Minimal Pairs and Quasi-Minimal Degrees for
the Joint Spectra of Structures

Alexandra A. Soskova

Faculty of Mathematics and Computer Science,
Sofia University,
5 James Bourchier Blvd.,
1164 Sofia, Bulgaria,
asoskova@fmi.uni-sofia.bg

Abstract. Two properties of the Co-spectrum of the Joint spectrum of
finitely many abstract structures are presented — a Minimal Pair type
theorem and the existence of a Quasi-Minimal degree with respect to the
Joint spectrum of the structures.

1 Introduction

Let 2 be a countable abstract structure. The Degree spectrum DS(2() of 2 is
the set of all enumeration degrees generated by all enumerations of 2(. The Co-
spectrum of the structure 2 is the set of all enumeration degrees which are lower
bounds of the DS(2(). As a typical example of a spectrum is the cone of the total
degrees greater then or equal to some enumeration degree a and the respective
Co-spectrum which is equal to the set all degrees less than or equal to a. There
are examples of structures with more complicated degree spectra e.g. [5,4, 1,3,
7). The properties of the Degree spectra are presented in [7] which show that
the degree spectra behave with respect to their Co-spectra like the cones of
enumeration degrees.

In [8] a generalization of the notions of Degree spectra and Co-spectra for
finitely many structures is presented. Let 2, . . ., 2, be countable abstract struc-
tures. The Joint spectrum of 2, ...,2, is the set DS(Ap,A1,...,2A,) of all
elements of DS(Ap), such that a®) € DS(2},), for each k < n.

Here we shall prove two properties of the Co-spectrum of DS(Rlp, ..., 2,) —
the Minimal Pair type theorem and the existence of a quasi-minimal degree with
respect to the Joint spectrum.

The proofs use the technique of regular enumerations introduced in [6], com-
bined with partial generic enumerations used in [7].

2 Preliminaries

Let 2 = (IN; Ry, ..., Ry) be a partial structure over the set of all natural numbers
IN, where each R; is a subset of IN"* and = and # are among R1,..., Ry.
An enumeration f of 2 is a total mapping from IN onto IN.



For every A C IN* define f~1(A) = {(x1...74) : (f(z1),...,f(z,)) € A}.
Denote by f~1(R4) = f7H(R1) & ... ® f~1(Ry).

For any sets of natural numbers A and B the set A is enumeration reducible
to B (A <. B) if there is an enumeration operator I, such that A = I',(B). By
de(A) we denote the enumeration degree of the set A and by D, the set of all
enumeration degrees. The set A is total if A =, AT, where AT = A @ (IN\A).
A degree a is called total if a contains the e-degree of a total set. The jump
operation “” denotes here the enumeration jump introduced by COOPER [2].

Definition 1. The Degree spectrum of 2 is the set
DS(2A) = {do(f~*(A)) : f is an enumeration of A} .
Let By, ..., B, be arbitrary subsets of IN. Define the set P(By, ..., B;) as follows:

1. fP(Bo) = Bo;
2. Ifi < n, then :P(Bo, ceey Bi+1) = (T(Bo, ceey Bl))/ &) Bi+1.

In the construction of minimal pair we shall use a modification of the “type
omitting” version of Jump Inversion Theorem from [6]. In fact, the result follows
from the proof of the Theorem 1.7 in [6].

Theorem 2 ([6]). Let {AF},, k=0,...,n be a sequence of subsets of N such
that for every r and for all k, 0 < k < n, A* £, P(By,...,Bx). Then there
exists a total set F' having the following properties:

1. B; <, F(i), for alli < n;
2. AF £, F®) | for all r and all k < n.

Definition 3. A set F' of natural numbers is called quasi-minimal over By if
the following conditions hold:

1. By <¢ F};
2. For any total set A CIN, if A <, F, then A <, By.

In the construction of the quasi-minimal degree we shall use the following fact:

Theorem 4. There exists a set of natural numbers F having the following prop-
erties:

1. BO <e F;
2. Foralll1<i<mn, B; <c FO;
3. For any total set A, if A <, F, then A <. By.

The set F' from Theorem 4 is quasi-minimal over By. We shall prove this theorem
in the last section using the technique of partial regular enumerations.



