Minimal Pairs and Quasi-Minimal Degrees for the Joint Spectra of Structures

Alexandra A. Soskova
Faculty of Mathematics and Computer Science, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria, asoskova@fmi.uni-sofia.bg

Abstract

Two properties of the Co-spectrum of the Joint spectrum of finitely many abstract structures are presented - a Minimal Pair type theorem and the existence of a Quasi-Minimal degree with respect to the Joint spectrum of the structures.

1 Introduction

Let \mathfrak{A} be a countable abstract structure. The Degree spectrum $\operatorname{DS}(\mathfrak{A})$ of \mathfrak{A} is the set of all enumeration degrees generated by all enumerations of \mathfrak{A}. The Cospectrum of the structure \mathfrak{A} is the set of all enumeration degrees which are lower bounds of the $\operatorname{DS}(\mathfrak{A})$. As a typical example of a spectrum is the cone of the total degrees greater then or equal to some enumeration degree a and the respective Co-spectrum which is equal to the set all degrees less than or equal to a. There are examples of structures with more complicated degree spectra e.g. [5, 4, 1, 3, 7]. The properties of the Degree spectra are presented in [7] which show that the degree spectra behave with respect to their Co-spectra like the cones of enumeration degrees.

In [8] a generalization of the notions of Degree spectra and Co-spectra for finitely many structures is presented. Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be countable abstract structures. The Joint spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set $\operatorname{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$ of all elements of $\operatorname{DS}\left(\mathfrak{A}_{0}\right)$, such that $\mathbf{a}^{(k)} \in \operatorname{DS}\left(\mathfrak{A}_{k}\right)$, for each $k \leq n$.

Here we shall prove two properties of the Co-spectrum of $\operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ the Minimal Pair type theorem and the existence of a quasi-minimal degree with respect to the Joint spectrum.

The proofs use the technique of regular enumerations introduced in [6], combined with partial generic enumerations used in [7].

2 Preliminaries

Let $\mathfrak{A}=\left(\mathbb{N} ; R_{1}, \ldots, R_{k}\right)$ be a partial structure over the set of all natural numbers \mathbb{N}, where each R_{i} is a subset of $\mathbb{N}^{r_{i}}$ and $=$ and \neq are among R_{1}, \ldots, R_{k}.

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N}.

For every $A \subseteq \mathbb{N}^{a}$ define $f^{-1}(A)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in A\right\}$. Denote by $f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \ldots \oplus f^{-1}\left(R_{k}\right)$.

For any sets of natural numbers A and B the set A is enumeration reducible to $B\left(A \leq_{\mathrm{e}} B\right)$ if there is an enumeration operator Γ_{z} such that $A=\Gamma_{z}(B)$. By $d_{\mathrm{e}}(A)$ we denote the enumeration degree of the set A and by \mathcal{D}_{e} the set of all enumeration degrees. The set A is total if $A \equiv_{\mathrm{e}} A^{+}$, where $A^{+}=A \oplus(\mathbb{N} \backslash A)$. A degree \mathbf{a} is called total if a contains the e-degree of a total set. The jump operation "'" denotes here the enumeration jump introduced by Cooper [2].

Definition 1. The Degree spectrum of \mathfrak{A} is the set

$$
\operatorname{DS}(\mathfrak{A})=\left\{d_{\mathrm{e}}\left(f^{-1}(\mathfrak{A})\right): f \text { is an enumeration of } \mathfrak{A}\right\} .
$$

Let B_{0}, \ldots, B_{n} be arbitrary subsets of \mathbb{N}. Define the set $\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$ as follows:

1. $\mathcal{P}\left(B_{0}\right)=B_{0}$;
2. If $i<n$, then $\mathcal{P}\left(B_{0}, \ldots, B_{i+1}\right)=\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)^{\prime} \oplus B_{i+1}$.

In the construction of minimal pair we shall use a modification of the "type omitting" version of Jump Inversion Theorem from [6]. In fact, the result follows from the proof of the Theorem 1.7 in [6].

Theorem 2 ([6]). Let $\left\{A_{r}^{k}\right\}_{r}, k=0, \ldots, n$ be a sequence of subsets of \mathbb{N} such that for every r and for all $k, 0 \leq k<n, A_{r}^{k} \mathbb{Z}_{\mathrm{e}} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)$. Then there exists a total set F having the following properties:

1. $B_{i} \leq{ }_{\mathrm{e}} F^{(i)}$, for all $i \leq n$;
2. $A_{r}^{k} \not \mathbb{L}_{\mathrm{e}} F^{(k)}$, for all r and all $k<n$.

Definition 3. A set F of natural numbers is called quasi-minimal over B_{0} if the following conditions hold:

1. $B_{0}<{ }_{\mathrm{e}} F$;
2. For any total set $A \subseteq \mathbb{N}$, if $A \leq_{\mathrm{e}} F$, then $A \leq_{\mathrm{e}} B_{0}$.

