
Minimal Pairs and Quasi-Minimal Degrees for
the Joint Spectra of Structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science,
Sofia University,

5 James Bourchier Blvd.,
1164 Sofia, Bulgaria,

asoskova@fmi.uni-sofia.bg

Abstract. Two properties of the Co-spectrum of the Joint spectrum of
finitely many abstract structures are presented — a Minimal Pair type
theorem and the existence of a Quasi-Minimal degree with respect to the
Joint spectrum of the structures.

1 Introduction

Let A be a countable abstract structure. The Degree spectrum DS(A) of A is
the set of all enumeration degrees generated by all enumerations of A. The Co-
spectrum of the structure A is the set of all enumeration degrees which are lower
bounds of the DS(A). As a typical example of a spectrum is the cone of the total
degrees greater then or equal to some enumeration degree a and the respective
Co-spectrum which is equal to the set all degrees less than or equal to a. There
are examples of structures with more complicated degree spectra e.g. [5, 4, 1, 3,
7]. The properties of the Degree spectra are presented in [7] which show that
the degree spectra behave with respect to their Co-spectra like the cones of
enumeration degrees.

In [8] a generalization of the notions of Degree spectra and Co-spectra for
finitely many structures is presented. Let A0, . . . ,An be countable abstract struc-
tures. The Joint spectrum of A0, . . . ,An is the set DS(A0,A1, . . . ,An) of all
elements of DS(A0), such that a(k) ∈ DS(Ak), for each k ≤ n.

Here we shall prove two properties of the Co-spectrum of DS(A0, . . . ,An) —
the Minimal Pair type theorem and the existence of a quasi-minimal degree with
respect to the Joint spectrum.

The proofs use the technique of regular enumerations introduced in [6], com-
bined with partial generic enumerations used in [7].

2 Preliminaries

Let A = (IN;R1, . . . , Rk) be a partial structure over the set of all natural numbers
IN, where each Ri is a subset of INri and = and ̸= are among R1, . . . , Rk.

An enumeration f of A is a total mapping from IN onto IN.



For every A ⊆ INa define f−1(A) = {⟨x1 . . . xa⟩ : (f(x1), . . . , f(xa)) ∈ A}.
Denote by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rk).

For any sets of natural numbers A and B the set A is enumeration reducible
to B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By
de(A) we denote the enumeration degree of the set A and by De the set of all
enumeration degrees. The set A is total if A ≡e A

+, where A+ = A ⊕ (IN\A).
A degree a is called total if a contains the e-degree of a total set. The jump
operation “′” denotes here the enumeration jump introduced by Cooper [2].

Definition 1. The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A} .

Let B0, . . . , Bn be arbitrary subsets of IN. Define the set P(B0, . . . , Bi) as follows:

1. P(B0) = B0;

2. If i < n, then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))
′ ⊕Bi+1.

In the construction of minimal pair we shall use a modification of the “type
omitting” version of Jump Inversion Theorem from [6]. In fact, the result follows
from the proof of the Theorem 1.7 in [6].

Theorem 2 ([6]). Let {Ak
r}r, k = 0, . . . , n be a sequence of subsets of IN such

that for every r and for all k, 0 ≤ k < n, Ak
r ̸≤e P(B0, . . . , Bk). Then there

exists a total set F having the following properties:

1. Bi ≤e F
(i), for all i ≤ n;

2. Ak
r ̸≤e F

(k), for all r and all k < n.

Definition 3. A set F of natural numbers is called quasi-minimal over B0 if
the following conditions hold:

1. B0 <e F ;

2. For any total set A ⊆ IN, if A ≤e F , then A ≤e B0.

In the construction of the quasi-minimal degree we shall use the following fact:

Theorem 4. There exists a set of natural numbers F having the following prop-
erties:

1. B0 <e F ;

2. For all 1 ≤ i ≤ n, Bi ≤e F
(i);

3. For any total set A, if A ≤e F , then A ≤e B0.

The set F from Theorem 4 is quasi-minimal over B0. We shall prove this theorem
in the last section using the technique of partial regular enumerations.



3 Joint Spectra of Structures

Let A0, . . . ,An be abstract structures on IN.

