q and hence ϕ∗ ≤e Q and ϕ ≤e Q. On the other hand we
can effectively in ϕ∗ ⊕B′ list the elements of Q. So, ϕ∗ ⊕B′ ≡e Q. Moreover ϕ is
B-regular since we built it only by B-regular finite parts and at stages 3e we always
get a B-regular extension of greater rank.

It follows from the construction also that ϕ is B-generic. To see this consider
a set S ≤e B of B-regular finite parts and hence S = Γe(B) for some e. Then
at stage 3e + 1 the finite part δn+1 is B-regular and δn+1 ∈ S or (∀ρ ∈ RB)(ρ ⊇
δn+1 ⇒ ρ 6∈ S). Hence ϕ is B-generic.

�

4.2. Splitting a total set. We shall explain the splitting method of a total set
following Ganchev [7].

Let κ : N × N → N and {yn}n be a sequence of natural numbers. If τ0 = ∅,
τn+1 = κ(τn ∗ yn, n), then we will use the notation κ({yn}n) =

⋃
n τn.

Let P be a set of functions over the natural numbers.

Lemma 4.2.1 (Ganchev). [6, 7] If κ is computable function in the total set Q ⊆
N and such that for every sequence {yn}n of natural numbers computable in Q,
κ({yn}n) ∈ P , then there exist functions ψ, χ ∈ P such that Q ≡e ψ ⊕ χ.

The idea is the following:
Let q be an enumeration of Q such that q ≤e Q. We construct two sequences of

finite parts {τn}n and {σn}n by the following rule:

(1) τ0 = σ0 = ∅;
(2) yn = 〈lh(σn), q(2n)〉;
(3) τn+1 = κ(τn ∗ yn, n);
(4) zn = 〈lh(τn+1), q(2n+ 1)〉;
(5) σn+1 = κ(σn ∗ zn, n).

Define ψ = κ({yn}n) and χ = κ({zn}n). Then ψ, χ ∈ P and moreover since κ is
computable in Q we have ψ ≤e Q and χ ≤e Q. Thus ψ ⊕ χ ≤e Q.

On the other side we have

(1) lh(τ0) = 0,
(2) lh(σi) = (ψ(lh(τi)))0,
(3) lh(τi+1) = (χ(lh(σi)))0.

Hence the sequence

lh(τ0), lh(σ0), lh(τ1), lh(σ1), . . . , lh(τn), lh(σn), . . .

is c.e. in ψ ⊕ χ and for every i we have q(2i) = (ψ(lh(τi)))1 and q(2i + 1) =
(χ(lh(σi)))1. Thus Q ≤e ψ ⊕ χ.

We will use this method to prove Theorem 3.3.3 and so the proof of Theorem 3.3.2
will be completed. The functions ψ and χ will be constructed as partial B- generic
functions, and hence they both will be quasi-minimal over B.

Proof. of Theorem 3.3.3.
Let Q be a total set and B′ ≤e Q. We shall construct partial functions ψ and χ

on N such that ψ ⊕ χ ≡e Q and the functions ψ and χ are quasi-minimal over B.
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Let P be the class of all B-generic functions on N. Consider a function q which
is a c.e. in Q enumeration of the set Q.

We will define the function κ so that κ will assure that the partial functions ψ
and χ that we are going to construct will be B-generic.

First recall that for every partial finite part τ we denoted by ν(τ) = µρ[τ ⊆
ρ & ρ ∈ RB & |ρ| > |τ |] if any, and ν(τ) is undefined otherwise.

For any finite part τ and any set X of B-regular finite parts, denote by µ(τ,X) =
µρ[ν(τ) ⊆ ρ & ρ ∈ X] if any, and µ(τ,X) = ν(τ), otherwise.

Denote by Xe = {ρ | ρ ∈ RB & ρ ∈ Γe(B)} for each e ∈ N. Let RB ∗ N be the
set of all partial finite parts of the form τ ∗ y, where τ ∈ RB and y ∈ N. Then we
can define the function κ as follows: κ : RB ∗ N× N→ RB and for every τ ∈ RB ,
n ∈ N, κ(τ, n) = µ(τ,Xn). It is clear that κ is computable in B′ and hence in Q.

The construction of ψ and χ will be carried by stages. At each stage n we shall
construct two B-regular finite parts τn+1 ⊇ τn and σn+1 ⊇ σn assuring that the
constructed functions will be B-generic.

Let τ0 = σ0 = ∅.
Suppose that τn and σn are defined. Denote by yn = 〈lh(σn), q(2n)〉. Then

κ(τn ∗ yn, n) is the least partial B-regular finite part ρ ⊇ τn ∗ yn with rank greater
than τn such that ρ ∈ Γn(B) if such B-regular finite part exists and κ(τn ∗ yn, n)
is the least B-regular extension of τn ∗ yn with a rank greater than τn, otherwise.
Let τn+1 = κ(τn ∗ yn, n).

Denote by zn = 〈lh(τn+1), q(2n + 1)〉. Then κ(σn ∗ zn, n) is the least partial
B-regular finite part ρ ⊇ σn ∗ zn with rank greater than σn such that ρ ∈ Γn(B) if
such B-regular finite part exists and κ(σn ∗ zn, n) is the least B-regular extension
of σn ∗ zn with a rank greater than σn, otherwise. Let σn+1 = κ(σn ∗ zn, n).

Let ψ =
⋃

n τn and χ =
⋃

n σn. Notice that for every n, ψ(lh(τn)) = yn and
χ(lh(σn)) = zn are defined. The sequences {yn}n and {zn}n are computable in
B′ ⊕ Q and hence in Q. We know that the function κ is computable in Q. So by
the arguments above ψ ⊕ χ ≤e B

′ ⊕ Q ≤e Q. On the other hand we coded the
elements of the set Q in ψ ⊕ χ and hence as above ψ ⊕ χ ≡e Q.

It remains to see that ψ and χ are B-generic. First since we chose at each stage
a B-regular finite part with a greater rank the functions ψ and χ are B-regular
surjective on B. To see that ψ and χ are B-generic consider a set S of B-regular
finite parts and S ≤e B. Then there is an enumeration operator Γn(B) = S for
some n ∈ N. Consider the stage n. Let µ = ν(τn ∗ yn). Then if there is a B-regular
finite part ρ ⊇ µ, then τn+1 will be the least one ρ in S. Otherwise there is no
B-regular extension ρ of µ such that ρ ∈ S. Thus (∀ρ ∈ RB)(ρ ⊇ τn+1 ⇒ ρ 6∈ S).
In other words ψ is B-generic.

The B-genericity of χ is shown in the same way.
So the functions ψ and χ are B-generic and ψ ⊕ χ ≡e Q.

�
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