In the construction of the quasi-minimal degree we shall use the following fact:
Theorem 4. There exists a set of natural numbers F having the following properties:

1. $B_{0}<{ }_{\mathrm{e}} F$;
2. For all $1 \leq i \leq n, B_{i} \leq{ }_{\mathrm{e}} F^{(i)}$;
3. For any total set A, if $A \leq_{\mathrm{e}} F$, then $A \leq_{\mathrm{e}} B_{0}$.

The set F from Theorem 4 is quasi-minimal over B_{0}. We shall prove this theorem in the last section using the technique of partial regular enumerations.

3 Joint Spectra of Structures

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be abstract structures on \mathbb{N}.
Definition 5. The Joint spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\operatorname{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}: \mathbf{a} \in \operatorname{DS}\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in \operatorname{DS}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(n)} \in \operatorname{DS}\left(\mathfrak{A}_{n}\right)\right\}
$$

Definition 6. For every $k \leq n$, the k th Jump spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
\mathrm{DS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}^{(k)}: \mathbf{a} \in \operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right\}
$$

In [8] is shown that $\operatorname{DS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ is closed upwards, i.e. if $\mathbf{a}^{(k)} \in \operatorname{DS}_{k}\left(\mathfrak{A}_{0}\right.$, $\left.\ldots, \mathfrak{A}_{n}\right)$, \mathbf{b} is a total e-degree and $\mathbf{a}^{(k)} \leq \mathbf{b}$, then $\mathbf{b} \in \mathrm{DS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

Definition 7. The k th Co-spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}, k \leq n$, is the set of all lower bounds of $\mathrm{DS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e.

$$
\mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{b}: \mathbf{b} \in \mathcal{D}_{\mathrm{e}} \&\left(\forall \mathbf{a} \in \mathrm{DS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right)(\mathbf{b} \leq \mathbf{a})\right\}
$$

From [8] we know that the k th Co-spectrum for $k \leq n$ depends only of the first k structures:

$$
\mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}, \ldots, \mathfrak{A}_{n}\right)=\mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right) .
$$

Let f_{0}, \ldots, f_{n} be enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. Denote by $\bar{f}=\left(f_{0}, \ldots, f_{n}\right)$ and $\mathcal{P}_{k}^{\bar{f}}=\mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right), k=0, \ldots, n$.

Let $W_{0}, \ldots, W_{z}, \ldots$ be a Gödel's enumeration of the c.e. sets and D_{v} be the finite set having canonical code v.

For every $i \leq n, e$ and x in \mathbb{N} define the relations $\bar{f} \models_{i} F_{e}(x)$ and $\bar{f} \models_{i} \neg F_{e}(x)$ by induction on i :

1. $\bar{f} \models_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq f_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;
2. $\bar{f} \models_{i+1} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(u=\left\langle 0, e_{u}, x_{u}\right\rangle \&\right.\right.$
$\bar{f} \models_{i} F_{e_{u}}\left(x_{u}\right) \vee u=\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{f} \models_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee u=\left\langle 2, x_{u}\right\rangle \&$
$\left.x_{u} \in f_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)$);
3. $\bar{f} \models_{i} \neg F_{e}(x) \Longleftrightarrow \bar{f} \not \models_{i} F_{e}(x)$.

It is easy to check that for any $A \subseteq \mathbb{N}$ and $k \leq n$

$$
A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}} \Longleftrightarrow(\exists e)\left(A=\left\{x: \bar{f} \models_{k} F_{e}(x)\right\}\right)
$$

The forcing conditions which we shall call finite parts are $n+1$ tuples $\bar{\tau}=$ $\left(\tau_{0}, \ldots, \tau_{n}\right)$ of finite mappings $\tau_{0}, \ldots, \tau_{n}$ of \mathbb{N} in \mathbb{N}.

For any $i \leq n, e$ and x in \mathbb{N} and every finite part $\bar{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_{i} F_{e}(x)$ and $\bar{\tau} \Vdash_{i} \neg F_{e}(x)$ following the definition of relation " $==_{i}$ ".

Definition 8. 1. $\bar{\tau} \Vdash_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq \tau_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;
2. $\bar{\tau} \Vdash_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(u=\left\langle 0, e_{u}, x_{u}\right\rangle \&\right.\right.$
$\bar{\tau} \Vdash_{i} F_{e_{u}}\left(x_{u}\right) \vee u=\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{\tau} \Vdash_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee u=\left\langle 2, x_{u}\right\rangle \&$
$\left.x_{u} \in \tau_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)$);
3. $\bar{\tau} \Vdash_{i} \neg F_{e}(x) \Longleftrightarrow(\forall \bar{\rho} \supseteq \bar{\tau})\left(\bar{\rho} \Vdash_{i} F_{e}(x)\right)$.