3 Joint Spectra of Structures

Let 2o, ...,2, be abstract structures on IN.
Definition 5. The Joint spectrum of g, ..., 2, is the set

DS(Ao, Ap, ..., A,) = {a:a e DS(Ag),a’ € DS(Ay),...,a™ € DS(A,)} .
Definition 6. For every k < n, the k th Jump spectrum of g, ..., 2, is the set
DSk (2o, ..., A,) = {a® :a e DS(Ap, ..., An)} .

In [8] is shown that DSy (2o, ...,2A,) is closed upwards, i.e. if a*) € DS, (o,
2,), b is a total e-degree and al®¥) < b, then b € DS, (o, ..., Ay).

Definition 7. The kth Co-spectrum of g, ..., 2A,, k < n, is the set of all lower
bounds of DSy (o, ...,2,), i.e.

CSk(Ao, ..., 2A,) = {b: b € D&(Va € DS (Ao, ..., %)) (b < a)} .

From [8] we know that the kth Co-spectrum for k£ < n depends only of the first
k structures:

CSk (o, .., g, .., An) = CSp (Ao, ..., Ax)

Let fo,..., fn be enumerations of Ay, ...,A,. Denote by f = (fo,..., fn) and
P = P(f (Ao), - [T AR)), k=0,...,m

Let Wy, ..., W,,... be a Godel’s enumeration of the c.e. sets and D, be the
finite set having canonical code v.

For every i < n, e and x in IN define the relations f |=; F.(z)and f |=; = F.(x)
by induction on :

L f o Fe(z) <= (v)((v,z) € W, & D C fo ' (o));

2. [l Fe(z) <= (F)((v,2) € We & (Yu € Dy,)(u= (0, 4, 2u) &
f ':z eu(xu) \/u:< ) €uy T u> f ':z _‘Feu(mu) Vou= <2a~73u> &
Ty S fz-l,-l( Z+1)))§ B

3. f ':z _‘F(:‘(x) Aand f l#z Fe(x)'

It is easy to check that for any A CIN and k < n

A< Pl = @e)(A={z:[Fx F()}) .

The forcing conditions which we shall call finite parts are n + 1 tuples 7 =
(70, - .., 7n) of finite mappings 79, ..., 7, of IN in IN.

For any i < n, e and = in IN and every finite part 7 we define the forcing
relations 7 IF; F,(z) and 7 IF; = F,(z) following the definition of relation “k;”.

Definition 8. 1. 7l F.(2) <= (v)({v,x) € W, & D, C 15 (2o));

2. Tlriy1 Fe(z) <= Fo({v,z) e W, & (Vu € D,)(u= (0, eu,xu> &
Tl Fo () Vu={1ey,xy) & Tl 2F,, (24) V u=1(2,2,) &
2y € T (A1)



3. T ”_z _‘Fe('r) — (Vﬁ 2 7i)(ﬁ U’Lz Fe(x))
For any i < n,e,x € IN denote by X|, ., ={p:plF; Fe(z)}.

Definition 9. An enumeration f of o,..., %, is i-generic if for every j < i,
e,x € IN

(vFCNEeXi,)FCp)— GFCHFexi,).
In [8] the following properties of the k-generic enumertions are shown:

1. If f is an k-generic enumeration, then
fELF(r) <= 37 C )T Ik Fo(z))
2. If f is an (k + 1)-generic enumeration, then
fEr ~Fo(z) < (37 C f)(7 IFy ~Fe(z)) .

Definition 10. The set A C IN is forcing k-definable on %o, ..., 2L, if there
exist a finite part 6 and e € IN such that

veA e (I7 2 5)(F Iy Fu(z)) .

In [8] the following characterization of the sets which generates the elements of
the kth Co-spectrum of DSy, ..., 2,) is given:

Theorem 11 ([8]). For every A CIN, the following are equivalent:

1. do(A) € CSg(Ao, .-, Ap).
2. A<, T{, for all f = (fo,...,fr) enumerations of Ao, ..., Ap.
3. A is forcing k-definable on Ay, ..., 2A,.