Definition 5. The Joint spectrum of A0, . . . ,An is the set

DS(A0,A1, . . . ,An) = {a : a ∈ DS(A0),a
′ ∈ DS(A1), . . . ,a

(n) ∈ DS(An)} .

Definition 6. For every k ≤ n, the k th Jump spectrum of A0, . . . ,An is the set

DSk(A0, . . . ,An) = {a(k) : a ∈ DS(A0, . . . ,An)} .

In [8] is shown that DSk(A0, . . . ,An) is closed upwards, i.e. if a(k) ∈ DSk(A0,
. . . , An), b is a total e-degree and a(k) ≤ b, then b ∈ DSk(A0, . . . , An).

Definition 7. The kth Co-spectrum of A0, . . . ,An, k ≤ n, is the set of all lower
bounds of DSk(A0, . . . ,An), i.e.

CSk(A0, . . . ,An) = {b : b ∈ De&(∀a ∈ DSk(A0, . . . ,An))(b ≤ a)} .

From [8] we know that the kth Co-spectrum for k ≤ n depends only of the first
k structures:

CSk(A0, . . . ,Ak, . . . ,An) = CSk(A0, . . . ,Ak) .

Let f0, . . . , fn be enumerations of A0, . . . ,An. Denote by f̄ = (f0, . . . , fn) and

P
f̄
k = P(f−1

0 (A0), . . . , f
−1
k (Ak)), k = 0, . . . , n.

Let W0, . . . ,Wz, . . . be a Gödel’s enumeration of the c.e. sets and Dv be the
finite set having canonical code v.

For every i ≤ n, e and x in IN define the relations f̄ |=i Fe(x) and f̄ |=i ¬Fe(x)
by induction on i:

1. f̄ |=0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈We & Dv ⊆ f−1
0 (A0));

2. f̄ |=i+1 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈We & (∀u ∈ Dv)(u = ⟨0, eu, xu⟩ &
f̄ |=i Feu(xu) ∨ u = ⟨1, eu, xu⟩ & f̄ |=i ¬Feu(xu) ∨ u = ⟨2, xu⟩ &
xu ∈ f−1

i+1(Ai+1)));
3. f̄ |=i ¬Fe(x) ⇐⇒ f̄ ̸|=i Fe(x).

It is easy to check that for any A ⊆ IN and k ≤ n

A ≤e P
f̄
k ⇐⇒ (∃e)(A = {x : f̄ |=k Fe(x)}) .

The forcing conditions which we shall call finite parts are n + 1 tuples τ̄ =
(τ0, . . . , τn) of finite mappings τ0, . . . , τn of IN in IN.

For any i ≤ n, e and x in IN and every finite part τ̄ we define the forcing
relations τ̄ 
i Fe(x) and τ̄ 
i ¬Fe(x) following the definition of relation “|=i”.

Definition 8. 1. τ̄ 
0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈We & Dv ⊆ τ−1
0 (A0));

2. τ̄ 
i+1 Fe(x) ⇐⇒ ∃v(⟨v, x⟩ ∈We & (∀u ∈ Dv)(u = ⟨0, eu, xu⟩ &
τ̄ 
i Feu(xu) ∨ u = ⟨1, eu, xu⟩ & τ̄ 
i ¬Feu(xu) ∨ u = ⟨2, xu⟩ &
xu ∈ τ−1

i+1(Ai+1)));



3. τ̄ 
i ¬Fe(x) ⇐⇒ (∀ρ̄ ⊇ τ̄)(ρ̄ ̸
i Fe(x)).

For any i ≤ n, e, x ∈ IN denote by Xi
⟨e,x⟩ = {ρ̄ : ρ̄ 
i Fe(x)}.

Definition 9. An enumeration f̄ of A0, . . . ,An is i-generic if for every j < i,
e, x ∈ IN

(∀τ̄ ⊆ f̄)(∃ρ̄ ∈ Xj
⟨e,x⟩)(τ̄ ⊆ ρ̄) =⇒ (∃τ̄ ⊆ f̄)(τ̄ ∈ Xj

⟨e,x⟩) .