For any $i \leq n, e, x \in \mathbb{N}$ denote by $X_{\langle e, x\rangle}^{i}=\left\{\bar{\rho}: \bar{\rho} \Vdash_{i} F_{e}(x)\right\}$.
Definition 9. An enumeration \bar{f} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is i-generic if for every $j<i$, $e, x \in \mathbb{N}$

$$
(\forall \bar{\tau} \subseteq \bar{f})\left(\exists \bar{\rho} \in X_{\langle e, x\rangle}^{j}\right)(\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \in X_{\langle e, x\rangle}^{j}\right) .
$$

In [8] the following properties of the k-generic enumertions are shown:

1. If \bar{f} is an k-generic enumeration, then

$$
\bar{f} \models_{k} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right) .
$$

2. If \bar{f} is an $(k+1)$-generic enumeration, then

$$
\bar{f} \models_{k} \neg F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{k} \neg F_{e}(x)\right) .
$$

Definition 10. The set $A \subseteq \mathbb{N}$ is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ if there exist a finite part $\bar{\delta}$ and $e \in \mathbb{N}$ such that

$$
x \in A \Longleftrightarrow(\exists \bar{\tau} \supseteq \bar{\delta})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right) .
$$

In [8] the following characterization of the sets which generates the elements of the k th Co-spectrum of $\operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ is given:

Theorem 11 ([8]). For every $A \subseteq \mathbb{N}$, the following are equivalent:

1. $d_{\mathrm{e}}(A) \in \mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.
2. $A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$, for all $\bar{f}=\left(f_{0}, \ldots, f_{k}\right)$ enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.
3. A is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

Theorem 12. Let $\left\{X_{r}^{k}\right\}_{r}, k=0, \ldots, n$ be $n+1$ sequences of sets of natural numbers. There exists a $(n+1)$-generic enumeration \bar{f} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ such that for any $k \leq n$ and for all $r \in \mathbb{N}$, if the set X_{r}^{k} is not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$, then $X_{r}^{k} \not \mathbb{X}_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$.

4 Minimal Pair Theorem

In [7] a Minimal Pair Theorem for Degree spectrum of a structure \mathfrak{A} is presented. Using the technique of splitting generic enumerations it is proven there that for each constructive ordinal α there exist elements \mathbf{f} and \mathbf{g} of $D S(\mathfrak{A})$ such that for any enumeration degree \mathbf{a} and any $\beta+1<\alpha$

$$
\mathbf{a} \leq \mathbf{f}^{(\beta)} \& \mathbf{a} \leq \mathbf{g}^{(\beta)} \Rightarrow \mathbf{a} \in C S_{\beta}(\mathfrak{A}) .
$$

We shall prove an analogue of the Minimal Pair Theorem for the Joint spectrum.

Theorem 13. For all structures $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$, there exist enumeration degrees \mathbf{f} and \mathbf{g} in $\operatorname{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$, such that for any enumeration degree \mathbf{a} and $k \leq n$:

$$
\mathbf{a} \leq \mathbf{f}^{(k)} \& \mathbf{a} \leq \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)
$$

Proof. We shall construct two total sets F and G, such that $d_{\mathrm{e}}(F) \in \operatorname{DS}\left(\mathfrak{A}_{0}\right.$, $\left.\ldots, \mathfrak{A}_{n}\right), d_{\mathrm{e}}(G) \in \operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ and for each $k \leq n$, if a set $X, X \leq_{\mathrm{e}} F^{(k)}$ and $X \leq{ }_{\mathrm{e}} G^{(k)}$, then $d_{\mathrm{e}}(X) \in \mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$. And take $\mathbf{f}=d_{\mathrm{e}}(F)$ and $\mathbf{g}=d_{\mathrm{e}}(G)$.

First we construct enumerations \bar{f} and \bar{h} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ such that for any $k \leq n$, if a set $A \subseteq \mathbb{N}, A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$ and $A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{h}}$, then A is a forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

Let g_{0}, \ldots, g_{n} be arbitrary enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. By Theorem 2 for $B_{0}=g_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, B_{n}=g_{n}^{-1}\left(\mathfrak{A}_{n}\right)$ there exists a total set F, such that: $g_{0}^{-1}\left(\mathfrak{A}_{0}\right) \leq_{\mathrm{e}} F, g_{1}^{-1}\left(\mathfrak{A}_{1}\right) \leq_{\mathrm{e}} F^{\prime}, \ldots, g_{n}^{-1}\left(\mathfrak{A}_{n}\right) \leq_{\mathrm{e}} F^{(n)}$. Since $\operatorname{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$ is closed upwards, then $d_{\mathrm{e}}(F) \in \mathrm{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$, i.e. $d_{\mathrm{e}}(F) \in \mathrm{DS}\left(\mathfrak{A}_{0}\right), d_{\mathrm{e}}\left(F^{\prime}\right) \in$ $\operatorname{DS}\left(\mathfrak{A}_{1}\right), \ldots, d_{\mathrm{e}}\left(F^{(n)}\right) \in \operatorname{DS}\left(\mathfrak{A}_{n}\right)$.

Hence, there exist enumerations $h_{0}, h_{1}, \ldots, h_{n}$ of $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$, respectively, such that $h_{0}^{-1}\left(\mathfrak{A}_{0}\right) \equiv{ }_{\mathrm{e}} F, h_{1}^{-1}\left(\mathfrak{A}_{1}\right) \equiv_{\mathrm{e}} F^{\prime}, \ldots, h_{n}^{-1}\left(\mathfrak{A}_{n}\right) \equiv_{\mathrm{e}} F^{(n)}$. Notice, that for each $k \leq n, F^{(k)} \equiv_{\mathrm{e}} \mathcal{P}_{k}^{\bar{h}}$.