Theorem 12. Let {X*},, k =0,...,n be n+ 1 sequences of sets of natural
numbers. There exists a (n + 1)-generic enumeration | of Ao, ..., A, such that
for any k < n and for all v € IN, if the set XF is not forcing k-definable on

Ao, ..., A, then XF £, P

4 Minimal Pair Theorem

In [7] a Minimal Pair Theorem for Degree spectrum of a structure 2l is presented.
Using the technique of splitting generic enumerations it is proven there that for
each constructive ordinal « there exist elements f and g of DS(2) such that for
any enumeration degree a and any S+ 1 < «

a<f? &a<g?® =aecCS;) .

We shall prove an analogue of the Minimal Pair Theorem for the Joint spectrum.



Theorem 13. For all structures Ao, A1, ..., A, there exist enumeration degrees
f and g in DS(Ao,2As,...,Ay), such that for any enumeration degree a and
k<n:

a<f® ga<gh =acCS,(Ap,A,...,An) .

Proof. We shall construct two total sets F and G, such that d.(F) € DS(2,
., 2Ap), do(G) € DS, ..., A,) and for each k < n, if a set X, X <, F*) and
X <. G® | then do(X) € CSk(YAo,...,2Ay,). And take f = do(F) and g = do(G).
First we construct enumerations f andiﬁ of Ay, ..., A, such that for any
k<n,ifaset ACIN, A <, TP£ and A <, iPZ, then A is a forcing k-definable on
Agy vy Anpe

Let go,--., g, be arbitrary enumerations of 2, ..., 2,. By Theorem 2 for
By = g5 (o), - .., By = g7 ' (A,) there exists a total set F, such that:
go_l(Qlo) <. F, gl_l(Qll) < F'oo g (A, < F™. Since DS(o, Ay, ..., Ay,) is
closed upwards, then de(F) € DS(o,2A1,...,Ay), L.e. de(F) € DS(Ap),de(F') €
DS(21), ..., de(F™) € DS(2A,,).

Hence, there exist enumerations hg, h1, ..., h, of A, Ay, ..., A, respectively,
such that hg' (o) = F,hy (24) = F',..., b () =. F™. Notice, that for
each k <n, F®) =, TZ.

For each k < n, let {XP*}, be the sequence of all sets enumeration reducible
to Pl

By Theorem 12 there is an (n + 1)-generic enumeration f such that for all r,
and all k = 0,...,n if the set X* is not forcing k-definable then X* «, Ti.

Suppose now that the set A <, ‘J’£ and A <, P! Then A = X* for some
r. From the omitting condition of f it follows that A is forcing k-definable on
Aoy vy A

Now we apply again the Theorem 2. Let By = f5 (o), ..., Bn = f ' (Ay)
and B, 1 = N. For each k < n consider the sequence { A}, of these sets among
the sets {X*},., which are not forcing k-definable on 2o, ..., 2,,. From the choice
of the enumeration f it follows that each of these sets AF, AF £, fPi. Then by
Theorem 2 there is a total set G, such that

1. For all k <n, ;' () <c G®;
2. For all r and all k < n, AF £, G,

Note, that since G is a total set, and because of the fact that each spectrum
is closed upwards, we have that d.(G) € DS(p),...,de(G™) € DS(,,), and
hence do(G) € DS(™o, ..., An).

Suppose now, that a set X, X <, F®) and X <, G(k), k <n. From X <,
F® and F®) =, PP it follows that X = XP* for some r. It is clear that X <. U’i.
Otherwise from the choice of G it follows that X Z. G*). Hence X is forcing
k-definable on 2Ag,...,2,. By the normal form of the sets which enumeration
degrees are in CSi (™o, ..., Ay), we have that de(X) € CS (Ao, ..., 2Ay).