In [8] the following properties of the k-generic enumertions are shown:

1. If f̄ is an k-generic enumeration, then

f̄ |=k Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ 
k Fe(x)) .

2. If f̄ is an (k + 1)-generic enumeration, then

f̄ |=k ¬Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ 
k ¬Fe(x)) .

Definition 10. The set A ⊆ IN is forcing k-definable on A0, . . . ,An if there
exist a finite part δ̄ and e ∈ IN such that

x ∈ A ⇐⇒ (∃τ̄ ⊇ δ̄)(τ̄ 
k Fe(x)) .

In [8] the following characterization of the sets which generates the elements of
the kth Co-spectrum of DS(A0, . . . ,An) is given:

Theorem 11 ([8]). For every A ⊆ IN, the following are equivalent:

1. de(A) ∈ CSk(A0, . . . ,An).

2. A ≤e P
f̄
k , for all f̄ = (f0, . . . , fk) enumerations of A0, . . . , Ak.

3. A is forcing k-definable on A0, . . . ,An.

Theorem 12. Let {Xk
r }r, k = 0, . . . , n be n + 1 sequences of sets of natural

numbers. There exists a (n+ 1)-generic enumeration f̄ of A0, . . . ,An such that
for any k ≤ n and for all r ∈ IN, if the set Xk

r is not forcing k-definable on

A0, . . . ,An, then X
k
r ̸≤e P

f̄
k .

4 Minimal Pair Theorem

In [7] a Minimal Pair Theorem for Degree spectrum of a structure A is presented.
Using the technique of splitting generic enumerations it is proven there that for
each constructive ordinal α there exist elements f and g of DS(A) such that for
any enumeration degree a and any β + 1 < α

a ≤ f(β) & a ≤ g(β) ⇒ a ∈ CSβ(A) .

We shall prove an analogue of the Minimal Pair Theorem for the Joint spectrum.



Theorem 13. For all structures A0,A1, . . . ,An, there exist enumeration degrees
f and g in DS(A0,A1, . . . ,An), such that for any enumeration degree a and
k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CSk(A0,A1, . . . ,An) .

Proof. We shall construct two total sets F and G, such that de(F ) ∈ DS(A0,
. . . , An), de(G) ∈ DS(A0, . . . ,An) and for each k ≤ n, if a set X, X ≤e F

(k) and
X ≤e G

(k), then de(X) ∈ CSk(A0, . . . ,An). And take f = de(F ) and g = de(G).

First we construct enumerations f̄ and h̄ of A0, . . . ,An such that for any

k ≤ n, if a set A ⊆ IN, A ≤e P
f̄
k and A ≤e P

h̄
k , then A is a forcing k-definable on

A0, . . . ,An.

Let g0, . . . , gn be arbitrary enumerations of A0, . . . , An. By Theorem 2 for
B0 = g−1

0 (A0), . . . , Bn = g−1
n (An) there exists a total set F , such that:

g−1
0 (A0) ≤e F, g

−1
1 (A1) ≤e F

′,. . ., g−1
n (An) ≤e F

(n). Since DS(A0,A1, . . . ,An) is
closed upwards, then de(F ) ∈ DS(A0,A1, . . . ,An), i.e. de(F ) ∈ DS(A0), de(F

′) ∈
DS(A1), . . ., de(F

(n)) ∈ DS(An).

Hence, there exist enumerations h0, h1, . . . , hn of A0,A1, . . . , An, respectively,
such that h−1

0 (A0) ≡e F, h
−1
1 (A1) ≡e F

′, . . . , h−1
n (An) ≡e F

(n). Notice, that for

each k ≤ n, F (k) ≡e P
h̄
k .

For each k ≤ n, let {Xk
r }r be the sequence of all sets enumeration reducible

to Ph̄
k .

By Theorem 12 there is an (n+1)-generic enumeration f̄ such that for all r,

and all k = 0, . . . , n if the set Xk
r is not forcing k-definable then Xk

r ̸≤e P
f̄
k .

Suppose now that the set A ≤e P
f̄
k and A ≤e Ph̄

k . Then A = Xk
r for some

r. From the omitting condition of f̄ it follows that A is forcing k-definable on
A0, . . . ,An.