For each $k \leq n$, let $\left\{X_{r}^{k}\right\}_{r}$ be the sequence of all sets enumeration reducible to $\mathcal{P}_{k}^{\bar{h}}$.

By Theorem 12 there is an $(n+1)$-generic enumeration \bar{f} such that for all r, and all $k=0, \ldots, n$ if the set X_{r}^{k} is not forcing k-definable then $X_{r}^{k} \mathbb{Z e} \mathcal{P}_{k}^{\bar{f}}$.

Suppose now that the set $A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$ and $A \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{h}}$. Then $A=X_{r}^{k}$ for some r. From the omitting condition of \bar{f} it follows that A is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

Now we apply again the Theorem 2. Let $B_{0}=f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, B_{n}=f_{n}^{-1}\left(\mathfrak{A}_{n}\right)$ and $B_{n+1}=N$. For each $k \leq n$ consider the sequence $\left\{A_{r}^{k}\right\}_{r}$ of these sets among the sets $\left\{X_{r}^{k}\right\}_{r}$, which are not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. From the choice of the enumeration \bar{f} it follows that each of these sets $A_{r}^{k}, A_{r}^{k} \not Z_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$. Then by Theorem 2 there is a total set G, such that

1. For all $k \leq n, f_{k}^{-1}\left(\mathfrak{A}_{i}\right) \leq_{\mathrm{e}} G^{(k)}$;
2. For all r and all $k \leq n, A_{r}^{k} \not \mathbb{Z}_{\mathrm{e}} G^{(k)}$.

Note, that since G is a total set, and because of the fact that each spectrum is closed upwards, we have that $d_{\mathrm{e}}(G) \in \mathrm{DS}\left(\mathfrak{A}_{0}\right), \ldots, d_{\mathrm{e}}\left(G^{(n)}\right) \in \mathrm{DS}\left(\mathfrak{A}_{n}\right)$, and hence $d_{\mathrm{e}}(G) \in \mathrm{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

Suppose now, that a set $X, X \leq \leq_{\mathrm{e}} F^{(k)}$ and $X \leq_{\mathrm{e}} G^{(k)}, k \leq n$. From $X \leq_{\mathrm{e}}$ $F^{(k)}$ and $F^{(k)} \equiv_{\mathrm{e}} \mathcal{P}_{k}^{\bar{h}}$, it follows that $X=X_{r}^{k}$ for some r. It is clear that $X \leq_{\mathrm{e}} \mathcal{P}_{k}^{\bar{f}}$. Otherwise from the choice of G it follows that $X \not \mathbb{Z}_{\mathrm{e}} G^{(k)}$. Hence X is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. By the normal form of the sets which enumeration degrees are in $\operatorname{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, we have that $d_{\mathrm{e}}(X) \in \mathrm{CS}_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

5 Quasi-Minimal Degree

Given a set \mathcal{A} of enumeration degrees denote by $\operatorname{co}(\mathcal{A})$ the set of all lower bounds of \mathcal{A}. Say that the degree \mathbf{q} is quasi-minimal with respect to \mathcal{A} if the following conditions hold ([7]):

1. $\mathbf{q} \notin c o(\mathcal{A})$.
2. If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
3. If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in \operatorname{co}(\mathcal{A})$.

In $[7]$ it is shown that there is a quasi-minimal degree \mathbf{q}_{0} with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}\right)$, i.e. $\mathbf{q}_{0} \notin \operatorname{CS}\left(\mathfrak{A}_{0}\right)$ and for every total degree \mathbf{a} : if $\mathbf{a} \geq \mathbf{q}_{0}$, then $\mathbf{a} \in \operatorname{DS}\left(\mathfrak{A}_{0}\right)$ and if $\mathbf{a} \leq \mathbf{q}_{0}$, then $\mathbf{a} \in \operatorname{CS}\left(\mathfrak{A}_{0}\right)$.

We are going to prove the existence of a quasi-minimal degree with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

Theorem 14. For all structures $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$ there exists an enumeration degree \mathbf{q} such that:

1. $\mathbf{q}^{\prime} \in \operatorname{DS}\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{q}^{(n)} \in \operatorname{DS}\left(\mathfrak{A}_{n}\right), \mathbf{q} \notin \operatorname{CS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;
2. If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathrm{DS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;
3. If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in \operatorname{CS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