5 Quasi-Minimal Degree

Given a set A of enumeration degrees denote by co(A) the set of all lower bounds
of A. Say that the degree q is quasi-minimal with respect to A if the following
conditions hold ([7]):

1. q & co(A).
2. If a is a total degree and a > q, then a € A.
3. If a is a total degree and a < q, then a € co(A).

In [7] it is shown that there is a quasi-minimal degree q, with respect to DS(2y),
i.e. qy € CS(2p) and for every total degree a: if a > qq, then a € DS(2y) and if
a < qq, then a € CS(p).

We are going to prove the existence of a quasi-minimal degree with respect
to DS(Ag, A1, ..., Ay).

Theorem 14. For all structures Ag,%Aq,..., ™A, there exists an enumeration
degree q such that:

1. ¢ €DS(2),...,q" € DS(A,), q & CS(Ap, Ay, ..., Ay,);
2. If a is a total degree and a > q, then a € DS(24g, s, ..., 2,);
3. If a is a total degree and a < q, then a € CS(Up, Ay, ...,2A,).

Proof. Let qq be a quasi-minimal degree q, with respect to DS(2(p) from [7].

Let By C IN, such that do(Bo) = qg, and f1,..., fn be fixed total enumer-
ations of Ay,...,%,. Set By = ffl(Qll)7...,Bn = f71(2A,). By Theorem 4
there is quasi-minimal over By set F, such that By <. F, B; <. F(®), for each
1 <i < n, and moreover for any total set A, if A <. F, then A <., By. We will
show that q = do(F) is quasi-minimal with respect to DS(Rlo, ..., 2A,).

Since qq is quasi-minimal with respect to DS(2(p), q, & CS(2p). But gy < gq
and thus q € CS(2lp). Hence q & CS(p, 21, ..., A,).

For each 1 < i < n, the set F is total and f[l(Qli) <, F®_ Since any degree
spectrum is closed upwards it follows that d.(F*)) € DS(2;), i.e. gV € DS(2,;).

Consider a total set X, such that X >, F. Then d.(X) > q,. From the fact
that q is quasi-minimal with respect to DS(2l) it follows that d.(X) € DS(y).
Moreover for each 1 < i < n, X&) >, F() >, f,fl(Qli), and X@ is a total set.
Then for each i < n, do(X®) € DS(;), and hence d.(X) € DS(o, ..., An).

Suppose that X is a total set and X <., F'. Then, from the choice of F', since
X is total, X <, By. Apply again the quasi-minimality of q, and then d.(X) €
CS(lp). But CS(y, ..., 2A,) = CS(™p) and therefore do(X) € CS(o, ..., Ap).

O
In the rest of the paper we shall present the proof of Theorem 4.
6 Partial Regular Enumerations
Let By,..., B, be fixed sets of natural numbers. Combining the technique of

the (total) regular enumerations from [6] with the partial generic enumerations,



introduced in [7], we shall construct a partial regular enumeration f, which graph
will be quasi-minimal over the set By and such that B; <. f®, for 0 < i < n.
In [7] a partial generic enumeration of By is constructed, which is quasi-minimal
over By. In addition, the enumeration f we are going to obtain, will code the
sets Bi,..., B, in its jumps (B; <. f®).

Definition 15. A partial enumeration f of By is a partial surjective mapping
from IN onto IN with the following properties:

1. For all odd =z, if f(x) is defined, then f(z) € By;
2. For all y € By, there is an odd =, such that f(z) ~y.

It is clear that if f is a partial enumeration of By, then By <, f.
Let L ¢ IN.

Definition 16. A partial finite part T is a finite mapping of IN into IN U { L},
such that (Vz)(z € dom(7) & z is odd = (7(x) = L V 7(x) € By)).

If 7 is a partial finite part and f is a partial enumeration of By, say that

7C f < (Vz €dom(7))((7(x) = L = f(x) is not defined ) &
(7(x) # L= 7(z) ~ f(2)) .