Now we apply again the Theorem 2. Let B0 = f−1
0 (A0), . . . , Bn = f−1

n (An)
and Bn+1 = N . For each k ≤ n consider the sequence {Ak

r}r of these sets among
the sets {Xk

r }r, which are not forcing k-definable on A0, . . . ,An. From the choice

of the enumeration f̄ it follows that each of these sets Ak
r , A

k
r ̸≤e P

f̄
k . Then by

Theorem 2 there is a total set G, such that

1. For all k ≤ n, f−1
k (Ai) ≤e G

(k);

2. For all r and all k ≤ n, Ak
r ̸≤e G

(k).

Note, that since G is a total set, and because of the fact that each spectrum
is closed upwards, we have that de(G) ∈ DS(A0), . . . , de(G

(n)) ∈ DS(An), and
hence de(G) ∈ DS(A0, . . . ,An).

Suppose now, that a set X, X ≤e F
(k) and X ≤e G

(k), k ≤ n. From X ≤e

F (k) and F (k) ≡e P
h̄
k , it follows that X = Xk

r for some r. It is clear that X ≤e P
f̄
k .

Otherwise from the choice of G it follows that X ̸≤e G
(k). Hence X is forcing

k-definable on A0, . . . ,An. By the normal form of the sets which enumeration
degrees are in CSk(A0, . . . ,An), we have that de(X) ∈ CSk(A0, . . . ,An).



5 Quasi-Minimal Degree

Given a set A of enumeration degrees denote by co(A) the set of all lower bounds
of A. Say that the degree q is quasi-minimal with respect to A if the following
conditions hold ([7]):

1. q ̸∈ co(A).
2. If a is a total degree and a ≥ q, then a ∈ A.
3. If a is a total degree and a ≤ q, then a ∈ co(A).

In [7] it is shown that there is a quasi-minimal degree q0 with respect to DS(A0),
i.e. q0 ̸∈ CS(A0) and for every total degree a: if a ≥ q0, then a ∈ DS(A0) and if
a ≤ q0, then a ∈ CS(A0).

We are going to prove the existence of a quasi-minimal degree with respect
to DS(A0,A1, . . . , An).

Theorem 14. For all structures A0,A1, . . . , An there exists an enumeration
degree q such that:

1. q′ ∈ DS(A1), . . . ,q
(n) ∈ DS(An), q ̸∈ CS(A0,A1, . . . ,An);

2. If a is a total degree and a ≥ q, then a ∈ DS(A0,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then a ∈ CS(A0,A1, . . . ,An).

Proof. Let q0 be a quasi-minimal degree q0 with respect to DS(A0) from [7].
Let B0 ⊆ IN, such that de(B0) = q0, and f1, . . . , fn be fixed total enumer-

ations of A1, . . . ,An. Set B1 = f−1
1 (A1), . . . , Bn = f−1

n (An). By Theorem 4
there is quasi-minimal over B0 set F , such that B0 <e F , Bi ≤e F

(i), for each
1 ≤ i ≤ n, and moreover for any total set A, if A ≤e F , then A ≤e B0. We will
show that q = de(F ) is quasi-minimal with respect to DS(A0, . . . ,An).

Since q0 is quasi-minimal with respect to DS(A0), q0 ̸∈ CS(A0). But q0 < q
and thus q ̸∈ CS(A0). Hence q ̸∈ CS(A0,A1, . . . ,An).

For each 1 ≤ i ≤ n, the set F (i) is total and f−1
i (Ai) ≤e F

(i). Since any degree
spectrum is closed upwards it follows that de(F

(i)) ∈ DS(Ai), i.e. q
(i) ∈ DS(Ai).

Consider a total set X, such that X ≥e F . Then de(X) ≥ q0. From the fact
that q0 is quasi-minimal with respect to DS(A0) it follows that de(X) ∈ DS(A0).
Moreover for each 1 ≤ i ≤ n, X(i) ≥e F

(i) ≥e f
−1
i (Ai), and X

(i) is a total set.
Then for each i ≤ n, de(X

(i)) ∈ DS(Ai), and hence de(X) ∈ DS(A0, . . . ,An).
Suppose that X is a total set and X ≤e F . Then, from the choice of F , since

X is total, X ≤e B0. Apply again the quasi-minimality of q0 and then de(X) ∈
CS(A0). But CS(A0, . . . ,An) = CS(A0) and therefore de(X) ∈ CS(A0, . . . ,An).