Proof. Let \mathbf{q}_{0} be a quasi-minimal degree \mathbf{q}_{0} with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}\right)$ from [7].
Let $B_{0} \subseteq \mathbb{N}$, such that $d_{\mathrm{e}}\left(B_{0}\right)=\mathbf{q}_{0}$, and f_{1}, \ldots, f_{n} be fixed total enumerations of $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$. Set $B_{1}=f_{1}^{-1}\left(\mathfrak{A}_{1}\right), \ldots, B_{n}=f_{n}^{-1}\left(\mathfrak{A}_{n}\right)$. By Theorem 4 there is quasi-minimal over B_{0} set F, such that $B_{0}<_{\mathrm{e}} F, B_{i} \leq_{\mathrm{e}} F^{(i)}$, for each $1 \leq i \leq n$, and moreover for any total set A, if $A \leq_{\mathrm{e}} F$, then $A \leq_{\mathrm{e}} B_{0}$. We will show that $\mathbf{q}=d_{\mathrm{e}}(F)$ is quasi-minimal with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

Since \mathbf{q}_{0} is quasi-minimal with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}\right), \mathbf{q}_{0} \notin \operatorname{CS}\left(\mathfrak{A}_{0}\right)$. But $\mathbf{q}_{0}<\mathbf{q}$ and thus $\mathbf{q} \notin \operatorname{CS}\left(\mathfrak{A}_{0}\right)$. Hence $\mathbf{q} \notin \operatorname{CS}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

For each $1 \leq i \leq n$, the set $F^{(i)}$ is total and $f_{i}^{-1}\left(\mathfrak{A}_{i}\right) \leq{ }_{\mathrm{e}} F^{(i)}$. Since any degree spectrum is closed upwards it follows that $d_{\mathrm{e}}\left(F^{(i)}\right) \in \mathrm{DS}\left(\mathfrak{A}_{i}\right)$, i.e. $\mathbf{q}^{(i)} \in \operatorname{DS}\left(\mathfrak{A}_{i}\right)$.

Consider a total set X, such that $X \geq_{\mathrm{e}} F$. Then $d_{\mathrm{e}}(X) \geq \mathbf{q}_{0}$. From the fact that \mathbf{q}_{0} is quasi-minimal with respect to $\operatorname{DS}\left(\mathfrak{A}_{0}\right)$ it follows that $d_{\mathrm{e}}(X) \in \operatorname{DS}\left(\mathfrak{A}_{0}\right)$. Moreover for each $1 \leq i \leq n, X^{(i)} \geq_{\mathrm{e}} F^{(i)} \geq_{\mathrm{e}} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)$, and $X^{(i)}$ is a total set. Then for each $i \leq n, d_{\mathrm{e}}\left(X^{(i)}\right) \in \operatorname{DS}\left(\mathfrak{A}_{i}\right)$, and hence $d_{\mathrm{e}}(X) \in \operatorname{DS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

Suppose that X is a total set and $X \leq_{\mathrm{e}} F$. Then, from the choice of F, since X is total, $X \leq_{\mathrm{e}} B_{0}$. Apply again the quasi-minimality of \mathbf{q}_{0} and then $d_{\mathrm{e}}(X) \in$ $\operatorname{CS}\left(\mathfrak{A}_{0}\right)$. But $\operatorname{CS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\operatorname{CS}\left(\mathfrak{A}_{0}\right)$ and therefore $d_{\mathrm{e}}(X) \in \operatorname{CS}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

In the rest of the paper we shall present the proof of Theorem 4.

6 Partial Regular Enumerations

Let B_{0}, \ldots, B_{n} be fixed sets of natural numbers. Combining the technique of the (total) regular enumerations from [6] with the partial generic enumerations,
introduced in [7], we shall construct a partial regular enumeration f, which graph will be quasi-minimal over the set B_{0} and such that $B_{i} \leq f^{(i)}$, for $0 \leq i \leq n$. In [7] a partial generic enumeration of B_{0} is constructed, which is quasi-minimal over B_{0}. In addition, the enumeration f we are going to obtain, will code the sets B_{1}, \ldots, B_{n} in its jumps $\left(B_{i} \leq_{\mathrm{e}} f^{(i)}\right)$.

Definition 15. A partial enumeration f of B_{0} is a partial surjective mapping from \mathbb{N} onto \mathbb{N} with the following properties:

1. For all odd x, if $f(x)$ is defined, then $f(x) \in B_{0}$;
2. For all $y \in B_{0}$, there is an odd x, such that $f(x) \simeq y$.

It is clear that if f is a partial enumeration of B_{0}, then $B_{0} \leq_{\mathrm{e}} f$.
Let $\perp \notin \mathbb{N}$.
Definition 16. A partial finite part τ is a finite mapping of \mathbb{N} into $\mathbb{N} \cup\{\perp\}$, such that $(\forall x)\left(x \in \operatorname{dom}(\tau) \& x\right.$ is odd $\left.\Rightarrow\left(\tau(x)=\perp \vee \tau(x) \in B_{0}\right)\right)$.