A 0-regular partial finite part is a partial finite part 7 such that dom(r) =
[0,2¢ + 1] and for all odd z € dom(7), 7(2) € By or 7(z) = L. The O-rank of 7,
|T]o = g+ 1 we call the number of the odd elements of dom(7). If p is a 0-regular
partial extention of 7 we shall denote this by 7 Cy p. It is clear that if 7 Cg p
and |7|o = |plo, then 7 = p. Let

T o Fe(z) <= Jo((v,2) € We & (Vu € Dy)(u = (s,t), & 7(s) t &t # 1))

7o ~Fu(z) <= (Yp)(r Co p= plfo F.(x)) .

The (i + 1)-regular partial finite part 7, the (i 4+ 1)-rank |7|;+1 of 7 and the
relations 7 IF; 1 Fe(x) and 7 I, 41 —F.(x) are defined by induction on 4, in the
same way as in [6]. The only difference is that instead of i-regular finite parts
we use i-regular partial finite parts. Denote by R; the set of all i-regular partial
finite parts.

For any i-regular finite part 7 and any set X of i-regular finite parts, denote
by pi(r,X) = pplr € p & p € R; & p € X]| if any, and p;(7, X) = pp[r C
p & p € R;], otherwise.

Denote by Xfe)@ ={p:pisivregular & pl+; F.(z)}.

Let 7 be a finite part and m > 0. The finite part § is called an i-regular m
omitting extension of 7 if 6 D 7, § € R;, dom(d) = [0,¢ — 1] and there exist
natural numbers ¢y < ... < ¢ < ¢m+1 = g such that:

1. 6[(]0:7’.

2. Forallp<m, d [ gps1 =i (0 | (gp + 1),X2p’qp>).



If § and p are two i-regular m omitting extensions of 7 and § C p then § = p.
Given an index j, by S} we shall denote the intersection R; N I (P(By, . . ., B;)),
where I is the jth enumeration operator.

Let 7 be a finite part defined on [0,¢ — 1] and > 0. Then 7 is (i + 1)-regular
with (¢ + 1)-rank r + 1 if there exist natural numbers

O<ng<lp<by<ni<li<br...<n. <l <b <npy1=gq

such that 7 [ ng is an i-regular finite part with i-rank equal to 1 and for all 7,
0 < j <r, the following conditions are satisfied:

) Tl > pi(r ] (ny + 1),S;-);
) 7 | bj is an i-regular j omitting extension of 7 [ [;;
) 7(bj) € Bit;
) 7 | njq1 is an i-regular extension of 7 | (b; + 1) with é-rank equal to
|T I bj |Z + 1.
If 7 is an i-regular partial finite part, then 7 is a j-regular partial finite part
for each j < i and |7]; > |7|;.
Definition 17. A partial reqular enumeration is a partial enumeration, such

that:

1. For every partial finite part § C f, there exists an n-regular partial extension
7 of § such that 7 C f.

2. If i < n and z € B;, then there exists an i-regular partial finite part 7 C f,
such that z € dom(r).

If f is a partial regular enumeration, 6 C f and i < n, then there exists an
i-regular partial finite part 7 of an arbitrary large rank such that 6 C 7 and
T C f.

Denote by P; = P(By, ..., B;). It is clear that R; <, P;.

Definition 18. A partial enumeration f is i-generic if for any j < 4 and for
every enumeration reducible to P; set S of j-regular partial finite parts the
following condition holds:

FrChHTeSV(Vp2T)(peRi=pgS)) .

Proposition 19. Every partial reqular enumeration is (i + 1)-generic enumer-
ation, for every i < mn.

Proposition 20. Suppose that f is a partial regular enumeration. Then

1. For each i <n, B; <, f(i).
2. Ifi<n, then f L. P;.

Definition 21. If f is a partial enumeration define:

fEo Fe(z) <= Fu((v,z) € W, & (Vu € D,)(f((u)o) = (u)1)) .



Proof of Theorem 4. By Proposition 20 it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over By.

We shall construct f as a union of n-regular partial finite parts d5 such that
for all s, §; C d541 and |0s], = s + 1. Suppose that for i < n, o; is a recursively
in B; enumeration of B;.