⊓⊔

In the rest of the paper we shall present the proof of Theorem 4.

6 Partial Regular Enumerations

Let B0, . . . , Bn be fixed sets of natural numbers. Combining the technique of
the (total) regular enumerations from [6] with the partial generic enumerations,



introduced in [7], we shall construct a partial regular enumeration f , which graph
will be quasi-minimal over the set B0 and such that Bi ≤e f

(i), for 0 ≤ i ≤ n.
In [7] a partial generic enumeration of B0 is constructed, which is quasi-minimal
over B0. In addition, the enumeration f we are going to obtain, will code the
sets B1, . . . , Bn in its jumps (Bi ≤e f

(i)).

Definition 15. A partial enumeration f of B0 is a partial surjective mapping
from IN onto IN with the following properties:

1. For all odd x, if f(x) is defined, then f(x) ∈ B0;
2. For all y ∈ B0, there is an odd x, such that f(x) ≃ y.

It is clear that if f is a partial enumeration of B0, then B0 ≤e f .
Let ⊥ ̸∈ IN.

Definition 16. A partial finite part τ is a finite mapping of IN into IN ∪ {⊥},
such that (∀x)(x ∈ dom(τ) & x is odd ⇒ (τ(x) = ⊥ ∨ τ(x) ∈ B0)).

If τ is a partial finite part and f is a partial enumeration of B0, say that

τ ⊆ f ⇐⇒ (∀x ∈ dom(τ))((τ(x) = ⊥ ⇒ f(x) is not defined ) &
(τ(x) ̸= ⊥ ⇒ τ(x) ≃ f(x)) .

A 0-regular partial finite part is a partial finite part τ such that dom(τ) =
[0, 2q + 1] and for all odd z ∈ dom(τ), τ(z) ∈ B0 or τ(z) = ⊥. The 0-rank of τ ,
|τ |0 = q+1 we call the number of the odd elements of dom(τ). If ρ is a 0-regular
partial extention of τ we shall denote this by τ ⊆0 ρ. It is clear that if τ ⊆0 ρ
and |τ |0 = |ρ|0, then τ = ρ. Let

τ 
0 Fe(x) ⇐⇒ ∃v(⟨v, x⟩ ∈We & (∀u ∈ Dv)(u = ⟨s, t⟩, & τ(s) ≃ t & t ̸= ⊥))

τ 
0 ¬Fe(x) ⇐⇒ (∀ρ)(τ ⊆0 ρ⇒ ρ ̸
0 Fe(x)) .

The (i+ 1)-regular partial finite part τ , the (i+ 1)-rank |τ |i+1 of τ and the
relations τ 
i+1 Fe(x) and τ 
i+1 ¬Fe(x) are defined by induction on i, in the
same way as in [6]. The only difference is that instead of i-regular finite parts
we use i-regular partial finite parts. Denote by Ri the set of all i-regular partial
finite parts.

For any i-regular finite part τ and any set X of i-regular finite parts, denote
by µi(τ,X) = µρ[τ ⊆ ρ & ρ ∈ Ri & ρ ∈ X] if any, and µi(τ,X) = µρ[τ ⊆
ρ & ρ ∈ Ri], otherwise.

Denote by Xi
⟨e,x⟩ = {ρ : ρ is i-regular & ρ 
i Fe(x)}.

Let τ be a finite part and m ≥ 0. The finite part δ is called an i-regular m
omitting extension of τ if δ ⊇ τ , δ ∈ Ri, dom(δ) = [0, q − 1] and there exist
natural numbers q0 < . . . < qm < qm+1 = q such that:

1. δ � q0 = τ .
2. For all p ≤ m, δ � qp+1 = µi(δ � (qp + 1), Xi

⟨p,qp⟩).



If δ and ρ are two i-regular m omitting extensions of τ and δ ⊆ ρ then δ = ρ.
Given an index j, by Si

j we shall denote the intersection Ri ∩Γj(P(B0, . . . , Bi)),
where Γj is the jth enumeration operator.