If τ is a partial finite part and f is a partial enumeration of B_{0}, say that

$$
\begin{aligned}
\tau \subseteq f \Longleftrightarrow & (\forall x \in \operatorname{dom}(\tau))((\tau(x)=\perp \Rightarrow f(x) \text { is not defined }) \& \\
& (\tau(x) \neq \perp \Rightarrow \tau(x) \simeq f(x)) .
\end{aligned}
$$

A 0 -regular partial finite part is a partial finite part τ such that $\operatorname{dom}(\tau)=$ $[0,2 q+1]$ and for all odd $z \in \operatorname{dom}(\tau), \tau(z) \in B_{0}$ or $\tau(z)=\perp$. The 0-rank of τ, $|\tau|_{0}=q+1$ we call the number of the odd elements of $\operatorname{dom}(\tau)$. If ρ is a 0 -regular partial extention of τ we shall denote this by $\tau \subseteq_{0} \rho$. It is clear that if $\tau \subseteq_{0} \rho$ and $|\tau|_{0}=|\rho|_{0}$, then $\tau=\rho$. Let

$$
\begin{aligned}
\tau \Vdash_{0} F_{e}(x) \Longleftrightarrow & \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)(u=\langle s, t\rangle, \& \tau(s) \simeq t \& t \neq \perp)\right) \\
& \tau \Vdash_{0} \neg F_{e}(x) \Longleftrightarrow(\forall \rho)\left(\tau \subseteq_{0} \rho \Rightarrow \rho \Vdash_{0} F_{e}(x)\right) .
\end{aligned}
$$

The $(i+1)$-regular partial finite part τ, the $(i+1)$-rank $|\tau|_{i+1}$ of τ and the relations $\tau \Vdash_{i+1} F_{e}(x)$ and $\tau \Vdash_{i+1} \neg F_{e}(x)$ are defined by induction on i, in the same way as in [6]. The only difference is that instead of i-regular finite parts we use i-regular partial finite parts. Denote by \mathcal{R}_{i} the set of all i-regular partial finite parts.

For any i-regular finite part τ and any set X of i-regular finite parts, denote by $\mu_{i}(\tau, X)=\mu \rho\left[\tau \subseteq \rho \& \rho \in \mathcal{R}_{i} \& \rho \in X\right]$ if any, and $\mu_{i}(\tau, X)=\mu \rho[\tau \subseteq$ $\left.\rho \& \rho \in \mathcal{R}_{i}\right]$, otherwise.

Denote by $X_{\langle e, x\rangle}^{i}=\left\{\rho: \rho\right.$ is i-regular $\left.\& \rho \Vdash_{i} F_{e}(x)\right\}$.
Let τ be a finite part and $m \geq 0$. The finite part δ is called an i-regular m omitting extension of τ if $\delta \supseteq \tau, \delta \in \mathcal{R}_{i}$, $\operatorname{dom}(\delta)=[0, q-1]$ and there exist natural numbers $q_{0}<\ldots<q_{m}<q_{m+1}=q$ such that:

1. $\delta \upharpoonright q_{0}=\tau$.
2. For all $p \leq m, \delta \upharpoonright q_{p+1}=\mu_{i}\left(\delta \upharpoonright\left(q_{p}+1\right), X_{\left\langle p, q_{p}\right\rangle}^{i}\right)$.

If δ and ρ are two i-regular m omitting extensions of τ and $\delta \subseteq \rho$ then $\delta=\rho$. Given an index j, by S_{j}^{i} we shall denote the intersection $\mathcal{R}_{i} \cap \Gamma_{j}\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)$, where Γ_{j} is the j th enumeration operator.

Let τ be a finite part defined on $[0, q-1]$ and $r \geq 0$. Then τ is $(i+1)$-regular with $(i+1)$-rank $r+1$ if there exist natural numbers

$$
0<n_{0}<l_{0}<b_{0}<n_{1}<l_{1}<b_{1} \ldots<n_{r}<l_{r}<b_{r}<n_{r+1}=q
$$

such that $\tau \upharpoonright n_{0}$ is an i-regular finite part with i-rank equal to 1 and for all j, $0 \leq j \leq r$, the following conditions are satisfied:
(a) $\tau \upharpoonright l_{j} \simeq \mu_{i}\left(\tau \upharpoonright\left(n_{j}+1\right), S_{j}^{i}\right)$;
(b) $\tau \upharpoonright b_{j}$ is an i-regular j omitting extension of $\tau \upharpoonright l_{j}$;
(c) $\tau\left(b_{j}\right) \in B_{i+1}$;
(d) $\tau \upharpoonright n_{j+1}$ is an i-regular extension of $\tau \upharpoonright\left(b_{j}+1\right)$ with i-rank equal to $\left|\tau \upharpoonright b_{j}\right|_{i}+1$.

If τ is an i-regular partial finite part, then τ is a j-regular partial finite part for each $j<i$ and $|\tau|_{j}>|\tau|_{i}$.

Definition 17. A partial regular enumeration is a partial enumeration, such that:

1. For every partial finite part $\delta \subseteq f$, there exists an n-regular partial extension τ of δ such that $\tau \subseteq f$.
2. If $i \leq n$ and $z \in B_{i}$, then there exists an i-regular partial finite part $\tau \subseteq f$, such that $z \in \operatorname{dom}(\tau)$.

If f is a partial regular enumeration, $\delta \subseteq f$ and $i \leq n$, then there exists an i-regular partial finite part τ of an arbitrary large rank such that $\delta \subseteq \tau$ and $\tau \subseteq f$.