Let §p be a O-regular partial finite part such that |dg|, = 1. Suppose that d

is defined. Set zg = 0g(s), ..., 2, = 0,(s). We can construct effectively in P/,
a n-regular partial finite part p 2 d5 such that |p|, = |ds|n» + 1, p(lh(ds)) = s and
zo = p(xg) for some zy € By, ..., 2z, = p(z,) for some z,, € B,,. Set ds4+1 = p.

The obtained enumeration f is surjective on IN and it is a union of n-regular
partial finite parts. From the construction is obvious that for every z € B; there
is an i-regular partial finite part 7 of f, such that z € dom(r). Hence f is a partial
regular enumeration. By Proposition 19 f is (i + 1)-generic for each i < n.

Then by Proposition 20, for i < n, B; < f(). Moreover f is a partial 1-generic
enumeration and hence By <. f.

To prove that f is quasi-minimal over By, it is sufficient to show that if 1)
is a total function and ¢ <, f, then ¢ <, By. It is clear that for any total set
A C IN one can construct a total function v, ¢ =, A. Let ¢ be a total function
and ¥ = I.(f). Then

(Va,y € N)(f Fo Fe((z,y)) < ¢(2) =y) .

Consider the set

So={p:p€Ro & (Fr,y1 #y2 € N)(plFo Fe((z,y1)) & plko Fe((x,2)))} -

Since Sy <. By, we have that there exists a 0-regular partial finite part 79 C f
such that either 79 € Sy or (Vp Do 70)(p € Sp). Assume that 79 € Sy. Then
there exist x,y; # y2 such that f o Fe({z,y1)) and f =¢ Fe({(z,y2)). Then
P(x) =~ y1 and ¥(x) =~ yo which is impossible. So, (Vp D¢ 70)(p € So).

Let

Si={p:pe€Ro& (37 D0 70) (361 D0 7)(FI2 20 7) (T, 11 # y2)(T Co p &
51 ‘FO Fe(<x,y1>) & 52 |F0 Fe(<x,y2>) & dOI’Il(p) = dOIIl((Sl) U dOIIl((SQ)
&(Vx)(z € dom(p) \ dom(r) = p(x) ~ 1))} .

We have that S; <, By and hence there exists a 0-regular partial finite part
71 C f such that either 7 € S or (Vp D¢ 11)(p € S1).

Assume that 71 € S7. Then there exists a 0-regular partial finite part 7 such
that 79 Cg 7 Cp 71 and for some 61 D¢ 7, d2 D¢ 7 and xg,y1 # y2 € IN we have

01 ko Fe((z0,y1)) & 62 1o Fe({xo,y2)) & dom(m) = dom(d;) U dom(ds) &
& (Va)(z € dom(ry) \ dom(7) = 71 (z) ~ L) .

Let ¢ (zg) ~ y. Then f |=o Fe({xo,y)). Hence there exists a p Do 71 such that
p ko Fe({zo,y)). Let y # y1. Define the partial finite part po as follows:

_ J di(z) if z € dom(dy),
pol) = {p(z) if 2 € dom(p) \ dom(é,).



Then 79 o po, 61 Co po and notice that for all z € dom(p) if p(z) % L, then
p(z) = po(z). Hence po ko Fe({zo,y1)) and po ko Fe({zo,y)). So, po € So. A
contradiction.

Thus, (Vp)(p D0 71 = p & S1).

Let 7 = 71 U7y. Notice that 7 C f. We shall show that

Y(z) >y <= (36 20 7)(0 IFo Fe((z,1))) -

And hence ¢ <, By.

If ¢(z) ~ y, then f |=¢ Fe(z), and since f is regular, (3p C f)(p ko Fe(x))
and p is O-regular. Then take § = 7 U p.

Assume that 6; Do 7, 01 kg Fe({z,y1)). Suppose that ¢ (z) ~ y3 and y; # yo.
Then there exists a d2 D¢ 7 such that s kg Fo((x, y2)). Set

_ J 7(x)if x € dom(7),
plz) = {J_ if z € (dom(d;) Udom(dz)) \ dom(7).

Clearly p 29 7 and p € S;. A contradiction. ad
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