Let τ be a finite part defined on [0, q−1] and r ≥ 0. Then τ is (i+1)-regular
with (i+ 1)-rank r + 1 if there exist natural numbers

0 < n0 < l0 < b0 < n1 < l1 < b1 . . . < nr < lr < br < nr+1 = q

such that τ � n0 is an i-regular finite part with i-rank equal to 1 and for all j,
0 ≤ j ≤ r, the following conditions are satisfied:

(a) τ � lj ≃ µi(τ � (nj + 1), Si
j);

(b) τ � bj is an i-regular j omitting extension of τ � lj ;
(c) τ(bj) ∈ Bi+1;
(d) τ � nj+1 is an i-regular extension of τ � (bj + 1) with i-rank equal to

|τ � bj |i + 1.

If τ is an i-regular partial finite part, then τ is a j-regular partial finite part
for each j < i and |τ |j > |τ |i.

Definition 17. A partial regular enumeration is a partial enumeration, such
that:

1. For every partial finite part δ ⊆ f , there exists an n-regular partial extension
τ of δ such that τ ⊆ f .

2. If i ≤ n and z ∈ Bi, then there exists an i-regular partial finite part τ ⊆ f ,
such that z ∈ dom(τ).

If f is a partial regular enumeration, δ ⊆ f and i ≤ n, then there exists an
i-regular partial finite part τ of an arbitrary large rank such that δ ⊆ τ and
τ ⊆ f .

Denote by Pi = P(B0, . . . , Bi). It is clear that Ri ≤e Pi.

Definition 18. A partial enumeration f is i-generic if for any j < i and for
every enumeration reducible to Pj set S of j-regular partial finite parts the
following condition holds:

(∃τ ⊆ f)(τ ∈ S ∨ (∀ρ ⊇ τ)(ρ ∈ Ri ⇒ ρ ̸∈ S)) .

Proposition 19. Every partial regular enumeration is (i+ 1)-generic enumer-
ation, for every i < n.

Proposition 20. Suppose that f is a partial regular enumeration. Then

1. For each i ≤ n, Bi ≤e f
(i).

2. If i < n, then f ̸≤e Pi.

Definition 21. If f is a partial enumeration define:

f |=0 Fe(x) ⇐⇒ ∃v(⟨v, x⟩ ∈We & (∀u ∈ Dv)(f((u)0) ≃ (u)1)) .



Proof of Theorem 4. By Proposition 20 it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over B0.

We shall construct f as a union of n-regular partial finite parts δs such that
for all s, δs ⊆ δs+1 and |δs|n = s+ 1. Suppose that for i ≤ n, σi is a recursively
in Bi enumeration of Bi.

Let δ0 be a 0-regular partial finite part such that |δ0|n = 1. Suppose that δs
is defined. Set z0 = σ0(s), . . . , zn = σn(s). We can construct effectively in P′

n−1

a n-regular partial finite part ρ ⊇ δs such that |ρ|n = |δs|n+1, ρ(lh(δs)) = s and
z0 = ρ(x0) for some x0 ∈ B0, . . . , zn = ρ(xn) for some xn ∈ Bn. Set δs+1 = ρ.

The obtained enumeration f is surjective on IN and it is a union of n-regular
partial finite parts. From the construction is obvious that for every z ∈ Bi there
is an i-regular partial finite part τ of f , such that z ∈ dom(τ). Hence f is a partial
regular enumeration. By Proposition 19 f is (i+ 1)-generic for each i < n.

Then by Proposition 20, for i ≤ n, Bi ≤ f (i). Moreover f is a partial 1-generic
enumeration and hence B0 <e f .

To prove that f is quasi-minimal over B0, it is sufficient to show that if ψ
is a total function and ψ ≤e f , then ψ ≤e B0. It is clear that for any total set
A ⊆ IN one can construct a total function ψ, ψ ≡e A. Let ψ be a total function
and ψ = Γe(f). Then

(∀x, y ∈ IN)(f |=0 Fe(⟨x, y⟩) ⇐⇒ ψ(x) ≃ y) .