Denote by $\mathcal{P}_{i}=\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$. It is clear that $\mathcal{R}_{i} \leq{ }_{\mathrm{e}} \mathcal{P}_{i}$.
Definition 18. A partial enumeration f is i-generic if for any $j<i$ and for every enumeration reducible to \mathcal{P}_{j} set S of j-regular partial finite parts the following condition holds:

$$
(\exists \tau \subseteq f)\left(\tau \in S \vee(\forall \rho \supseteq \tau)\left(\rho \in \mathcal{R}_{i} \Rightarrow \rho \notin S\right)\right)
$$

Proposition 19. Every partial regular enumeration is $(i+1)$-generic enumeration, for every $i<n$.

Proposition 20. Suppose that f is a partial regular enumeration. Then

1. For each $i \leq n, B_{i} \leq_{\mathrm{e}} f^{(i)}$.
2. If $i<n$, then $f \mathbb{Z}_{\mathrm{e}} \mathcal{P}_{i}$.

Definition 21. If f is a partial enumeration define:

$$
f \models_{0} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(f\left((u)_{0}\right) \simeq(u)_{1}\right)\right) .
$$

Proof of Theorem 4. By Proposition 20 it is sufficient to show that there exists a partial regular enumeration f which is quasi-minimal over B_{0}.

We shall construct f as a union of n-regular partial finite parts δ_{s} such that for all $s, \delta_{s} \subseteq \delta_{s+1}$ and $\left|\delta_{s}\right|_{n}=s+1$. Suppose that for $i \leq n, \sigma_{i}$ is a recursively in B_{i} enumeration of B_{i}.

Let δ_{0} be a 0 -regular partial finite part such that $\left|\delta_{0}\right|_{n}=1$. Suppose that δ_{s} is defined. Set $z_{0}=\sigma_{0}(s), \ldots, z_{n}=\sigma_{n}(s)$. We can construct effectively in $\mathcal{P}_{n-1}^{\prime}$ a n-regular partial finite part $\rho \supseteq \delta_{s}$ such that $|\rho|_{n}=\left|\delta_{s}\right|_{n}+1, \rho\left(\operatorname{lh}\left(\delta_{s}\right)\right)=s$ and $z_{0}=\rho\left(x_{0}\right)$ for some $x_{0} \in B_{0}, \ldots, z_{n}=\rho\left(x_{n}\right)$ for some $x_{n} \in B_{n}$. Set $\delta_{s+1}=\rho$.

The obtained enumeration f is surjective on \mathbb{N} and it is a union of n-regular partial finite parts. From the construction is obvious that for every $z \in B_{i}$ there is an i-regular partial finite part τ of f, such that $z \in \operatorname{dom}(\tau)$. Hence f is a partial regular enumeration. By Proposition $19 f$ is $(i+1)$-generic for each $i<n$.

Then by Proposition 20, for $i \leq n, B_{i} \leq f^{(i)}$. Moreover f is a partial 1-generic enumeration and hence $B_{0}<_{\mathrm{e}} f$.

To prove that f is quasi-minimal over B_{0}, it is sufficient to show that if ψ is a total function and $\psi \leq_{\mathrm{e}} f$, then $\psi \leq_{\mathrm{e}} B_{0}$. It is clear that for any total set $A \subseteq \mathbb{N}$ one can construct a total function $\psi, \psi \equiv_{\mathrm{e}} A$. Let ψ be a total function and $\psi=\Gamma_{e}(f)$. Then

$$
(\forall x, y \in \mathbb{N})\left(f \models_{0} F_{e}(\langle x, y\rangle) \Longleftrightarrow \psi(x) \simeq y\right) .
$$

Consider the set

$$
S_{0}=\left\{\rho: \rho \in \mathcal{R}_{0} \&\left(\exists x, y_{1} \neq y_{2} \in \mathbb{N}\right)\left(\rho \Vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right) \& \rho \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)\right)\right\}
$$

Since $S_{0} \leq_{\mathrm{e}} B_{0}$, we have that there exists a 0 -regular partial finite part $\tau_{0} \subseteq f$ such that either $\tau_{0} \in S_{0}$ or $\left(\forall \rho \supseteq_{0} \tau_{0}\right)\left(\rho \notin S_{0}\right)$. Assume that $\tau_{0} \in S_{0}$. Then there exist $x, y_{1} \neq y_{2}$ such that $f \models_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right)$ and $f \models_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)$. Then $\psi(x) \simeq y_{1}$ and $\psi(x) \simeq y_{2}$ which is impossible. So, $\left(\forall \rho \supseteq{ }_{0} \tau_{0}\right)\left(\rho \notin S_{0}\right)$.

Let

$$
\begin{gathered}
S_{1}=\left\{\rho: \rho \in \mathcal{R}_{0} \&\left(\exists \tau \supseteq_{0} \tau_{0}\right)\left(\exists \delta_{1} \supseteq_{0} \tau\right)\left(\exists \delta_{2} \supseteq_{0} \tau\right)\left(\exists x, y_{1} \neq y_{2}\right)\left(\tau \subseteq_{0} \rho \&\right.\right. \\
\delta_{1} \Vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right) \& \delta_{2} \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right) \& \operatorname{dom}(\rho)=\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right) \\
\&(\forall x)(x \in \operatorname{dom}(\rho) \backslash \operatorname{dom}(\tau) \Rightarrow \rho(x) \simeq \perp))\} .
\end{gathered}
$$

We have that $S_{1} \leq{ }_{\mathrm{e}} B_{0}$ and hence there exists a 0 -regular partial finite part $\tau_{1} \subseteq f$ such that either $\tau_{1} \in S_{1}$ or $\left(\forall \rho \supseteq_{0} \tau_{1}\right)\left(\rho \notin S_{1}\right)$.

Assume that $\tau_{1} \in S_{1}$. Then there exists a 0 -regular partial finite part τ such that $\tau_{0} \subseteq_{0} \tau \subseteq_{0} \tau_{1}$ and for some $\delta_{1} \supseteq_{0} \tau, \delta_{2} \supseteq_{0} \tau$ and $x_{0}, y_{1} \neq y_{2} \in \mathbb{N}$ we have
$\delta_{1} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{1}\right\rangle\right) \& \delta_{2} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{2}\right\rangle\right) \& \operatorname{dom}\left(\tau_{1}\right)=\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right) \&$
$\&(\forall x)\left(x \in \operatorname{dom}\left(\tau_{1}\right) \backslash \operatorname{dom}(\tau) \Rightarrow \tau_{1}(x) \simeq \perp\right)$.
Let $\psi\left(x_{0}\right) \simeq y$. Then $f \models_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. Hence there exists a $\rho \supseteq_{0} \tau_{1}$ such that $\rho \Vdash_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. Let $y \neq y_{1}$. Define the partial finite part ρ_{0} as follows:

$$
\rho_{0}(x) \simeq\left\{\begin{array}{l}
\delta_{1}(x) \text { if } x \in \operatorname{dom}\left(\delta_{1}\right) \\
\rho(x) \text { if } x \in \operatorname{dom}(\rho) \backslash \operatorname{dom}\left(\delta_{1}\right) .
\end{array}\right.
$$

Then $\tau_{0} \subseteq_{0} \rho_{0}, \delta_{1} \subseteq_{0} \rho_{0}$ and notice that for all $x \in \operatorname{dom}(\rho)$ if $\rho(x) \nsucceq \perp$, then $\rho(x) \simeq \rho_{0}(x)$. Hence $\rho_{0} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{1}\right\rangle\right)$ and $\rho_{0} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. So, $\rho_{0} \in S_{0}$. A contradiction.

Thus, $(\forall \rho)\left(\rho \supseteq_{0} \tau_{1} \Rightarrow \rho \notin S_{1}\right)$.
Let $\tau=\tau_{1} \cup \tau_{0}$. Notice that $\tau \subseteq f$. We shall show that

$$
\psi(x) \simeq y \Longleftrightarrow\left(\exists \delta \supseteq_{0} \tau\right)\left(\delta \vdash_{0} F_{e}(\langle x, y\rangle)\right)
$$

And hence $\psi \leq_{\mathrm{e}} B_{0}$.
If $\psi(x) \simeq y$, then $f \models_{0} F_{e}(x)$, and since f is regular, $(\exists \rho \subseteq f)\left(\rho \Vdash_{0} F_{e}(x)\right)$ and ρ is 0 -regular. Then take $\delta=\tau \cup \rho$.

Assume that $\delta_{1} \supseteq_{0} \tau, \delta_{1} \vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right)$. Suppose that $\psi(x) \simeq y_{2}$ and $y_{1} \neq y_{2}$. Then there exists a $\delta_{2} \supseteq_{0} \tau$ such that $\delta_{2} \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)$. Set

$$
\rho(x) \simeq \begin{cases}\tau(x) & \text { if } x \in \operatorname{dom}(\tau) \\ \perp & \text { if } x \in\left(\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right)\right) \backslash \operatorname{dom}(\tau)\end{cases}
$$

Clearly $\rho \supseteq_{0} \tau_{1}$ and $\rho \in S_{1}$. A contradiction.

References

1. C. J. Ash, C. Jockush, and J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc. 319 (1990), 573-599.
2. S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_{2} sets are dense, J. Symbolic Logic 49 (1984), 503-513.
3. R. G. Downey and J. F. Knight, Orderings with α th jump degree $\mathbf{0}^{(\alpha)}$, Proc. Amer. Math. Soc. 114 (1992), 545-552.
4. J. F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), 1034-1042.
5. L. J. Richter, Degrees of structures, J. Symbolic Logic 46 (1981), 723-731.
6. I. N. Soskov, A jump inversion theorem for the enumeration jump, Arch. Math. Logic 39 (2000), 417-437.
7. \qquad , Degree spectra and co-spectra of structures, Ann. Univ. Sofia, 96, 2003, 45-68.
8. A. A. Soskova, I. N. Soskov, Co-spectra of joint spectra of structures, Ann. Univ. Sofia, 96, 2003, 35-44.