Consider the set

S0 = {ρ : ρ ∈ R0 & (∃x, y1 ̸= y2 ∈ IN)(ρ 
0 Fe(⟨x, y1⟩) & ρ 
0 Fe(⟨x, y2⟩))} .

Since S0 ≤e B0, we have that there exists a 0-regular partial finite part τ0 ⊆ f
such that either τ0 ∈ S0 or (∀ρ ⊇0 τ0)(ρ ̸∈ S0). Assume that τ0 ∈ S0. Then
there exist x, y1 ̸= y2 such that f |=0 Fe(⟨x, y1⟩) and f |=0 Fe(⟨x, y2⟩). Then
ψ(x) ≃ y1 and ψ(x) ≃ y2 which is impossible. So, (∀ρ ⊇0 τ0)(ρ ̸∈ S0).

Let

S1 = {ρ : ρ ∈ R0 & (∃τ ⊇0 τ0)(∃δ1 ⊇0 τ)(∃δ2 ⊇0 τ)(∃x, y1 ̸= y2)(τ ⊆0 ρ &
δ1 
0 Fe(⟨x, y1⟩) & δ2 
0 Fe(⟨x, y2⟩) & dom(ρ) = dom(δ1) ∪ dom(δ2)
&(∀x)(x ∈ dom(ρ) \ dom(τ) ⇒ ρ(x) ≃ ⊥))} .

We have that S1 ≤e B0 and hence there exists a 0-regular partial finite part
τ1 ⊆ f such that either τ1 ∈ S1 or (∀ρ ⊇0 τ1)(ρ ̸∈ S1).

Assume that τ1 ∈ S1. Then there exists a 0-regular partial finite part τ such
that τ0 ⊆0 τ ⊆0 τ1 and for some δ1 ⊇0 τ , δ2 ⊇0 τ and x0, y1 ̸= y2 ∈ IN we have

δ1 
0 Fe(⟨x0, y1⟩) & δ2 
0 Fe(⟨x0, y2⟩) & dom(τ1) = dom(δ1) ∪ dom(δ2) &
& (∀x)(x ∈ dom(τ1) \ dom(τ) ⇒ τ1(x) ≃ ⊥) .

Let ψ(x0) ≃ y. Then f |=0 Fe(⟨x0, y⟩). Hence there exists a ρ ⊇0 τ1 such that
ρ 
0 Fe(⟨x0, y⟩). Let y ̸= y1. Define the partial finite part ρ0 as follows:

ρ0(x) ≃
{
δ1(x) if x ∈ dom(δ1),
ρ(x) if x ∈ dom(ρ) \ dom(δ1).



Then τ0 ⊆0 ρ0, δ1 ⊆0 ρ0 and notice that for all x ∈ dom(ρ) if ρ(x) ̸≃ ⊥, then
ρ(x) ≃ ρ0(x). Hence ρ0 
0 Fe(⟨x0, y1⟩) and ρ0 
0 Fe(⟨x0, y⟩). So, ρ0 ∈ S0. A
contradiction.

Thus, (∀ρ)(ρ ⊇0 τ1 ⇒ ρ ̸∈ S1).
Let τ = τ1 ∪ τ0. Notice that τ ⊆ f . We shall show that

ψ(x) ≃ y ⇐⇒ (∃δ ⊇0 τ)(δ 
0 Fe(⟨x, y⟩)) .

And hence ψ ≤e B0.
If ψ(x) ≃ y, then f |=0 Fe(x), and since f is regular, (∃ρ ⊆ f)(ρ 
0 Fe(x))

and ρ is 0-regular. Then take δ = τ ∪ ρ.
Assume that δ1 ⊇0 τ , δ1 
0 Fe(⟨x, y1⟩). Suppose that ψ(x) ≃ y2 and y1 ̸= y2.

Then there exists a δ2 ⊇0 τ such that δ2 
0 Fe(⟨x, y2⟩). Set

ρ(x) ≃
{
τ(x) if x ∈ dom(τ),
⊥ if x ∈ (dom(δ1) ∪ dom(δ2)) \ dom(τ).

Clearly ρ ⊇0 τ1 and ρ ∈ S1. A contradiction. ⊓⊔
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